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Abstract—Multi-objective evolutionary algorithms (MOEAs)
based on the concept of Pareto-dominance have been successfully
applied to many real-world optimisation problems. Recently,
research interest has shifted towards indicator-based methods
to guide the search process towards a good set of trade-off
solutions. One commonly used approach of this nature is the
indicator-based evolutionary algorithm (IBEA). In this study,
we highlight the solution distribution issues within IBEA and
propose a modification of the original approach by embedding an
additional Pareto-dominance based component for selection. The
improved performance of the proposed modified IBEA (mIBEA)
is empirically demonstrated on the well-known DTLZ set of
benchmark functions. Our results show that mIBEA achieves
comparable or better hypervolume indicator values and epsilon
approximation values in the vast majority of our cases (13
out of 14 under the same default settings) on DTLZ1-7. The
modification also results in an over 8-fold speed-up for larger
populations.

I. INTRODUCTION

In multi-objective optimisation, where multiple objectives
are optimised simultaneously, the goal is to find a set of
Pareto-optimal solutions known as the Pareto front (PF). The
PF consists of a set of solutions that are not dominated by each
other, which are termed as non-dominated solutions, represent-
ing the trade-off that exists between different objectives. This
dominance relation, also known as Pareto dominance relation,
(≺) is defined between solutions x1 and x2. We say w.l.o.g.,
in a minimisation problem that x1 dominates x2 (x1 ≺ x2)
if and only if fi(x1) ≤ fi(x

2) for all k objective functions
(i ∈ {1, . . . k}), and fi(x1) < fi(x

2) for at least one objective
function. One of the difficulties in multi-objective search is
to find a set of solutions to minimise the distance to the
true Pareto front (PF) while maintaining the diversity of the
solution set in the objective space.

Multi-objective evolutionary algorithms (MOEAs) are
widely used to solve various multi-objective optimisation
problems [16] and are considered to be general and robust
search mechanisms [1]. Evolutionary algorithms (EAs) are
a class of stochastic optimisation methods that mimic the
process of evolution in nature. Examples of EAs, such as
genetic algorithms, evolutionary programming, and evolution

strategies [1] operate on a set of solutions using the ba-
sic principles of natural evolution: selection, reproduction
by means of recombination and mutation. The algorithmic
difference between single-objective EAs and MOEAs is that
additionally in an MOEA, the multiple objectives of a solution
must be transformed into a single fitness value to facilitate
the comparison of individual solutions [6]. Thus, MOEAs
often vary in the method of this transformation, considering
the balance of convergence and diversification during the
search. Some MOEAs, such as NSGA-II [7], SPEA2 [18],
and AGE [3, 13] incorporate Pareto-based ranking of the
individuals and an additional density measurement (crowding
distance in NSGA-II, k-th nearest neighbour in SPEA2, ε-
dominance in AGE) in the objective space. However, between
two non-dominated solutions, purely Pareto-based MOEAs are
not able to ascertain which solutions have better potential for
convergence. IBEA [17] was one of the earliest indicator-based
MOEAs proposed in the literature. Originally, it came in two
variants: one using ε-dominance for guidance, denoted IBEAε,
and another based on hypervolume, denoted IBEAHD (‘HD’
stands for hypervolume difference) which will be referred to as
IBEA from this point onward in this study. IBEA associates a
fitness value with each solution based on the selected indicator
(hypervolume or ε), attempting to guide the search towards
the true PF. IBEA was shown to achieve significantly better
performance on various benchmark functions than NSGA-II
and SPEA2 [17], however the distribution of the solutions
found by IBEA has rarely been reported or discussed in detail.
In this paper, we propose a modified variant of IBEAHD,
termed mIBEA, which adds a Pareto-based element to this
indicator-based method, analysing the distribution of non-
dominated solutions found. For further information about
MOEAs and indicator-based MOEAs in particular, we refer
the interested reader to [5, 6, 16].

