
applied
sciences

Article

Comparative Analysis of Selection Hyper-Heuristics for
Real-World Multi-Objective Optimization Problems

Vinicius Renan de Carvalho 1 , Ender Özcan 2 and Jaime Simão Sichman 1,*

����������
�������

Citation: de Carvalho, V.R.; Özcan,

E.; Sichman, J.S. Comparative

Analysis of Selection

Hyper-Heuristics for Real-World

Multi-Objective Optimization

Problems. Appl. Sci. 2021, 11, 9153.

https://doi.org/10.3390/

app11199153

Academic Editor: Juan Francisco De

Paz Santana

Received: 18 July 2021

Accepted: 20 September 2021

Published: 1 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratório de Técnicas Inteligentes (LTI), Escola Politécnica (EP), Universidade de São Paulo (USP),
São Paulo 05508-970, Brazil; vrcarvalho@usp.br

2 Computational Optimisation and Learning (COL) Lab, School of Computer Science,
University of Nottingham, Nottingham NG8 1BB, UK; ender.ozcan@nottingham.ac.uk

* Correspondence: jaime.sichman@usp.br

Abstract: As exact algorithms are unfeasible to solve real optimization problems, due to their computa-
tional complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic
to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming
trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed
as a means to both simplify and improve algorithm selection or configuration for optimization prob-
lems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization:
we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform
in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-
heuristics were designed in previous studies and tackle the algorithm selection problem from different
perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical func-
tion. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms
(MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization prob-
lem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection
of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems,
(iii) experiments on real world problems and not just function benchmarks. In our experiments,
we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results
considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms
considering three different Friedman Rankings to summarize the cross-domain analysis. Our results
showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics,
which makes them excellent candidates for solving new multi-objective optimization problems.

Keywords: artificial intelligence; evolutionary algorithms; multi-objective optimization; meta-heuristics;
genetic algorithms; online algorithm selection; hyper-heuristics

1. Introduction

Choosing a meta-heuristic to solve a particular optimization problem is a non-trivial
task. Without detailed prior information as to which particular algorithm to use, it demands
the evaluation of several algorithms in order to find out which is more suitable to solve
a given problem. However, due to the non-deterministic nature of these algorithms, this
process demands to be repeated several times. Hyper-heuristics, which are heuristics to
choose heuristics, have been proposed as a means to both simplify and improve algorithm
selection or configuration for optimization problems [1,2]. The idea is, through automation
of the heuristic search, to provide effective and reusable cross-domain search methodologies
that are applicable to the problems with different characteristics from various domains
without requiring much expert involvement [3].

Hyper-heuristics (HH) employ learning methods, by using some feedback from the
search process. Based on the source of this feedback, HHs can be classified as online or
offline. A hyper-heuristic employs online learning if learning takes place while the algorithm

Appl. Sci. 2021, 11, 9153. https://doi.org/10.3390/app11199153 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4623-7244
https://orcid.org/0000-0003-0276-1391
https://orcid.org/0000-0001-8924-9643
https://doi.org/10.3390/app11199153
https://doi.org/10.3390/app11199153
https://doi.org/10.3390/app11199153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199153
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199153?type=check_update&version=2

Appl. Sci. 2021, 11, 9153 2 of 21

is solving an instance of a problem. It is offline if the knowledge is gathered in the form
of rules or programs from a set of training instances that hopefully generalize to solving
unseen instances [1,2].

Hyper-heuristics can also be classified as selection or generation methodologies [4,5].
Selection hyper-heuristics at the high-level control and mix low-level (meta)heuristics (LLHs),
automatically deciding which one(s) to apply to the candidate solution(s) at each decision
point of the iterative search process [4]. On the other hand, generation methodologies produce
new heuristics or heuristic parts using pre-defined components.

Much of the previous research focuses on online selection hyper-heuristics. The inter-
est in such algorithms has been growing in recent years, but the majority of research in this
area has been limited to single-objective optimization [6].

The majority of the research in the HH literature focus on treating operators, such as
crossover, mutation, and differential evolution as LLH [2,6]. In [7], Cowling et al. proposed the
Choice Function, an equation responsible for rank heuristics considering the algorithm perfor-
mance, in this case, a fitness function for a mono-objective problem, and the computational time.

In [8], Li et al. introduced FFRMAB, a variation of the original Multi-Armed Bandit [9]
(MAB) where the Fitness Rate Ranking (FRR) was proposed as reward assignment. In this
hyper-heuristic, a set of Differential Evolution operators was considered as LLH for being
chosen. Following the choice of DE operators, Gonçalves et al. [10] proposed a hyper-
heuristic based on the choice function to control a set of five Differential Evolution operators.
Results showed this hyper-heuristic overcoming the performance of the standard MOEA
(using a single operator) when solving ten unconstrained benchmark functions with two
and three objectives. In [11], the authors applied a similar approach using several versions
of MAB instead of using a Choice Function. In this case, the CEC 2009 benchmark [12]
was employed for performance evaluation. In [13], Almeida et al. evaluated three different
versions of MAB by applying them to the permutation flow shop problem.

In [14], Guizzo et al. designed a hyper-heuristic to solve the Class Integration Test
Order Problem [15], a software engineering problem where nodes from a graph have to
be visited, where these nodes are the classes to be tested. This hyper-heuristic was built
using a choice function [6] and a Multi-Armed Bandit [9] to select a LLH from a set of nine
to operate together with a fixed MOEA, in this case, the NSGA-II algorithm. This set was
built by combining different crossover and mutation operators. The evaluation of LLHs
was performed based on the dominance relationship among parent solutions and their
offspring. In [16], this approach was tested considering SPEA2 as the fixed MOEA. In [17],
de Carvalho tacked the same problem by creating a hyper-heuristic based on FRRMAB [8]
and considering the same set of LLHs. Among all these versions, the Choice Function
applied together with NSGA-II ([14] version) obtained the best results.

Only a few studies focus on online learning hyper-heuristics selecting/mixing multi-
objective evolutionary algorithms (MOEAs) for solving multi-objective optimization prob-
lems. Among them, Maashi et al. [6] proposed the Choice Function Hyper-Heuristic
(HHCF) which is an interesting approach employing different quality indicators to eval-
uate a set of LLHs. In this approach, each LLH executes for some generations, then the
resulting population is evaluated based on m different quality indicators, generating a
table n×m, where n is the number of LLHs, and m is the number of quality indicators.
Following that, a second table containing the rankings is generated, which is used as input
to a choice mathematical function responsible for determining which LLH should execute
next. This approach was tested using the Walking Fish Group (WFG) benchmark [18]
and on a single real-world problem: the Crashworthiness problem [19]. The authors used
the algorithms NSGAII [20], SPEA2 [21], and MOGA [22] as LLHs, and compared their
results to Amalgam [23] and to all single MOEAs. The experimental results indicated the
success of HHCF outperforming them all. In [24], Li et al. replaced MOGA by IBEA [25],
and evaluated the approach on solving another real-world problem: Wind Farm layout
optimization [26]. Although this hyper-heuristic yielded good results, the use of a two-level
ranking approach was not justified properly and there was no theoretical background to it.

Appl. Sci. 2021, 11, 9153 3 of 21

The following studies have employed well-established computational methods within
the design of new hyper-heuristics. Li et al. [3] proposed MOHH-RILA, an online selection
hyper-heuristic treating the problem as a learning automata, where the automata action is the
selection of an LLH from a set of MOEAs. As reward and penalty, they used Hypervolume
and Spread indicators (the last in case of ties). Thus, this study can be classified as a Reinforce-
ment Learning based online selection hyper-heuristic. The authors employed IBEA, SPEA2,
and NSGAII as LLHs to find solutions for the WFG and DTLZ [27] benchmarks and variants
of the crashworthiness problem. The results showed that this approach outperformed HHCF,
making it the state-of-the-art online selection hyper-heuristic for multi-objective optimization.

de Carvalho et al. [28,29] proposed the Multi-Objective Agent-Based Hyper-Heuristic
(MOABHH), an online selection hyper-heuristic enabling the best performing LLH to have a
greater share of the new solutions/offspring. They designed this HH as a multi-agent system
by treating all LLH and quality indicators as agents and employed Social Choice Theory [30]
voting methods in order to summarize quality indicators preferences for the participation
assignment mechanism. In the first study [28], they employed NSGAII, IBEA, and SPEA2
as LLHs and applied MOABHH to the WFG Suite. GDE3 [31] was additionally included
within the LLH set in [32]. In the latter [29], they evaluated how MOABHH performs on
real-world problems, including the Crashworthiness, Water [33], Car Side Impact [34], and
Machining [35]. In [36], the authors evaluated the proposed approach considering different
voting criterion considering these four real-world problems and the multi-objective travel
salesperson problem [37]. This proposed HH outperformed each individual MOEA and
random choice hyper-heuristic; however, MOABHH was not compared to any of the other
state-of-the-art hyper-heuristics.

Hence, the goal of this paper is to perform a thorough investigation of four reportedly
top-ranking hyper-heuristics across an extensive set of problems: (i) MOABHH, which
achieved promising results in a previous study; (ii) two variants of MOHH-RILA (HHLA
and HHRL); and (iii) HHCF.

