4 research outputs found

    A model of direction selectivity in the starburst amacrine cell network

    Get PDF
    Displaced starburst amacrine cells (SACs) are retinal interneurons that exhibit GABAA receptor-mediated and Cl− cotransporter-mediated, directionally selective (DS) light responses in the rabbit retina. They depolarize to stimuli that move centrifugally through the receptive field surround and hyperpolarize to stimuli that move centripetally through the surround (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006). They also play a key role in the activity of DS ganglion cells (DS GC; Amthor et al, Vis Neurosci 19:495–509 2002; Euler et al, Nature 418:845–852, 2002; Fried et al, Nature 420:411– 414, 2002; Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799 2006; Yoshida et al, Neuron 30:771–780, 2001). In this paper we present a model of strong DS behavior of SACs which relies on the GABA-mediated communication within a tightly interconnected network of these cells and on the glutamate signal that the SACs receive from bipolar cells (a presynaptic cell that receives input from cones). We describe how a moving light stimulus can produce a large, sustained depolarization of the SAC dendritic tips that point in the direction that the stimulus moves (i.e., centrifugal motion), but produce a minimal depolarization of the dendritic tips that point in the opposite direction (i.e., centripetal motion). This DS behavior, which is quantified based on the relative size and duration of the depolarizations evoked by stimulus motion at dendritic tips pointing in opposite directions, is robust to changes of many different parameter values and consistent with experimental data. In addition, the DS behavior is strengthened under the assumptions that the Cl− cotransporters Na + -K + -Cl − and K + -Cl − are located in different regions of the SAC dendritic tree (Gavrikov et al, PNAS 103(49):18793–18798, 2006) and that GABA evokes a long-lasting response (Gavrikov et al, PNAS 100(26):16047–16052, 2003, PNAS 103(49):18793–18798, 2006; Lee and Zhou, Neuron 51:787–799, 2006). A possible mechanism is discussed based on the generation of waves of local glutamate and GABA secretion, and their postsynaptic interplay as the waves travel between cell compartments

    General features of inhibition in the inner retina

    Get PDF
    Visual processing starts in the retina. Within only two synaptic layers, a large number of parallel information channels emerge, each encoding a highly processed feature like edges or the direction of motion. Much of this functional diversity arises in the inner plexiform layer, where inhibitory amacrine cells modulate the excitatory signal of bipolar and ganglion cells. Studies investigating individual amacrine cell circuits like the starburst or A17 circuit have demonstrated that single types can possess specific morphological and functional adaptations to convey a particular function in one or a small number of inner retinal circuits. However, the interconnected and often stereotypical network formed by different types of amacrine cells across the inner plexiform layer prompts that they should be also involved in more general computations. In line with this notion, different recent studies systematically analysing inner retinal signalling at a population level provide evidence that general functions of the ensemble of amacrine cells across types are critical for establishing universal principles of retinal computation like parallel processing or motion anticipation. Combining recent advances in the development of indicators for imaging inhibition with large-scale morphological and genetic classifications will help to further our understanding of how single amacrine cell circuits act together to help decompose the visual scene into parallel information channels. In this review, we aim to summarise the current state-of-the-art in our understanding of how general features of amacrine cell inhibition lead to general features of computation

    On the potential role of lateral connectivity in retinal anticipation

    Get PDF
    We analyse the potential effects of lateral connectivity (amacrine cells and gap junctions) on motion anticipation in the retina. Our main result is that lateral connectivity can-under conditions analysed in the paper-trigger a wave of activity enhancing the anticipation mechanism provided by local gain control [8, 17]. We illustrate these predictions by two examples studied in the experimental literature: differential motion sensitive cells [1] and direction sensitive cells where direction sensitivity is inherited from asymmetry in gap junctions connectivity [73]. We finally present reconstructions of retinal responses to 2D visual inputs to assess the ability of our model to anticipate motion in the case of three different 2D stimuli

    Distribution and function of glycine receptors and gephyrin in the mammalian central nervous system

