7 research outputs found

    A modified indicator-based evolutionary algorithm (mIBEA)

    Get PDF
    Multi-objective evolutionary algorithms (MOEAs) based on the concept of Pareto-dominance have been successfully applied to many real-world optimisation problems. Recently, research interest has shifted towards indicator-based methods to guide the search process towards a good set of trade-off solutions. One commonly used approach of this nature is the indicator-based evolutionary algorithm (IBEA). In this study, we highlight the solution distribution issues within IBEA and propose a modification of the original approach by embedding an additional Pareto-dominance based component for selection. The improved performance of the proposed modified IBEA (mIBEA) is empirically demonstrated on the well-known DTLZ set of benchmark functions. Our results show that mIBEA achieves comparable or better hypervolume indicator values and epsilon approximation values in the vast majority of our cases (13 out of 14 under the same default settings) on DTLZ1-7. The modification also results in an over 8-fold speed-up for larger populations

    Multi-Objective Task Scheduling Approach for Fog Computing

    Get PDF
    Despite the remarkable work conducted to improve fog computing applications’ efficiency, the task scheduling problem in such an environment is still a big challenge. Optimizing the task scheduling in these applications, i.e. critical healthcare applications, smart cities, and transportation is urgent to save energy, improve the quality of service, reduce the carbon emission rate, and improve the flow time. As proposed in much recent work, dealing with this problem as a single objective problem did not get the desired results. As a result, this paper presents a new multi-objective approach based on integrating the marine predator’s algorithm with the polynomial mutation mechanism (MHMPA) for task scheduling in fog computing environments. In the proposed algorithm, a trade-off between the makespan and the carbon emission ratio based on the Pareto optimality is produced. An external archive is utilized to store the non-dominated solutions generated from the optimization process. Also, another improved version based on the marine predator’s algorithm (MIMPA) by using the Cauchy distribution instead of the Gaussian distribution with the levy Flight to increase the algorithm’s convergence with avoiding stuck into local minima as possible is investigated in this manuscript. The experimental outcomes proved the superiority of the MIMPA over the standard one under various performance metrics. However, the MIMPA couldn’t overcome the MHMPA even after integrating the polynomial mutation strategy with the improved version. Furthermore, several well-known robust multi-objective optimization algorithms are used to test the efficacy of the proposed method. The experiment outcomes show that MHMPA could achieve better outcomes for the various employed performance metrics: Flow time, carbon emission rate, energy, and makespan with an improvement percentage of 414, 27257.46, 64151, and 2 for those metrics, respectively, compared to the second-best compared algorithm

    A learning automata based multiobjective hyper-heuristic

    Get PDF
    Metaheuristics, being tailored to each particular domain by experts, have been successfully applied to many computationally hard optimisation problems. However, once implemented, their application to a new problem domain or a slight change in the problem description would often require additional expert intervention. There is a growing number of studies on reusable cross-domain search methodologies, such as, selection hyper-heuristics, which are applicable to problem instances from various domains, requiring minimal expert intervention or even none. This study introduces a new learning automata based selection hyper-heuristic controlling a set of multiobjective metaheuristics. The approach operates above three well-known multiobjective evolutionary algorithms and mixes them, exploiting the strengths of each algorithm. The performance and behaviour of two variants of the proposed selection hyper-heuristic, each utilising a different initialisation scheme are investigated across a range of unconstrained multiobjective mathematical benchmark functions from two different sets and the realworld problem of vehicle crashworthiness. The empirical results illustrate the effectiveness of our approach for cross-domain search, regardless of the initialisation scheme, on those problems when compared to each individual multiobjective algorithm. Moreover, both variants perform signicantly better than some previously proposed selection hyper-heuristics for multiobjective optimisation, thus signicantly enhancing the opportunities for improved multiobjective optimisation

    An Efficient Marine Predators Algorithm for Solving Multi-Objective Optimization Problems:Analysis and Validations