We used eighteen real-world multi-objective problems in total: four that were already used
in [32], ten problems from the Black Box Optimization Competition [38], and four other bi-objective
problems from FourBarTuss [39], Goliski [40], Quagliarella [41], and Poloni [42]. We also increased
the number of LLHs used by all HHs to five: NSGAII, IBEA, SPEA2, GDE3, and mIBEA [43].
As a consequence, the task of selecting a LLH at each decision point was harder for all tested HHs.

This paper focuses on comparing selection online hyper-heuristics specialized in se-
lecting multi-objective evolutionary algorithms. For this reason, hyper-heuristics focused
on selecting/generating parts of algorithms such as heuristics (i.e., crossover and muta-
tion) can not be considered. This is also the case of micro-genetic algorithms [44], which
also focus on selecting part of the evolutionary algorithms. Other approaches, such as
parameter control [45], which focuses on diminishing the effort on setting up parameters
by automatically setting them, will also not be considered since they are not directly related
to hyper-heuristics.

The rest of the paper is organized as follows: Section 2 describes the studied hyper-
heuristics and succinctly describes MOEAs employed as low-level heuristics. Section 3 de-
scribes our methodology for the performed experiments. In Section 4, we present and discuss
our obtained results. Finally, we present our conclusions and further work in Section 5.

2. Background
2.1. Multi-Objective Optimization

Multi-objective optimization (MOPs) consists of finding solutions which simultane-
ously consider two or more conflicting objectives to be minimized or maximized. Thus,
the search aims to find a set of solutions, each one reflecting a trade-off between the ob-
jectives. MOPs are tackled today using Evolutionary Algorithms by engineers, computer
scientists, biologists, and operations researchers alike [46]. These algorithms are heuristic
techniques that allow a flexible representation of the solutions and do not impose continuity

Appl. Sci. 2021, 11, 9153 4 of 21

conditions on the functions to be optimized. Moreover, MOEAs are extensions of EAs for
multi-objective problems that usually apply the concepts of Pareto dominance [47].

MOEAs have been applied to solve MOPs from different areas, from logistic problems
as the Ridesharing problem [48], Software Engineering problems as architecture optimiza-
tion [49], machine learning problems such as feature selection [50], and by optimizing
antibiotic treatments [51].

Besides EAs, there are other nature-based algorithms that have been successfully
applied to solve optimization problems. This is the case of the Ant Colony Optimization [52]
and related improved versions such as [53], and Particle Swarm Optimization [54,55]. This
last one with several different applications such as a vehicle routing problem [56–58]
and engineering problems such as the design of near-field time delay equalizer meta-
surface [59], the Artificial Magnetic Conductor Surface [60], and for the design of a dielectric
phase-correcting structure for antennas [61].

There are several MOEAs proposed in the literature, some of them are based on genetic
algorithms and differ from each other on their replacement strategies; others are based on
differential evolution. All of them use a population of current solutions P to generate offspring
solutions O, combine them in P ∪O, and then employ a replacement strategy to generate a
new population of solutions P′. In the sequence, we describe five MOEAs used in this work.

2.1.1. NSGAII

Non-dominated Sorting Genetic Algorithm-II [20] performs the replacement strategy
considering Pareto Dominance and Crowding Distance selection, its major contribution. This
selection evaluates how close solutions are to their neighbors, giving a better evaluation
to large values, allowing them a better diversity in the population. Thus, NSGAII selects
surviving solutions from P ∪O first taking non-dominated solutions to compose P′. Two
situations may occur: this set may be lower than or equal to the maximum population size or
not. In the first case, it adds iteratively dominated solutions with higher Crowding Distance
values until P′ is complete. In the second case, NSGAII discards the solutions with lower
Crowding values.

2.1.2. SPEA2

Differently from NSGAII, Strength Pareto Evolutionary Algorithm 2 [21] performs the
replacement strategy considering Pareto Dominance and Strength values, which computes the
relative difference between the number of other solutions that a particular solution dominates
and those that it is dominated by. Higher values, meaning that a solution is more dominant, are
better. As NSGAII, SPEA2 starts to fill P′ population with non-dominated solutions and, if it is
necessary to complete P′, it selects dominated solutions with higher Strength value. In the case
of more non-dominated solutions than allowed, SPEA2 does the same procedure as NSGAII.

2.1.3. IBEA

Indicator-Based Evolutionary Algorithm [25] performs a replacement considering a
contribution of a particular solution to improve a specific quality indicator. This algorithm
selects surviving solutions from P ∪O by removing the ones which contribute less to the
given quality indicator. Usually, Hypervolume is adopted as the quality indicator.

2.1.4. mIBEA

The Modified Indicator-Based Evolutionary Algorithm [43], based on IBEA, employs
Hypervolume as the quality indicator. Different from its predecessor, which considers all
solutions in P ∪O to select solutions to compose P′ based on the quality indicator contri-
bution, this algorithm uses only non-dominated solutions from the union set, and then
select the ones which contribute more. This algorithm works in the same way as IBEA after
this. This modification improves the algorithm convergence and removes solutions with
high-quality indicator contribution which are far away from the Pareto Front.

Appl. Sci. 2021, 11, 9153 5 of 21

2.1.5. GDE3

Differently from the previously MOEAs, Generalized Differential Evolution 3 does not em-
ploy a crossover operator to generate offspring. Instead, this algorithm employs the differential
evolution operator (DE) [62]. This operator generates offspring by combining more than three
different parent solutions. This operator is performed until O is filled. The algorithm behaves
like NSGAII on the further steps when generating the new population solution P′.

2.2. Selecting a MOEA

MOEAs do not generate a single final solution but a set of non-dominated solutions
which are considered to be of the same quality. The performance comparison and selection
of the best one among alternative algorithms can just be done using quality indicators. We
can classify these indicators according to what they focus: convergence or diversity.

Convergence focuses on measuring the closeness of a given non-dominated solution
set to the Pareto optimal front. Diversity focus on measuring how diverse the obtained
solution set is along the Pareto optimal front [63].

Some quality indicators focus both on convergence and diversity: Hypervolume [64],
Hyper-area Ratio (HR) [65], and Pareto Dominance Indicator (ER) [66]. Others focus
on diversity: Uniform distribution (UD) [67] and a Ratio of Non-dominated Solutions
(RNI) [67]. There are also other quality indicators, for example, Algorithm Effort (AE) [67],
which focus on diversity but at the same time considers the computational time.

We can use quality indicators to determine which MOEA is the best for solving a given
problem. However, due to the stochastic nature of these algorithms, we can just say an algorithm
A is better than B according to a given quality indicator after running multiple trials of both,
taking indicator averages and performing a statistical comparison. One way to reduce the overall
computational effort is assigning an algorithm to do this task, in this case, a hyper-heuristic.

2.2.1. HHCF

Maashi et al. [6] proposed an online selection hyper-heuristic based on the Choice
Function [7] named Hyper-Heuristic based on Choice Function. Their work aimed to select,
one at a time, an LLH from a set H (with size n), and apply it along with g generations.
To evaluate the performance of the LLHs, this approach uses a two-level-ranking system.
First, each LLH is evaluated according to a group of m quality indicators, here composed
by Hypervolume, RNI, UD, and AE.

Each quality indicator evaluates every LLH assigning a performance value to each
of them. Then, LLHs are ranked, by the quality indicator, from the best performing LLH
(rank 1) to the worst (rank n). At this point, a table containing all the quality indicators
values for each LLH is created, a table with size n ∗ m. This paper defines RNIrank(h)
as the function that returns, for a given LLH h, his rank according to the RNI quality
indicator. A second table (Freqrank) is generated by computing how many times each LLH
has the best value for each quality indicator. This is how HHCF summarizes several quality
indicator preferences.

In order to select which LLHs to execute, HHCF selects a LLH that maximizes Equation (1),
which is composed of an exploitation term f1 and an exploration term f2 weighted by a
parameter α, a fixed parameter for this algorithm:

F(hi) = α f1(hi) + f2(hi) (1)

The exploitation term f1 is calculated by Equation (2). In this equation, n is the number
of low-level heuristics, Freqrank(hi) is the number of times that a given low-level heuristic
h is the best one according to all quality indicators, and RNIrank(hi) is the rank of the
low-level heuristic according to the RNI quality indicator:

f1(hi) = 2 ∗ (n + 1)− (Freqrank(hi) + RNIrank(hi)) (2)

Appl. Sci. 2021, 11, 9153 6 of 21

The exploration term f2 is the computational waiting time (WT) that a given algo-
rithm has waited inactive. In this present paper, due to the different computational effort
demanded by the problems, we normalize f2 using Equation (3):

f2(hi) =
WThi

∑n
j=0 WThj

∗ 100 (3)

Algorithm 1 illustrates how HHCF works. First, a random population of solutions
is generated (Line 7) and used in the initialization process (Line 8). In this process, each
h ∈ H executes for g generations(Line 9), the current population Pop is updated and
the values of quality indicators for Pop are computed and stored (Line 10). Afterwards,
the algorithm continues with the process until the stopping criteria are met, by ranking
each h ∈ H (Line 12) and calculating Equation (2) (Line 13) and Equation (3) (Line 14).
With this information, the LLH which maximizes Equation (1) is selected (Line 15) and
used to generate solutions during g generations (Line 16). Finally, the new population Pop′

is created using Pop and the offspring population (Line 17), and all the quality indicators
are recalculated for hi using Pop′ (Line 18).

Algorithm 1: HHCF pseudocode.