The remainder of the paper is structured as follows. We first
describe the original IBEA in Section II-A, then present ob-
servations of the solution distributions observed using existing
MOEAs in Section II-B. The proposed mIBEA is introduced in
Section III. Experimental results comparing IBEA and mIBEA
are presented in Section IV. We draw conclusions and provide

978-1-5090-4601-0/17/$31.00 c©2017 IEEE



ideas for future work in Section V.

II. INDICATOR-BASED EVOLUTIONARY ALGORITHM

Since the focus in the paper is on the hypervolume variant
of IBEA, i.e. IBEAHD, we first give a detailed description of
the original IBEA. We then provide visualisations and obser-
vations for the non-dominated solution sets found using IBEA
and two other existing MOEAs, one Pareto dominance-based
(NSGA-II [7]) and one indicator-based (SMS-EMOA [2]).

A. Description of IBEA

The core idea of IBEAHD is to employ a binary hyper-
volume indicator in the selection process, when determining
which solutions survive to the next generation. The binary
hypervolume indicator assigns a real-valued number to two
solution sets with respect to a reference point. The formula of
IHD(A,B) is defined as space that is dominated by population
B, but not by A, shown in Equation (1) [17].

IHD(A,B) =

{
IH(B)− IH(A),∀x2 ∈ B∃x1 ∈ A : x1 ≺ x2

IH(A+B)− IH(A), o.w.
(1)

where IH(A) denotes the hypervolume formed by the
solution set A. Correspondingly, IH(A + B) means the hy-
pervolume of the union of solution set A and B. IHD(A,B)
is negative if all solutions in B are dominated by solutions in
A. Note that IH(A) 6= IH(B).

The pseudocode of the original IBEA is given in Alg. 1.
IBEA first randomly generates an initial population in Step1,
then the following steps loop until the stopping criterion
is satisfied. The objective values are scaled and the fitness
is assigned to each individual in Step2 and Step3. Step4
performs environmental selection, iteratively removing the
worst individual in the population P based on indicator value
until µ individuals remain (this step will do nothing in the first
iteration of the algorithm as P = µ). Upon removal of each
solution, the indicator values of the remaining solutions must
be updated. This step continues until the number of solutions
in P does not exceed µ. The standard mating selection (Step6)
and variation (Step7) steps are performed to generate new
individuals and add them to the population P .

B. Solution distribution issues in existing MOEAs

It is common in the MOEA literature to use various
quantitative indicators, such as hypervolume, ε-approximation
and inverted generational distance (IGD) [19], to compare the
performance of different MOEAs. However, the distribution
of non-dominated solutions over the resultant solution fronts
is relatively rarely reported, at least in part due to the lack of
quantitative indicators to measure it in the objective space.

One method for measuring the spread of solutions over
the objective space we will use here is Generalised Spread
(GS) [15]. GS computes the average Euclidean distance of any
two consecutive solutions [7] (or nearest neighbours in [15]) in
the population, and considers this average in the context of the
minimal achieved distances to the extreme points of the true

Algorithm 1: (Adaptive) IBEAHD as described in [4, 17]

Inputs:
µ: population size;
N : number of total solution evaluations;
ρ: objective values scaling factor;
κ: indicator value (hypervolume difference) scaling factor
Output: A: Pareto set approximation
Step1: Initialisation: Randomly generate the initial
population P and set up evaluation counter m.

Step2: Scale objective values:
1) find the lower (bi = minx∈P fi(x)) and upper

(bi = maxx∈P fi(x)) bound of each objective i.
2) increase the upper bound bi

′
= bi + ρ ∗ (bi − bi)

3) scale each objective to the interval [0, 1];
f ′i = (fi(x)− bi)/(bi

′ − bi)
Step3: Fitness Assignment:
1) calculate indicator values I(x1, x2) using the scaled

objective values f ′i instead of original objective values
fi, and determine the maximum absolute indicator value
c = maxx1,x2∈P |I(x1, x2)|

2) compute the fitness for all x1 ∈ P ,
F (x1) =

∑
x2∈P\x1 − exp−I(x

2,x1)/c∗κ

Step4: Environmental Selection: iterate the following
three sub-steps until the size of population P ≤ µ.

