1,881 research outputs found

    Holographic particle localization under multiple scattering

    Full text link
    We introduce a novel framework that incorporates multiple scattering for large-scale 3D particle-localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models which become inaccurate under high particle-density. We demonstrate that by exploiting multiple-scattering, localization is significantly improved. Both forward and back-scattering are computed by our method under a tractable recursive framework, in which each recursion estimates the next higher-order field within the volume. The inverse scattering is presented as a nonlinear optimization that promotes sparsity, and can be implemented efficiently. We experimentally reconstruct 100 million object voxels from a single 1-megapixel hologram. Our work promises utilization of multiple scattering for versatile large-scale applications

    Registration of phase contrast images in propagation-based X-ray phase tomography

    Get PDF
    International audienceX-ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation-based X-ray absorption tomography. In propagation-based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase-contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase-contrast images, and investigate the use of different registration algorithms for aligning in-line phase-contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation-based computed tomography. Further, it is shown that registration of phase-contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase-contrast images if multilayer X-ray optics are used. To address this, we compared two registration algorithms for aligning phase-contrast images acquired by magnified X-ray nanotomography: one based on cross-correlation and one based on mutual information. We found that the mutual information-based registration algorithm was more robust than a correlation-based method

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte

    Signal processing based method for solving inverse scattering problems

    Get PDF
    The problem of reconstructing an image of the permittivity distribution inside a penetrable and strongly scattering object from a finite number of noisy scattered field measurements has always been very challenging because it is ill-posed in nature. Several techniques have been developed which are either computationally very expensive or typically require the object to be weakly scattering. I have developed here a non-linear signal processing method, which will recover images for both strong scatterers and weak scatterers. This nonlinear or cepstral filtering method requires that the scattered field data is first preprocessed to generate a minimum phase function in the object domain. In 2-D or higher dimensional problems, I describe the conditions for minimum phase and demonstrate how an artificial reference wave can be numerically combined with measured complex scattering data in order to enforce this condition, by satisfying Rouche‘s theorem. In the cepstral domain one can filter the frequencies associated with an object from those of the scattered field. After filtering, the next step is to inverse Fourier transform these data and exponentiate to recover the image of the object under test. In addition I also investigate the scattered field sampling requirements for the inverse scattering problem. The proposed inversion technique is applied to the measured experimental data to recover both shape and relative permittivity of unknown objects. The obtained results confirm the effectiveness of this algorithm and show that one can identify optimal parameters for the reference wave and an optimal procedure that results in good reconstructions of a penetrable, strongly scattering permittivity distribution
    corecore