1 Input:
2 Problem;
3 g—generations before evaluate an LLH;
4 H: set of LLHs {h1, ..., hi, ..., hn};
5 α exploitation parameter;
6 begin
7 Generate a random population of solutions Pop;
8 Initialize components using H;
9 All h ∈ H uses Pop to generate Pop′ during g generations;

10 Compute all quality indicators for all h ∈ H;
11 while A stopping criterion is not reached do
12 Compute Freqrank and RNIrank for all h ∈ H;
13 Equation (2) is computed for all h ∈ H;
14 Equation (3) is computed for all h ∈ H;
15 Select hi according to Equation (1);
16 hi executes for g generations and generates Pop′;
17 Pop← Pop′ //acceptance criterion;
18 Compute all quality indicators for hi;
19 end
20 return Pop
21 end

2.2.2. HHLA and HHRL

Learning Automata-based Multi-Objective Hyper-Heuristic with a Ranking scheme
Initialization [3] implements a learning automata whose action is to select a LLH at each
decision point, while the optimization problem is solved. There are two versions available
of this algorithm: HHLA and HHRL. The only difference resides in the fact that HHRL
employs an initialization process used in order to reduce the number of LLHs in the pool.

Algorithm 2 illustrates how both hyper-heuristics work. First, all of the initialization
process is performed (Line 6). The algorithm continues while a stopping criterion is not
reached; this hyper-heuristic applies the current LLH hi to the current population (Pop)
during g generations producing a new offspring (Pop′). In the following, Pop and Pop′

are combined to generate the new current population Pop. In Line 11, this HH verifies
whether it is time to switch or not to another LL: this is performed by verifying if is there an
improvement in the Hypervolume value (compared to previous iterations). If it is the case,
the current LLH keeps running, and, if not, the reinforcement learning scheme updates the

Appl. Sci. 2021, 11, 9153 7 of 21

transition matrix P. Finally, another LLH is selected by the ε-RoulleteGreedy method from
A considering the transition matrix P.

The ε-RoulleteGreedy method focuses on exploring different transition pairs by performing
a given number of trials in order to get a better view of LLH pairwise performance at the early
stage. Then, it becomes more and more greedy exploiting the accumulated knowledge.

As mentioned before, the only difference between HHLA and HHRL lies in the ini-
tialization method. Algorithm 3 describes this process. First, the method creates a random
population of solutions (Line 5) and the transition matrix P (Line 6), which describes the
selection probabilities of transitions between LLHs. If HHLA is being run (Line 7), all LLHs
are allowed to execute. Otherwise, only allowed LLH is selected.

Algorithm 2: HHLA and HHRL pseudocode, adapted from [3].

1 Input:
2 Problem;
3 H: set of LLHs {h1, ..., hi, ..., hn};
4 g fixed number of generations;
5 begin
6 [A, P, Pop, hi]← Initialization(H);
7 while A stopping criterion is not reached do
8 Pop′ ← ApplyMetaHeuristic(hi,Pop,g);
9 Pop← Pop′ //acceptance criterion;

10 //decide whether to switch to another metaheuristic;
11 if switch() then
12 LearningAutomataUpdateScheme(P);
13 hi ← SelectMetaheuristic(P, A);
14 end
15 end
16 return Pop
17 end

Algorithm 3: HHLA and HHRL initialization pseudocode.

1 Input:
2 Problem;
3 H: set of LLHs {h1, ..., hi, ..., hn};
4 begin
5 Pop← Generate Random Population;
6 P← Create transition Matrix;
7 if HHLA then
8 A← H;
9 end

10 else if HHRL then
11 A← SelectAllowedLLH(H);
12 end
13 hi ← Select first LLH to run;
14 return A, P, Pop, hi
15 end

For this purpose, the set of LLHs (H) is reduced in order to eliminate poor-performing
LLHs. This works as follows: First, all LLHs are executed in sequence for a number of stages.
Every time an LLH executes, HHRL computes the resulting population Hypervolume,
computed using the same reference points. The scheme counts how many times an LLH
becomes the best one in all stages. These counts are then used to determine which LLH
should compose the allowed set A. LLHs with a performance worse than the average

Appl. Sci. 2021, 11, 9153 8 of 21

are not allowed to compose A. The algorithm continues by selecting a current LLH hi
according to the ε-RoulleteGreedy and returning all the generated information.

2.2.3. MOABHH

Multi-Objective Agent-Based Hyper-Heuristic [28,29] is a hyper-heuristic designed as
a multi-agent system. According to Wooldridge [68], an agent is “a computer system that
is situated in some environment, and is capable of autonomous action in this environment
in order to meet its objectives”.

This hyper-heuristic is designed to consider LLHs and quality indicators as agents in
one election, which means that LLHs are candidates to be voted by quality indicator agents
(the voters). The election happens each g generations, and the outcome tells us which LLH
is performing better. Then, the election winners generate more offspring after the election.

MOABHH differs from HHCF, HHRL, and HHLA regarding how the current pop-
ulation is processed by the LLHs. In this algorithm, all LLH executes in parallel acting
on a share of the main population and generating offspring in the same generation. This
is performed by splitting the main population into subpopulations according to election
outcomes where the best LLH receives a bigger subpopulation and can generate more
offspring. In the beginning, this main population is equally split into subpopulations, each
one processed by a different LLH agent, which will receive a sub-population, generate new
offspring solutions, and find the surviving solutions.

When it is the election time, all quality indicators’ agents (voters) evaluate each LLH
agent (candidate), rank them, and send their rank to the HH agent, which is responsible for
taking all votes and processing them according to an election method in order to generate
an election outcome. In our approach, we use the Copeland [69] voting method, in which
candidates are ordered by the number of pairwise victories, minus the number of pairwise
defeats. The election outcome is used by the HH agent to increase the participation in
generating offspring to the election winners and decreasing it to the losers in the next cycles.

Algorithm 4 details MOABHH steps. First, all agents, components, and global vari-
ables are initialized (line 3). A random population of solutions is generated (line 4).
The execution continues creating a Participation array that is responsible for determining
how many solutions each LLH can generate per generation. At this time, this array is
created uniformly, assigning the same participation in generating offspring at the begging
of the search.

The algorithm continues by splitting the population into subpopulations according to
the Participation array. Then, all LLH generates offspring and updates the main population
in parallel in a synchronized task.

Each g generations the voting process then starts, and the Voter agents evaluate the
solutions produced by LLHs, rank them according to their preferences (line 18), and send
them to the HH agent. After that, the HH agent calculates the social ranking according to
the Copeland voting method (line 19) and assigns a bigger participation in the population
for the election winner and a lower one for election losers (line 20).

Appl. Sci. 2021, 11, 9153 9 of 21

Algorithm 4: MOABHH pseudocode.

1 Input:
2 Problem;
3 g—generations before evaluate an LLH;
4 H: set of LLHs {h1, ..., hi, ..., hn};
5 begin
6 Initialize agents and components using H;
7 Generate a random population of solutions Pop;
8 Participation← Uniformly share the number of solutions to generate;
9 while A stopping criterion is not reached do

10 gen← 0;
11 while gen < g do
12 Split Pop into subpopulations according to the Participation;
13 LLH Agents execute for one generation;
14 LLH Agents update the main population;
15 gen← gen + 1;
16 end
17 if It is election time then
18 Voter agents evaluate LLH agents outcomes and vote;
19 HH agent performs the voting method;
20 HH agent uses the election outcome to update the Participation;
21 end
22 end
23 return Pop
24 end

2.3. Real-World Multi-Objective Problems

Over the years, several artificially constructed test problems have been proposed
to compose benchmarks for evaluating meta-heuristics. These problems offer many ad-
vantages over real-world problems for the purpose of general performance testing [70],
by allowing users to compare the results of their algorithms (regarding effectiveness and
efficiency) with others, over a spectrum of algorithms’ instantiations [46].

In the literature, one can find several of these MOP benchmarks, such as WFG, DTLZ [27],
and UF [12]. However, even if an algorithm has successfully solved these problems, this
does not guarantee effectiveness and efficiency in solving real-world problems [46].

In terms of multi-objective hyper-heuristics, researchers have been using both bench-
marks and real-world applications. However, few studies consider more than one real-world
problem. This choice can, in fact, diminish the accuracy of evaluating hyper-heuristics on
cross-domain applications.

Table 1 presents the eighteen real-world problems that we have used in this work. Ten
of them were picked from Black Box Optimization Competition (https://www.ini.rub.de/P
EOPLE/glasmtbl/projects/bbcomp/downloads/realworld-problems-bbcomp-EMO-201
7.zip, accessed date 10 April 2021) [38], a group of problems created/selected for the
9th International Conference on Evolutionary Multi-Criterion Optimization (EMO’2017)
(http://www.emo2017.org/, accessed date 10 April 2021). We included the CrashWorthi-
ness problem due to the fact it was already considered in previous papers for all the
hyper-heuristics. The problems Water, Machining, and CarSideImpact were studied using
MOABHH, but not for HHCF, HHLA, and HHRL. The other four problems were selected
from the optimization literature and picked from the jMetal framework [71], the framework
used by all studied hyper-heuristics. In the table, their number of objectives, variables,
and constraints are detailed. All the problems are in continuous space.

https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/downloads/realworld-problems-bbcomp-EMO-2017.zip
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/downloads/realworld-problems-bbcomp-EMO-2017.zip
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/downloads/realworld-problems-bbcomp-EMO-2017.zip
http://www.emo2017.org/

Appl. Sci. 2021, 11, 9153 10 of 21

Table 1. A brief description real-world multi-objective problems containing the number of objectives,
variables constraints, and source.