    Get PDF
    In dieser Arbeit wurde erstmals ein monokolonaler Antikörper gegen die GlyRbeta-Untereinheit (GlyRbeta) hergestellt. Zur Immunisierung der Mäuse wurde die 120 AS lange große cytoplasmatische Schleife (engl. loop) zwischen den transmembranen Domänen 3 und 4 von GlyRbeta gewählt, da diese nur geringe Sequenzhomologie zu GlyRalpha-Untereinheiten aufweist. Diese Schleifenregion wurde als GST-Fusionsprotein in Bakterien exprimiert und affinitätsgereinigt. Sowohl die Immunisierung der Mäuse als auch die Herstellung der Hybridoma-Klone wurde in Zusammenarbeit mit Synaptic Systems GmbH (Göttingen) durchgeführt. Die Spezifität der Antikörperbindung an GlyRbeta wurde zunächst in Western Blot-Experimenten mit affinitätsgereinigtem GlyR aus Rattenrückenmark demonstriert. Eine nachfolgende Untersuchung der Antikörperbindestelle führte zur Identifikation der ersten 20 AS des beta-loop (GlyRbeta336-355) als Epitop. Ein 20 AS kurzes, synthetisches Peptid, welches die Epitop-Sequenz enthielt, war ausreichend, um Färbungen von Western Blots und Gewebeschnitten durch den Antikörper effizient zu verhindern. Außerdem wurden Protokolle für die Antikörperfärbung von GlyRbeta in transfizierten Zelllinien und primären Neuronen aus Rattenrückenmark etabliert. Weiterhin ermöglichte die Herstellung dieses Antikörpers erstmals die direkte immunhistochemische Färbung von GlyRbeta-Protein im ZNS von Mäusen. GlyRbeta konnte hierbei im Hirnstamm, Rückenmark, dem Bulbus olfactorius und der Retina von Mäusen nachgewiesen werden, was zeigt, dass GlyRbeta-Protein weit weniger verbreitet ist als aufgrund von in situ Hybridisierungs-Studien vermutet. Die gefundene Verteilung von GlyRbeta-Protein unterscheidet sich demnach stark von der Verteilung der GlyRbeta-mRNA, was für eine posttranskriptionelle Regulation der GlyRbeta-Proteinmenge spricht. Weiterführende immunhistochemische Untersuchungen an der Retina von Mäusen zeigten, dass GlyRbeta in diesem Gewebe wie erwartet mit Gephyrin an inhibitorischen Synapsen kolokalisiert ist. In Bezug auf GlyRalpha-Untereinheiten geht man bislang davon aus, dass sie an Synapsen des adulten ZNS immer mit GlyRbeta assoziiert sind, und somit indirekt mit Gephyrin verbunden werden, wodurch das Clustering der Rezeptoren gewährleistet wird. Entgegen dieser Hypothese wurde in Doppelfärbungen von GlyRbeta und GlyRalpha-Untereinheiten gefunden, dass eine Ansammlung von GlyRalpha4-Clustern in der Retina adulter Mäuse vermutlich eine Ausnahme hierzu bildet. Für GlyRalpha4-Cluster in Stratum 3 und 4 der IPL konnte gezeigt werden, dass sie teilweise nicht mit GlyRbeta, und zu ebenso großem Teil nicht mit Gephyrin kolokalisiert sind. Dennoch scheinen diese GlyRalpha4-Untereinheiten in Clustern angereichert und zudem synaptisch lokalisiert zu sein. Der Mechanismus, durch den GlyRalpha4 in Abwesenheit dieser beiden Proteine an Synapsen immobilisiert wird, ist bislang völlig unklar. Funktionell wäre denkbar, dass derartige Rezeptorkomplexe den synaptischen Eingängen von ON-Starburst-Amakrinzellen besondere Leitungseigenschaften verleihen und somit maßgeblich an der Verarbeitung richtungsselektiver Signale in der Retina beteiligt sein könnten. In dieser Arbeit wurden außerdem Mutagenesestudien durchgeführt, um zu klären, über welchen Mechanismus die Inhibition der Proteinphosphatasen 1 und 2A (PP1 und PP2A) zum Verlust von synaptischem Gephyrin führt. Es konnte gezeigt werden, dass eine direkte Dephosphorylierung von Gephyrin durch PP1 hierfür wahrscheinlich nicht verantwortlich ist, da die Mutation etablierter Phosphorylierungsstellen von Gephyrin keinen, oder nur einen marginalen Einfluss auf dessen synaptische Lokalisation und das Clustering von GABAARs hatte. Dies spricht dafür, dass PP1/PP2A abhängige Dephosphorylierungs-/Phosphorylierungsprozesse wahrscheinlich andere Gephyrin- oder Cytoskelett-assoziierte Proteine beeinflussen, jedoch nicht direkt an Gephyrin wirken. Die Erstellung von genomweiten Expressionsprofilen ist eine effiziente Methode zur Identifikation neuer Regulationsmechanismen und potentieller Interaktionspartner von Genprodukten und wurde in dieser Arbeit auf Vorderhirnproben von WT- und Gephyrin-KO-Mäusen vergleichend angewendet. Hierbei wurde gefunden, dass die Transkription bekannter Gephyrin-Interaktionspartner durch den Verlust des Gephyrin-Gens nicht messbar verändert wird. Weil die ermittelten Unterschiede in Transkriptmengen generell sehr gering waren, ist zu vermuten, dass Gephyrin keine wesentlichen genregulatorischen Funktionen im Mausgehirn ausübt. Andererseits ergab die Expressionchip-Analyse Hinweise auf neue Genprodukte, für die in WT- und Gephyrin-KO-Mäusen signifikant verschiedene Transkriptionsmengen gefunden wurden. Die Validierung dieser Daten mit anderen Methoden steht jedoch noch aus
    corecore