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Abstract
We analyse the potential effects of lateral connectivity (amacrine cells and gap
junctions) on motion anticipation in the retina. Our main result is that lateral
connectivity can—under conditions analysed in the paper—trigger a wave of activity
enhancing the anticipation mechanism provided by local gain control (Berry et al. in
Nature 398(6725):334–338, 1999; Chen et al. in J. Neurosci. 33(1):120–132, 2013). We
illustrate these predictions by two examples studied in the experimental literature:
differential motion sensitive cells (Baccus and Meister in Neuron 36(5):909–919, 2002)
and direction sensitive cells where direction sensitivity is inherited from asymmetry in
gap junctions connectivity (Trenholm et al. in Nat. Neurosci. 16:154–156, 2013). We
finally present reconstructions of retinal responses to 2D visual inputs to assess the
ability of our model to anticipate motion in the case of three different 2D stimuli.

Keywords: Retina; Motion anticipation; Lateral connectivity; 2D

1 Introduction
Our visual system has to constantly handle moving objects. Static images do not exist for
it, as the environment, our body, our head, our eyes are constantly moving. A “computa-
tional”, contemporary view, likens the retina to an “encoder”, converting the light photons
coming from a visual scene into spike trains sent—via the axons of ganglion cells (GCells)
that constitute the optic nerve—to the thalamus, and then to the visual cortex acting as
a “decoder”. In this view, comparing the size and the number of neurons in the retina,
i.e. about 1 million GCells (humans), to the size, structure and number of neurons in the
visual cortex (around 538 million per hemisphere in the human visual cortex [22]), the “en-
coder” has to be quite smart to efficiently compress the visual information coming from a
world made of moving objects. Although it has long been thought that the retina was not
more than a simple camera, there is more and more evidence that this organ is “smarter
than neuroscientists believed” [41]. It is indeed able to perform complex tasks and general
motion feature extractions, such as approaching motion, differential motion and motion
anticipation, allowing the visual cortex to process visual stimuli with more efficiency.

Computations occurring in neuronal networks downstream photoreceptors are crucial
to make sense out of the “motion-agnostic” signal delivered by these retinal sensors [11].
There exists a wide range of theoretical and biological approaches to studying retinal pro-
cessing of motion. Moving stimuli are generally considered as a spatiotemporal pattern of
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light intensity projected on the retina, from which it extracts relevant information, such as
the direction of image motion. Detecting motion requires then neural networks to be able
to process, in a nonlinear fashion, moving stimuli, asymmetrically in time. [6, 10] [37, 88]
The first motion detector model was proposed by Hassenstein and Reichardt [42], based
on the optomotor behaviour of insects. The model relies on changes in contrast of two
spatially distinct locations inside the receptive field of a motion sensitive neuron. The
neuron will only produce a response if contrast changes are temporally delayed, and is
thus not only selective to direction, but also to motion velocity. Several models have then
been developed based on Reichardt detectors, attempting to explain motion processing
in vertebrate species as well, but they all share the common feature of integrating spatio-
temporal variations of the contrast. To perceive motion as coherent and uninterrupted,
an additional integration over motion detectors is hypothesised to take place. This inte-
gration usually takes the form of a pooling mechanism over visual space and time.

However, before performing these high-level motion detection computations, the pho-
tons received by the retina need first to be converted into electrical signals that will be
transmitted to the visual cortex, a process known as phototransduction. This process takes
about 30–100 milliseconds. Though this might look fast, it is actually too slow. A tennis
ball moving at 30 m/s–108 km/h (the maximum measured speed is about 250 km/h) cov-
ers between 0.9 and 3 m during this time. So, without a mechanism compensating this
delay, it would not be possible to play tennis (not to speak of survival, a necessary con-
dition for a species to reach the level where playing tennis becomes possible). The visual
system is indeed able to extrapolate the trajectory of a moving object to perceive it at its
actual location. This corresponds to anticipation mechanisms taking place in the visual
cortex and in the retina with different modalities [4, 56, 57, 84].

In the early visual cortex an object moving across the visual field triggers a wave of ac-
tivity ahead of motion thanks to the cortical lateral connectivity [8, 46, 77]. Jancke et al.
[46] first demonstrated the existence of anticipatory mechanisms in the cat primary vi-
sual cortex. They recorded cells in the central visual field of area 17 (corresponding to the
primary visual cortex) of anaesthetised cats responding to small squares of light either
flashed or moving in different directions and with different speeds. When presented with
the moving stimulus, cells show a reduction of neural latencies, as compared to the flashed
stimulus. Subramaniyan et al. [77] reported the existence of similar anticipatory effects in
the macaque primary visual cortex, showing that a moving bar is processed faster than
a flashed bar. They give two possible explanations to this phenomenon: either a shift in
the cells receptive fields induced by motion, or a faster propagation of motion signals as
compared to the flash signal.

In the retina, anticipation takes a different form. One observes a peak in the firing rate
response of GCells to a moving object occurring before the peak response to the same
object when flashed. This effect can be explained by purely local mechanisms at individual
cells level [9, 20]. To our best knowledge, collective effects similar to the cortical ones, that
is, a rise in the cell’s activity before the object enters in its receptive field due to a wave of
activity ahead of the moving object, have not been reported yet.

In a classical Hubel–Wiezel–Barlow [5, 44, 60] view of vision, each retinal ganglion cell
carries a flow of information with an efficient coding strategy maximising the available
channel capacity by minimising the redundancy between GCells. From this point of view,
the most efficient coding is provided when GCells are independent encoders (parallel
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Figure 1 Synthetic view of the retinamodel. A stimulus is perceived by the retina, triggering different
pathways. Pathway I (blue) corresponds to a feed-forward response where, from top to bottom: The stimulus is
first convolved with a spatio-temporal receptive field that mimics the outer plexiform layer (OPL) (“Bipolar
receptive field response”). This response is rectified by low voltage threshold (blue squares). Bipolar cell
responses are then pooled (blue circles with blue arrows) and input ganglion cells. The firing rate response of
a ganglion cell is a sigmoidal function of the voltage (blue square). Gain control can be applied at the bipolar
and ganglion cell level (pink circles) triggering anticipation. This corresponds to the label II (pink) in the figure.
Lateral connectivity is featured by pathway III (brown) through ACells and pathway IV (green) through
gap-junctions at the level of GCells

streaming identified by a “I” in Fig. 1). In this setting one can propose a simple and satis-
factory mechanism explaining anticipation in the retina based on gain control at the level
of bipolar cells (BCells) and GCells (label “II” in Fig. 1) [9, 20].

Yet, some GCells are connected. Either directly, by electric synapses–gap junctions
(pathway IV in Fig. 1), or indirectly via specific amacrine cells (ACells, pathway III in
Fig. 1). It is known that these pathways are involved in motion processing by the retina.
AII ACells play a fundamental role in the interaction between the ON and OFF cone path-
way [54]. There are GCells able to detect the differential motion of an object onto a mov-
ing background [1] thanks to ACell lateral connectivity. Some GCells are direction sensi-
tive because they are connected via a specific asymmetric gap junctions connectivity [80].
Could lateral connectivity play a role in motion anticipation, inducing a wave of activity
ahead of the motion similar to the cortical anticipation mechanism? While some stud-
ies hypothesise that local gain control mechanisms can be explained by the prevalence
of inhibition in the retinal connectome [47], the mechanistic aspects of the role of lateral
connectivity on motion anticipation has not, to the best of our knowledge, been addressed
yet on either experimental or computational grounds.

In this paper, we address this question from a modeler, computational neuroscientist,
point of view. We propose here a simplified description of pathways I, II, III, IV of Fig. 1,
grounded on biology, but not sticking at it, to numerically study the potential effects of gain
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control combined with lateral connectivity—gap junctions or ACells—on motion antici-
pation. The goal here is not to be biologically realistic but, instead, to propose from bi-
ological observations potential mechanisms enhancing the retina’s capacity to anticipate
motion and compensate the delay introduced by photo-transduction and feed-forward
processing in the cortical response. We want the mechanisms to be as generic as possible,
so that the detailed biological implementation is not essential. This has the advantage of
making the model more prone to mathematical analysis.

The first contribution of our work lies in the development of a model of retinal antici-
pation where GCells have gain control, orientation selectivity and are laterally connected.
It is based on a model introduced by Chen et al. in [20] (itself based on [9]) reproduc-
ing several motion processing features: anticipation, alert response to motion onset and
motion reversal. The original model handles one-dimensional motions and its cells are
not laterally connected (only pathways I and II were considered). The extension proposed
here features cells with oriented receptive field, although our numerical simulations do
not consider this case (see discussion). Lateral connectivity is based on biophysical mod-
elling and existing literature [1, 28, 43, 78, 80]. In this framework, we study different types
of motion. We start with a bar moving with constant speed and study the effect of con-
trast, bar size and speed on anticipation, generalising previous studies by Berry et al. [9]
and Chen et al. [20]. We then extend the analysis to two-dimensional motions, investigat-
ing, e.g. angular motion and curved trajectories. Far from making an exhaustive study of
anticipation in complex stimuli, the goal here is to calibrate anticipation without lateral
connectivity so as to compare the effect when connectivity is switched on.

The second contribution emphasises a potential role of lateral connectivity (gap junc-
tions and ACells) on anticipation. For this, we first make a general mathematical analysis
concluding that lateral connectivity can induce a wave triggered by the stimulus which un-
der specific conditions can improve anticipation. The effect depends on the connectivity
graph and is nonlinearly tuned by gain control. In the case of gap junctions, the wave prop-
agation depends on whether connectivity is symmetric (the standard case) or asymmetric,
as proposed by Trenholm et al. in [80] for a specific type of direction sensitive GCells. In
the case of ACells, the connectivity graph is involved in the spectrum of a propagation
operator controlling the time evolution of the network response to a moving stimulus.
We instantiate this general analysis by studying differential motion sensitive cells [1] with
two types of connectivity: nearest neighbours, and a random connectivity, inspired from
biology [78], where only numerical results are shown. In general, the anticipation effect
depends on the connectivity graph structure and the intensity of coupling between cells as
well as on the respective characteristic times of response of cells in a way that we analyse
mathematically and illustrate numerically.

We actually observe two forms of anticipation. The first one, discussed in the beginning
of this introduction and already observed in [9, 20], is a shift in the peak of a retinal GCell
response occurring before the object reaches the centre of its receptive field. In our case,
lateral connectivity can enhance the shift improving the mere effect of gain control. The
second anticipation effect we observe is a raise in GCells activity before the bar reaches
the receptive field of the cell, similarly to what is observed in the cortex [8]. To the best of
our knowledge, this effect has not been studied in the retina and constitutes therefore a
prediction of our model.
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The paper is organised as follows. Section 2 introduces the model of retinal organisa-
tion and cell types dynamics, ending up with a system of nonlinear differential equations
driven by a time-dependent stimulus. Section 3 is divided into four parts. The first part
analyses mathematically the potential anticipation effects in a general setting before con-
sidering the role of ACells and lateral inhibition on anticipation (Sect. 3.2) and gap junc-
tions (Sect. 3.3). Both sections contain general mathematical results as well as numerical
simulations for one-dimensional motion. The fourth part investigates examples of two-
dimensional motions. The last section is devoted to discussion and conclusion. In Ap-
pendix A, we have added the values of parameters used in simulations and in Appendix B
the receptive fields mathematical form used in the paper as well as the numerical method
to compute efficiently the response of oriented two-dimensional receptive fields to spatio-
temporal stimuli. Appendix C presents a model of random connectivity from amacrine to
bipolar cells inspired from biological data [78]. Finally, Appendix D contains mathemati-
cal results which constitute the skeleton of the work, but whose proof would be too long
to integrate in the core of the paper. This work is based on Selma Souihel’s PhD thesis
where more extensive results can be found [74]. In particular, there is an analysis of the
conjugated effects of retinal and cortical anticipation, subject of a forthcoming paper and
briefly discussed in the conclusion.

In all the following simulations, we use the CImg Library, an open-source C++ tool kit
for image processing in order to load the stimuli and reconstruct the retina activity. The
source code is available on demand.

2 Material and methods
2.1 Retinal organisation
In the retinal processing light photons coming from a visual scene are converted into volt-
age variations by photoreceptors (cones and rods). The complex hierarchical and layered
structure of the retina allows to convert these variations into spike trains, produced by
ganglion cells (GCells) and conveyed to the thalamus via their axons. We considerably sim-
plify this process here. Light response induces a voltage variations of bipolar cells (BCells),
laterally connected via amacrine cells (ACells), and feeding GCells, as depicted in Fig. 1.
We describe this structure in details here. Note that neither BCells nor ACells are spiking.
They act synaptically on each other by graded variations of their potential.

We assimilate the retina to a flat, two-dimensional square of edge length L mm. There-
fore, we do not integrate the three-dimensional structure of the retina in the model, merely
for mathematical convenience. Spatial coordinates are noted x, y (see Fig. 2 for the whole
structure).

In the model, each cell population tiles the retina with a regular square lattice. The den-
sity of cells is therefore uniform for convenience but the extension to nonuniform density
can be afforded. For the population p, we denote by δp the lattice spacing in mm and by Np

the total number of cells. Without loss of generality we assume that L, the retina’s edge size,
is a multiple of δp. We denote by Lp = L

δp
the number of cells p per row or column so that

Np = L2
p. Each cell in the population p has thus Cartesian coordinates (x, y) = (ixδp, iyδp),

(ix, iy) ∈ {1, . . . , Lp}2. To avoid multiples indices, we associate with each pair (ix, iy) a unique
index i = ix + (iy – 1)Lp. The cell of population p located at coordinates (ixδp, iyδp) is then
denoted by pi. We denote by d[pi, p′

j] the Euclidean distance between pi and p′
j.
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Figure 2 Example of a retina grid tiling and indexing. The green and blue ellipses denote respectively the
positive centre and the negative surround of the BCell receptive fieldKS . The centre of RF coincides with the
position of the cell (blue and green arrows). The red ellipse denotes the ganglion cell pooling over bipolar
cells (Eq. (17))

We use the notation Vpi for the membrane potential of cell pi. Cells are coupled. The
synaptic weight from cell pj to cell qi reads W pj

qi . Thus, the pre-synaptic neuron is ex-
pressed in the upper index; the post-synaptic, in the lower index. Dynamics of cells is
voltage-based. This is because our model is constructed from Chen et al. model [20], itself
derived from Berry et al. [9], where a voltage-based description is used. Implicitly, volt-
age is measured with respect to the rest state of the cell (Vpi = 0 when the cell receives no
input).

2.2 Bipolar cell layer
The model consists first of a set of NB BCells, regularly spaced by a distance δB, with spatial
coordinates xi, yi, i = 1, . . . , NB. Their voltage, a function of the stimulus, is computed as
follows.

2.2.1 Stimulus response and receptive field
The projection of the visual scene on the retina (“stimulus”) is a function S(x, y, t) where
t is the time coordinate. As we do not consider colour sensitivity here, S characterises a
black and white scene with a control on the level of contrast ∈ [0, 1]. A receptive field (RF)
is a region of the visual field (the physical space) in which stimulation alters the voltage
of a cell. Thus, BCell i has a spatio-temporal receptive field KBi , featuring the biophysical
processes occurring at the level of the outer plexiform layer (OPL), that is, photo-receptors
(rod-cones) response modulated by horizontal cells (HCells). As a consequence, in our
model, the voltage of BCell i is stimulus-driven by the term

Vidrive (t) = [KBi

x,y,t∗ S](t) =
∫ +∞

x=–∞

∫ +∞

y=–∞

∫ t

s=–∞
K(x–xi, y–yi, t –s)S(x, y, s) dx dy ds, (1)
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where
x,y,t∗ means space-time convolution. We consider only one family of BCells so that

the kernel K is the same for all BCells. What changes is the centre of the RF, located at xi,
yi, which also corresponds to the coordinates of the BCell i. We consider in the paper sep-
arable kernel K(x, y, t) = KS(x, y)KT (t) where KS is the spatial part and KT is the temporal
part. The detailed form of K is given in Appendix B.

We have

dVidrive

dt
=
[
KBi

x,y,t∗ dS
dt

]
(t), (2)

resulting from the condition KBi (x, y, 0) = 0 (see Appendix B). Note that the exponential
decay of the spatial and temporal part at infinity ensures the existence of the space-time
integral. The spatial integral

∫
R2 KS(x, y)S(x, y, u) dx dy is numerically computed using er-

ror function in the case of circular RF and a computer vision method from Geusenroek et
al. [39] in the case of anisotropic RF, allowing to integrate generalised Gaussians with an
efficient computational time. This method is described in Appendix B.

For explanations purposes, we will often use the approximation of Vidrive by a Gaussian
pulse, with width σ , propagating at constant speed v along the direction �ex:

Vidrive (t) =
A0√
2πσ

e– 1
2

(x–vt)2
σ2 ≡ V0√

2π
e– 1

2
(x–vt)2

σ2 , (3)

where x = iδB is the horizontal coordinate of BCell i and where σ is in mm, A0 is in mV.mm
(and is proportional to stimulus contrast), V0 is in mV.