ID Problem Name Objs. Vars. Const. Source

P01 Water 5 3 7 [33]
P02 Machining 4 3 3 [35]
P03 CarSideImpact 3 7 0 [34]
P04 CrashWorthiness 3 5 0 [19]
P05 FourBarTruss 2 4 0 [39]
P06 Golinski 2 7 11 [40]
P07 Quagliarella 2 16 0 [41]
P08 Poloni 2 2 0 [42]
P09 Vibrating Platform Design 2 5 0 [38,72]
P10 Optical Filter 2 11 0 [38,73]
P11 Welded Beam Design 2 4 0 [38,74]
P12 Disk Brake Design 2 4 0 [38,75]
P13 Heat Exchanger 2 16 0 [38]
P14 Hydro Dynamics 2 6 0 [38]
P15 Area Under Curve 2 10 0 [38]
P16 Kernel Ridge Regression 2 5 0 [38]
P17 Facility Placement 2 20 0 [38]
P18 Neural Network Controller 2 24 0 [38]

3. Methodology

We set up the four studied hyper-heuristic controlling five LLH (GDE3, IBEA, NSGAII,
SPEA2, and mIBEA) to solve the eighteen continuous real-world optimization problems pre-
sented in Table 1. Different configurations were employed for these problems. In particular,
the number of generations and population size were slightly different for P17-P18. This was
due to the high computational effort demanded in these applications, which takes almost
three months for experiments using the same setup considered for the problems P01–P16.

Table 2 presents all these parameter used in our experiments. We set up HHLA and
HHRL parameters according to [3], MOABHH according to [32] and HHCF according
to [6] for P01–P16. For P17 and P18, we set MOABH g = 1, β = 0.5 and HHLA and HHRL
g = 1. For these two problems, parameters were defined empirically.

All the original hyper-heuristics were designed to work with populational genetic
algorithms. They have specific procedures to manipulate the current population of so-
lutions. In this comparison, we add two other MOEAs (mIBEA and GDE3), which are
modeled the same as the three others. For this reason, it does not demand deep changes
in the compared hyper-heuristics, changes that would define new hyper-heuristics. Thus,
algorithms such as MOEA/D [76] and SMPSO [55] cant be considered without proposing
four new algorithms.

For genetic algorithms, we followed [3,6]. For GDE3, we followed [32]. We analyzed
the performance comparing both hyper-heuristic results with the five single meta-heuristic
results. All MOEAs used are implemented by jMetal 5.7 [71]. Each experiment is repeated
30 times.

Appl. Sci. 2021, 11, 9153 11 of 21

Table 2. Parameters used in experiments.

Problems Param IBEA GDE3 mIBEA NSGA-II SPEA2 HHCF HHLA HHRL MOABHH

All

Crossover type SBX - SBX SBX SBX SBX SBX SBX SBX
Crossover prob. 0.9 - 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Crossover dist. 20 - 20 20 20 20 20 20 20
Mutation type Poly Poly Poly Poly Poly Poly Poly Poly Poly
Mutation prob. 1

vars
1

vars
1

vars
1

vars
1

vars
1

vars
1

vars
1

vars
1

vars
Mutation dist. 20 20 20 20 20 20 20 20 20

DE type - rand/1/bin - - - rand/1/bin rand/1/bin rand/1/bin rand/1/bin
DE CR - 0.2 - - - 0.2 0.2 0.2 0.2
DE F - 0.2 - - - 0.2 0.2 0.2 0.2
DE K - 0.5 - - - 0.5 0.5 0.5 0.5

HHCF α - - - - - 30 - - -
Decision Points - - - - - - 25 25 -

HHRL/HHLA m - - - - - - 2 2 -
HHRL/HHLA α - - - - - - 0.1 0.1 -
HHRL/HHLA β - - - - - - 3 3 -

P01-P16

Generations 1000 1000 1000 1000 1000 1000 1000 1000 1000
Pop Size 100 100 100 100 100 100 100 100 100
HHCF g - - - - - 25 - - -

HHRL/HHLA g - - - - - 25 - - -
MOABHH g - - - - - - - - 50
MOABHH β - - - - - - - - 1

P17-P18

Generations 50 50 50 50 50 50 50 50 50
Pop Size 30 30 30 30 30 30 30 30 30
HHCF g - - - - - 1 - - -

HHRL/HHLA g - - - - - 1 - - -
MOABHH g - - - - - - - - 1
MOABHH β - - - - - - - - 0.5

We employed Hypervolume and IGD+ averages obtained from the 30 executions.
First, for each problem, we joined all results obtained by all algorithms, found the nadir
point, necessary for Hypervolume calculation, and took the non-dominated set in order
to generate the known Pareto Front (PFknown), necessary for IGD+ calculation. Then, we
calculated the quality indicator averages and compared them using Kruskal–Wallis as the
statistical test with a confidence level of 95%. In order to perform this, we first identify
which algorithm has the best average according to the quality indicator. Thus, all the other
algorithms are compared to the best, generating a set of p-values. We define an algorithm
tied statistically with the best when a given p-value is superior to the significance level,
which in this case is 0.05.

4. Experimental Results

In this section, we present the empirical results and our analysis. Tables 3 and 5 present,
respectively, averages for Hypervolume and IGD+. For each problem, the algorithms re-
sults were submitted to a Kruskal–Wallis statistical test where the following hypothesis was
answered:

Hypothesis 1. Considering a quality indicator (Hypervolume or IGD+), is a given algorithm
output equivalent to the algorithm that has the best output?

In these tables, we highlighted (in grey) the algorithm with the best average output;
moreover, considering the statistic test outcomes, we represented in bold those algorithms
whose outputs are equivalent to the best one.

Appl. Sci. 2021, 11, 9153 12 of 21

4.1. Hypervolume Analysis

Table 3 presents Hypervolume averages. From the experiments, we could conclude
the following:

• If we compare the results obtained just by the five MOEAs, we could see that: (i) GDE3
obtained the highest results on five problems (P01, P04, P14, P16, and P17); (ii) IBEA
was the best one on four problems (P02, P05, P07, and P13); (iii) NSGAII has the best
average on four problems (P06, P10, P15, and P18); (iv) SPEA2 has the best average on
five problems (P03, P08, P09, P11, and P12); and (v) mIBEA did not get the best results
in any experiment.

• If we consider just the four hyper-heuristics, we have: (i) MOABHH has higher averages
on nine problems (P01, P04, P07, P08, P10, P12, and P15–P17); (ii) HHLA has its best
results on three problems (P05, P14, and P18); (iii) HHRL performs better than others
on five problems (P02, P03, P09, P11, and P13); (iv) HHCF is the best algorithm just
in P06.

• Finally, if we compare the results obtained by all nine algorithms, GDE3 has higher
Hypervolume values on four problems (P04, P14, P16, and P17), IBEA has better
averages on three problems (P05, P07, and P13), NSGAII has the best result on three
problems (P06, P10, and P18), SPEA2 on three problems (P08, P09, and P11), MOABHH
has better averages on three problems (P01, P12, and P15), and HHRL in two of them
(P02 and P03). Moreover, mIBEA (among MOEAs), HHLA, and HHCF (both among
HHs) did not excel in any problem.

Finally, it is interesting to compare the results obtained by HHs with individual
MOEAs. Table 4 presents a summary of the statistical pairwise comparison between HHs
and individual MOEAs considering Hypervolume averages. An x in a certain cell means
that the corresponding HH could not achieve a result as good as the one obtained by a
particular MOEA, considering the Hypervolume indicator. First of all, we can notice that
all HHs were overcome in problems P17 and P18. Moreover, MOABHH could not achieve
statistically tied results with the best algorithms in three other problems (P10, P11, and
P14), HHLA was bet in six other problems (P04, P06, P08, P09, P10, and P12), HHRL could
not achieve the best result in two other problems (P06 and P10), and HHCF did not get
good results in six other problems (P05, P07, P08, P09, P11, and P16).

Table 3. Hypervolume averages considering 30 executions. Highlighted values are the best Hypervolume values among
all nine algorithms. Bold values are tied statistically with the best value.