1) choose an individual x? ∈ P with the smallest fitness
value, i.e., F (x?) ≤ F (x) for all x ∈ P

2) remove x? from P
3) update fitness values of all the remaining individuals
x ∈ P as F (x) = F (x) + exp−I(x

?,x)/c∗κ

Step5: Termination criteria: if m ≥ N , return the
non-dominated solutions in P as A; otherwise, continue.

Step6: Mating Selection: apply binary tournament
selection operator to P to select two parents from P .

Step7: Variation: perform crossover operator on the two
parents to generate two offspring, and use an mutation
operator on one of the offspring. The resulting offspring
is then added to P . Increment iteration counter
(m = m+ 1). Go to Step 2.

PF. The smaller the value of GS, the better spread the resultant
front has as the variance is reduced and/or points closer to the
extreme points have been found. The ideal spread is achieved
when GS equals to 0 as this means that the extreme points are
found and the solutions are evenly spread out.

In this study, for the purpose of analysis, we also use a new
metric – border fraction (bf) to provide a certain quantitative
measurement of the solution distribution of different PFs. We
define border fraction as the fraction of non-dominated points
lying in a pre-defined border or area of the resultant PF. More
precisely, assume the lower bound of each objective function is
0, the border threshold for each objective is denoted as θi, then
the border is the volume defined by (0 < f1 ≤ θ1||0 < f2 ≤
θ2||, ..., ||0 < fk ≤ θk), where k is number of objectives in the
multi-objective problem. Given ndi non-dominated solutions in



the population, the border fraction bf value is the proportion of
non-dominated individuals in the population which lie within
in this border. Note that bf is not a general metric to measure
the solution distribution of a Pareto optimal (or approx.) set.

As a motivating example, we apply three well-known
MOEAs, NSGA-II, SMS-EMOA and IBEA, to a sample of
three DTLZ problems [8], using the default settings for each
method. Figure 1 shows the non-dominated solutions found
in 100 independent runs for each MOEA on each problem,
except for SMS-EMOA which was run only 10 times due to
its high running time. The maximum number of evaluations
for each run was 100,000. The bf and ndi values are also
provided on the top right corner of each plot.
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Fig. 1: Comparison of non-dominated solution sets for NSGA-
II, SMS-EMOA and IBEA.

Firstly, we can see that the solutions from NSGA-II can
cover the whole fronts of all the problems DTLZ1-3. Secondly,
SMS-EMOA can reach almost full coverage of the PF for
DTLZ1, however, on DTLZ2 and 3 the PFs have clear gaps
between the border and central area. Thirdly, similar to SMS-
EMOA, IBEA also shows clear gaps (empty space) on the PF
of DTLZ2. Also, solutions by the original IBEA are heavily
concentrated in the corner points on DTLZ1 and DTLZ3.

The GS measurement of the solution fronts obtained from
NSGA-II, SMS-EMOA and IBEA (as illustrated in Figure 1)
is shown in Table I. The best GS on each benchmark func-
tion is highlighted in bold. Not surprisingly, IBEA performs
poorly w.r.t. GS among all the three algorithms on DTLZ1-
3. However, interestingly, although SMS-MOEA shows gaps
on the resultant PFs of DTLZ2 and 3, the GS indicator still
shows that it performs best on both problems. This suggests
that under certain situations (e.g., PFs of DTLZ2 and 3 from
SMS-EMOA) GS cannot capture the distribution of the PF,
i.e., the spread calculated is not equivalent to the distribution.