2.2.2 BCells voltage and gain control
In our model, the BCell voltage is the sum of external drive (1) received by the BCell and
of a post-synaptic potential PBi induced by connected ACells:

VBi (t) = Vidrive (t) + PBi (t). (4)

The form of PBi is given by Eq. (11) in Sect. 2.3.1. PBi (t) = 0 when no ACells are considered.
BCells have voltage threshold [9]:

NB(VBi ) =

⎧⎨
⎩

0, if VBi ≤ θB;

VBi – θB, else.
(5)

Values of parameters are given in Appendix A.
BCells have gain control, a desensitisation when activated by a steady illumination [92].

This desensitisation is mediated by a rise in intracellular calcium Ca2+ at the origin of a
feedback inhibition preventing thus prolonged signalling of the ON BCell [20, 73]. Fol-
lowing Chen et al., we introduce the dimensionless activity variable ABi obeying the dif-
ferential equation

dABi

dt
= –

ABi

τa
+ hBN

(
VBi (t)

)
. (6)
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Assuming an initial condition ABi (t0) = 0 at initial time t0, the solution is

ABi (t) = hB

∫ t

t0

e– t–s
τa N

(
VBi (s)

)
ds. (7)

The bipolar output to ACells and GCells is then characterised by a nonlinear response
to its voltage variation given by

RBi (VBi , ABi ) = NB(VBi )GB(ABi ), (8)

where

GB(ABi ) =

⎧⎨
⎩

0, if ABi ≤ 0;
1

1+A6
Bi

, else.
(9)

Note that RBi has the physical dimension of a voltage, whereas, from Eq. (9), the activity
ABi is dimensionless. As a consequence, the parameter hB in Eq. (6) must be expressed in
ms–1mV–1. Form (9) and its 6th power are based on experimental fits made by Chen et al.
Its form is shown in Fig. 3.

In the course of the paper we will use the following piecewise linear approximation also
represented in Fig. 3:

GB(A) =

⎧⎪⎪⎨
⎪⎪⎩

0, if A ∈ ] – ∞, 0[∪ [ 4
3 , +∞[, silent region;

1, if A ∈ [0, 2
3 ], maximal gain;

– 3
2 A + 2, if A ∈ [ 2

3 , 4
3 ], fast decay.

(10)

Thanks to this approximation, we roughly distinguish three regions for the gain function
GB(A). This shape is useful to understand the mechanism of anticipation (Sect. 3.1).

Figure 3 Gain control (9) as a function of activity A. The function l(A), in dashed line, is a piecewise linear
approximation of GB(A) from which three regions are roughly defined. In the region “Silent” the gain vanishes
so the cell does not respond to stimuli; in the region “Max”, the gain is maximal so that cell behaviour does not
show any difference with a not gain-controlled cell; the region “Fast decay” is the one which contributes to
anticipation by shifting the peak in the cell’s activity (see Sect. 3.1). The value Ac = 2

3 corresponds to the value
of activity where gain control, in the piecewise linear approximation, becomes effective
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2.3 Amacrine cell layer
There is a wide variety of ACells (about 30–40 different types for humans) [64]. Some spe-
cific types are well studied such as starburst amacrine cells, which are involved in direction
sensitivity [33, 34, 81], as well as contrast impression and suppression of GCells response
[58], or AII, a central element of the vertebrate rod-cone pathway [54].

Here, we do not want to consider specific types of ACells with a detailed biophysical
description. Instead, we want to point out the potential role they can play in motion an-
ticipation thanks to the inhibitory lateral connectivity they induce. We focus on a specific
circuitry involved in differential motion: an object with a different motion from its back-
ground induces more salient activity. The mechanism, observed in mice and rabbit retinas
[41, 61], is featured in Fig. 1, pathway III. When the left pathway receives a different illumi-
nation from the right pathway (corresponding, e.g. to a moving object), this asymmetry is
amplified by the ACells’ mutual inhibition, enhancing the response of the left pathway in a
“push–pull” effect. We want to propose that such a mutual inhibition circuit, deployed in a
lattice through the whole retina, can generate—under specific conditions mathematically
analysed—a wave of activity propagation triggered by the moving object.

In the model, ACells tile the retina with a lattice spacing δA. We index them with j =
1, . . . , NA.

2.3.1 Synaptic connections between ACells and BCells
We consider here a simple model of ACells. We assimilate them to passive cells (no active
ionic channels) acting as a simple relay between BCells. This aspect is further discussed
later in the paper. The ACell Aj, connected to the BCell Bi, induces on the latter the post-
synaptic potential:

PAj
Bi

(t) = W Aj
Bi

(t)
∫ t

–∞
γB(t – s)VAj (s) ds; γB(t) = e– t

τB H(t),

where the Heaviside function H ensures causality. Thus, the post synaptic potential is the
mere convolution of the pre synaptic ACell voltage, with an exponential α-profile [28]. In
addition, we assume the propagation to be instantaneous.

Here, the synaptic weight W Aj
Bi

< 0 mimics the inhibitory connection from ACell to BCell
(glycine or GABA) with the convention that W Aj

Bi
= 0 if there is no connection from Aj to

Bi.
In general, several ACells input the BCell Bi giving a total PSP:

PBi (t) =
NB∑
j=1

W Aj
Bi

∫ t

–∞
γB(t – s)VAj (s) ds. (11)

Conversely, the BCell Bi connected to Aj induces, on this cell, a synaptic response char-
acterised by a post-synaptic potential (PSP) PAj (t). As ACells are passive elements, their
voltage VAj (t) is equal to this PSP. We have thus

VAj (t) =
NA∑
i=1

W Bi
Aj

∫ t

–∞
γA(t – s)RBi (s) ds (12)
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with γA(t) = e– t
τA H(t). Here, W Bi

Aj
> 0 corresponding to the excitatory effect of BCells on

ACells through a glutamate release. Note that the voltage of the BCell is rectified and gain-
controlled.

2.3.2 Dynamics
The coupled dynamics of bipolar and amacrine cells can be described by a dynamical
system that we derive now.

Bipolar voltage By differentiating (11), (4) and introducing

FBi (t) =
[
KBi

x,y,t∗
( S

τB
+

dS
dt

)]
(t) =

Vidrive

τB
+

dVidrive

dt
, (13)

we end up with the following equation for the bipolar voltage:

dVBi

dt
= –

1
τB

VBi +
NA∑
j=1

W Aj
Bi

VAj + FBi (t), (14)

where we have used (2). This is a differential equation driven by the time-dependent term
FBi containing the stimulus and its time derivative.

To illustrate the role of FBi , let us consider an object moving with a speed �v depending
on time, thus with a nonzero acceleration �γ = d�v

dt . This stimulus has the form S(x, y, t) =
g(�X – �v(t)t) with �X =

( x
y
)
, so that dS

dt = – �∇g(�X – �v(t)t).(�v + �γ t), where �∇ denotes the gra-
dient. Therefore, thanks to Eq. (14), BCells are sensitive to changes in directions, thereby
justifying a study of two-dimensional stimuli (Sect. 3.4). Note that this property is in-
herited from the simple, differential structure of the dynamics, the term

dVidrive
dt resulting

from the differentiation of VBi . This term does not appear in the classical formulation (1)
of the bipolar response without amacrine connectivity. It appears here because synaptic
response involves an implicit time derivative via convolution (12).

Coupled dynamics Likewise, differentiating (12) gives

dVAj

dt
= –

1
τA

VAj +
NB∑
i=1

W Bi
Aj

RBi . (15)

Equation (6) (activity), (14) and (15) define a set of 2NB +NA differential equations, ruling
the behaviour of coupled BCells and ACells, under the drive of the stimulus, appearing in
the term FBi (t). We summarise the differential system here:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dVBi
dt = – 1

τB
VBi +

∑NA
j=1 W Aj

Bi
VAj + FBi (t),

dVAj
dt = – 1

τA
VAj +

∑NB
i=1 W Bi

Aj
RBi ,

dABi
dt = – ABi

τa
+ hBN (VBi ).

(16)

We have used the classical dynamical systems convention where time appears explicitly
only in the driving term FBi (t) to emphasise that (16) is non-autonomous. Note that BCells
act on ACells via a rectified voltage (gain control and piecewise linear rectification), in
agreement with Fig. 1, pathway III. We analyse this dynamics in Sect. 3.2.1.
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2.3.3 Connectivity graph
The way ACells connect to BCells and reciprocally have a deep impact on dynamics (16).
In this paper, we want to point out the role of relative excitation (from BCells to ACells) and
inhibition (from ACells to BCells) as well as the role of the network topology. For math-
ematical convenience when dealing with square matrices, we assume from now on that
there are as many BCell as ACells, and we set N ≡ NA = NB. At the core of our mathemati-
cal studies is a matrixL, defined in Sect. 3.2.1, whose spectrum conditions the evolution of
the BCells–ACells network under the influence of a stimulus. It is interesting and relevant
to relate the spectrum of L to the spectrum of the connectivity matrices ACells to BCells
and BCells to ACells. There is not such a general relation for arbitrary matrices of connec-
tivity. A simple case holds when the two connectivity matrices commute. Here, we choose
an even simpler situation based on the fact that we compare the role of the direct feed-
forward pathway on anticipation in the presence of ACell lateral connectivity. We feature
the direct pathway by assuming that a BCell connects only one ACell with a weight w+ uni-
form for all BCell, so that W B

A = w+IN ,N , w+ > 0, where IN ,N is the N-dimensional identity
matrix. In contrast, we assume that ACells connect to BCells with a connectivity matrix
W , not necessarily symmetric, with a uniform weight –w–, w– > 0, so that W A

B = –w–W .
We consider then two types of network topology for W :
1. Nearest neighbours. An ACell connects its 2d nearest BCell neighbours where

d = 1, 2 is the lattice dimension.
2. Random ACell connectivity. This model is inspired from the paper [78] on the shape

and arrangement of starburst ACells in the rabbit retina. Each cell (ACell and BCell)
has a random number of branches (dendritic tree), each of which has a random
length and a random angle with respect to the horizontal axis. The length of
branches L follows an exponential distribution with spatial scale ξ . The number of
branches n is also a random variable, Gaussian with mean n̄ and variance σn. The
angle distribution is taken to be isotropic in the plane, i.e. uniform on [0, 2π [. When a
branch of an ACell A intersects a branch of a BCell B, there is a chemical synapse
from A to B. The probability that two branches intersect follows a nearly exponential
probability distribution that can be analytically computed (see Appendix C).

2.4 Ganglion cells
There are many different types of GCells in the retina, with different physiologies and func-
tions [3, 70]. In the present computational study, we focus on specific subtypes associated
with pathways I–II (fast OFF cells with gain control), III (differential motion sensitive cells)
and IV (direction selective cells) in Fig. 1. All these have common features: BCells pooling
and gain control.

2.4.1 BCells pooling
In the retina, GCells of the same type cover the surface of the retina, forming a mosaic.
The degree of overlap between GCells indicates the extent to which their dendritic arbours
are entangled in one another. This overlap remains, however, very limited between cells
of the same type [68]. We denote by k the index of the GCells, k = 1, . . . , NG, and by δG the
spacing between two consecutive GCells lying on the grid (Fig. 2).
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In the model, GCell k pools over the output of BCells in its neighbourhood [20]. Its
voltage reads as follows:

V (P)
Gk

=
∑

i

W Bi
Gk

RBi , (17)

where the superscript “P” stands for “pool”. We use this notation to differentiate this volt-
age from the total GCell voltage VGk when they are different. This happens in the case
when GCells are directly coupled by gap junctions (Sects. 2.4.4, 3.3). When there is no
ambiguity, we will drop the superscript “P”. In Eq. (17), the weights W Bi

Gk
are Gaussian:

W Bi
Gk

= ape
– d2[Bi ,Gk ]

2σ2p , (18)

where σp has the dimension of a distance and ap is dimensionless.

2.4.2 Ganglion cell response
The voltage VGk is processed through a gain control loop similar to the BCell layer [20].
As GCells are spiking cells, a nonlinearity is fixed so as to impose an upper limit over the
firing rate. Here, it is modelled by a sigmoid function, e.g.

NG(V ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if V ≤ θG;

αG(V – θG), if θG ≤ V ≤ Nmax
G /αG + θG;

Nmax
G , else.

(19)

This function corresponds to a probability of firing in a time interval. Thus, it is expressed
in Hz. Consequently, αG is expressed in Hz mV–1 and Nmax

G in Hz. Parameter values can
be found in Appendix A.

Gain control is implemented with an activation function AGk , solving the following dif-
ferential equation:

dAGk

dt
= –

AGk

τG
+ hGNG(VGk ), (20)

and a gain function

GG(A) =

⎧⎨
⎩

0, if A < 0;
1

1+A , else.
(21)

Note that the origin of this gain control is different from the BCell gain control (9).
Indeed, Chen et al. hypothesise that the biophysical mechanisms that could lie behind
ganglion gain control are spike-dependent inactivation of Na+ and K+ channels, while
the study by Jacoby et al. [45] hypothesises that GCells gain control is mediated by feed-
forward inhibition that they receive from ACells. The specific forms of the nonlinear-
ity and the gain control function used in this paper match, however, the first hypothesis,
namely the suppression of the Na+ current [20].
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Finally, the response function of this GCell type is

RG(VGk , AGk ) = NG(VGk )GG(AGk ). (22)

In contrast to BCell response RB (8), which is a voltage, here RG is a firing rate.
Gain control has been reported for OFF GCells only [9, 20]. Therefore, we restrict our

study to OFF cells, i.e with a negative centre of the spatial RF kernel. However, on mathe-
matical grounds, it is easier to carry our explanation when the RF centre is positive. Thus,
for convenience, we have adopted a change in convention in terms of contrast measure-
ment. We take the reference value 0 of the stimulus to be white rather than black, black
corresponding then to 1. The spatial RF kernel is also inverted, with a positive centre and
a negative surround. The problem is therefore mathematically equivalent to an ON cell
submitted to positive stimulus.

2.4.3 Differential motion sensitive cells
We consider here a class of GCells connected to ACells according to pathways III in Fig. 1,
acting as differential motion detectors. They are able to respond saliently to an object
moving over a stationary surround while being strongly inhibited by global motion. Here,
stationary is meant in a general, probabilistic sense. This can be a uniform background
or a noisy background where the probability distribution of the noise is time-translation
invariant. These cells are hence able to filter head and eye movements. Baccus et al. [1]
emphasised a pathway accountable for this type of response involving polyaxonal ACells
which selectively suppress GCells response to global motion and enhance their response to
differential motion, as shown in Fig. 1, pathway III. The GCell receives an excitatory input
from the BCells lying in its receptive field which respond to the central object motion and
an indirect inhibitory input from ACells that are connected to BCells which respond to
the background motion. When motion is global, the excitatory signal is equivalent to the
inhibitory one, resulting in an overall suppression. However, when the object in the cen-
tre moves distinctively from the surrounding background, the cell in the centre responds
strongly.

There are here two concomitant effects. When a moving object (say, from left to right)
enters the BCell pool connected to a central GCell kD, the BCells in the periphery of the
pool respond first, with no significant change on the GCell response, because of the Gaus-
sian shape (18) of the pooling: weights are small in the periphery. Those BCells excite,
however, the ACells they are connected to, with the effect of inhibiting the BCells of neigh-
bouring GCells pools. This has the effect of decreasing the voltage of these BCells which
in turn excite less ACells which, in turn, inhibit less the BCells of the pool kD. Thus, the
response of the GCell kD is enhanced, while the cells on the background are inhibited. We
call this effect “push–pull” effect. Note that propagation delays ought to play an important
role here, although we are not going to consider them in this paper.

2.4.4 Direction selective GCells and gap junction connectivity
These cells correspond to pathway IV in Fig. 1. They are only coupled via electric synapses
(gap junctions). In several animals, like the mouse, this enables the corresponding GCells
to be direction sensitive. Note that other mechanisms, involving lateral inhibition via star-
burst amacrine cells have also been widely reported [33, 34, 71, 72, 81, 85, 88]. Here we
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focus on gap junctions direction sensitive cells (DSGCs). There exist four major types of
these DSGCs, each responding to edges moving in one of the four cardinal directions.
Trenholm et al. [80] emphasised the role of these cells coupling in lag normalisation: un-
coupled cells begin responding when a bar enters their receptive field, i.e. their dendritic
field extension, whereas coupled cells start responding before the bar reaches their den-
dritic field. This anticipated response is due to the effective propagation of activity from
neighbouring cells through gap junctions and is particularly interesting when comparing
the responses for different velocities of the bar. Trenholm et al. showed that the uncou-
pled DSGCs detect the bar at a position which is further shifted as the velocity grows,
while coupled cells respond at an almost constant position regardless of the velocity. In
our work, we analyse this effect in terms of a propagating wave driven by the stimulus and
show that temporally this spatial lag normalisation induces a motion extrapolation that
confers to the retina more than just the ability to compensate for processing delays, but to
anticipate motion.