Problem GDE3 IBEA NSGAII SPEA2 mIBEA MOABHH HHLA HHRL HHCF
P01 2.92912 × 1024 2.13470 × 1024 2.74801 × 1024 2.79395 × 1024 2.65003 × 1024 2.92954 × 1024 2.91106 × 1024 2.91360 × 1024 2.85991 × 1024

P02 1.20988 × 101 1.25672 × 101 1.17447 × 101 1.24937 × 101 1.25351 × 101 1.22389 × 101 1.25694 × 101 1.25745 × 101 1.22089 × 101

P03 3.40403 × 101 3.28857 × 101 3.33919 × 101 3.42588 × 101 3.28639 × 101 3.39933 × 101 3.42089 × 101 3.43667 × 101 3.43608 × 101

P04 4.12497 × 101 3.91635 × 101 4.10191 × 101 4.10782 × 101 3.91409 × 101 4.11873 × 101 4.08916 × 101 4.11610 × 101 4.11795 × 101

P05 4.29245 × 101 4.31194 × 101 4.29347 × 101 4.29918 × 101 4.31192 × 101 4.30434 × 101 4.31166 × 101 4.31071 × 101 4.30204 × 101

P06 1.83792 × 106 1.83368 × 106 1.83826 × 106 1.83533 × 106 1.83376 × 106 1.83721 × 106 1.83526 × 106 1.83597 × 106 1.83772 × 106

P07 4.60452 × 100 4.65843 × 100 4.56779 × 100 4.61121 × 100 4.64988 × 100 4.64656 × 100 4.64647 × 100 4.63820 × 100 4.58697 × 100

P08 3.68057 × 102 3.62909 × 102 3.68039 × 102 3.68161 × 102 3.65549 × 102 3.68023 × 102 3.65906 × 102 3.67855 × 102 3.67552 × 102

P09 8.86141 × 10−1 8.84318 × 10−1 8.86664 × 10−1 8.86948 × 10−1 8.83240 × 10−1 8.85986 × 10−1 8.85831 × 10−1 8.86501 × 10−1 8.85131 × 10−1

P10 7.65400 × 10−1 7.58649 × 10−1 7.68186 × 10−1 7.68104 × 10−1 7.56017 × 10−1 7.68160 × 10−1 7.64903 × 10−1 7.66534 × 10−1 7.63534 × 10−1

P11 7.51140 × 10−1 7.51382 × 10−1 7.52204 × 10−1 7.53349 × 10−1 7.47803 × 10−1 7.51807 × 10−1 7.52894 × 10−1 7.53102 × 10−1 7.52468 × 10−1

P12 7.39087 × 10−1 7.30252 × 10−1 7.39380 × 10−1 7.40053 × 10−1 7.30268 × 10−1 7.40062 × 10−1 7.36477 × 10−1 7.38370 × 10−1 7.40020 × 10−1

P13 4.51948 × 10−1 4.60981 × 10−1 4.52136 × 10−1 4.51396 × 10−1 4.55251 × 10−1 4.60470 × 10−1 4.53651 × 10−1 4.60516 × 10−1 4.49730 × 10−1

P14 6.56094 × 10−1 6.52222 × 10−1 6.54562 × 10−1 6.54886 × 10−1 6.47015 × 10−1 6.55449 × 10−1 6.55734 × 10−1 6.55663 × 10−1 6.52926 × 10−1

P15 9.88099 × 10−1 9.80715 × 10−1 9.89134 × 10−1 9.89115 × 10−1 9.88014 × 10−1 9.89425 × 10−1 9.89091 × 10−1 9.88244 × 10−1 9.87321 × 10−1

P16 3.78647 × 10−1 5.19911 × 10−2 2.99906 × 10−1 2.07564 × 10−1 1.18439 × 10−1 2.40525 × 10−1 1.78549 × 10−1 2.14554 × 10−1 1.43599 × 10−1

P17 9.07392 × 10−1 8.68258 × 10−1 9.03361 × 10−1 9.01765 × 10−1 8.94593 × 10−1 8.94496 × 10−1 8.94128 × 10−1 8.77702 × 10−1 8.92694 × 10−1

P18 5.28786 × 10−1 5.04137 × 10−1 5.29036 × 10−1 4.97061 × 10−1 5.00425 × 10−1 4.93037 × 10−1 4.96037 × 10−1 4.09329 × 10−1 4.78611 × 10−1

Appl. Sci. 2021, 11, 9153 13 of 21

Table 4. Summary of the statistical pairwise comparison between HHs and individual MOEAs
considering Hypervolume averages. An x means that the HH could not achieve a result as good as
the one obtained by an MOEA.

Problem MOABHH HHLA HHRL HHCF

P01
P02
P03
P04 x
P05 x
P06 x x
P07 x
P08 x x
P09 x x
P10 x x x
P11 x x
P12 x
P13
P14 x
P15
P16 x
P17 x x x x
P18 x x x x

Total 5 8 4 8

4.2. IGD+ Analysis

Table 5 presents IGD+ averages. From the experiments, we could conclude the follow-
ing:

• If we compare the results obtained just by the five MOEAs, we could see that: (i) GDE3
has better averages on five problems (P01, P04, P14, P16, and P17); (ii) IBEA excelled
in four problems (P7, P11, P13, and P15); (iii) NSGAII has obtained good results in
two problems (P06 and P18); (iv) SPEA2 has obtained the best IGD+ values for the
five problems (P02, and P8–P11); and (v) mIBEA has obtained the best results in two
problems (P03 and P05).

• If we consider just the four hyper-heuristics, we have: (i) MOABHH excels in seven
problems (P01, P07, P08, P10, P12, P14, and P17); (ii) HHLA performs better in four
problems (P05, P11, P15, and P18); (iii) HHRL performs better in six problems (P02–
P04, P09, P11, and P13); and (iv) HHCF has good results in two problems (P06 and
P16).

• Finally, if we compare the results obtained by all nine algorithms, GDE3 is the best
algorithm on three problems (P04, and P16–P17), IBEA performs better on three
problems (P07, P11, and P15), NSGAII on 2 problems (P06 and P18), SPEA2 excels on
four problems (P02, P08, P09, and P11), mIBEA just on P05, MOABHH performs better
on four problems (P01, P10, P12, and P14), and HHRL also in two problems (P03 and
P13). Moreover, HHLA and HHCF (both among HHs) did not excel in any problem.

Appl. Sci. 2021, 11, 9153 14 of 21

Table 5. IGD+ averages considering 30 executions. Highlighted values are the best IGD+ values
among all nine algorithms. Bold values are tied statistically with the best value.

Problem GDE3 IBEA NSGAII SPEA2 mIBEA MOABHH HHLA HHRL HHCF

P01 0.03550 0.13713 0.05409 0.05171 0.07120 0.03529 0.03790 0.03825 0.04425
P02 0.04721 0.04603 0.05449 0.04067 0.04650 0.04603 0.04294 0.04138 0.04741
P03 0.02962 0.01917 0.03327 0.02179 0.01914 0.02923 0.01942 0.01873 0.02108
P04 0.00346 0.02048 0.00451 0.00510 0.02017 0.00422 0.00559 0.00387 0.00401
P05 0.00081 0.00022 0.00075 0.00063 0.00021 0.00056 0.00023 0.00026 0.00049
P06 0.00027 0.00106 0.00022 0.00108 0.00106 0.00042 0.00081 0.00066 0.00032
P07 0.00056 0.00030 0.00147 0.00044 0.00045 0.00039 0.00045 0.00061 0.00100
P08 0.00048 0.00511 0.00050 0.00027 0.00388 0.00050 0.00316 0.00058 0.00110
P09 0.00156 0.00105 0.00110 0.00057 0.00087 0.00072 0.00074 0.00062 0.00078
P10 0.00206 0.00306 0.00106 0.00056 0.00366 0.00038 0.00129 0.00084 0.00206
P11 0.00230 0.00102 0.00194 0.00102 0.00177 0.00186 0.00109 0.00109 0.00165
P12 0.00146 0.00148 0.00133 0.00069 0.00148 0.00067 0.00088 0.00077 0.00072
P13 0.00348 0.00188 0.00339 0.00331 0.00242 0.00159 0.00292 0.00149 0.00417
P14 0.00056 0.00646 0.00382 0.00338 0.01609 0.00007 0.00011 0.00016 0.00673
P15 0.58012 0.05165 0.56817 0.58503 0.51695 0.60273 0.57720 0.60337 0.60657
P16 0.15856 0.27179 0.19379 0.25513 0.19813 0.24176 0.24395 0.22619 0.20020
P17 0.02195 0.14605 0.03079 0.03281 0.04614 0.04976 0.05849 0.06777 0.06026
P18 0.10275 0.11558 0.09524 0.12183 0.11506 0.12440 0.12341 0.21049 0.13727

Finally, as done in Section 4.1, it is also interesting to compare the results obtained
by HHs with individual MOEAs. Table 6 presents a summary of the statistical pairwise
comparison between HHs and individual MOEAs considering IGD+ averages. An x in a
certain cell means that the corresponding HH could not achieve a result as good as the one
obtained by a particular MOEA, considering the IGD+ indicator.

Table 6. Summary of the statistical pairwise comparison between HHs and individual MOEAs
considering IGD+ averages. An x means that the HH could not achieve a result as good as the one
obtained by a MOEA.

Problem MOABHH HHLA HHRL HHCF

P01
P02
P03 x
P04 x
P05 x
P06 x x
P07 x x
P08 x x x
P09
P10 x
P11 x x
P12
P13 x
P14 x
P15 x x x x
P16 x
P17 x x x x
P18 x x x x

Total 6 6 7 9

First of all, we can notice that all HHs were overcome in problems P15, P17, and P18.
Moreover, MOABHH could not achieve statistically tied results with the best algorithms in
three other problems (P03, P08, and P11), HHLA was also bet in three other problems (P04,
P06, P08), HHRL could not achieve the best result in four other problems (P06, P07, P14,
and P16), and HHCF did not get good results in six other problems (P05, P07, P08, P10,
P11, and P13).

Appl. Sci. 2021, 11, 9153 15 of 21

4.3. Hyper-Heuristics Analysis
Utilization of Low-Level Meta-Heuristics

In this section, we address the following issue: how much a single LLH is chosen by
a particular hyper-heuristics. Figure 1 graphically presents this usage: for MOABHH, it
represents the percentage of participation in generating offspring along with the search.
On the other hand, for HHRL, HHLA, and HHCF, the figure presents the percentage of
times that each LLH was chosen. The data consider all problem instances, each of them
running 30 times.

Figure 1. Utilization rate for the four hyper-heuristics.