In the following, we use bf and ndi to capture the bias within
the distribution towards extreme points on the solution fronts.
The border threshold is set as 0.03 for DTLZ1 and 0.1 for both

TABLE I: Generalised Spread Meanstd values for NSGA-II,
SMS-EMOA and IBEA on DTLZ1-3.

Generalised Spread NSGA-II SMS-EMOA IBEA
DTLZ1 0.57740.30 0.07800.01 1.38350.38
DTLZ2 0.49510.04 0.23930.02 0.47050.03
DTLZ3 0.52840.09 0.23880.02 1.59210.30

DTLZ2 and 3. These parameters are determined by the gaps
or corner points from IBEA illustrated in Figure 1. We can
see that for IBEA, on DTLZ1 and DTLZ3 almost all points
lie in the border area of IBEA, and 72% of points are in the
border area for DTLZ2. SMS-EMOA shows good PF coverage
on DTLZ1, but a biased solution distribution is obvious on
the outside ‘ring’ area and the inside central area in DTLZ2
and DTLZ3. Interestingly, the Pareto dominance-based MOEA
NSGA-II shows good PF coverage and fairly uniform solution
distributions on DTLZ1-3. In addition, IBEA only identifies
616 non-dominated solutions when solving DTLZ1 and 182
for DTLZ3 after 100 independent runs, which is significantly
less than the ndi values of NSGA-II on these instances (9179
for DTLZ1 and 7134 for DTLZ3).

To the best of our knowledge, even though these uneven
solution distributions have been plotted in articles before,
e.g. [2, 12], no further details are discussed in those papers.
Although IBEA is often reported as having exceptional in-
dicator value performance [9, 17], the actual distribution of
solutions that it obtains is surprisingly uneven. Additionally,
mediocre performance [12, 14] is reported on certain bench-
mark functions, possibly as a result of this uneven distribution.
In the following section, we introduce a modified version of
IBEA that attempts to overcome this issue.

III. PROPOSED MODIFIED IBEA (mIBEA)

The behaviour of IBEA observed in the previous section
suggests that the search is trapped in certain regions of the
search space when solving DTLZ1 and DTLZ3, and suffers
from a lack of diversity in solutions. In other words, it seems
that after a certain time point, IBEA is not able to produce
solutions with high hypervolume contributions. A poor spread
of non-dominated solutions when using IBEA was observed
previously by Li et al. [11] in the context of a real world
application, the multi-objective wind farm layout optimisation
problem. The proposed method in that paper illustrated that
the hybridisation of Pareto dominance-based MOEAs and
IBEA could improve the overall performance, in terms of both
convergence and diversification within the search. It is this
observation that the modified IBEA, mIBEA, we introduce
here is based on.

mIBEA excludes dominated solutions at each generation
after the new population is created. To achieve this, we use the
dominance-based sorting method of NSGA-II, however, other
approaches for achieving this can be used as well.

The difference between mIBEA and IBEA is to add this
one step before the scaling Step2 in IBEA (as described in
Section II-A). The effect is that the scaling of the objective
scores is no longer affected by dominated solutions that



are far away from the best non-dominated solutions in the
population, see Step2.1 of Algorithm 1 where minimum and
maximum values across the entire population are determined.
The pseudocode of mIBEA is given in Algorithm 2.

Algorithm 2: mIBEA

Input: µ: population size;
N : number of total solution evaluations;
ρ: objective values scaling factor;
κ: indicator value (hypervolume difference) scaling factor
Output: A: Pareto set approximation
Step1: Initialisation (see Step 1 in Alg. 1);
Step2.1: Use the fast non-dominated sorting of NSGA-II
to get non-dominated solutions in P and use the
non-dominated solutions as the new P .
1) rank the solutions in P : Ranking rankedP = new
Ranking(P );
2) get the non-dominated solutions: P =
rankedP.getSubfront(0);

Step2.2: Scale objective values (see Step 2 in Alg. 1);
Steps 3-7 are the same as the original IBEA in Alg. 1.