Classical, symmetric bidirectional gap junctions coupling between neighbouring cells
would involve a current of the form –g(VGk – VGk–1 ) – g(VGk – VGk+1 ), where g is the gap
junction conductance. In contrast, here, the current takes the form –g(VGk – VGk–1 ). This
is due to the specific asymmetric structure of the direction selective GCell dendritic tree
[80]. The experimental results of these authors suggest that the effect of the possible gap
junction input from downstream cells, in the direction of motion, can be neglected due
to offset inhibition and gain control suppression. This, along with the asymmetry of the
dendritic arbour, justifies the approximation whereby the cell k+1 does not influence the
current in the cell k. This induces a strong difference in the propagation of a perturbation.
Indeed, consider the case VGk – VGk–1 = VGk – VGk+1 = δ. In the symmetric form the total
current vanishes, whereas in the asymmetric form the current is –gδ. Still, the current can
have both directions depending on the sign of δ. This has a strong consequence on the
way GCells connected by gap junctions respond to a propagating stimulus, as shown in
Sect. 3.3.

The total GCell voltage is the sum of the pooled BCell voltage V (P)
Gk

and of the effect of
neighbours GCells connected to k by gap junctions:

VGk (t) = V (P)
Gk

–
g
C

∫ t

–∞

(
VGk (s) – VGk–1 (s)

)
ds,

where C is the membrane capacitance. Deriving the previous equation with respect to
time, we obtain the following differential equation governing the GCell voltage:

dVGk

dt
=

dV (P)
Gk

dt
– wgap

[
VGk (t) – VGk–1 (t)

]
, (23)

where

wgap =
g
C

. (24)

Gain control is then applied on VGk as in (22). An alternative is to consider that gain control
occurs before gap junctions effect. We investigated this effect as well (not shown, see [74]).
Mainly, the anticipatory effect is enhanced when the gain control is applied after the gap
junction coupling; thus, from now, we focus on the formulation (23) in the paper.
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Note that our voltage-based model of gap junctions takes a different from as Trenholm
et al. (expressed in terms of currents), because we had to adapt it so as to deal with the
pooling voltage form (17). Still, our model reproduces the lag normalisation as in the orig-
inal model as we checked (not shown, see [74]).

3 Results
3.1 The mechanism of motion anticipation and the role of gain control
The (smooth) trajectory of a moving object can be extrapolated from its past position and
velocity to obtain an estimate of its current location [4, 56, 57]. When human subjects are
shown a moving bar travelling at constant velocity, while a second bar is briefly flashed in
alignment with the moving bar, the subjects report seeing the flashed bar trailing behind
the moving bar. This led Berry et al. [9] to investigate the potential role of the retina in
anticipation mechanisms. Under constraints on the bar speed and contrast they were able
to exhibit a positive anticipation time, defined as the time lag between the peak in the
retinal GCell response to a flashed bar and the corresponding peak when the stimulus is
a moving bar.

In this paper we adopt a slightly different definition although inspired by it. Indeed, the
goal of this modelling paper is to dissect the various potential stages of retinal anticipation
as developed in the next subsections.

Several layers and mechanisms are involved in the model, each one defining a response
time and potentially contributing to anticipation under conditions that we now analyse.

3.1.1 Anticipation at the level of a single isolated BCell; the local effect of gain control
We consider first a single BCell without lateral connectivity so that VBi = Vidrive . The very
mechanism of anticipation at this stage is illustrated in Fig. 4. The peak response time of
the convolution of the stimulus with the RF of one BCell occurs at a time tB (dashed line in
Fig. 4(a)). The increase in Vidrive leads to an increase in activity (Fig. 4(c)) and an increase
of RB (Fig. 4(e)). When activity becomes large enough, gain control switches on (Fig. 4(d))
leading to a sharp decrease of the response RB (Fig. 4(e)) and a peak in RB occurring at
time tBA (dashed line in Fig. 4(e)) before tB. The bipolar anticipation time, 
B = tB – tBA , is
therefore positive.

Mathematically, 
B > 0 results from the intermediate value theorem using that
dVidrive

dt ≥
0 on [0, tB] and that tBA is defined by

dVidrive

dt

∣∣∣∣
t=tBA

= –Vidrive (tBA )
G ′

B(ABi )
GB(ABi )

dABi

dt

∣∣∣∣
t=tBA

,

where the right-hand side is positive provided that the parameters hB, τa are tuneda such
that dABi

dt ≥ 0 on [0, tB]. An important consequence is that the amplitude of the response at
the peak is smaller in the presence of gain control (compare the amplitude of the voltage
in Fig. 4(a) to 4(e)).

The anticipation time at the BCell level depends on parameters such as hB, τa. It depends
as well on characteristics of the stimulus such as contrast, size and speed. An easy way to
figure this out is to consider that the peak in BCell response (Fig. 4(d), (e)) arises when
the gain control function GB(ABi ) starts to drop off (Fig. 4(e)), which from the piecewise
linear approximation (10) of BCell arises when A = 2

3 . When Vidrive has the form (3). this
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Figure 4 Themechanism of motion anticipation and the role of gain control. The figure illustrates the bipolar
anticipation time 
B without lateral connectivity. We see the response of OFF BCells with gain control to a
dark moving bar. The curves correspond to three cells spaced by 450 μm. The first line (a) shows the linear
filtering of the stimulus corresponding to Vdrive(t) (Eq. (1)). Line (b) corresponds to the threshold nonlinearity
NB applied to the linear response; (c) represents the adaptation variable (16), and (d) shows the gain control
time curse. Finally, the last line (e) corresponds to the response RBi of the BCell. The two dashed lines
correspond respectively to tB and tBA , the peak in the response of the (purple) BCell without pooling

gives, using N (Vidrive ) = Vidrive (7) and letting the initial time t0 → –∞ (which corresponds
to assuming that the initial state was taken in a distant past, quite longer than the time
scales in the model):

ABi (tBA ) = A0
hB

v
e

1
2

σ2
τ2a v2 e

1
τav (x–vtBA )

[
1 – �

(
x – vtBA

σ
+

σ

τav

)]
=

2
3

, (25)

where �(x) is the cumulative distribution function of the standard Gaussian probability
(see definition, Eq. (60) in Appendix B). This establishes an explicit equation for the time
tBA as a function of contrast (A0), size (σ ) and speed (v) as well as the parameters hB and τa.
We do not show the corresponding curves here (see [74] for a detailed study) preferring
to illustrate the global anticipation at the level of GCells, illustrated in Fig. 5 below.

3.1.2 Anticipation time of the BCells pooled voltage
The main effects we want to illustrate in the paper (impact of lateral connectivity on GCell
anticipation) are evidenced by the shift of the peak in activity of the BCells pooled voltage
occurring at time tG. We focus on this time here, postponing to Sect. 3.1.3 the subsequent
effect of GCells gain control. We assume therefore here that hG = 0 so that AGk = 0 and
GG(AGk ) = 1 in (19). Thus, the firing rate of GCell k is NG(VGk ). For mathematical sim-
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plicity, we will consider that the firing rate function (5) of G is a smooth, monotonously
increasing sigmoid function such that N ′

G(VGk ) > 0. We define tG as the time when VGk is

maximum, after the stimulus is switched on. This corresponds to dVGk
dt = 0 and d2VGk

dt2 < 0.
Equivalently, from Eqs. (17), (23), we have

∑
i

W Bi
Gk

dRBi

dt
=
∑

i

W Bi
Gk

[
GB(ABi )N ′

B(VBi )
dVBi

dt
+ NB(VBi )G ′

B(ABi )
dABi

dt

]

= wgap[VGk – VGk–1 ],

(26)

where this equation holds at time t = tG (we have not written explicitly tG to alleviate
notation). This is the most general equation for the anticipation time at the level of BCells
pooling.

In the sum
∑

i, there are two types of BCells. The inactive ones where VBi ≤ �B,
NB(VBi ) = 0 and dRBi

dt = 0, so they do not contribute to the activity. The active BCells
VBi > �B obey NB(VBi ) = VBi . For the moment we assume that, at time tG, there is no BCell
switching from one state (active/inactive) to the other, postponing this case to the end of
the section. Then, Eq. (26) reduces to

∑
i

W Bi
Gk︸︷︷︸

(V)

GB(ABi )︸ ︷︷ ︸
(II)

(
–

1
τB

VBi +
NA∑
j=1

W Aj
Bi

VAj

︸ ︷︷ ︸
(III)

+ FBi (t)︸ ︷︷ ︸
(I)

)

= –
∑

i

W Bi
Gk︸︷︷︸

(V)

G ′
B(ABi )︸ ︷︷ ︸

(II)

VBi (t)
dABi

dt
+ wgap[VGk – VGk–1 ]︸ ︷︷ ︸

(IV)

.

(27)

This general equation emphasises the respective role of (I), stimulus (term FBi (t)); (II), gain
control (terms GB(ABi ), G ′

B(ABi )); (III), ACell lateral connectivity (term W Aj
Bi

); (IV), gap
junctions (term wgap[VGk (t′

GA
)–VGk–1 (t′

GA
)]); (V), pooling (terms W Bi

Gk
). Note that we could

as well consider a symmetric gap junctions connectivity where we would have a term
wgap[–VGk+1 + 2VGk – VGk–1 ] in IV. The equation terms have been arranged this way for
reasons that become clear in the next lines. It is not possible to solve this equation in full
generality, but it can be used to understand the respective role of each component.

In the absence of gain control and lateral connectivity (W Aj
Bi

= 0, wgap = 0), the peak in
GCell Gk voltage at time t′

G is given by

∑
i

W Bi
Gk

dVidrive

dt
= 0. (28)

This generalises the definition of tB, time of peak of a single BCell, to a set of pooled BCells,
and we will proceed along the same lines as in Sect. 3.1.1. We fix as reference time 0 the
time when the pooled voltage becomes positive. It increases then until the time t′

G when∑
i W Bi

Gk

dVidrive
dt = 0. Thus,

∑
i W Bi

Gk

dVidrive
dt is positive on [0, t′

G[ and vanishes at t′
G.

We now show that, in the presence of gain control, the peak occurs at time tG < t′
G leading

to anticipation induced by gain control and generalising the effect observed for one BCell
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in Sect. 3.1.1. Indeed, Eq. (27) reads now as follows:

∑
i

W Bi
Gk
GB(ABi )

dVidrive

dt
= –
∑

i

W Bi
Gk
G ′

B(ABi )Vidrive (t)
dABi

dt
. (29)

Because 0 ≤ GB(ABi ) ≤ 1,
∑

i W Bi
Gk
GB(ABi )

dVidrive
dt ≤∑i W Bi

Gk

dVidrive
dt so that the left-hand

side in (29) reaches 0 at a time tG ≤ t′
G. The right-hand side is positive for the same reasons

as in Sect. 3.1.1. The same mathematical argument holds as well, using the intermediate
value theorem to show that tG < t′

G.
We now investigate Eq. (27) with the two terms of lateral connectivity: (III) ACells

and (IV) gap junctions. The effect of gap junctions is straightforward. A positive term
wgap[VGk – VGk–1 ] increases the right-hand side of Eq. (27). As developed in Sect. 3.3, this
arises when the stimulus propagates in the preferred direction of the cell inducing a wave
of activity propagating ahead of the stimulus. In view of the qualitative argument devel-
oped above using the intermediate value theorem, this can enhance the anticipation time.
This deserves, however, a deeper study developed in Sect. 3.3.

The effect of ACells cells is less evident, as the term (– 1
τB

VBi +
∑NA

j=1 W Aj
Bi

VAj + FBi (t)) can
have any sign, so that network effect can either anticipate or delay the ganglion response,
as illustrated in several examples in the next section. As we show, this term is in general
related to a wave of activity, enhancing or weakening the anticipation effect as shown in
Sect. 3.2.

Let us finally discuss what happens when some BCell switches from one state (ac-
tive/inactive) to the other (i.e. VBi = �B). In this case, taking into account the definition
(5), the derivative N ′

B(VBi ) = 1
2 . Thus, when a BCell reaches the lower threshold, there is

a big variation in N ′
B(VBi ) thereby leading to a positive contribution in (26) and an addi-

tional term 1
2
∑

i W Bi
Gk
GB(ABi )(–

1
τB

VBi +
∑NA

j=1 W Aj
Bi

VAj + FBi (t)) in the left-hand side of (27),
where the sum holds on switching state cells. As we see in section (3.2), this can have an
important impact on the anticipation time.

3.1.3 Anticipation time at the GCell level
We now show that the firing rate of the GCell k, given by (22), reaches its maximum at a
time tGA < tG. From (22), at time tGA :

dVGk

dt
=

VGk

1 + AGk

dAGk

dt
. (30)

VGk starts from 0 and increases on the time interval [0, tG], thus dVGk
dt is positive on [0, tG]

and vanishes at tG. Thus, there is a time td < tG such that
dVGk

dt increases on [0, td] and de-
creases on [td, tG]. The right-hand side of (30) starts from 0 at t = 0 and stays strictly pos-
itive until either VGk vanishes, which occurs for t > tG, or until

dAGk
dt vanishes. We choose

the characteristic time τG and the intensity hG in (20) so that
dAGk

dt > 0 on [0, tG]. Thus,
VGk

1+AGk

dAGk
dt > 0 on [0, tG]. Therefore, in the time interval [td, tG],

dVGk
dt decreases to 0, while

VGk
1+AGk

dAGk
dt increases from 0. From the intermediate value theorem, these two curves have

to intersect at a time tGA < tG.



Souihel and Cessac Journal of Mathematical Neuroscience            (2021) 11:3 Page 19 of 60

Figure 5 Maximum firing rate and anticipation time variability with stimulus parameters in the gain control
layer of the model. Left: contrast (with v = 1 mm/s et size = 90 μm);middle: size (with v = 2 mm/s et contrast =
1); right: speed (with contrast 1 and size = 162 μm)

We finally define the total anticipation time of a GCell as follows:


 = tBc – tGA , (31)

where tBc is the peak of the BCell at the centre of the BCells pooling to that GCell.

3.1.4 Anticipation variability: stimulus characteristics
In general, 
 depends on gain control, lateral connectivity as well as characteristics of the
stimulus such as speed and contrast. This has been shown mathematically in Eq. (25) for
a single BCell. Here, we investigate numerically the dependence of the total anticipation
time of a GCell when the stimulus is a bar of infinite height, width σ mm, travelling in
one dimension at speed v mm/s with contrast C ∈ [0, 1]. Results are shown in Fig. 5. This
figure is a calibration later used to compare to the effects induced by lateral connectivity.

We first observe that anticipation increases with contrast, as it has experimentally been
observed [9]. Indeed, increasing the contrast increases Vidrive (t) thereby accelerating the
growth of Ai so that gain control takes place earlier (Fig. 5(a)). We also notice that an-
ticipation increases with the width of the object until a maximum (Fig. 5(b)). Finally, the
model shows a decrease in anticipation as a function of velocity, as it was evidenced exper-
imentally [9, 47] (Fig. 4(c)). Indeed, when the velocity increases, Vdrive varies faster than
the characteristic activation time τa, and the adaptation peak value is lower. Consequently,
gain control has a weaker effect and the peak activity is less shifted than when the bar is
slow.

A large part of these effects can be understood from Eq. (25). Note, however, here that
simulation of Fig. 5 takes into account the convolution of a moving bar with the receptive
field, the pooling effect and gain control at the stage of GCells.

In Fig. 5 we also show the evolution of GCells maximum firing rate as a function of the
moving bar velocity, contrast and size. We observe that it increases with these parameters,
an expected result.

3.2 The potential role of ACell lateral inhibition on anticipation
In this section we study the potential effect of ACells (pathway III of Fig. 1) on motion an-
ticipation. We restrict to the case where there are as many BCells as ACells (NB = NA ≡ N )
so that the matrices W A

B and W B
A are square matrices. We first derive general mathemat-

ical results (for the full derivation, see Appendix D) before considering the two types of
connectivity described in Sect. 2.3.3.
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3.2.1 Mathematical study
Dynamical system We study mathematically dynamical system (16) that we write in a
more convenient form. We use Greek indices α,β ,γ = 1, . . . , 3N and define the state vector
X as follows:

�Xα =

⎧⎪⎪⎨
⎪⎪⎩

VBi , α = i, i = 1, . . . , N ;

VAi , α = N + i, i = 1, . . . , N ;

Ai, α = 2N + i, i = 1, . . . , N .

Likewise, we define the stimulus vector �Fα = FBi if α = 1, . . . , N and �Fα = 0 otherwise. Then
dynamical system (16) has the general form

d �X
dt

= H( �X ) + �F (t), (32)

where H( �X ) is a nonlinear function, via the function RBi (VBi , ABi ) of Eq. (8), featuring
gain control and low voltage threshold. The nonlinear problem can be simplified using
the piecewise linear approximation (10). Indeed, there is a domain of R3N

� =
{

VBi ≥ θB, ABi ∈
[

0,
2
3

]
, i = 1, . . . , N

}
, (33)

where RBi (VBi , ABi ) = VBi so that (16) is linear and can be written in the form

d �X
dt

= L. �X + �F (t), (34)

with

L =

⎛
⎜⎝

– IN ,N
τB

W A
B 0N ,N

W B
A – IN ,N

τA
0N ,N

hBIN ,N 0N ,N – IN ,N
τa

⎞
⎟⎠ , (35)

where IN ,N is the N × N identity matrix and 0N ,N is the N × N zero matrix. This corre-
sponds to intermediate activity, where neither BCells gain control (9) nor low threshold
(5) are active. We first study this case and describe then what happens when trajectories
of (32) get out of this domain, activating low voltage threshold or gain control.

The idea of using such a phase space decomposition with piecewise linear approxima-
tions has been used in a different context by Coombes et al. [23] and in [14, 15, 18].