The particular behavior of each HH may be found by analyzing Figure 1. For example,
if we consider problem P03, one may notice that MOABHH has chosen more times GDE3
(blue) and SPEA2 (red), while HHLA chose more often SPEA2. On the other hand, HHRL
and HHCF have chosen LLHs more uniformly. Table 7 presents a summarized evaluation of
this analysis, where we classified HHs’c behavior into four classes: (i) One Elitist: problems

Appl. Sci. 2021, 11, 9153 16 of 21

where one LLH is clearly selected more times than any other, i.e. more than 50%; (ii) Two
Elitist: problems where two LLHs are privileged, i.e. each LLH selected more than 40% ;
(iii) Three Elitist: problems where three LLHs are selected more times than others, i.e., each
LLH selected more than 30%; (iv) Not Elitist: when there is no clear LLH preference.

Table 7. How elitist HHs are on selection LLHs.

One Elitist Two Elitist Three Elitist Not Elitist

MOABHH P01, P03, P04, P05, P09, P12 P02, P07, P08, P10, P11, P13, P14 P15, P16 P06, P17, P18
HHLA P01, P03, P07, P08, P09, P11, P12, P13, P17 P04, P05, P10 P14, P16, P18 P02, P06, P15
HHCF P01, P06, P11, P12, P16, P17, P18 P04, P07 P05, P08, P10, P15 P02, P03, P09, P13, P14
HHRL P01, P08, P11, P12, P13 P04, P05, P06, P07, P09 P02, P03, P10, P14 P15, P16, P17, P18

We can identify HHLA and HHCF with more problems classified as One Elitist, while
MOABHH and HHRL had more problems in Two Elitist category. For Three Elitist, HHLA,
HHCF, and HHRL had four problems classified while MOABHH had three. Considering
all elitist classified problems (One Elitist + Two Elitist + Three Elitist), we can identify all HH
behaving in a similar way.

4.4. Generality Analysis

In order to perform a cross-domain evaluation of algorithms, we followed [77] and
generated the average and aligned Friedman ranking considering both Hypervolume
and IGD+ values. These rankings consider which position each algorithm takes on each
problem. We also concatenated Hypervolume (Table 3) and IGD+ (Table 5) tables, both
with 18 lines of data, in order to create a new table of mixed quality indicators with 36
lines of data. As best Hypervolume and IGD+ values are, respectively, the highest and the
lowest ones, we have used IGD+ = 1− IGD+ values instead.

Table 8 presents the statistical evaluation. In this table, smaller statistical values are
considered as better.

Considering just MOEA results, SPEA2 is the best single MOEA according to almost
all statistical scores. The second best is GDE3, while IBEA and mIBEA are the worst-
performing MOEAs according to this cross-domain analysis, with mIBEA performing
‘slightly’ better than IBEA.

Table 8. Friedman Ranking and Aligned Friedman Rank of the algorithms for Hypervolume and
IGD+. Highlighted values are the best values among all nine algorithms.

Friedman Friedman Friedman Friedman Friedman Friedman
Algorithm Hypervolume Hypervolume IGD+ IGD+ Mixed Mixed

Rank Aligned Rank Rank Aligned Rank Rank Aligned Rank

GDE3 4.22 69.72 4.88 77.05 4.55 145.08
IBEA 6.61 109.33 5.78 97.61 6.19 208.22

NSGAII 4.5 83.56 5.22 78.27 4.86 160.69
SPEA2 4.17 69.94 4.56 72.27 4.36 142.11
mIBEA 6.72 108.72 5.44 86.22 6.08 196.77

MOABHH 3.77 60.77 4.05 73.34 3.91 131.00
HHLA 4.94 78.44 4.88 81.34 4.25 156.83
HHRL 4.11 66.44 4.38 78.34 5.86 141.75
HHCF 5.94 86.55 5.77 89.05 5.47 180.02

Considering all of the nine studied algorithms, MOABHH is the algorithm which performs
better in a cross-domain perspective, as highlighted (in grey) in Table 8. HHRL is the second-
best except considering mixed average ranking values (5th column of the table): in this
specific case, HHLA is considered the second-best algorithm.

Another interesting result is that it is not the case that an HH always gets better results
than the LLHs that it is composed of; one can notice that, in general, SPEA2 and GDE3 got
better statistical values when compared both to HHLA and HHCF.

Appl. Sci. 2021, 11, 9153 17 of 21

4.5. Discussion

The cross-domain tests illustrated that mIBEA is one of the worst poor-performing
algorithms for this group of problems, while GDE3 is one of the top-performing algorithms.
Thus, the inclusion of mIBEA and GDE3 in the LLH pool increases the difficulty of choosing
the best algorithm for hyper-heuristics. In the previous studies, mainly three algorithms
were considered in the LLH pool: IBEA (one of the worst algorithms in our study), SPEA2
(the best one in this study), and NSGAII.

MOABHH and HHRL performed quite well, showing clearly superior results when
compared to HHLA and HHCF. Both MOABHH and HHRL removed the poor performing
LLHs at the beginning of the search, letting the best LLH run more time than others.
HHLA and HHCF, however, kept trying poor-performing LLHs. HHRL removed the
poor performing LLHs right away, without giving a proper chance to them during its
initialization process, but those LLHs might have performed well in the later stages of
the search process. On the other hand, MOABHH has kept all the algorithms running in
parallel and removing a percentage of the offspring generation from the worse algorithms.
This increases the MOABHH capability of exploring the search and avoiding the chance of
removing an LLH with potential good performance in the later stages from the LLH pool
in the beginning of the execution.

5. Conclusions

In this study, we investigated reportedly the top four online selection hyper-heuristics
across eighteen real-world optimization problems. The hyper-heuristics controlled and
mixed a set of five low-level MOEAs to produce improved trade-off solutions. The perfor-
mance of algorithms was also evaluated with a larger set of MOEAs.

To the best of the authors’ knowledge, this work is the first one which addresses the
problem of using real-world problem instances for cross-domain performance evaluation
of hyper-heuristics. In particular, we addressed in this paper the following issues: (i) an
evaluation of four state-of-the-art online hyper-heuristics (MOABHH, HHRL, HHLA, and
HHCF) using exclusively real-world problems; (ii) a harder selection task for these four
hyper-heuristics by increasing the number of Low-Level heuristics used: in our work,
we used five LLHs, whereas, in previous publications, the number of LLHs used were
3 or 4; (iii) a cross-domain tested formed by eighteen real-world optimization problems
(presented in Table 1) in order to evaluate multi-objective hyper-heuristics, which gives a
more realistic overview of their performance.

As expected, the empirical results showed that individual MOEAs deliver different
performances on different problems, making those real-world problem instances very useful
for cross-domain performance evaluation of hyper-heuristics. Moreover, our results showed
that hyper-heuristics have a better cross-domain performance than single meta-heuristics.
This means that, when a new multi-objective optimization problem must be solved, hyper-
heuristics are excellent candidates, reducing the user’s effort to run repeatedly several
meta-heuristics with different parameters settings in order to get a solution. In particular,
MOABHH turned out to be the best algorithm delivering the best overall cross-domain
performance, beating the other state-of-the-art hyper-heuristics with respect to two quality
indicators: IGD+ and Hypervolume.

As future work, these hyper-heuristics will be studied across various applications in
the discrete multi-objective optimization domain, such as Search-Based Software Engineer-
ing Problems [78] and exploring the potential of these algorithms on helping to improve
the current pandemic, in terms of diagnosis and treatment [79] and drug discovery [80].
Many objective problems also impose a challenge for researchers and practitioners: some
many-objective approaches were recently proposed in the literature. Another research di-
rection would be to study the performance of the top-performing online learning selection
hyper-heuristics across problems with more than eight objectives, varying their LLHs.

Appl. Sci. 2021, 11, 9153 18 of 21

Author Contributions: Conceptualization: all authors; Formalization, implementation and experi-
ments: V.R.d.C.; Supervision: E.Ö. and J.S.S.; Writing and proofreading the paper: all authors. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—grant code 001. Vinicius Renan de Carvalho was also supported
by CNPq, Brazil, Grant No. 140974/2016-4.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MOABHH source code can be found in https://github.com/vinixna
n/MOABHH. HHRL, HHLA, and HHCF code can be found in https://github.com/vinixnan/MO
HH-LARILA-Real. All employed problems can be found in https://github.com/vinixnan/jMetalHy
perHeuristicHelper, all accessed on 6 August 2021.

Acknowledgments: We thank Wenwen Li by providing MOHH-RILA and mIBEA code.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
AE Algorithm Effort
DE Differential Evolution
DTLZ Deb, Thiele, Laumanns, and Zitzler’s Benchmark
GDE3 Generalized Differential Evolution 3
HH Hyper-Heuristic
HHCF Maashi’s Choice Function Hyper-Heuristic
HHLA MOHH-RILA instance with no LLH removal during the initialization
HHRL MOHH-RILA instance with LLH removal during the initialization
HR Hypervolume Ratio
IBEA Indicator Based Evolutionary Algorithm
IGD Inverted Generational Distance
IGD+ Inverted Generational Distance Plus
LLH Low-Level Heuristic
MAB Multi-Armed Bandit
mIBEA Modified Indicator Based Evolutionary Algorithm
MOABHH Multi-Objective Agent-Based Hyper-Heuristic
MOGA Multi-Objective Genetic Algorithm
MOEA Multi-Objective Evolutionary Algorithm

MOHH-RILA
Learning Automata-based Multi-Objective Hyper-Heuristic with a ranking
scheme initialization

MOP Multi-Objective Optimization Problem
NSGAII Non-Dominated Sorting Genetic Algorithm II
PF Pareto Front
RNI Ratio of Non-Dominated Solution
SPEA2 Strength Pareto Evolutionary Algorithm 2
UD Uniform Distribution
WFG Walking Fish Group’s benchmark
ZDT Zitzler, Deb, and Thiele’s Benchmark

References
1. Burke, E.K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Qu, R. Hyper-heuristics: A survey of the state of the art.