IV. COMPUTATIONAL RESULTS

A. Experimental Design

The following experiments were performed on the full
DTLZ problem set (DTLZ1-7) [8]. Our analysis focuses on the
three-objective DTLZ1 and 3, as qualitatively good coverage
of the true Pareto front can be achieved relatively easily
by different algorithms. Besides, these two problems exhibit
different properties: DTLZ1 has a planar front in 3D, DTLZ3
has 1/8th of a sphere front in 3D. DTLZ2 and 4 share the same
PF as DTLZ3 but differ in the overall domain of the objective
values. For example, randomly drawn solutions in the initial
population, have objective values of 100-150 in DTLZ1 and
500-1500 in DTLZ3 while the range is significantly smaller
e.g., with 2 to 5 in DTLZ2. It is DTLZ1 and 3 where we
are expecting the most benefit of the removal of dominated
solutions, whereas the insertion of our processing step should
be neutral on the other functions.

The settings for the 3D DTLZ problems follow the recom-
mended settings from [8]. We are using the algorithms and
test functions as implemented in the jMetal framework [10].
For a fair comparison, all algorithms utilise the same operators
with the same corresponding parameters. Specifically, a binary
tournament selection operator is used for selection. Simulated
Binary Crossover (SBX) and polynomial mutation with prob-
abilities of 0.9 and (1/number of parameters) respectively,
are used to create new offspring. The distribution parameters
of the crossover and mutation operators are ηc = 20.0 and
ηm = 20.0, respectively. A population size of 100 is used with
the total number of solution evaluations limited to 100,000.
Other algorithmic parameters are set as the default settings
from the original IBEA [17]. 100 runs of each algorithm
are performed. The version of IBEA that we are using for

comparison is the one provided by Brockhoff [4], which has
fixed the hypervolume calculation bug in the original IBEA.

In the following, we will assess the performance of mIBEA
qualitatively by inspecting the plots, quantitatively using per-
formance indicators and by measuring the runtime. We analyse
experimentally the effect that our patch has on IBEA. We do
this on DTLZ1-7 and by varying the scaling parameter ρ and
the population size µ.

B. Visualisation of Resultant Solution Distributions
The resultant populations under the default setting of

mIBEA, with ρ = 2.0, µ = 100, are illustrated in Figure 2.
Compared to the original IBEA presented in Figure 1, the
coverage obtained by mIBEA on DTLZ1 and DTLZ3 is a
clear improvement. More specifically, the 9890 non-dominated
individuals (ndi) found by mIBEA for DTLZ1 spread cross the
whole front surface, while the corresponding ndi from IBEA is
only 616 and only distributed in the extreme points, resulting
in much higher bf (0.9935) than mIBEA (0.5297). Similarly,
mIBEA improves the original IBEA by generating many more
non-dominated solutions (ndi = 5292) and solutions between
the extreme points (bf = 0.7897) and the central area of the
front are found, while the original IBEA only obtains 182
non-dominated solutions which only lie in the corner points.
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Fig. 2: Visualisation of the non-dominated solutions found by
mIBEA on DTLZ1 and DTLZ3 over 100 independent runs.

In order to provide more quantitative insights into the
distribution of solutions found by each algorithm, Figure 3
compares the proportion of non-dominated solutions found
in different regions on each DTLZ problem of the PF. For
the three highlighted areas the proportion of the total number
of non-dominated solutions contained in the area is provided,
with the corresponding proportion of the actual PF surface in
3D the area represents given in the bracket. The boundaries
from outermost triangle (blue area) to the innermost triangle
(green area) of DTLZ1 are 0.03 and 0.1, for DTLZ3 are 0.1
and 0.2.

For example, in Figure 3b, 0.53(0.33) indicates that the
fraction of ndi observed from mIBEA in the blue triangle
area of DTLZ1 is 0.53, however the proportion of the total
surface this area corresponds to is 0.33. In an ideal solution
distribution, the fraction of ndi should be very close to the
surface proportion, if one is interested in this coverage notion.