We consider the evolution of the state vector �X (t) from an initial time t0. Typically, t0 is
a reference time where the network is at rest before the stimulus is applied. So, the initial
condition �X (t0) will be set to 0 without loss of generality.

Linear analysis The general solution of (34) is

�X (t) =
∫ t

t0

eL(t–s). �F (s) ds. (36)
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The behaviour of solution (36) depends on the eigenvalues λβ ,β = 1, . . . , 3N , of L and its
eigenvectors �Pβ with entries Pαβ . The matrix P transforms L in Jordan form (L is not
diagonalizable when hB �= 0, see Appendix D.1). Whatever the form of the connectivity
matrices W B

A , W A
B , the N last eigenvalues are always λβ = – 1

τa
, β = 2N + 1, . . . , 3N .

In Appendix D.1 we show the following general result (not depending on the specific
form of W B

A , W A
B , they just need to be square matrices and to be diagonalizable):

Xα(t) = Vαdrive (t) + EB
B,α(t) + EB

A,α(t) + EB
a,α(t), α = 1, . . . , 3N , (37)

where drive term (1) is extended here to 3N-dimensions with Vαdrive (t) = 0 if α > N . The
other terms have the following definition and meaning:

EB
B,α(t) =

N∑
β=1

(
1
τB

+ λβ

) N∑
γ =1

PαβP–1
βγ

∫ t

t0

eλβ (t–s)Vγdrive (s) ds, α = 1, . . . , N , (38)

corresponds to the indirect effect, via the ACell connectivity, of the BCells drive on BCells
voltages (i.e. the drive excites BCell i, which acts on BCell j via the ACells network);

EB
A,α(t) =

2N∑
β=N+1

(
1
τB

+ λβ

) N∑
γ =1

PαβP–1
βγ

∫ t

t0

eλβ (t–s)Vγdrive (s) ds, α = N + 1, . . . , 2N , (39)

corresponds to the effect of BCell drive on ACell voltages, and

EB
a,α(t) = hB

( 2N∑
β=1

N∑
γ =1

Pα–2NβP–1
βγ

λβ + 1
τB

λβ + 1
τa

∫ t

t0

eλβ (t–s)Vγdrive (s) ds

+
– 1

τB
+ 1

τa

λβ + 1
τa

A0
α–2N (t)

)
, α = 2N + 1, . . . , 3N ,

(40)

corresponds to the effect of the BCells drive on the dynamics of BCell activity variables.
The first term of (40) corresponds to the action of BCells and ACells on the activity of
BCells via lateral connectivity. In the second term

A0
α–2N (t) =

∫ t

t0

e– t–s
τa Vα–2Ndrive (s) ds (41)

corresponds to the direct effect of the BCell voltage with index α – 2N on its activity (see
Eq. (7)).

To sum up, Eq. (37) describes the direct effect of a time-dependent stimulus (first term)
and the indirect lateral network effects it induces. The term EB

a,α(t) is what activates the
gain control. In the piecewise linear approximation (10), the BCell i triggers its gain control
when its activity

EB
a,α(t) >

2
3

, α = 2N + i. (42)

This relation extends the computation made in Sect. 3.1.1 for isolated BCells to the case
of a BCell under the influence of ACells. On this basis, let us now discuss how the network
effect influences the activation of gain control and, thereby, anticipation.
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Figure 6 Front (43) for different values of λβ (purple) as a function of time for the cell γ = 0. All figures are
drawn with v = 2 mm/s; σ = 0.2 mm. Top. λβ = –0.5 ms–1; Bottom. λβ = 0.5 ms–1

The structure of terms (38), (39) (40) is interpreted as follows. The drive (index γ =
1, . . . , N ) excites the eigenmodes β = 1, . . . , 3N of L with a weight proportional to P–1

βγ .
The mode β in turn excites the variable α = 1, . . . , 3N with a weight proportional to
Pαβ . The time dependence and the effect of the drive are controlled by the integral∫ t

t0
eλβ (t–s)Vγdrive (s) ds. For example, when the stimulus has the Gaussian form (3) and

cells are spaced with a distance δ so that cell γ is located at x = γ δ, we have, taking
t0 → –∞:

∫ t

–∞
eλβ (t–s)Vγdrive (s) ds =

A0

v
e

1
2

σ2λ2
β

v2 e–
λβ
v (γ δ–vt)�

[
λβσ

v
–

1
σ

(γ δ – vt)
]

, (43)

where �(x) is the cumulative distribution function of the standard Gaussian probabil-
ity (see definition, Eq. (60) in Appendix B). This is actually the same computation as
(25) with λβ = – 1

τa
. Equation (43) corresponds to a front, separating a region where

�[. . . ] = 0 from a region where �[. . . ] = 1, propagating at speed v with an interface of
width 1

σ
multiplied by an exponential factor e–

λβ
v (γ δ–vt). Here, the sign of the real part

of λβ , λβ ,r is important. If λβ ,r < 0, the front has the shape depicted in Fig. 6(top). It
decays exponentially fast as t → +∞ with a time scale 1

|λβ ,r | . On the opposite, it in-
creases exponentially fast with a time scale 1

λβ ,r
as t → +∞ when λβ ,r > 0, thereby

enhancing the network effect and accelerating the activation of nonlinear effect (low
threshold or gain control) leading the trajectory out of �. Remark that the peak of
the drive occurs at γ δ – vt = 0. The inflexion point of the function �(x) is at x = 0.
Thus, when λβ < 0, the front is a bit behind the drive, whereas it is a bit ahead when
λβ > 0.

Having unstable eigenvalues is not the only way to get out of �. Indeed, even if all eigen-
values are stable, the drive itself can lead some cells to get out of this set. When the tra-
jectory of dynamical system (34) gets out of �, two cases are then possible:
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(i) Either a BCell i is such that VBi < θB. In this case, RBi (VBi , ABi ) = 0. Then, in the
matrix L, there is a line of zeros replacing the line i in the matrix W B

A , i.e. at the line
i + N of L. This corresponds to a stable eigenvalue – 1

τA
for L, controlling the

exponential instability observed in Fig. 6(bottom). Thus, too low BCell voltages
trigger a re-stabilisation of the dynamical system.

(ii) There are BCells such that condition (42) holds, then gain control is activated and
system (32) becomes nonlinear. Here, we get out of the linear analysis, and we have
not been able to solve the problem mathematically. There is, however, a simple
qualitative argument. If the cell i enters the gain control region, then the
corresponding line i + N in the matrix W B

A of L is replaced by W Bi
A GB(ABi ), which

rapidly decays to 0 (see, e.g. Fig. 4(e)). From the same argument as in (i), this
generates a stable eigenvalue ∼– 1

τA
controlling as well the exponential instability.

Equation (37) features therefore the direct effect of the stimulus as well as the indirect
effect via the amacrine network, corresponding to a weighted sum of propagating fronts,
generated by the stimulus and influencing a given cell through the connectivity pathways.
These fronts interfere either constructively, inducing a wave of activity enhancing the ef-
fect of the stimulus and, thereby, anticipation, or destructively somewhat lowering the
stimulus effect. The fine tuning between “constructive” and “destructive” interferences
depends on the connectivity matrix via the spectrum of L and its projection vectors �Pβ .
For example, complex eigenvalues introduce time oscillations which are likely to gener-
ate destructive interferences, unless some specific resonance conditions exist between the
imaginary parts of the eigenvalues λβ . Such resonances are known to exist, e.g. in neural
network models exhibiting a Ruelle–Takens transition to chaos [65], and they are closely
related to the spectrum of the connectivity matrix [16]. Although we are not in this sit-
uation here, our linear analysis clearly shows the influence of the spectrum of L, itself
constrained by W , on the network response to stimuli and anticipation.

Spectrum of L This argumentation invites us to consider different situations where one
can figure out how connectivity impacts the spectrum of L and thereby anticipation. We
therefore provide some general results about the spectrum of L and potential linear insta-
bilities before considering specific examples. These results are proved in Appendix D.2.
As stated in Sect. 2.3.3, to go further in the analysis, we now assume that a BCell connects
only one ACell, with a weight w+ uniform for all BCells, so that W B

A = w+IN ,N , w+ > 0. We
also assume that ACells connect to BCells with a connectivity matrix W , not necessarily
symmetric, with a uniform weight –w–, w– > 0, so that W A

B = –w–W .
We denote by κn, n = 1, . . . , N , the eigenvalues of W ordered as |κ1| ≤ |κ2| ≤ · · · ≤ |κn|,

and �ψn is the corresponding eigenvector. We normalise �ψn so that �ψ†
n . �ψn = 1 where † is

the adjoint. (Note that, as W is not symmetric in general, eigenvectors are complex). From
the eigenvalues and eigenvectors of W , one can compute the eigenvalues and eigenvectors
of L (see Appendix D.2),and infer stability conditions for the linear system. The main
conclusions are the following:

1. The stability of the linear system is controlled by the reduced, a-dimensional
parameter:

μ = w–w+τ 2 ≥ 0, (44)
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where:

1
τ

=
1
τA

–
1
τB

, (45)

with a degenerate case when τA = τB considered in the Appendix.
2. If W is symmetric, its eigenvalues κn are real, but the eigenvalues of L can be real or

complex. Each κn corresponds actually to eigenvalues λ±
n of L (see Eq. (71)).

(a) If κn < 0, the two corresponding eigenvalues of L are real and one of the two
corresponding eigenmodes of L becomes unstable when

w–w+ > –
1

τAτB

1
κn

. (46)

(b) If κn > 0 and if 1
τ

�= 0, the corresponding eigenvalues of L are complex conjugate
if

μ >
1

4κn
≡ μn,c. (47)

The corresponding eigenmodes are always stable.
3. If W is asymmetric, eigenvalues κn are complex, κn = κn,r + iκn,i. The eigenvalues of

L have the form λβ = λβ ,r + iλβ ,i, β = 1, . . . , 2N , with

⎧⎨
⎩

λβ ,r = – 1
2τAB

± 1
2τ

1√
2
√an + un;

λβ ,i = ± 1
2τ

1√
2
√un – an,

(48)

where an = 1 – 4μκn,r and un =
√

(1 – 4μκn,r)2 + 16μ2κ2
n,i =

√
1 – 8μκ2

n,r + 16μ2|κn|2.
Note that we recover the real case when κn,i = 0 by setting un = an.

Instability occurs if λβ ,r > 0 for some β . This gives

an + un > 2
τ 2

τ 2
AB

, (49)

a condition on μ depending on κn,r and κn,i.

Remarks The introduction of a dimensional parameter μ allows us to simplify the study
of the joint influence of w–, w+, τ on dynamics because stability is controlled by μ only.
In other words, a bifurcation condition of the form μ = μc signifies that this bifurcation
holds when the parameters w–, w+, τ lay on the manifold defined by w–w+τ 2 = μc.

We now show this in two examples of connectivity and afferent instabilities.

3.2.2 Nearest neighbours connectivity
Eigenmodes of the linear regime We consider the case where the matrix W , connecting
ACells to BCells, is a matrix of nearest neighbours symmetric connections. In this case,
W can be written in terms of the discrete Laplacian 
 on a d dimensional regular lattice,
d = 1, 2, with lattice spacing δA = δB set here equal to 1 without loss of generality:

W = 2dI + 
. (50)
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Because of this relation, we will often use the terminology Laplacian connectivity for the
nearest-neighbours connectivity. We also assume that dynamics holds on a square lattice
with null boundary conditions. That is, ACell and BCells are located on d-dimensional
grid with indices ix, iy = 0, . . . , L + 1 where the voltage and activity of cells with indices
ix = 0, ix = L + 1, iy = 0 or iy = L + 1 vanish.

The eigenvalues and eigenvectors are explicitly known in this case. They are parame-
trized by a quantum number n = nx ∈ {1, . . . , L = N} in one dimension and by two quan-
tum numbers (nx, ny) ∈ {1, . . . , L = N}2 in two dimensions. They define a wave vector
�kn = ( nxπ

L+1 , nyπ
L+1 ) corresponding to wave lengths ( L+1

nx
, L+1

ny
). Hence, the first eigenmode (nx =

1, ny = 1) corresponds to the largest space scale (scale of the whole retina) with the small-
est eigenvalue (in absolute value) s(1,1) = 2(cos( π

L+1 ) + cos( π
L+1 ) – 2). To each of these eigen-

modes is related a characteristic time τn = 1
λn

. The slowest mode is the mode (1, 1). In
contrast, the fastest mode is the mode (nx = L, ny = L) corresponding to the smallest space
scale, the scale of the lattice spacing δ = 1.

Eigenvalues κn can be positive or negative. Consider for example the one-dimensional
case, where κn = 2 cos( nπ

L+1 ). We choose L even to avoid having a zero eigenvalue κ L
2

. Eigen-
values κn, n = 1, . . . , L

2 , are positive, thus the corresponding eigenvalues λ±
n of L are com-

plex and stable. The modes with the largest space scale L
n are therefore stable for the linear

dynamical system with oscillations. Eigenvalues κn, n = L
2 + 1, . . . , L, are negative, thus the

corresponding eigenvalues λ±
n of L are real. From (46) the mode n becomes unstable when

w–w+ > –
1

τAτB

1
2 cos( nπ

L+1 )
. (51)

Therefore, the first mode to become unstable is the mode L with the smallest space scale
1 (lattice spacing). For large L, this happens for w–w+ ∼ 1

2
1

τAτB
. This instability induces

spatial oscillations at the scale of the lattice spacing. When w–w+ further increases, the
next modes become unstable. This instability results in a wave packet following the drive
(as shown in Fig. 6). The width of this wave packet is controlled by the unstable modes
and by nonlinear effects. We now illustrate the relations of these spectral properties with
the mechanism of anticipation.

Numerical results In all the following 1D simulations, we consider a bar with a width
150 μm, moving in one dimension at constant speed v = 3 mm/s. We simulate 100 BCells,
100 ACells and 100 GCells placed on a 1D horizontal grid with a uniform spacing of
δb = δa = δg = 30 μm between to consecutive cells. At time t = 0, the first cell lies at
100 μm to the right of the leading edge of the moving bar. We set τB = 300 ms, τa = 50 ms,
τA = 100 ms, corresponding to τ = 150 ms (Eq. (45)). We vary the value of weights w+, w–.
For the sake of simplicity, we also choose w+ = –w– = w to have only one control parameter.
We investigate how the bipolar anticipation time 
B and the maximum in the response
RB depend on w. This is summarised in Fig. 7(top), where we have shown the effect of gain
control alone (blue horizontal line, independent of w), the effect of ACell lateral connec-
tivity alone (red triangles) and the compound effect (white squares). Anticipation time is
averaged over all cells. On the same figure (bottom) we see the responses of two neighbour
cells lying at the centre of the lattice.

As w increases, we observe three areas of interest: the first (A) corresponds to a regime
where ACell connectivity has a negative effect on anticipation, competing with gain con-
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Figure 7 Anticipation in the Laplacian (nearest-neighbours) case. Top. Anticipation time and maximum bipolar
response as a function of the connectivity weight w. The blue line corresponds to gain control alone (it does
not depend on w). Red triangles correspond to the effect of lateral ACell connectivity without gain control.
White squares correspond to the compound effect of ACell connectivity and gain control. The three regimes
A, B, C are commented in the text. Bottom. Response curves of ACells and BCells corresponding to the three
regimes: (A) w = 0.05 ms–1 with a small cross-inhibition, (B) w = 0.3 ms–1 with an opposition in activity
between the blue (cell 50) and red cell (51), (C) w = 0.6 ms–1, where the red cell (51) is completely inhibited by
cell 50

trol. As w is small, the anticipation is controlled by the direct pathway I, II of Fig. 1, from
BCells to GCells, with a small inhibition coming from ACells, thereby decreasing the volt-
age of BCells and impairing the effect of gain control. This explains why the anticipation
time in the case of lateral connectivity + gain control is smaller than the anticipation time
of gain control alone. The network effect (red triangles) on anticipation time increases
with w though. This corresponds to the “push–pull” effect already evoked in Sect. 2.3.
When a BCell Bi feels the stimulus, its activity increases favoured by the stimulus, it in-
creases the voltage of the connected ACell, inhibiting the next BCell Bi+1, thereby inducing
a feedback loop, the push–pull effect, enhancing the voltage of Bi.

In zone (B) the push–pull effect becomes more efficient than gain control alone. In this
region, the voltage of the BCell feeling the bar increases fast, while the voltage of its neigh-
bours becomes more and more negative, enhancing the feedback loop. This holds until the
voltage rectification (5) takes place. This is the time when the dynamical system gets out
of �. The push–pull effect then saturates and VBi reaches a maximum, corresponding to
a peak in activity. This peak is reached faster than the peak in the function GB(A). Thus,
the peak of RBi (t) occurs at the same time as the peak of NB(VBi (t)) and, thus, before the
reference peak (time tB for isolated BCells defined in Sect. 3.1.1). In other words, the ACell
lateral connectivity allows the BCell to outperform the gain control mechanism for antic-
ipation. As w increases in zone B the push–pull effect (averaged over BCells) reaches a
maximum, then decreases. This is because the increase in w makes the inhibitory effect of
ACells stronger and stronger on silent BCells which then remain silent longer and longer
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because the ACell voltage increases with w, and it takes longer for it to decrease and de-
inhibit the neighbours. The silent cells are less and less sensitive to the stimulus, being
strongly and durably inhibited.