J. Oper. Res. Soc. 2013, 64, 1695–1724. [CrossRef]
2. Drake, J.H.; Kheiri, A.; Özcan, E.; Burke, E.K. Recent Advances in Selection Hyper-heuristics. Eur. J. Oper. Res. 2020, 285, 405–428.

[CrossRef]
3. Li, W.; Özcan, E.; John, R. A Learning Automata-Based Multiobjective Hyper-Heuristic. IEEE Trans. Evol. Comput. 2019, 23, 59–73.

[CrossRef]
4. Burke, E.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J. A classification of hyper-heuristic approaches. In Handbook

of Metaheuristics; Springer: Boston, MA, USA, 2010; Volume 146, pp. 449–468.

https://github.com/vinixnan/MOABHH
https://github.com/vinixnan/MOABHH
https://github.com/vinixnan/MOHH-LARILA-Real
https://github.com/vinixnan/MOHH-LARILA-Real
https://github.com/vinixnan/jMetalHyperHeuristicHelper
https://github.com/vinixnan/jMetalHyperHeuristicHelper
http://doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/10.1109/TEVC.2017.2785346

Appl. Sci. 2021, 11, 9153 19 of 21

5. Burke, E.K.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J.R. A Classification of Hyper-Heuristic Approaches:
Revisited. In Handbook of Metaheuristics; Springer International Publishing: Cham, Switzerland, 2019; Chapter 14; pp. 453–477.

6. Maashi, M.; Özcan, E.; Kendall, G. A multi-objective hyper-heuristic based on choice function. Expert Syst. Appl. 2014,
41, 4475–4493. [CrossRef]

7. Cowling, P.I.; Kendall, G.; Soubeiga, E. A Hyperheuristic Approach to Scheduling a Sales Summit. In Proceedings of the Third
International Conference on Practice and Theory of Automated Timetabling, Konstanz, Germany, 16–18 August 2000; pp. 176–190.

8. Li, K.; Fialho, A.; Kwong, S.; Zhang, Q. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm
based on decomposition. IEEE Trans. Evol. Comput. 2014, 18, 114–130. [CrossRef]

9. Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Mach. Learn. 2002, 47, 235–256.
[CrossRef]

10. Gonçalves, R.A.; Kuk, J.N.; Almeida, C.P.; Venske, S.M. Decomposition Based Multiobjective Hyper Heuristic with Differential
Evolution. In Computational Collective Intelligence; Lecture Notes in Computer Science; Springer International Publishing: Cham,
Switzerland, 2015; pp. 129–138.

11. Gonçalves, R.A.; Almeida, C.P.; Pozo, A. Upper Confidence Bound (UCB) Algorithms for Adaptive Operator Selection in
MOEA/D. In Evolutionary Multi-Criterion Optimization; Lecture Notes in Computer Science, Springer International Publishing:
Cham, Switzerland, 2015; pp. 411–425.

12. Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.N.; Liu, W.; Tiwari, S. Multiobjective Optimization Test Instances for the CEC 2009 Special
Session and Competition; Special Session on Performance Assessment of Multi-Objective Optimization Algorithms; Technical
Report; University of Essex: Colchester, UK; Nanyang Technological University: Singapore, 2008; pp. 1–30.

13. Almeida, C.; Gonçalves, R.; Venske, S.; Lüders, R.; Delgado, M. Hyper-heuristics using multi-armed bandit models for multi-
objective optimization. Appl. Soft Comput. 2020, 95, 106520. [CrossRef]

14. Guizzo, G.; Fritsche, G.M.; Vergilio, S.R.; Pozo, A.T.R. A Hyper-Heuristic for the Multi-Objective Integration and Test Order
Problem. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO’15), Madrid, Spain,
11–15 July 2015; ACM: New York, NY, USA, 2015; pp. 1343–1350.

15. ao, W.A.; Colanzi, T.E.; Vergilio, S.R.; Pozo, A. A Multi-objective Optimization Approach for the Integration and Test Order
Problem. Inf. Sci. 2014, 267, 119–139.

16. Guizzo, G.; Vergilio, S.R.; Pozo, A.T.R. Evaluating a Multi-objective Hyper-Heuristic for the Integration and Test Order Problem.
In Proceedings of the 2015 Brazilian Conference on Intelligent Systems (BRACIS), Natal, Brazil, 4–7 November 2015; SBC: Natal,
Brazil, 2015; pp. 1–6.

17. de Carvalho, V.R. Uma Hiper-Heurística de Seleção Baseada em Decomposição Para Estabelecer Sequências de Módulos Para o
Teste de Software. MsC Thesis, Universidade Federal do Paraná (UFPR), Curitiba, Brazil, 2015.

18. Huband, S.; Hingston, P.; Barone, L.; While, L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE
Trans. Evol. Comput. 2006, 10, 477–506. [CrossRef]

19. Liao, X.; Li, Q.; Yang, X.; Zhang, W.; Li, W. Multiobjective optimization for crash safety design of vehicles using stepwise
regression model. Struct. Multidiscip. Optim. 2008, 35, 561–569. [CrossRef]

20. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

21. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization.
In Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems; EUROGEN: Barcelona, Spain,
2001; pp. 95–100.

22. Fonseca, C.M.; Fleming, P.J. Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms. I. A
Unified Formulation. IEEE Trans. Syst. Man Cybern. Part A 1998, 28, 26–37. [CrossRef]

23. Vrugt, J.A.; Robinson, B.A. Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Natl. Acad.
Sci. USA 2007, 104, 708–711. [CrossRef]

24. Li, W.; Özcan, E.; John, R. Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation. Renew.
Energy 2017, 105, 473–482. [CrossRef]

25. Zitzler, E.; Künzli, S. Indicator-Based Selection in Multiobjective Search. In Parallel Problem Solving from Nature—PPSN VIII;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3242, pp. 832–842.

26. Tran, R.; Wu, J.; Denison, C.; Ackling, T.; Wagner, M.; Neumann, F. Fast and Effective Multi-objective Optimisation of Wind
Turbine Placement. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO’13),
Amsterdam, The Netherlands, 6–10 July 2013; ACM: New York, NY, USA, 2013; pp. 1381–1388.

27. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization. In Evolutionary
Multiobjective Optimization: Theoretical Advances and Applications; Springer: London, UK, 2005; pp. 105–145.

28. de Carvalho, V.R.; Sichman, J.S. Applying Copeland Voting to Design an Agent-Based Hyper-Heuristic. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, São Paulo, Brazil, 8–12 May 2017; pp. 972–980.

29. de Carvalho, V.R.; Sichman, J.S. Multi-Agent Election-Based Hyper-Heuristics. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 5779–5780.

30. Nurmi, H. Voting Systems for Social Choice; Springer: Dordrecht, The Netherlands, 2010; pp. 167–182.

http://dx.doi.org/10.1016/j.eswa.2013.12.050
http://dx.doi.org/10.1109/TEVC.2013.2239648
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1016/j.asoc.2020.106520
http://dx.doi.org/10.1109/TEVC.2005.861417
http://dx.doi.org/10.1007/s00158-007-0163-x
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/3468.650319
http://dx.doi.org/10.1073/pnas.0610471104
http://dx.doi.org/10.1016/j.renene.2016.12.022

Appl. Sci. 2021, 11, 9153 20 of 21

31. Kukkonen, S.; Lampinen, J. GDE3: The third evolution step of generalized differential evolution. In Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 1, pp. 443–450.

32. de Carvalho, V.R.; Sichman, J.S. Solving real-world multi-objective engineering optimization problems with an Election-Based
Hyper-Heuristic. In Proceedings of the OptMAS 2018: International Workshop on Optimisation in Multi-Agent Systems, AAMAS
2018, Stockholm, Sweden, 10–15 July 2018.

33. Tapabrata, R.; Kang, T.; Seow, K.C. Multiobjective Design Optimization by an Evolutionary Algorithm. Eng. Optim. 2001,
33, 399–424.

34. Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting
Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622.
[CrossRef]

35. Ghiassi, M.; DeVor, R.; Dessouky, M.; Kijowski, B. An application of multiple criteria decision-making principles for planning
machining operations. IIE Trans. 1984, 16, 106–114. [CrossRef]

36. de Carvalho, V.R.; Larson, K.; Brandão, A.A.F.; Sichman, J.S. Applying Social Choice Theory to Solve Engineering Multi-objective
Optimization Problems. J. Control Autom. Electr. Syst. 2020, 31, 119–128. [CrossRef]

37. Hansen, M.P. Use of substitute scalarizing functions to guide a local search based heuristic: The case of moTSP. J. Heuristics 2000,
6, 419–431. [CrossRef]

38. Institut Für Neuroinformatik. Black Box Optimization Competition, EMO’2017 Real-World Problems. 2017. Available online:
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/ (accessed on 10 April 2021).