Figure 3 also shows that mIBEA could find new trade-off
solutions between extreme points on both DTLZ problems that



the original IBEA is not able to. In the case of mIBEA, 53%
and 79% of non-dominated solutions are found in the edge
regions of DTLZ1 and DTLZ3 respectively. Interestingly, a
decreased fraction of ndi from the outside to the inside of
the PF of DTLZ1 is observed, with a ‘tiny’ fraction (3%) of
solutions lie in the middle area (green) area of DTLZ3.
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Fig. 3: Solution distributions from IBEA and mIBEA on
DTLZ1 and DTLZ3

C. A performance analysis of IBEA and mIBEA using different
scaling factor values

In the previous subsection, the objective values scaling
factor ρ is fixed to 2.0. As the hypervolume contribution of
each solution is calculated based on the scaled objective values
(as described in Step2 and Step3 of IBEA, see Section II-A),
here we examine the effect of modifying the value of ρ. Within
IBEA and mIBEA, ρ directly affects the ranking of solutions,
therefore influencing the preservation of elite solutions.

A series of ρ values within the range of 1.0 to 1024 are
tested. From a set of preliminary experiments, we found that
when ρ ∈ [1.0, 1.1], the PFs on DTLZ functions show no
obvious improvement when using either the original IBEA
or mIBEA. However when ρ > 1.1, some improvement was
shown by IBEA and significant improvement by mIBEA.
However, when ρ ≥ 2, the PFs remain relatively unchanged
by both algorithms. Thus, we choose ρ = 1.0, 1.15, 2.0, 64.0
to plot the PFs from IBEA and mIBEA on DTLZ1 and 3 in
Figure 4.

As we can see, the scaling parameter ρ in IBEA has little to
no impact on the distribution of the solutions on DTLZ1 and
DTLZ3, as the solution sets always collapse to the extreme
points of the objective space no matter what the ρ value is.
However, ρ can affect the performance of mIBEA.

We also compare the performance of IBEA and mIBEA
w.r.t. the hypervolume and ε+ indicators across the entire
DTLZ family in Table III. The higher hypervolume or lower

ε+, the better performance of the algorithm has. The reference
point of hypervolume is set as 0.5d for DTLZ1, where d is
objective index, 1.0d for the rest DTLZ problems, DTLZ7
where the reference point is (1, 1, 6) due to the third objective.
Results that are better with statistical significance (Wilcoxon
rank-sum test, 5% significance level) are highlighted in bold.
It shows that mIBEA not only improves the coverage of
the resultant fronts, but also the convergence, especially on
DTLZ1, DTLZ3, and DTLZ7 under all the chosen ρ values,
as well as most ρ values of DTLZ6, while performing similarly
on DTLZ2, 4 and 5. Only in one of the 14 cases (with standard
ρ = 2), mIBEA is statistically worse, while it is comparable
or statistically better in 13 of 14 cases.

In summary, the observations of PF changes from original
IBEA and mIBEA suggest the following:
• The original IBEA performs poorly on benchmark func-

tions with large objective spaces and comparatively small
fronts, i.e. DTLZ1 and DTLZ3 and the change of objec-
tive value scaling factor ρ(≥ 1) does not affect (either
positively or negatively) the performance;

• Our mIBEA improved IBEA overall on DTLZ1-7 with
wider PF coverage and better convergence w.r.t. hyper-
volume and ε+.

Moreover, the performance comparison between NSGA-II
and mIBEA using default settings (µ = 100, ρ = 2) (shown in
Table II) suggests that mIBEA still does not beat NSGA-II on
most DTLZ problems. Perhaps it is because the still existing
gaps (Fig. 4) and non-uniform solution distribution (Fig. 3) on
the mIBEA fronts. Further investigations are to be conducted.