In region C, the anticipation is again dominated by gain control. In this case, the effect
on cells depends on the parity of their index. The response of BCells is either completely
suppressed or identical to the response of the reference case (with gain control alone).
This is why the average anticipation time with gain control is about half of the gain control
without network effect. Cells that are inhibited do no participate to anticipation, and the
others anticipate in the same way than with gain control alone. Note that this “parity” effect
is due to the nearest neighbours connectivity and the symmetry of interactions.

We now interpret and complete these results from the point of view of the spectrum of
L and associated dynamics. The fastest mode to destabilise corresponds to the smallest
space scale, i.e. the lattice spacing. This is a mode with alternate sign at the scale of the
lattice. We call it the “push–pull” mode, as it is precisely what makes the push–pull effect.
When the push–pull mode becomes unstable, the excited BCell becomes more and more
excited and the next BCell more and more inhibited. However, the time it takes τL has to
be compared to the time where the bar stays in the RF, τbar (and more generally the time it
takes to RF kernel to respond to the bar). In the case of the simulation σcenter = 90 μm (see
Appendix A, Table 1) and v = 3 μm/ms giving a characteristic time τbar = 270ms, whereas,
as we observed, τL < 100 ms. The push–pull mode is therefore quite faster than τbar, so
the push–pull effect takes place fast and leads to a fast exponential increase of the front
depicted in Fig. 6(right). This explains the rapid increase of network anticipation effect
observed in regions A, B of Fig. 7.

3.2.3 Random connectivity
In this section, we study the behaviour of the model using the more realistic, probabilistic
type of connectivity presented in Sect. 2.3.3 and more thoroughly studied in Appendix C.
Within this framework, a given ACell Ai receives the upstream activity from the BCell ly-
ing at the same position Bi with a constant weight w. The same ACell inhibits BCells with
which it is coupled through the random adjacency matrix W , generated by the probabilis-
tic model of connectivity, and the weight matrix W B

A = –wW . We recall that the connec-
tivity depends on a scale parameter ξ for the branch length) and the mean and variance
n̄, σ for the distribution of the number of branches. These parameters can be found in
Table 1 in Appendix A.

Eigenmodes of the linear regime Similarly to Sect. 3.2.2 we now analyse the spectrum
of L when W is a random connectivity matrix. Although a couple of results can be es-
tablished (using the Perron–Frobenius theorem), we have not been able to find general
mathematical results on the spectrum or eigenvectors of this family of random matrices.
We thus performed numerical simulations.

The spectrum of L is deduced from the spectrum of W as exposed above. The spec-
trum of W depends on n̄, σ and ξ . In Fig. 8 we have plotted, on the left, an example of
such a spectrum. This is the spectral density (distributions of eigenvalues in the complex
plane) obtained from the diagonalization of 10,000 matrices 100 × 100 (so the statistics is
made over 106 eigenvalues). We note that the largest eigenvalues are always real positive, a
straightforward consequence of the Perron–Frobenius theorem [38, 69]. More generally,
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Figure 8 Spectral density of eigenvalues for ξ = 2, n̄ = 4, σn = 1. Top left. For the matrixW (density estimated
over 10,000 samples), density is represented in colour plots, in log scale. The colour bar refers to powers of 10.
Top right. Spectral density of L for w = 0.05. Bottom left. Spectral density of L for w = 0.1. Bottom right. Spectral
density of L for w = 0.15. Unstable eigenvalues are on the right to the vertical dashed line x = 0

Figure 9 Heat map for the largest real part eigenvalue in the plane w, ξ for different values of n̄. Left. n̄ = 1.
Right. n̄ = 4. Colour lines are level lines. The level line 0 is the frontier of instability of the linear dynamical
system

we observe an over-density of real eigenvalues. The same holds for random Gaussian ma-
trices with independent entries N (0, 1

N ) [32] whose asymptotic density converges to the
circular law [40]. The shape of the spectral density in our model differs from the circular
law though, and it depends on the parameters n̄, σ and ξ .

On the same figure we show the corresponding spectral density of L obtained from
Eq. (48) for w = 0.05, 0.1, 015. We have taken here τA = 30, τB = 10 ms to see better the
transitions with w (level lines in Fig. 9). There is an evident symmetry with respect to

1
τAB

= –0.066 expected from the mathematical analysis. We see that the largest eigenvalue
is real (although it is not necessarily related to the largest eigenvalue of W). We also see
that, as w increases, a large number of (complex) eigenvalues become unstable. There is
actually a frontier of instability that we have plotted in the plane w, ξ for different values
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of n̄. This is shown in Fig. 9 (dashed line). The level line 0 is the frontier of instability of
the linear dynamical system. This frontier has the (empirical) form (ξ – ξ0).(w – w0) = c,
where c has the dimension of a characteristic speed.

What matters here is that there are complex unstable eigenvalues with no specific reso-
nance relations between them. They are therefore prone to generate destructive interfer-
ences in (37).

Numerical results In Fig. 10 we consider, similarly to Fig. 7 for Laplacian connectivity, the
effect of random connectivity on anticipation, compared to pure gain control mechanism.
In contrast to the Laplacian case, we have here more parameters to handle: ξ , which con-
trols the characteristic length of branches and n̄, σn which control the number of branches
distribution. We present here a few results where ξ varies, whereas the average number of
branches n̄ = 2 (σn = 1). A more systematic study is done in [74]. The interest of varying ξ is
to start from a situation which is close to the Laplacian case (characteristic distance ξ = 1)
and to increase ξ to see how the size of the dendritic tree of ACells may impact anticipa-
tion. This is a preliminary step toward considering different physiological ACells type (e.g.
narrow-, medium-, or wide-field [29]). Note, however, that the probability of connection
given the distance of cells (fixed by n̄, σn) implicitly impacts w and the anticipation effects.

The main difference with the Laplacian case is the asymmetry of connections. Here,
symmetry means that if ACell j connects the BCell i, then the ACell i connects the BCell j
too. This does not necessarily hold for random connectivity, and this has a strong impact
on the push–pull effect and anticipation. So, even if the connectivity is short-range when
ξ is small, mainly connecting nearest neighbours, we observe already a big difference with
the Laplacian case. This is shown in Fig. 10, where ξ = 1. Similarly to the Laplacian case,

Figure 10 Average anticipation in the random connectivity case. Top. Bipolar anticipation time and maximum in
the response RB as a function of the connectivity weight w in the case of a random connectivity graph with
ξ = 1, n̄ = 2 and σn = 1. Bottom. Response curves of ACells and BCells 51 – 52 corresponding to the three
regimes: (A) w = 0.05 ms–1, (B) w = 0.3 ms–1, (C) w = 0.6 ms–1
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we observe three main regions depending on w. To have the same representation as Fig. 7,
we present VA, NB, RB for two connected cells (here, ACell 51 and BCell 52). However, in
this case, connection is not symmetric: ACell 51 inhibits BCell 52, but ACell 52 does not
inhibit BCell 51.

We observe three regimes, as in the Laplacian case. In the first region (A) ACell ran-
dom connectivity has a negative effect on anticipation, as compared to gain control alone.
However, since in this case the “push–pull” effect is not evoked, this decay simply comes
from the fact that BCell 52 receives an inhibition for ACell 51 that reduces the effect of
gain control. This inhibition, however, is not strong enough to significantly shift the peak
response as in region (B).

Indeed, in region (B), the inhibition of BCell 52 is strong enough to outperform the effect
of gain control. In this case, and similarly to the Laplacian case, the peak of RBi (t) occurs at
the same time as the peak of NB(VBi (t)) and before the reference peak. However, this effect
is not consistent over all cells and only occurs for BCells that receive active inhibition. This
explains why the performance of the Laplacian connectivity is better, on average, in this
region.

Finally, as w grows higher, the inhibition grows stronger, completely inhibiting BCell
51. Cells that do not receive any inhibition, as BCell 49 in this example, keep a response
that is identical to the response without ACell connectivity. The fraction of cells receiving
inhibition in this case being quite small (about 15), this explains why the stationary value
of anticipation is fairly close to the value with gain control alone.

The role of the characteristic distance In Fig. 11, we analyse the effect of the character-
istic length ξ on anticipation. On the top of the figure we represent the joint effect of the
random ACell connectivity and gain control on anticipation for three values of ξ . At the
bottom we represent the only effect of the random ACell connectivity for the same values
of ξ . We observe that performance in anticipation decreases with ξ . More precisely, we
observe an anticipatory effect in this case, as shown in Fig. 11(bottom), but this effect is
not able to compete with gain control alone. Even worse, the compound effect shown in
11(top) is disastrous since increasing w renders the anticipation time smaller and smaller.

This spurious effect can be interpreted through the analysis made in Sect. 3.2.1, Eq. (37).
From the spectrum of L, we see that there are unstable complex eigenvalues whose num-
ber increases with w. These eigenvalues are prone to generate destructive interferences,
especially when their number becomes large as w increases, explaining the small peak in
region B. The consequence on cells activity and gain control can be dramatic as seen in
the red trace of Fig. 10(B bottom), line RB. This depends on the precise connectivity pat-
tern when long range connections from ACells to BCells induce a desensitisation of BCells,
which is not counterbalanced by the push–pull effect as in the Laplacian connectivity case.

3.2.4 Conclusion
The two numerical examples considered in this section emphasise the role of symmetry in
the synapses and, more generally, the role of complex versus real eigenvalues in the spec-
trum of L. Recall that, from Sect. 3.2.1, if W is symmetric, complex eigenvalues are always
stable, so, for the type of architecture considered here, unstable destructive interferences
only occur when W is asymmetric. This leads to several questions, potential subjects for
further studies.
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Figure 11 Role of the characteristic branch length ξ on anticipation. Top. The joint effect of the random ACell
connectivity and gain control on anticipation for ξ = 1, 2, 3. Left. Average bipolar anticipation time. Right.
Maximum value of the bipolar response RB . Bottom. The single effect of the random ACell connectivity on
anticipation with the same representation

1. How much does anticipation depend on the degree of asymmetry in the matrix W?
The way we generate the random connectivity in the model does not allow us to tune
the degree of asymmetry (i.e. the probability that a connection Aj → Bi exists
simultaneously with a connection Ai → Bj). Therefore, one has to find a different way
to generate the connectivity. From the mathematical analysis made in Appendix C, a
distribution depending exponentially on the distance, with a tunable probability to
have a symmetric connection, could be appropriate. We do not know about any
experimental results characterising this degree of symmetry of the connections in the
retina. On mathematical grounds, and from the analogy of the spectrum of W with a
circular law, one could expect the spectrum of W to become more and more
elongated on the real axis as the degree of symmetry increases in an elliptic like law
[55].

2. Nonlinear effects. The destructive interference effect in our model is partly due to the
linear nature of the ACell dynamics. In nonlinear dynamics, eigenvalues of the
evolution operator can display resonance conditions favouring constructive
interferences. On biological grounds, it is for example known that starburst amacrine
cells display periodic bursting activity during development, disappearing a few days
after birth [94]. Bursting and its disappearance can be understood in the framework
of bifurcation theory of a nonlinear dynamical system featuring these cells [50]. In
this setting, even if they are not bursting in the mature stage, SACs remain sensitive
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to specific stimulation that can temporally synchronise them, thereby enhancing the
network effect with a potential effect on anticipation.

3.3 The potential role of gap junctions on anticipation
In this section, we study the network ability to improve anticipation in the presence of gap
junctions coupling, as in Eq. (23), and gain control at the level of GCells.

We start first with mathematical results and show then simulation results.

3.3.1 Mathematical study
We use a continuous space limit for a one-dimensional lattice. The extension to two di-
mensions is straightforward. Here, x corresponds to the preferred direction of the direc-
tion sensitive cells. We consider a continuous spatio-temporal field V (x, t), x ∈ R, such
that VGk ≡ V (kδG, t). We assume likewise that V (P)

Gk
≡ V (P)(kδG, t) for some continuous

function V (P)(x, t) corresponding to the GCells bipolar pooling input (17), and we take the
limit δG → 0. In this limit Eq. (23) becomes

∂VG

∂t
= f (x, t) – vgap

∂VG

∂x
+ O
(
δ2

G
)
, (52)

where vgap ≡ wgapδG has the dimension of a speed and ∂V (P)(x,t)
∂t ≡ f (x, t). Finally, we denote

by C(x) the initial profile so that V (x, t0) = C(x).

Solution Neglecting terms of order δ2
G, the general solution of (52) is

VG(x, t) = C
(
x – vgap(t – t0)

)
+
∫ t

t0

f
(
x – vgap(t – u), u

)
du.

Equation (52) is a transport equation of ballistic type [74]. For example, if we consider
a stimulation of the form V (P)(x, t) = h(x – vt), where h is a Gaussian pulse of the form
(3), propagating with speed v, and an initial profile C(x) = h(x – vt0), the voltage of GCells
obeys

VG(x, t) =
v

v – vgap
h(x – vt)

︸ ︷︷ ︸
πstim

–
vgap

v – vgap
h
(
x – vgapt – (v – vgap)t0

)
︸ ︷︷ ︸

πgap

. (53)

When vgap = 0, the GCell voltage follows the stimulation, i.e. VG(x, t) = h(x – vt). In the
presence of gap junctions, there are two pulses: the first one πstim with amplitude v

v–vgap
propagating at speed v and following the stimulation; the second one πgap with amplitude
– vgap

v–vgap
propagating at speed vgap.

We have the following cases (we take t0 = 0 for simplicity). An illustration is given in
Fig. 12.

1. If v and vgap have the same sign:
(A) If vgap < v, the front πstim is amplified by a factor v

v–vgap
, whereas there is a

refractory front πgap, proportional to vgap, behind the excitatory pulse.
(B) If v = vgap, VG(x, t) = h(x – vgapt) + vgap(t – t0)h′(x – vgapt) which diverges like t

when t → ∞ and x → +∞. This divergence is a consequence of the limit δG → 0
in (52).
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Figure 12 Anticipation for non symmetric gap junctions. Top. GCell anticipation time and maximum firing rate
as a function of the gap junction velocity vgap . Bottom: response curves of GCells corresponding to the three
regimes: (A) vgap = 0.6 mm/s, (B) vgap = 3 mm/s, (C) vgap = 12 mm/s. The curves display 3 main regimes (see
text): In (A) vgap < v and the positive front propagates at the same speed as the pooling voltage triggered by
the stimulus; In (B), vgap = v, the positive front and the negative fronts both propagate at the speed vgap and
the amplitude of the positive front (VG(t)) increases with t; In (C), vgap > v and the positive front propagates
faster than the stimulus so that the peak of activity arises earlier. The negative front propagates at the stimulus
speed

(C) If vgap > v, the amplitude of πstim follows the stimulation with a negative sign
(hyper polarization), whereas πgap is ahead of the stimulation, with a positive
sign, travelling at speed vgap.

2. If v and vgap have the opposite sign, we set v = –αvgap with α > 0. Then the front πstim

follows the stimulus but is attenuated by a factor α
1+α

. The front πgap propagates in
the opposite direction with an attenuated amplitude 1

1+α
.

This shows that these gap junctions favour the response to motion in the preferred direc-
tion and attenuate the motion in the opposite direction although the attenuation is weak.
The effect is reinforced by gain control [74]. The most interesting case is 1 c where these
gap junctions can induce a wave of activation ahead of the stimulation.

Effect of gain control When the low voltage threshold NG (19) and the gain control GG(A)
(21) are applied to VG(x, t), there are two effects: (i) the hyperpolarised front is cut by NG;
(ii) the positive pulse induces a raise in activity, which in turn triggers the ganglion gain
control GG(A) inducing an anticipated peak in the response of the GCell, similar to what
happens with BCells, with a different form for the GCell gain control though. Moreover, in
contrast to pathway II of Fig. 1, where only gain control generates anticipation, in pathway
IV the wave of activity generated by gap junctions increases anticipation by two distinct
effects. If vgap < v, the cell’s response propagates at the same speed as the stimulus, but
its amplitude is larger than the case with no gap junction (term πstim). From Eq. (53) this
results in an increase of hB to an effective value hB

v
v–vgap

inducing an improvement in the
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anticipation time (with a saturation of the effect, though, as vgap → v). If vgap > v, the cell’s
response propagates at a larger speed than the stimulus (term πgap), so that the cell re-
sponds before the time of response without gaps. This induces as well an increase in the
anticipation time.

3.3.2 Numerical illustrations
We consider a bar with a width 200 μm moving in one dimension at constant speed v =
3 mm/s. We simulate here 100 GCells, placed on a 1D horizontal grid, with a spacing of
30 μm between two consecutive cells. At time t = 0, the first cell lies at 100 μm from the
leading edge of the moving bar.

We investigate how the GCell anticipation time and GCell firing rate depend on vgap in
Fig. 12. The top shows the effect of gain control alone (blue horizontal line independent
of vgap), the effect of the asymmetric gap junction connectivity alone (red triangles) and
the compound effect (white squares). Anticipation time is averaged over all GCells. In the
bottom part of the figure, we show the responses of two GCells of indices 30 and 60, spaced
by 900 μm.