39. Stadler, W.; Dauer, J. Multicriteria Optimization in Engineering: A Tutorial and Survey. Struct. Optim. Status Promise 1993, 150,
211–249.

40. Golinski, J. Optimal synthesis problems solved by means of nonlinear programming and random methods. J. Mech. 1970,
5, 287–309. [CrossRef]

41. Quagliarella, D.; Vicini, A. Sub-population policies for a parallel multiobjective genetic algorithm with applications to wing
design. In Proceedings of the SMC’98 Conference Proceedings, 1998 IEEE International Conference on Systems, Man, and
Cybernetics (Cat. No. 98CH36218), San Diego, CA, USA, 14 October 1998; Volume 4, pp. 3142–3147.

42. Poloni, C.; Mosetti, G.; Contessi, S. Multi objective optimization by GAs: Application to system and component design. In
ECCOMAS’96: Computational Methods in Applied Sciences’96; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 1–7.

43. Li, W.; Özcan, E.; John, R.; Drake, J.H.; Neumann, A.; Wagner, M. A modified indicator-based evolutionary algorithm (mIBEA). In
Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 1047–1054.

44. Santiago, A.; Dorronsoro, B.; Fraire, H.J.; Ruiz, P. Micro-Genetic algorithm with fuzzy selection of operators for multi-Objective
optimization: FAME. Swarm Evol. Comput. 2021, 61, 100818. [CrossRef]

45. Karafotias, G.; Hoogendoorn, M.; Eiben, A.E. Parameter control in evolutionary algorithms: Trends and challenges. IEEE Trans.
Evol. Comput. 2015, 19, 167–187. [CrossRef]

46. Coello, C. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: New York, NY, USA, 2007.
47. Adra, S.F. Improving Convergence, Diversity and Pertinency in Multiobjective Optimisation. Ph.D. Thesis, Department of

Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK, 2007.
48. Atahran, A.; Lenté, C.; T’kindt, V. A Multicriteria Dial-a-Ride Problem with an Ecological Measure and Heterogeneous Vehicles. J.

Multi-Criteria Decis. Anal. 2014, 21, 279–298. [CrossRef]
49. Mariani, T.; Vergilio, S.R.; Colanzi, T.E. Optimizing Aspect-Oriented Product Line Architectures with Search-Based Algorithms.

In Search-Based Software Engineering; Barros, M., Labiche, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2015;
pp. 173–187.

50. Hamdani, T.M.; Won, J.M.; Alimi, A.M.; Karray, F. Multi-objective feature selection with NSGA II. In Proceedings of the
International Conference on Adaptive and Natural Computing Algorithms, Warsaw, Poland, 11–14 April 2007; pp. 240–247.

51. Goranova, M.; Contreras-Cruz, M.A.; Hoyle, A.; Ochoa, G. Optimising Antibiotic Treatments with Multi-objective Population-
based Algorithms. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020;
pp. 1–7.

52. Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [CrossRef]
53. Lalbakhsh, P.; Zaeri, B.; Lalbakhsh, A. An Improved Model of Ant Colony Optimization Using a Novel Pheromone Update

Strategy. IEICE Trans. Inf. Syst. 2013, 96, 2309–2318. [CrossRef]
54. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
55. Nebro, A.J.; Durillo, J.J.; Garcia-Nieto, J.; Coello Coello, C.A.; Luna, F.; Alba, E. SMPSO: A new PSO-based metaheuristic for

multi-objective optimization. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making(MCDM), Nashville, TN, USA, 30 March–2 April 2009; pp. 66–73.

56. Suganthan, P.N. Particle swarm optimiser with neighbourhood operator. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1958–1962.

http://dx.doi.org/10.1109/TEVC.2013.2281534
http://dx.doi.org/10.1080/07408178408974675
http://dx.doi.org/10.1007/s40313-019-00526-2
http://dx.doi.org/10.1023/A:1009690717521
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/
http://dx.doi.org/10.1016/0022-2569(70)90064-9
http://dx.doi.org/10.1016/j.swevo.2020.100818
http://dx.doi.org/10.1109/TEVC.2014.2308294
http://dx.doi.org/10.1002/mcda.1518
http://dx.doi.org/10.1016/j.tcs.2005.05.020
http://dx.doi.org/10.1587/transinf.E96.D.2309

Appl. Sci. 2021, 11, 9153 21 of 21

57. Marinakis, Y.; Marinaki, M. Combinatorial Expanding Neighborhood Topology Particle Swarm Optimization for the Vehicle
Routing Problem with Stochastic Demands. In Proceedings of the 15th annual Conference on Genetic and Evolutionary
Computation (GECCO’13), Amsterdam, The Netherlands, 6–10 July 2013; Association for Computing Machinery: New York, NY,
USA, 2013; pp. 49–56.

58. de Carvalho, V.R.; Pozo, A.T.R. Um estudo sobre otimização por partículas aplicado ao problema de roteamento de veículos com
demandas estocásticas. In Proceedings of the Encontro Nacional de Inteligência Artificial e Computacional (ENIAC), São Carlos,
Brazil, 19–23 October 2014.

59. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P. Multiobjective Particle Swarm Optimization to Design a Time-Delay Equalizer Metasur-
face for an Electromagnetic Band-Gap Resonator Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 912–915. [CrossRef]

60. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S. Design of an artificial magnetic conductor surface using an evolutionary
algorithm. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona,
Italy, 11–15 September 2017; pp. 885–887.

61. Lalbakhsh, A.; Afzal, M.U.; Zeb, B.A.; Esselle, K.P. Design of a dielectric phase-correcting structure for an EBG resonator antenna
using particle swarm optimization. In Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP),
Hobart, TAS, Australia, 9–12 November 2015; pp. 1–3.

62. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

63. Elarbi, M.; Bechikh, S.; Ben Said, L.; Datta, R. Multi-objective Optimization: Classical and Evolutionary Approaches. In Recent
Advances in Evolutionary Multi-objective Optimization; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–30.

64. Zitzler, E.; Thiele, L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach.
Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

65. Van Veldhuizen, D.A. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph.D. Thesis, Air
Force Institute of Technology, Wright Patterson AFB, Dayton, OH, USA, 1999.

66. Goh, C.K.; Tan, K.C. A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization. IEEE Trans.
Evol. Comput. 2009, 13, 103–127.

67. Tan, K.C.; Lee, T.; Khor, E. Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Compar-
isons. Artif. Intell. Rev. 2002, 17, 251–290. [CrossRef]

68. Wooldridge, M. An Introduction to Multiagent Systems; John Wiley & Sons: Hoboken, NJ, USA, 2009.
69. Copeland, A.H. A Reasonable Social Welfare Function; University of Michigan: Ann Arbor, MI, USA, 1951.
70. Bradstreet, L.; Barone, L.; While, L.; Huband, S.; Hingston, P. Use of the WFG Toolkit and PISA for Comparison of MOEAs. In

Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, Honolulu, HI, USA,
1–5 April 2007; pp. 382–389.

71. Nebro, A.J.; Durillo, J.J.; Vergne, M. Redesigning the jMetal Multi-Objective Optimization Framework. In Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO Companion’15); ACM: New York, NY, USA, 2015;
pp. 1093–1100.

72. Gunawan, S.; Azarm, S. Multi-objective robust optimization using a sensitivity region concept. Struct. Multidiscip. Optim. 2005,
29, 50–60. [CrossRef]

73. Giotis, A.; Emmerich, M.; Naujoks, B.; Giannakoglou, K.; Bäck, T. Low-cost stochastic optimization for engineering applications.
In Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems (EUROGEN-2001); Springer
International Publishing: Cham, Switzerland, 2001; pp. 361–366.

74. Deb, K.; Sundar, J. Reference Point Based Multi-objective Optimization Using Evolutionary Algorithms. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation (GECCO’06), Seattle, MA, USA, 8–12 July 2006; ACM: New York,
NY, USA, 2006; pp. 635–642.

75. Yang, X.S. Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 2013, 29, 175–184. [CrossRef]
76. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,

11, 712–731. [CrossRef]
77. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
78. Harman, M.; Jones, B.F. Search-based software engineering. Inf. Softw. Technol. 2001, 43, 833–839. [CrossRef]
79. Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; Spada, L.L.; Mirmozafari, M.;

Dehghani, M.; et al. Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access
2020, 8, 109581–109595. [CrossRef]

80. Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Roshani, S.; Matousek, V.; Roshani, S.; Mirmozafari, M.; Malek, Z.; La Spada,
L.; et al. Deep Learning Techniques and COVID-19 Drug Discovery: Fundamentals, State-of-the-Art and Future Directions. Emerg.
Technol. Dur. Era COVID-19 Pandemic 2021, 348, 9.

http://dx.doi.org/10.1109/LAWP.2016.2614498
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1023/A:1015516501242
http://dx.doi.org/10.1007/s00158-004-0450-8
http://dx.doi.org/10.1007/s00366-012-0254-1
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1109/ACCESS.2020.3001973

	Introduction
	Background
	Multi-Objective Optimization
	NSGAII
	SPEA2
	IBEA
	mIBEA
	GDE3

	Selecting a MOEA
	HHCF
	HHLA and HHRL
	MOABHH

	Real-World Multi-Objective Problems

	Methodology
	Experimental Results
	Hypervolume Analysis
	IGD+ Analysis
	Hyper-Heuristics Analysis
	Generality Analysis
	Discussion

	Conclusions
	References

