16,732 research outputs found

    Moving mesh finite difference solution of non-equilibrium radiation diffusion equations

    Get PDF
    A moving mesh finite difference method based on the moving mesh partial differential equation is proposed for the numerical solution of the 2T model for multi-material, non-equilibrium radiation diffusion equations. The model involves nonlinear diffusion coefficients and its solutions stay positive for all time when they are positive initially. Nonlinear diffusion and preservation of solution positivity pose challenges in the numerical solution of the model. A coefficient-freezing predictor-corrector method is used for nonlinear diffusion while a cutoff strategy with a positive threshold is used to keep the solutions positive. Furthermore, a two-level moving mesh strategy and a sparse matrix solver are used to improve the efficiency of the computation. Numerical results for a selection of examples of multi-material non-equilibrium radiation diffusion show that the method is capable of capturing the profiles and local structures of Marshak waves with adequate mesh concentration. The obtained numerical solutions are in good agreement with those in the existing literature. Comparison studies are also made between uniform and adaptive moving meshes and between one-level and two-level moving meshes.Comment: 29 page

    A Hybrid Godunov Method for Radiation Hydrodynamics

    Full text link
    From a mathematical perspective, radiation hydrodynamics can be thought of as a system of hyperbolic balance laws with dual multiscale behavior (multiscale behavior associated with the hyperbolic wave speeds as well as multiscale behavior associated with source term relaxation). With this outlook in mind, this paper presents a hybrid Godunov method for one-dimensional radiation hydrodynamics that is uniformly well behaved from the photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. Moreover, one finds that the technique preserves certain asymptotic limits. The method incorporates a backward Euler upwinding scheme for the radiation energy density and flux as well as a modified Godunov scheme for the material density, momentum density, and energy density. The backward Euler upwinding scheme is first-order accurate and uses an implicit HLLE flux function to temporally advance the radiation components according to the material flow scale. The modified Godunov scheme is second-order accurate and directly couples stiff source term effects to the hyperbolic structure of the system of balance laws. This Godunov technique is composed of a predictor step that is based on Duhamel's principle and a corrector step that is based on Picard iteration. The Godunov scheme is explicit on the material flow scale but is unsplit and fully couples matter and radiation without invoking a diffusion-type approximation for radiation hydrodynamics. This technique derives from earlier work by Miniati & Colella 2007. Numerical tests demonstrate that the method is stable, robust, and accurate across various parameter regimes.Comment: accepted for publication in Journal of Computational Physics; 61 pages, 15 figures, 11 table

    Modeling of Protostellar Clouds and their Observational Properties

    Full text link
    A physical model and two-dimensional numerical method for computing the evolution and spectra of protostellar clouds are described. The physical model is based on a system of magneto-gasdynamical equations, including ohmic and ambipolar diffusion, and a scheme for calculating the thermal and ionization structure of a cloud. The dust and gas temperatures are determined during the calculations of the thermal structure of the cloud. The results of computing the dynamical and thermal structure of the cloud are used to model the radiative transfer in continuum and in molecular lines. We presented the results for clouds in hydrostatic and thermal equilibrium. The evolution of a rotating magnetic protostellar cloud starting from a quasi-static state is also considered. Spectral maps for optically thick lines of linear molecules are analyzed. We have shown that the influence of the magnetic field and rotation can lead to a redistribution of angular momentum in the cloud and the formation of a characteristic rotational velocity structure. As a result, the distribution of the velocity centroid of the molecular lines can acquire an hourglass shape. We plan to use the developed program package together with a model for the chemical evolution to interpret and model observed starless and protostellar cores.Comment: Accepted to Astronomy Report

    AREPO-RT: Radiation hydrodynamics on a moving mesh

    Full text link
    We introduce AREPO-RT, a novel radiation hydrodynamic (RHD) solver for the unstructured moving-mesh code AREPO. Our method solves the moment-based radiative transfer equations using the M1 closure relation. We achieve second order convergence by using a slope limited linear spatial extrapolation and a first order time prediction step to obtain the values of the primitive variables on both sides of the cell interface. A Harten-Lax-Van Leer flux function, suitably modified for moving meshes, is then used to solve the Riemann problem at the interface. The implementation is fully conservative and compatible with the individual timestepping scheme of AREPO. It incorporates atomic Hydrogen (H) and Helium (He) thermochemistry, which is used to couple the ultra-violet (UV) radiation field to the gas. Additionally, infrared radiation is coupled to the gas under the assumption of local thermodynamic equilibrium between the gas and the dust. We successfully apply our code to a large number of test problems, including applications such as the expansion of HII{\rm H_{II}} regions, radiation pressure driven outflows and the levitation of optically thick layer of gas by trapped IR radiation. The new implementation is suitable for studying various important astrophysical phenomena, such as the effect of radiative feedback in driving galactic scale outflows, radiation driven dusty winds in high redshift quasars, or simulating the reionisation history of the Universe in a self consistent manner.Comment: v2, accepted for publication in MNRAS, changed to a Strang split scheme to achieve second order convergenc

    A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    Get PDF
    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate level-solve packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation (PTC). We analyze the magnitude of the PTC parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the partial temperature scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. (Abridged)Comment: 46 pages, 14 figures, accepted to JC
    • …
    corecore