TABLE II: Performance Comparison of NSGA-II and mIBEA

hypervolume ε+
NSGA-II mIBEA NSGA-II mIBEA

DTLZ1 0.75720.01 0.73380.10 0.05620.01 0.07710.07
DTLZ2 0.37240.01 0.42170.00 0.12720.02 0.07260.00

DTLZ3 0.37480.01 0.26230.13 0.13150.02 0.45140.31
DTLZ4 0.34720.10 0.28760.14 0.17380.22 0.38630.34
DTLZ5 0.09290.00 0.09310.00 0.01090.00 0.01170.00
DTLZ6 0.08690.01 0.08330.01 0.01800.01 0.02710.01
DTLZ7 0.28180.01 0.26930.04 0.19280.31 0.70170.77

D. A performance analysis of IBEA and mIBEA as the pop-
ulation size changes

We also investigate the performance of both the original
IBEA and mIBEA using larger population sizes under different
ρ values. Figure 5 shows that when population size goes up
to 1000, population size has little affect on PF coverage for
DTLZ1 by the original IBEA. It even deteriorates for DTLZ3
on which the maximum of each objective of DTLZ3 is 1.0
on the true PF. However, the proposed mIBEA clearly covers
greater parts of the PF surface on both DTLZ1 and DTLZ3
given various ρ values.

E. Running time of IBEA and mIBEA

As a positive side-effect, the focus on non-dominated so-
lutions within mIBEA results in significant speed-ups of the
runtime. Table IV shows that IBEA on average gives an over
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Fig. 4: PFs of DTLZ1 and DTLZ3 generated by mIBEA with different Rho values (1.0, 1.15, 2.0, and 64). 100 runs are
performed for each experiment. The threshold of border fraction (bf ) for DTLZ1 is 0.03, and 0.1 for DTLZ3.

8-fold speed-up compared to IBEA using population size of
µ = 1000 (the ρ is set as default value 2.0). The reason is that
Step2 in mIBEA (Section III) removes dominated solutions
in every generation. Therefore, fewer solutions are persevered
in the population, reducing the calculation time for indicator
values i.e., hypervolume difference in the original IBEA. As
the indicator value calculation is pairwise (Step3 in Section
II-A), n2 indicator value calculations are required, where n is
the current population size.

V. DISCUSSION AND FUTURE WORK

The proposed mIBEA introduces the ranking from Pareto
dominance-based multi-objective evolutionary algorithm into
the indicator-based algorithm during the elite solution preser-
vation process. The empirical results from mIBEA over the
entire DTLZ benchmark functions show that mIBEA signifi-
cantly improves the original IBEA on the coverage of resultant
Pareto fronts, as well as hypervolume and ε+. Also, over 8-
fold speed-ups are obtained when using a larger population
size. Also note that the proposed mIBEA does not introduce
any additional parameter to the original IBEA.

However, some gaps are still observable from original IBEA
and mIBEA. Similar distributions can be observed from the
hypervolume-based SMS-EMOA, although these are better
than IBEA. We have performed an initial experiment on the
SMS-EMOA’s scaling parameter offset. However, no clear
changes have been observed under different offset values. It
suggests that the gaps from original IBEA, mIBEA and SMS-
EMOA may be a consequence of using the hypervolume as
an indicator in optimisation when faces are encountered that
are (near-)parallel to at least one objective’s axis.

In the future, we will explore ways to systematically
examine the reasons for the gaps and improve mIBEA by
redirecting its attention away from extreme solutions, without
introducing arbitrary decisions, magic numbers or explicitly
defined weights or preferences in the objective space.
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Fig. 5: PFs of DTLZ1 and DTLZ3 generated by IBEA using population size 1000 with different ρ values. 100 runs are
performed for each experiment. The threshold of border fraction (bf) for DTLZ1 is 0.03 and DTLZ3 is 0.1.
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