    Get PDF
    Recently, a new strong optimization algorithm called marine predators algorithm (MPA) has been proposed for tackling the single-objective optimization problems and could dramatically fulfill good outcomes in comparison to the other compared algorithms. Those dramatic outcomes, in addition to our recently-proposed strategies for helping meta-heuristic algorithms in fulfilling better outcomes for the multi-objective optimization problems, motivate us to make a comprehensive study to see the performance of MPA alone and with those strategies for those optimization problems. Specifically, This paper proposes four variants of the marine predators' algorithm (MPA) for solving multi-objective optimization problems. The first version, called the multi-objective marine predators' algorithm (MMPA) is based on the behavior of marine predators in finding their prey. In the second version, a novel strategy called dominance strategy-based exploration-exploitation (DSEE) recently-proposed is effectively incorporated with MMPA to relate the exploration and exploitation phase of MPA to the dominance of the solutions - this version is called M-MMPA. DSEE counts the number of dominated solutions for each solution - the solutions with high dominance undergo an exploitation phase; the others with small dominance undergo the exploration phase. The third version integrates M-MMPA with a novel strategy called Gaussian-based mutation, which uses the Gaussian distribution-based exploration and exploitation strategy to search for the optimal solution. The fourth version uses the Nelder-Mead simplex method with M-MMPA (M-MMPA-NMM) at the start of the optimization process to construct a front of the non-dominated solutions that will help M-MMPA to find more good solutions. The effectiveness of the four versions is validated on a large set of theoretical and practical problems. For all the cases, the proposed algorithm and its variants are shown to be superior to a number of well-known multi-objective optimization algorithms. </p

    Comparative Analysis of Selection Hyper-Heuristics for Real-World Multi-Objective Optimization Problems

    Get PDF
    As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed as a means to both simplify and improve algorithm selection or configuration for optimization problems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization: we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-heuristics were designed in previous studies and tackle the algorithm selection problem from different perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical function. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms (MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization problem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems, (iii) experiments on real world problems and not just function benchmarks. In our experiments, we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms considering three different Friedman Rankings to summarize the cross-domain analysis. Our results showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics, which makes them excellent candidates for solving new multi-objective optimization problems

    Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

    Get PDF
    The conference "Lithuanian MSc Research in Informatics and ICT" is a venue to present research of Lithuanian MSc theses in informatics and ICT. The aim of the event is to raise skills of MSc students, familiarize themselves with the research of other students, encourage their interest in scientific activities. MSc students from Kaunas University of Technology, Vilnius University, and Vytautas Magnus University will give their presentations at the conference.Konferencija „Lietuvos magistrantų informatikos ir IT tyrimai“ skirta pristatyti magistrų baigiamųjų darbų tyrimus informatikos ir IT srityse. Šio renginio tikslas – pakelti magistrantų įgūdžius, supažindinti su kitų magistrantų atliekamais tyrimais, paskatinti domėtis moksline veikla. Konferencijoje savo pranešimus skaitys magistrantai iš Kauno technologijos universiteto, Vilniaus universiteto, Vytauto Didžiojo universiteto. Konferencija vyks Lietuvos mokslų akademijoje (LMA). Tai įstaiga, jungianti žymiausius Lietuvos ir savo veikla su Lietuva susijusius mokslininkus. Ji yra nepriklausoma Seimo, Vyriausybės ir jai pavaldžių institucijų ekspertė ir patarėja mokslo bei studijų, kultūros, socialinės raidos, ūkio, gamtosaugos, sveikatos apsaugos, technologijų bei kitais klausimais. LMA įgyvendina šalies mokslui ir eksperimentinei plėtrai reikšmingus ES struktūrinių fondų projektus, rengia šalies bei tarptautines mokslines konferencijas, užsienio mokslininkų seminarus, mokslininkų susitikimus, akademinius skaitymus, parodas. Tikime, kad dalyvavimas šioje LMA vyksiančioje konferencijoje paskatins magistrantus tęsti mokslinę veiklą ir pabaigus magistro studijas. Šiuose konferencijos darbuose spausdinami magistrantų pranešimų santraukos ir straipsniai. Tai dažniausiai pirmosios mokslinės publikacijos, bet tikimės, kad ateityje virs į straipsnius prestižiniuose mokslo žurnaluose. To norėtume palinkėti konferencijos dalyviams

    A modified indicator-based evolutionary algorithm (mIBEA)

    No full text
    Multi-objective evolutionary algorithms (MOEAs) based on the concept of Pareto-dominance have been successfully applied to many real-world optimisation problems. Recently, research interest has shifted towards indicator-based methods to guide the search process towards a good set of trade-off solutions. One commonly used approach of this nature is the indicator-based evolutionary algorithm (IBEA). In this study, we highlight the solution distribution issues within IBEA and propose a modification of the original approach by embedding an additional Pareto-dominance based component for selection. The improved performance of the proposed modified IBEA (mIBEA) is empirically demonstrated on the well-known DTLZ set of benchmark functions. Our results show that mIBEA achieves comparable or better hypervolume indicator values and epsilon approximation values in the vast majority of our cases (13 out of 14 under the same default settings) on DTLZ1-7. The modification also results in an over 8-fold speed-up for larger populations
    corecore