As explained in Sect. 3.3.1, we observe the three regimes A, B, C mathematically antic-
ipated above. Note that, for these parameter values, the negative trailing front predicted
in A is not visible.

3.3.3 Symmetric gap junctions
The asymmetry observed by Trenholm et al. is due to the specific structure of the direc-
tion selective GCell dendritic tree [80]. However, in general gap junctions connectivity is
expected to be symmetric. So, to be complete, we consider here the effect of symmetric
gap junctions on anticipation. It is not difficult to derive the equivalent of Eq. (52) in this
case too. This is a diffusion equation of the form

∂VG

∂t
= f (x, t) + Dgap
VG + O

(
δ4

G
)
,

where Dgap = wgapδG2 is the diffusion coefficient and 
 is the Laplacian operator.
The response to a Gaussian stimulus of the form (3) reads as follows:

VG(x, y, t) = [H
x,y,t∗ f ], (54)

where

H(x, y, t) =
e– x2+y2

4Dgapt

4πDgapt
(55)

which is the heat equation diffusion kernel.
Recall that f (x, t) ≡ ∂V (P)(x,t)

∂t . So, if V (P)(x, t) = h(x – vt), where h is a Gaussian pulse of the
form (3) propagating with speed v, f is a bimodal function of the form v

σ 2 h(x–vt)× (x–vt),
the shape of which can be seen in Fig. 13(bottom), second row. The convolution with the
heat kernel leads to a front propagating at the same rate as the stimulus, with a diffusive
spreading whose rate is controlled by Dgap. In particular, there is positive bump ahead of
the motion, which can induce anticipation, as shown in Fig. 13(top). The effect is weak
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Figure 13 Anticipation for symmetric gap junctions. Top. GCell anticipation time and maximum firing rate as a
function of the gap junction velocity vgap . Bottom. Response curves of GCells corresponding for three values
of vgap : (A) vgap = 0.6 mm/s, (B) vgap = 3 mm/s, (C) vgap = 12 mm/s. For consistency, we have kept the same
values as in the asymmetric case. Here, anticipation time grows continuously until saturation, while the
maximum firing decreases like a power law as a function of vgap

though, essentially because the diffusive spreading makes the amplitude of the response
decrease fast as a function of Dgap.

Although this positive front, for small Dgap, increases a bit the anticipation time by accel-
erating the gain control triggering, rapidly the peak in the response RB is led by the voltage
peak corresponding to the positive bump with a low voltage. The position of this peak is,
roughly, at a distance σ =

√
σ 2

center + σ 2
B from the peak of the Gaussian pool, where σcenter is

the width of the centre RF and σB the width of the bar. This corresponds to a time σ
v ahead

of the peak in the drive, fixing a maximal value to the anticipation time (see the saturation
of the anticipation time curve in Fig. 13(top, left)). In our case, σ ∼ 134 given a satura-
tion peak at 134 μm

3 μm/ms = 44.84 ms. A consequence of the voltage decay is the corresponding
power law ( 1√

Dgap
for large Dgap) decay of the firing rate (Fig. 13(top, right)).

To conclude, the situation with symmetric gap junctions is in high contrast with di-
rection selective gap junctions where the response to stimuli was ballistic and was not
decreasing with time. On this basis we consider that, for symmetric gap junctions, the an-
ticipation effect is irrelevant, especially taking into account the smallness of the voltage
response in case C.

3.3.4 Numerical results
We investigate in this section how the GCell anticipation time and GCell firing rate depend
on the gap junction conductance in the case of symmetric gap junctions. In Fig. 13(top), we
use the same representation as in Fig. 12. For consistency with the direction sensitive case,
we choose vgap = Dgap

δG as a control parameter. We also take (A) vgap = 0.6 mm/s, (B) vgap =
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3 mm/s, (C) vgap = 12 mm/s in Fig. 13(bottom). This corresponds to a diffusion coefficient
(A) Dgap = 18 × 10–3 mm2/s, (B) Dgap = 90 × 10–3 mm2/s, (C) Dgap = 360 × 10–3 mm2/s.

3.3.5 Conclusion
In this section we have shown how gap junctions direction sensitive cells can display an-
ticipation due to the propagation of a wave of activity ahead of the stimulus. This effect is
negligible for symmetric gap junctions. Note that symmetric gap junctions are known to
favour waves propagation, for example in the early development (stage I, see [49] and the
reference therein for a recent numerical investigation). Here, gap junctions are considered
in a different context due to the presence of a nonstationary stimulus triggering the wave.

Let us now comment our computational result. How does it fit to biological reality?
Depending on the gap-junction conductance value, the propagation patterns we predict
are quite different.

What is the typical value of vgap in biology? It is difficult to make an estimate from the
expression vgap = ggapδG

C . The membrane capacity C and gap junctions conductance can be
obtained from the literature (for connexins Cx36, ggap ∼ 10–15 pS [75]), but the distance
δG is more difficult to evaluate. In the model, this is the average distance between GCells’
soma which corresponds to ∼200–300 μm. But in the computation with gap junctions
what matters is the length of a connexin channel which is quite smaller. Taking δG as the
distance between GCells assumes a propagation speed between somas at the speed of a
connexin, which is wrong because most of the speed is constrained by the propagation
of action potential along the dendritic tree. So we used a phenomenological argument
(we thank O. Marre for pointing it out to us). The correlation of spiking activity between
GCell neighbours is about 2–5 ms for cells separated by ∼200–300 μm [86]. This gives a
speed vgap in the interval [40, 150] mm/s, which is quite fast compared to the bar speed in
experiments.

So we are in case 1 b, and should one observe an experimental effect? To the best of
our knowledge, an effect of DSGC gap junctions on motion anticipation has not been ob-
served. But we do not know about experiments targeting precisely this effect. It would
be interesting to block gap junctions and address Berry et al. [9] or Chen et al. [20] ex-
periments in this case. The difficulty is that blocking gap junctions blocks many essential
retinal pathways. We do not pursue this discussion further concluding that our model
proposes a computational prediction that could be interesting to be experimentally inves-
tigated.

3.4 Response to two-dimensional stimuli
In this section, we present some examples of retinal responses and anticipation to trajec-
tories more complex than a bar moving in one dimension with a uniform speed. The aim
here is not to do an exhaustive study but, instead, to assess qualitatively some anticipatory
effects not considered in the previous sections.

3.4.1 Flash lag effect
The flash lag effect is an optical illusion where a bar moving along a smooth trajectory and
a flashed bar are presented to the subject and are perceived with a spatial displacement,
while they are actually aligned. A variation of this illusion consists of a bar moving in
rotation, a bar flashed in angular alignment, giving rise to a perceived angular discrepancy.
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Figure 14 Flash lag effect with different anticipatory mechanisms. (A) Response to a flash lag stimulus: a bar
moving in smooth motion with a second bar flashed in alignment with the first bar for one time frame. The
first line shows the stimulus, the second line shows the GCells response with gain control, the third line
presents the effect of lateral ACell Laplacian connectivity with w = 0.3 ms–1, and the last line shows the effect
of asymmetric gap junctions with vgap = 9 mm/s. (B) Time course response of (top) a cell responding to the
flashed bar and (bottom) a cell responding to the moving bar. Dashed lines indicate the peak of each curve

We have investigated this effect in our model in the presence of the different anticipatory
effects considered in the paper.

Figure 14 shows the response to a bar moving with a smooth motion, while a second bar
is flashed in alignment with the first bar at one time frame. The first line shows the stimuli,
consisting of 130 frames, of a bar moving at 2.7 mm/s, with a refreshment rate of 100 Hz.
The second line shows the GCell response with gain control, and the third line presents
the effect of lateral amacrine connectivity in the case of a Laplacian graph. Keeping the
same values of parameters as in the 1D case, we set w = 0.3 ms–1 corresponding to case
B in Fig. 7. Finally, the last line shows the effect of asymmetric gap junctions, having a
preferred orientation in the direction of motion, with vgap = 9 mm/s.

In the case of the gain control response, the peak of response to the moving bar is shifted
by about 10 ms in the direction of motion, as compared to the static bar. The flashed bar
elicits a lower response, given its very short appearance in comparison with the character-
istic time of adaptation. We choose this time short enough to avoid gain control triggering,
explaining the difference with the strong response observed by Chen et al. [20] in the pres-
ence of a still bar.

In the case of amacrine connectivity, the moving bar representation is shrunk as com-
pared to the gain control case given the prevalence of inhibition, while the level of activity
for the flashed bar remains roughly the same. In this case, cells responding to the moving
bar reach their peak activity slightly earlier (about 19 ms for these parameters value) than
in the gain control case (Fig. 14(B, top)).

Finally, asymmetric gap junction connectivity displays a wave propagating ahead of the
bar, increasing the central blob, which is much larger than the size of the bar in the stim-
ulus, while the flashed bar activity remains similar to the previous cases.

3.4.2 Parabolic trajectory
In this subsection, we assess the effect of the three anticipatory mechanisms on a parabolic
trajectory. The interest is to have a trajectory with a change in direction and speed, thus
an acceleration. The stimulus consists of 20 frames displayed at 10 Hz. The simulations
parameters and connectivity weights are the same as the ones used in the previous section.
Figure 15 shows the response to a dot moving along a parabolic trajectory.
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Figure 15 Effect of anticipatory mechanisms on a parabolic trajectory. (A) Response to a dot moving along a
parabolic trajectory. The first line shows the stimulus, the second line shows the GCell response with gain
control, the third line presents the effect of lateral ACell connectivity with w = 0.3 ms–1, and the last line
shows the effect of asymmetric gap junctions with vgap = 9 mm/s. (B) Time course response of a cell
responding to the dot near the trajectory turning point. Linear response corresponds to the response to the
stimulus without gain control

In the case of gain control, GCell response is more elongated, which has a distortion
effect on the dot representation near the turning point of the trajectory (1400–1600 ms).
Cells responding near the trajectory turning point are still anticipating motion, as the peak
response of the gain control curve is slightly shifted to the left, compared to the RF re-
sponse (Fig. 14(B)).

In the case of amacrine connectivity, the elicited response is also more localised, as com-
pared to the gain control response, and the flow of activity follows more accurately the
stimulus. This is a direct consequence of the sensitivity of the ACell connectivity model to
the stimulus acceleration. In this case, the peak response is also more shifted as compared
to the gain control case.

Finally, the gap junction connectivity model performs worse in this case, giving rise to a
propagating wave that does not follow the trajectory, since the latter is not parallel to the
direction to which GCells are sensitive. Cells responding near the trajectory turning point
have a higher level of activity and an increased latency, while the peak response roughly
corresponds to the gain control case.

3.4.3 Angular anticipation
We investigate in this subsection a two-dimensional example of motion where angular
anticipation takes place. The stimulus consists here of 72 frames, displayed at 100 Hz, of
a bar moving at a constant angular speed of 4.25 rad/ms.

Figure 16 shows the retina response to a rotating bar with the angular orientation of
activity as a function of time for the different models. We used Matlab to estimate the
bar orientation from the displayed activity, fitting the set of activated points by an ellipse
whose principal axis determines the response orientation.

In the three cases, one can see that the response around the centre of the bar is sup-
pressed due to gain control adaptation. While the gain control activity orientation roughly
follows the linear response (Fig. 16(B)), the ACell response shows a slight angular shift
(frames: 250–300 ms), which is also visible on the response orientation time course. The
ACell angular anticipation is, however, only observed during the first period of the bar.
Interestingly, this effect vanishes during the second rotation due to a persistent effect of
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Figure 16 Anticipation for a rotating bar. (A) Response to a bar rotating at 4.25 rad/ms. The first line shows the
stimulus, the second line shows the GCell response with gain control, the third line presents the effect of
lateral ACell connectivity with w = 0.2 ms–1, and the last line shows the effect of asymmetric gap junctions
with vgap = 9 mm/s. (B) Time course response of the bar orientation in the reconstructed retinal
representations

the activation function generating a sort of a suppressive effect erasing the second occur-
rence of the bar (frame: 450 ms). We shall point out that the ACell connectivity weight in
this simulation has been reduced to w = 0.2 ms–1, since with a value of w = 0.3 ms–1 used
in the previous simulations, the response to the second rotation of the bar is completely
suppressed.

Finally, similarly to the parabolic trajectory, the gap junction connectivity model per-
forms worse due to the wave propagating from left to right, distorting once more the
bar shape. Consequently, the bar activity orientation in this case has been discarded in
Fig. 16(B), the orientation estimate giving poor results.

3.5 Conclusion
This section shows how lateral connectivity can play a role in motion anticipation of 2D
stimuli, both in the case of the classical flash lag effect and more complex trajectories.
Indeed, for a given network setting, ACell connectivity can noticeably improve anticipa-
tion with respect to gain control in all three stimuli and has also the advantage of being
sensitive to trajectory shifts (Sect. 3.4.2).

While gap junction connectivity improves anticipation when the trajectory of the bar
is parallel to the preferred GCells direction, it also induces more blur around the bar and
shape distortion in the case of parabolic motion and rotation, suggesting a trade-off be-
tween anticipation and object recognition for this specific model.

4 Discussion
Using a simplified model, mathematically analysed with numerical simulations exam-
ples, we have been able to give strong evidences that lateral connectivity—inhibition with
ACells, gap junctions—could participate to motion anticipation in the retina. The main
argument is that a moving stimulus can, under specific conditions mathematically con-
trolled, induce a wave of activity which propagates ahead of the stimulus thanks to lateral
connectivity. This suggests that, in addition to local gain control mechanism inducing an
anticipated peak of GCells activity, lateral connectivity could induce a mechanism of neu-
ral latencies reduction similar to what is observed in the cortex [8, 46, 77]. This is visible
in particular in Fig. 14, where the gap junction coupling induces a wave which increases
the GCell level activity before the bar reaches its RF.
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Yet, these studies raise several questions and remarks. The first one is, of course, the
biological plausibility. At the core of the model, what makes the mathematical analysis
tractable is the fact that we can reduce dynamics, in some region of the phase space, to
a linear dynamical system. This structure is afforded by two facts: (i) Synapses are char-
acterised by a simple convolution; (ii) Cells, especially ACells, have a simple passive dy-
namics, where nonlinear effects induced e.g. by ionic channels are neglected, as well as
propagation delays. As stated in the introduction, the goal here is not to be biologically
realistic, but instead to illustrate potential general spatio-temporal response mechanisms
taking into account specificities of the retina, as compared to e.g. the cortex. Essentially,
most neurons are not spiking (except GCells and some type of BCells or ACells, not con-
sidered here [2]). Yet, synapses follow the same biophysics as their cortical counterpart. As
it is standard to model the whole chain of biophysical machinery triggering a post-synaptic
potential upon a sharp increase of the pre-synaptic voltage by a convolution kernel [27],
we adopted here the same approach. Note that it is absolutely not required, in this convo-
lutional approach, for the pre-synaptic increase in voltage to be a spike; it can be a smooth
variation of the voltage. Note also that higher order convolution kernels can be consid-
ered, integrating more details of the biological machinery. These higher order kernels are
represented by higher order linear differential equations [35]. Concerning point (ii), non-
linear effects are neglected, especially for ACells (BCells have gain control), there are not so
many available models of ACells. A linear model for predictive coding using linear ACells
has been used by Hosoya et al. [43]. We discuss it in more detail below. The nonlinear
models of ACells we know have been developed to study the retina in its early stage (reti-
nal waves) and feature either AII ACells [21] or starburst ACells [50]. In Sect. 3.2.4 we
have briefly commented how nonlinear mechanisms could enhance resonance effects in
the network and, thereby, favour the propagation of a lateral wave of activity induced by a
moving stimulus. This would of course deserve more detailed study. Another potentially
interesting nonlinear mechanism is short term plasticity discussed below.

The second question one may ask about the model is about the robustness of this mech-
anism with respect to parameters. The model contains many parameters, some of them
(BCells, GCells and gain control) coming from the previous paper from Berry et al. [9]
and Chen et al. [20]. Although they did not perform a structural stability analysis of their
model (i.e. stability of the model with respect to small variations of parameters), we believe
that they are tuned away from bifurcation points so that slight changes in their (isolated
cells) model parameters would not induce big changes. As we have shown, the situation
changes dramatically when cells are connected via lateral connectivity. Here, many types
of dynamical behaviour can be expected simply by changing the connectivity patterns in
the case of ACells. A more detailed analysis would require a closer investigation of ACell
to BCell connectivity and an estimation of synaptic coupling, implying to define more
specifically the type of ACell (AII, starburst, A17, wide field, medium field, narrow field,
etc.) and the type of functional circuit one wants to consider. Note that ACells are difficult
to access experimentally due to their location inside the retina. Even more difficult is a
measurement of ACell connectivity, especially the degree of symmetry discussed in our
paper. Such studies can be performed at the computational level, though, where the math-
ematical framework proposed here can be applied and extended. Computational results
do not tell us what is the reality, but they shed light on what it could be.
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We would like now to address several possible extensions of this work.

The retino-thalamico-cortical pathway The retina is only the early stage of the visual
system. Visual responses are then processed via the thalamus and the cortex. As exposed
in the introduction, anticipation is also observed in V1 with a different modality than in
the retina. In this paper, our main focus was on the shift of the peak response, while when
studying anticipation in the cortex, the main focus lies in the increase of the response
latency, i.e. the delay between the time the bar reaches the receptive field of a cortical
column and the effective time its activity starts rising. How do these two effects combine?
How does retinal anticipation impact cortical anticipation? To answer these questions at a
computational level, one would need to propose a model of the retino-thalamico-cortical
pathway which, to the best of our knowledge, has never been done. Yet, we have developed
a retino-cortical (V1) model—thus, short-cutting the thalamus—based on a mean-field
model of the V1 cortex, developed earlier by the groups of F. Chavane and A. Destexhe
[19, 93], able to reproduce V1 anticipation as observed in VSDI imaging. The aim of this
work is to understand, computationally, the effect of retinal anticipation on the cortical
one and more generally the combined effects of motion extrapolation in the retina and V1.
This is the object of a forthcoming paper (S. Souihel, M. di Volo, S. Chemla, A. Destexhe,
F. Chavane and B. Cessac., in preparation). See [74] for preliminary results.

Retinal circuits BCells, ACells and GCells are organised into multiple, local, functional
circuits with specific connectivity patterns and dynamics in response to stimuli. Each cir-
cuit is related to a specific task, such as light intensity or contrast adaptation, motion de-
tection, orientation, motion direction and so on. Here, we have considered a circuit allow-
ing the retina to detect a moving object on a moving background, where motion sensitive
retinal cells remain silent under global motion of the visual scene, but fire when the image
patch in their receptive field moves differently from the background. From our study we
have emitted the hypothesis that this circuit, spread over the retina, could improve mo-
tion anticipation thanks to what we have called the “push–pull” effect. Yet, other circuits
could be studied in their role to process motion and anticipation. We especially think of
the ON-OFF cone and rod-cone pathways responsible for the separation of highlights and
shadows, allowing to provide information to the GCells concerning brighter than back-
ground stimuli (ON-centre) or darker than background stimuli (OFF-centre) [54]. This
circuit involves both gap junction and ACell (AII) connectivity, and our model could al-
low to study its dynamics in the presence of a moving object.

Adaptation effects In a paper from 2005, Hosoya et al. [43] studied dynamic predictive
coding in the retina and showed how spatio-temporal receptive fields of retinal GCells
change after a few seconds in a new environment, allowing the retina to adjust its pro-
cessing dynamically when encountering changes in its visual environment. They showed
that an amacrine network model with plastic synapses can account for the large variety of
observed adaptations. They feature a linear network model of ACells, similar to ours, with,
in addition, anti-Hebbian plasticity. Their mathematical analysis, based on linear algebra,
allows to determine the behaviour of the model in terms of eigenvalues and eigenvectors.
However, their analysis does not carry out to the gain control introduced by Berry et al.,
which, as we show, renders the spectral analysis quite more complex. It would therefore be
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interesting to explore how plasticity in the ACell synaptic network, conjugated with local
gain control, contributes to anticipation.

Correlations The trajectory of a moving object—which is, in general, quite more com-
plex than a moving bar with constant speed—involves long-range correlations in space
and in time. Local information about this motion is encoded by retinal GCells. De-
coders based on the firing rates of these cells can extract some of the motion features
[25, 43, 51, 62, 66, 67, 76]. Yet lateral connectivity plays a central role in motion processing
(see, e.g. [41]). One may expect it to induce spatial and temporal correlations in spiking
activity, as an echo, a trace, of the object’s trajectory. These correlations cannot be read
in the variations of firing rate; they also cannot be read in synchronous pairwise corre-
lations, as the propagation of information due to lateral connectivity necessarily involves
delays. This example raises the question about what information can be extracted from
spatio-temporal correlations in a network of connected neurons submitted to a transient
stimulus. What is the effect of the stimulus on these correlations? How can one handle this
information from data where one has to measure transient correlations? This question has
been addressed in [17]. The potential impact of these spatio-temporal correlations on de-
coding and anticipating a trajectory will be the object of further studies.

Orientation selective cells Our model affords the possibility to consider BCells with ori-
entation sensitive RF. The potential role of such BCells for predictive coding has been
outlined by Johnston et al. [48]. In their model individual GCells receive excitatory BCell
inputs tuned to different orientations, generating a dynamic predictive code, while feed-
forward inhibition generates a high-pass filter that only transmits the initial activation of
these inputs, removing redundancy. Should such circuits play a role in motion anticipa-
tion? We did not elaborate on this in the present paper, leaving it to a potential forthcoming
work. Another important question is “how to model a retinal network with cells having
different orientation selectivity?” A V1 cortical model has been proposed by Baspinar et
al. [7] for the generation of orientation preference maps, considering both orientation and
scale features. Each point (cortical column) is characterised by intrinsic variables, orien-
tation and scale, and the corresponding RF is a rotated Gabor function. The visual stim-
ulus is lifted in a four-dimensional space, characterised by coordinate variables, position,
orientation and scale. The authors infer from the V1 connectivity a “natural” geometry
from which they can apply methods from differential geometry. This type of mathemati-
cal construction could be interesting to investigate in the case of the retina with families
of orientation selective cells, although the retinal connectivity between these cells is not
the same as the V1 orientation preference map structure [12, 13, 82, 91].

Biologically inspired vision systems When the retina receives a visual stimulus, it deter-
mines which component of it is significant and needs to be further transmitted to the brain.
This efficient coding heuristic has inspired many recent studies in developing biologically
inspired systems, both for static image and motion representations [59, 87, 90]. Two ma-
jor applications of biologically inspired vision systems are retinal prostheses [53, 63, 79]
and navigational robotics [24, 52]. Focusing on the second field of application, the abil-
ity of a mobile device to navigate in its environment is of utmost interest, especially in
order to avoid dangerous situations such as collisions. To be able to move, the robot re-
quires a mapped representation of its environment, but also the ability to interpret and
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process this representation. Motion processing mechanisms such as anticipation can be
thus implemented to assess the efficiency of bio-inspired vision in obstacle avoidance.

Psychophysical study of motion anticipation We briefly come back to the flash lag effect
introduced in 3.4.1. Neuroscience has explored several explanations for this illusion. The
first explanation is that the visual system processes moving objects with a smaller latency
than flashed objects [89]. The second explanation suggests that the flash lag effect is due
to postdiction: the perception of the flash is conditioned by events happening after its ap-
pearance [30, 31]. This hypothesis is inspired by the colour phi illusion, where two dots
of different colours appearing at two discrete yet close positions, with a small latency, will
be perceived as a single moving dot whose colour has changed. Another explanation in-
cludes motion extrapolation. The visual system being predictive, it processes differently a
bar in smooth motion, whose motion can be extrapolated, and a flashed bar, which can-
not be predicted by the system. The study conducted in this article falls under this third
explanation, suggesting that the retina could possibly be assisting the cortex in the motion
extrapolation task.

Appendix A: Parameters of the model

Table 1 Model parameters values used in simulations, unless stated otherwise

Function Parameter Value Unit

KB,S (Eq. (56)) σ1 (centre) 90 μm
σ2 (surround) 290 μm
A1 (centre) 1.2 mV
A2 (surround) 0.2 mV

KT (t) (Eq. (57)) μ1 60 ms
μ2 180 ms
σ1 20 ms
σ2 44 ms
K1 0.22 unitless
K2 0.1 unitless

BCell dynamics τa 100 ms
hB 6.11e–3 mV–1.ms–1

θB 5.32 mV
τB 200 ms

ACell dynamics τA 200 ms
w [0, 1] ms–1

ACell connectivity ξ {1, 2, 3, 4} mm
n̄ {1, 2, 3, 4} unitless
σn 1 unitless

GCell dynamics ap 0.5 unitless
σp 90 μm
τG 189.5 ms
hG 3.59e–4 unitless
αG 1110 Hz/mV
θG 0 mV
Nmax
G 212 Hz
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Appendix B: Spatio-temporal filtering
B.1 Receptive fields
The spatial kernel of the BCell i is modelled with a difference of Gaussians (DOG):

KBi ,S(x, y) =
A1

2π
√

det C1
e– 1

2 X̃i .C–1
1 .Xi –

A2

2π
√

det C2
e– 1

2 X̃i .C–1
2 .Xi , (56)

where Xi =
( x–xi

y–yi

)
,˜ denotes the transpose, xi and yi are the coordinates of the receptive

field centre which coincide with the coordinates of the cell, C1, C2 are positive definite ma-
trix whose main principal axis represents the preferred orientation. For circular DOGs(no
preferred orientation) C1 ≡ σ 2

1 I , C2 ≡ σ 2
2 I where I is the identity matrix in two dimen-

sions. The two Gaussians of the DOG are thus concentric. They have the same principal
axes. Xi has the physical dimension of a length (mm), thus the entries of Ca, a = 1, 2, are
expressed in mm2. Aa, a = 1, . . . , 2, have the dimension of mV so that convolution (1) has
the dimension of a voltage.

We model the temporal part of the RF with a difference of non-concentric Gaussians
whose integral on the time domain is zero. This kernel well fits the shape of the temporal
projection of the bipolar RF observed in experiments [74].

KT (t) =
(

K1√
2πσ1

e
– (t–μ1)2

2σ2
1 –

K2√
2πσ2

e
– (t–μ2)2

2σ2
2

)
H(t), (57)

where H(t) is the Heaviside function. The parameters μb, σb, b = 1, 2, have the dimension
of a time (s), whereas Kb are dimensionless. The following condition must hold to ensure
the continuity of KT (t) at zero:

K1

σ1
e

–
μ2

1
2σ2

1 =
K2

σ2
e

–
μ2

2
2σ2

2 . (58)

Thus, KBi (x, y, 0) = 0. In addition, we require that the integral of a constant stimulus con-
verges to zero, so that the cell is only reactive to changes. This reads as follows:

K1�

(
μ1

σ1

)
= K2�

(
μ2

σ2

)
, (59)

where

�(x) =
1√
2π

∫ x

–∞
e– y2

2 dy (60)

is the cumulative distribution function of the standard Gaussian probability.

B.2 Numerical convolution
Here we describe the method used to numerically integrate convolution (1) of the recep-
tive field KBi ,S (56) in the spatial domain with a stimulus S . For the sake of clarity, we
restrict the computation to one Gaussian in the DOG. The extension to a difference of
Gaussian is straightforward. In the following, we consider a spatially discretized stimulus.
When dealing with a 2D stimulus, we have to integrate over two axes. In the case where the
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eigenvectors of the 2D of Gaussians are the axes of integration, the spatial filter is separable
in the stimulus coordinate system. Considering the stimulus as a grid of pixels, we can in-
tegrate using the following discretization: let Lx be the size of the stimulus along the x axis
in pixels, Ly be its size along the y axis, and δ be the pixel length. We set Sij(t) ≡ S(iδ, jδ, u),
with i = 0, . . . , Lx

δ
and j = 0, . . . , Ly

δ
. The spatial convolution becomes then

[KBi

x,y∗ S](t)

=
1

2πσxσy

∫ ∫
R2

S(x, y, t)e
– (x–x0)2

2σ2x
– (y–y0)2

2σ2y dx dy

=
∑

i,j

Sij(t)
[

erf

(
i + δ – x0√

2σx

)
– erf

(
i – x0√

2σx

)][
erf

(
j + δ – y0√

2σy

)
– erf

(
j – y0√

2σy

)]
.

In the case where the eigenvectors of the 2D of Gaussians are not the axes of integration,
the spatial filter is not separable in the stimulus coordinates system. There exist methods
that perform the computation by making a linear combination of basis filters [36], others
that use Fourier based deconvolution techniques [83] and others using recursive filter-
ing techniques [26]. However, these methods are of high computational complexity. We
choose instead to use a computer vision method from Geusenroek et al. [39].

It is based on a projection in a non-orthogonal basis, where the first axis is x and the
second is parametrized by an angle φ (see Fig. 17). The new standard deviations read as
follows:

σx′ =
σxσy√

σ 2
x cos θ2 + σ 2

y sin θ2
,

σφ =

√
σ 2

y cos θ2 + σ 2
x sin θ2

sinφ

Figure 17 Filter transformation description [39]. The original system of axes is represented by x and y, and the
ellipse system of axes by u and v. φ represents the angle of the second axis of the non-orthogonal basis. The
integration domain of a pixel is limited by four lines of equations: x = iδ , x = (i + 1)δ , y = jδ and y = (j + 1)δ .
Rewriting these fours equations in the new system of axes through a coordinate change enables us to write
Eq. (61)
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with

tan(φ) =
σ 2

y cos θ2 + σ 2
x sin θ2

(σ 2
x – σ 2

y ) cos θ sin θ

and σx �= σy (in the orientation sensitive case).
We adapt the implementation to the spatially discretized stimulus using an integration

scheme similar to the one introduced in the separable case. The spatial convolution reads
now as follows:

[KBi

x,y∗ S](x0, y0, t)

= σx′

√
π

2
∑

(i;j)∈[0,sx]×[0,sy]

∫ (y+1) δ
sin(φ)

y δ
sin(φ)

Cije
(y′–y0)2

2σ2
φ

×
[

erf

(
(– cos(φ)y′ + x + 1)δ – x0√

2σx′

)
– erf

(
(– cos(φ)y′ + x)δ – x0√

2σx′

)]
dy′,

(61)

where sx (resp. sy) denotes the size of the stimulus in pixels along the x axis (resp. y axis),
and Cij is the contrast at the pixel located at (i, j).

The integral is then computed numerically. The advantage of this formulation is to re-
place a two-dimensional integration by a one-dimensional one.

Appendix C: Random connectivity
Here, we define the random connectivity matrix from ACell to BCells considered in
Sect. 2.3.3. Each cell (ACell and BCell) has a random number of branches (dendritic tree),
each of which has a random length and a random angle with respect to the horizontal axis.
The length of branches L follows an exponential distribution

fL(l) =
1
ξ

e– l
ξ , l ≥ 0, (62)

with spatial scale ξ . The number of branches n is also a random variable, Gaussian with
mean n̄ and variance σn. The angle distribution is taken to be isotropic in the plane, i.e.
uniform on [0, 2π [. When a branch of an ACell A intersects a branch of a BCell B, there is
a chemical synapse from A to B.

Here, we assume that both cell types have the same probability distributions for
branches, thus neglecting the actual shape of ACell and BCell dendritic trees. On biolog-
ical grounds, this assumption is relevant if we consider the shape of BCell dendritic tree
in the inner plexiform layer (IPL) (see e.g https://webvision.med.utah.edu/book/part-iii-
retinal-circuits/roles-of-ACell-cells/ Figs. 5, 16, 17). While out of the IPL, BCells have the
form of a dipole, in the IPL their dendrites have a form well approximated by our two-
dimensional model. A potential refinement would consist of considering different set of
parameters in the probability laws respectively defining BCell and ACell dendritic tree.

We show in Fig. 18 an example of connectivity matrix produced this way, as well as the
probability that two branches intersect as a function of the distance of the two cells.

We now compute this probability. We use the standard notation in probability theory
where the random variable is written in capitals and its realisation in a small letter. Thus,

https://webvision.med.utah.edu/book/part-iii-retinal-circuits/roles-of-ACell-cells/
https://webvision.med.utah.edu/book/part-iii-retinal-circuits/roles-of-ACell-cells/
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Figure 18 Random connectivity. Left. Example of a random connectivity matrix from ACells Aj to BCells cells Bi .
White points correspond to connection from Aj to Bi . Right. Probability P(d) that two branches intersect as a
function of the distance between two cells. ‘Exp’ corresponds to numerical estimation and ‘Th’ corresponds to
the theoretical prediction. Here, ξ = 2

FX(x) = P[X < x] is the cumulative distribution function of the random variable X and
fX(x) = dFX

dx is its density.
We consider the oriented connection between the cell A (ACell) of coordinates (xA, yA)

to a cell B (BCell) of coordinates (xB, yB), so that the distance between the two cells is
dAB =

√
(xB – xA)2 + (yB – yA)2.

The vector �AB makes an oriented angle η = ̂( �AB, �Ax) with the positive horizontal axis,
where

η =

⎧⎨
⎩

arctan yB–yA
xB–xA

, if xB > xA;

π + arctan yB–yA
xB–xA

, if xB < xA.
(63)

Here, we neglect the effects of boundaries, taking e.g. an infinite lattice or periodic bound-
ary conditions, so that the probability to connect A to B is invariant by rotation. Thus, we
compute this probability in the first quadrant xB > xA, yB > yA. In this case η = arctan yB–yA

xB–xA
.

Each cell has a random number of branches (dendritic tree), each of which has a random
length and a random angle with respect to the horizontal axis (Fig. 19). The length of
branches L follows the exponential distribution (62): fL(l) = 1

ξ
e– l

ξ , l ≥ 0, with repartition
function

FL(l) = 1 – e– l
ξ . (64)

The spatial scale ξ favours short range connections. The number of branches N distribu-
tion follows a normal distribution with mean n̄ and variance σn. The angle distribution is
taken to be isotropic in the plane, i.e. uniform on [0, 2π [.

We compute the probability that a branch of ACell A of length LA intersects at point C

a branch of BCell B of length LB. We denote by α the oriented angle ̂( �Ax, �AC); by β the
oriented angle ̂( �Bx, �BC); by θ the oriented angle ̂( �AB, �AC). In the first quadrant, α = θ + η.
Note that the condition to be in the first quadrant constraints η but not α.

From the sin rule we have sin(β–α+θ )
dAC

= sin θ
dBC

= sin(β–α)
dAB

. This holds, however, if A, B, C is a
triangle, that is, if the two branches are long enough to intersect at C, which reads: 0 ≤
dAC = sin(β–α+θ )

sin(β–α) dAB ≤ LA and 0 ≤ dBC = sin θ
sin(β–α) dAB ≤ LB. These are necessary and sufficient

conditions for the branches to intersect.
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Figure 19 Geometry of connection between two neurons. α (β ) is the angle of the neuron A’s branch with
length LA (neuron B’s branch with length LB) with respect to the horizontal axis. θ is the angle between the
segment connecting AB and the branch A. C represents the virtual point that lies at the intersection of the
branches of length LA and LB . dAB (resp. dAC , dBC ) denotes the distance between A and B (resp. A, C and B, C).
Note that dAC ≤ LA , dBC ≤ LB

Note that the positivity of these quantities imposes conditions linking the angles α, β , η
with θ = α – η.

1. If sin(β – α) > 0 ⇔ 0 < β – α < π ⇔ α < β < π + α, we must have
sin θ > 0 ⇔ 0 < θ = α – η < π so that η < α < π + η and
sin(β – α + θ ) > 0 ⇔ 0 < β – α + θ = β – η < π so that η < β < π + η (because η ≥ 0).
All these constraints are satisfied if η < α < β < min(π + α,π + η) = π + η.

2. If sin(β – α) < 0 ⇔ –π < β – α < 0 ⇔ –π + α < β < α, we must have
sin θ < 0 ⇔ –π < θ = α – η < 0 so that –π + η < α < η and
sin(β – α + θ ) < 0 ⇔ –π < β – α + θ = β – η < 0 so that –π + η < β < η. All these
constraints are satisfied if max(–π + α, –π + η) = –π + η < β < α < η.

Modulo these conditions, the conditional probability ρc|(α,β) to have intersection given
the angles α, β is

ρc|(α,β) = P[Connection | α,β]

= P

[
0 ≤ sin(β – α + θ )

sin(β – α)
dAB ≤ LA, 0 ≤ sin θ

sin(β – α)
dAB ≤ LB

∣∣∣ α,β
]

.

Using the cumulative distribution function (64) of the exponential distribution and the
independence of LA, LB gives

ρc|(α,β) =
(

1 – FL

(
sin(β – α + θ )

sin(β – α)
dAB

))(
1 – FL

(
sin θ

sin(β – α)
dAB

))
= e

– dAB
ξ

sin( α+β
2 –η)

sin( β–α
2 ) .
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The probability to connect the two branches in the first quadrant is then

ρc(dAB,η) =
1

4π2

(∫ π+η

α=η

∫ π+η

β=α

e
– dAB

ξ

sin( α+β
2 –η)

sin( β–α
2 ) dα dβ

+
∫ η

α=–π+η

∫ α

β=–π+η

e
– dAB

ξ

sin( α+β
2 –η)

sin( β–α
2 ) dα dβ

)
,

(65)

which depends on the distance between the two cells and their angle η, depending para-
metrically on the characteristic length ξ . Note that the condition of positivity of the sine
ratio ensures an exponential decay of the probability as dAB increases.

Remark The positivity of arguments in the exponential implies that

4π2ρc(dAB,η) ≤
∫ π+η

α=η

∫ π+η

β=α

dα dβ +
∫ η

α=–π+η

∫ α

β=–π+η

dα dβ = π2,

so that ρc(dAB,η) ≤ 1
4 .

Appendix D: Linear analysis
D.1 General solution of the linear dynamical system
Here, we consider dynamical system (34), d �X

dt = L. �X + �F (t), whose general solution is

�X (t) =
∫ t

t0

eL(t–s). �F (s) ds.

The behaviour of this integral depends on the spectrum of L. The difficulty is that L is
not diagonalisable (because of the activity term hBIN ,N ). We write it in the following form:

L =

⎛
⎜⎜⎜⎝

M︷ ︸︸ ︷( –
IN ,N
τB

W A
B

W B
A –

IN ,N
τA

)
0N ,N 0N ,N

0N ,N 0N ,N – IN ,N
τa

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎝

0N ,N 0N ,N 0N ,N

0N ,N 0N ,N 0N ,N

hBIN ,N 0N ,N 0N ,N

⎞
⎟⎠

︸ ︷︷ ︸
J

.

We assume that the matrix M is diagonalisable. Even in this case, L is not diagonalisable
because of the Jordan matrix J . We denote by �φβ the normalised eigenvectors of M and
by λβ the corresponding eigenvalues with β = 1, . . . , 2N . The eigenvalues of D are then the
2N eigenvalues of M plus N eigenvalues – 1

τa
. We denote them by λβ too, with λβ = – 1

τa
,

β = 2N + 1, . . . , 3N . The eigenvectors of D have the form

�Pβ =

⎧⎨
⎩
( �φβ

�0N

)
, β = 1, . . . , 2N ;

�eβ , β = 2N + 1, . . . , 3N ,

where �0N is the N-dimensional vector with entries 0 and �eβ is the canonical basis vector
in direction β . The matrix P made by the columns �Pβ is the matrix which diagonalises D.
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We denote by � = P–1DP the diagonal form, where � = Diag{λβ ,β = 1, . . . , 3N}. P and
P–1 have the following block form:

P =

(
� 02N ,N

0N ,2N IN ,N

)
; yP–1 =

(
�–1 02N ,N

0N ,2N IN ,N

)
, (66)

where � is the matrix whose columns are the eigenvectors �φβ of M. This form implies
that Pαβ = P–1

αβ = δαβ for β = 2N + 1, . . . , 3N .
We now compute eLt using the series expansion eLt =

∑+∞
n=0

tn

n! (D +J )n. Using the rela-
tions

J 2 = 03N ,3N ; Dn.J =
(

–
1
τa

)n

J ,

one proves that

(D + J )n = Dn + J .
n–1∑
k=0

(
–

1
τa

)k

Dn–1–k .

Therefore

eLt = eDt + J .
+∞∑
n=1

tn

n!

n–1∑
k=0

(
–

1
τa

)k

Dn–1–k .

We use the matrices P , P–1 to write it in the form

eLt = P .e�t .P–1 + J .
+∞∑
n=1

tn

n!

n–1∑
k=0

(
–

1
τa

)k

P .�n–1–k .P–1.

From relation (36) we obtain, for the entries of �X (t),

Xα(t) =
3N∑

β ,γ =1

PαβP–1
βγ

∫ t

t0

eλβ (t–s)Fγ (s) ds

+
3N∑

δ,β ,γ =1

Jα,δPδβP–1
βγ

∫ t

t0

+∞∑
n=1

(t – s)n

n!

n–1∑
k=0

(
–

1
τa

)k

λn–1–k
β Fγ (s) ds.

(67)

We consider the first term of this equation. We use Fγ = FBi , γ = i = 1, . . . , N (BCells).
We recall that, from (13), FBi (t) =

Vidrive
τB

+
dVidrive

dt , so that

∫ t

t0

eλβ (t–s)Fγ (s) ds = Vγdrive (t) +
(

1
τB

+ λβ

)∫ t

t0

eλβ (t–s)Vγdrive (s) ds. (68)

Moreover,

3N∑
β=1

3N∑
γ =1

PαβP–1
βγ Vγdrive (t) =

3N∑
γ =1

Vγdrive (t)

( 3N∑
β=1

PαβP–1
βγ

)
=

3N∑
γ =1

Vγdrive (t)δαγ = Vαdrive (t).
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We extend the definition of drive term (1) to 3N dimensions such that Vαdrive (t) = 0 if
α > N . Thus

3N∑
β ,γ =1

PαβP–1
βγ

∫ t

t0

eλβ (t–s)Fγ (s) ds

= Vαdrive (t) +
3N∑
β=1

(
1
τB

+ λβ

) N∑
γ =1

PαβP–1
βγ

∫ t

–∞
eλβ (t–s)Vγdrive (s) ds.

We decompose the sum over β in three sums: β = 1, . . . , N corresponding to BCells;
β = N + 1, . . . , 2N corresponding to ACells; β = 2N + 1, . . . , 3N corresponding to activities
of BCells. We define (Eq. (38) in the text):

EB
B,α(t) =

N∑
β=1

(
1
τB

+ λβ

) N∑
γ =1

PαβP–1
βγ

∫ t

t0

eλβ (t–s)Vγdrive (s) ds, α = 1, . . . , N ,

corresponding to the indirect effect, via the ACell connectivity, of the drive on BCell volt-
ages. The term

EB
A,α(t) =

2N∑
β=N+1

(
1
τB

+ λβ

) N∑
γ =1

PαβP–1
βγ

∫ t

t0

eλβ (t–s)Vγdrive (s) ds, α = N + 1, . . . , 2N

(Eq. (39) in the text) corresponds to the effect of BCell drive on ACell voltages. The third
term

3N∑
β=2N+1

(
1
τB

+ λβ

) N∑
γ =1

PαβP–1
βγ

∫ t

t0

eλβ (t–s)Vγdrive (s) ds = 0, α = 2N + 1, . . . , 3N ,

because P–1
βγ = δβγ .

To compute the second term in Eq. (67), we first first remark that Jα,δ = 0 if α = 1, . . . , 2N
and Jα,δ = hBδα–2N ,δ if α = 2N + 1, . . . , 3N , so that this term is nonzero only if α = 2N +
1, . . . , 3N (BCell activities). Also Fγ �= 0 for γ = 1, . . . , N , while P–1

βγ = δβγ for β = 2N +
1, . . . , 3N . Therefore, for α = 2N + 1, . . . , 3N , the second term in Xα(t) is

hB

2N∑
β=1

N∑
γ =1

Pα–2NβP–1
βγ

∫ t

t0

+∞∑
n=1

(t – s)n

n!

n–1∑
k=0

(
–

1
τa

)k

λn–1–k
β Fγ (s) ds.

We now simplify the series:

+∞∑
n=1

(t – s)n

n!

n–1∑
k=0

(
–

1
τa

)k

λn–1–k
β =

+∞∑
n=1

(t – s)n

n!
λn–1

β

n–1∑
k=0

(
–

1
τaλβ

)k

=
+∞∑
n=1

(t – s)n

n!
λn–1

β

(1 – (– 1
τaλβ

)n

1 + 1
τaλβ

)
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=
1
λβ

1
1 + 1

τaλβ

[ +∞∑
n=1

(λβ (t – s))n

n!
–

+∞∑
n=1

(– t–s
τa

)n

n!

]

=
1

λβ + 1
τa

[
eλβ (t–s) – e– t–s

τa
]
.

The time integral is computed the same way as Eq. (68):

∫ t

t0

+∞∑
n=1

(t – s)n

n!

n–1∑
k=0

(
–

1
τa

)k

λn–1–k
β Fγ (s) ds

=
1

λβ + 1
τa

[∫ t

t0

eλβ (t–s)Fγ (s) ds –
∫ t

t0

e– t–s
τa Fγ (s) ds

]

=
1

λβ + 1
τa

[(
1
τB

+ λβ

)∫ t

t0

eλβ (t–s)Vγdrive (s) ds –
(

1
τB

–
1
τa

)∫ t

t0

e– t–s
τa Vγdrive (s) ds

]
.

Similar to Eqs. (38), (39) in the text, we introduce

EB
a,α(t) = hB

2N∑
β=1

N∑
γ =1

Pα–2NβP–1
βγ

1
λβ + 1

τa

[
( 1
τB

+ λβ )
∫ t

t0
eλβ (t–s)Vγdrive (s) ds

– ( 1
τB

– 1
τa

)
∫ t

t0
e– t–s

τa Vγdrive (s) ds

]
,

α = 2N + 1, . . . , 3N ,

corresponding to the action of BCells and ACells on the activity of BCells via the net-
work effect. Let us consider in more detail the second term. From (66),

∑2N
β=1 Pα–2NβP–1

βγ =
δα–2Nγ , thus

2N∑
β=1

N∑
γ =1

Pα–2NβP–1
βγ

∫ t

t0

e– t–s
τa Vγdrive (s) ds =

N∑
γ =1

(∫ t

t0

e– t–s
τa Vγdrive (s) ds

2N∑
β=1

Pα–2NβP–1
βγ

︸ ︷︷ ︸
δα–2Nγ

)

=
∫ t

t0

e– t–s
τa Vα–2Ndrive (s) ds ≡ A0

α–2N (t)

(Eq. (41) in the text).
This finally leads to ((40) in the text)

EB
a,α(t) = hB

( 2N∑
β=1

N∑
γ =1

Pα–2NβP–1
βγ

λβ + 1
τB

λβ + 1
τa

∫ t

t0

eλβ (t–s)Vγdrive (s) ds +
– 1

τB
+ 1

τa

λβ + 1
τa

A0
α–2N (t)

)
,

α = 2N + 1, . . . , 3N .

D.2 Spectrum of L and stability of dynamical system (34)
Here, we assume that a BCell connects only one ACell, with a weight w+ uniform for all
BCells, so that W B

A = w+IN ,N , w+ > 0. We also assume that ACells connect to BCells with
a connectivity matrix W , not necessarily symmetric, with a uniform weight –w–, w– > 0,
so that W A

B = –w–W . We have shown in the previous section that the 2N first eigenvalues
and eigenvectors of L are given by the 2N eigenvalues and eigenvectors of M, which reads
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now as follows:

M =

(
– IN ,N

τB
–w–W

w+IN ,N – IN ,N
τA

)
. (69)

We now show that this specific structure allows us to compute the spectrum ofM in terms
of the spectrum of W .

D.2.1 Eigenvalues and eigenvectors of M
We denote by κn, n = 1, . . . , N , the eigenvalues of W ordered as |κ1| ≤ |κ2| ≤ · · · ≤ |κn|, and
�ψn is the corresponding eigenvector. We normalise �ψn so that �ψ†

n . �ψn = 1, where † is the
adjoint. (Note that, as W is not symmetric in general, eigenvectors are complex.)

We shall neglect the case where, simultaneously, 1
τ

= 0 and κn = 0 for some n.

Proposition For each n, there is a pair of eigenvalues λ±
n and eigenvectors �φ±

n = c±
n
( �ψn

ρ±
n �ψn

)
of M with c±

n = 1√
1+(ρ±

n )2
(normalisation factor) and

ρ±
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2τw–κn

(1 ± √
1 – 4μκn), κn �= 0, 1

τ
�= 0;

w+τ , κn = 0, 1
τ

�= 0;

±
√

– w+
w–

1
κn

, 1
τ

= 0,

(70)

where

1
τ

=
(

1
τA

–
1
τB

)

and

1
τAB

=
(

1
τA

+
1
τB

)
.

Eigenvalues are given by

λ±
n =

⎧⎨
⎩

– 1
2τAB

∓ 1
2τ

√
1 – 4μκn, 1

τ
�= 0;

– 1
τA

∓ √
–w–w+κn, 1

τ
= 0,

(71)

with

μ = w–w+τ 2 ≥ 0.

As a consequence, in addition to the N last eigenvalues – 1
τA

, L admits 2N eigenvalues
given by (71), while the 2N first columns of the matrix P (eigenvectors of L) are as follows:

�Pβ =
1√

1 + (ρ–
n )2

⎛
⎜⎝

�ψn

ρ–
n

�ψn
�0N

⎞
⎟⎠ ; �Pβ+N =

1√
1 + (ρ+

n )2

⎛
⎜⎝

�ψn

ρ+
n

�ψn
�0N

⎞
⎟⎠ , β = n = 1, . . . , N . (72)

For the N last eigenvectors �Pβ = �eβ , β = 2N + 1, . . . , 3N .
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Remark The structure of these eigenvectors is quite instructive. Indeed, the factors ρ±
n

control the projection of the eigenvectors �Pβ on the space of ACells, thereby tuning the
influence of ACells via lateral connectivity.

Proof We use here the generic notation λβ , �φβ , β = 1, . . . , 2N , for the eigenvalues and as-
sociated eigenvectors of M. If we assume that �φβ is of the form �φβ =

( �ψn
ρ �ψn

)
for some n,

then we have

M. �φβ =

(
– I

τB
–w–W

w+I – I
τA

)
.

( �ψn

ρ �ψn

)
=

(
(– 1

τB
– w–ρκn). �ψn

(– ρ

τA
+ w+). �ψn

)
= λβ

( �ψn

ρ �ψn

)
,

which gives

⎧⎨
⎩

(– 1
τB

– w–ρκn) = λβ ,

(– ρ

τA
+ w+) = λβρ,

leading to

w–κnρ
2 –

1
τ

ρ + w+ = 0,

where

1
τ

=
1
τA

–
1
τB

.

This gives, if κn �= 0 and 1
τ

�= 0,

ρ±
n =

1
2τw–κn

(1 ±√1 – 4μκn),

where

μ = w–w+τ 2 ≥ 0.

Thus, for each n, there are two eigenvalues:

λ±
n = –

1
2τAB

∓ 1
2τ

√
1 – 4μκn,

with

1
τAB

=
1
τA

+
1
τB

.

Note that 1
τAB

≥ 1
τ

.
If κn = 0, 1

τ
�= 0, ρ±

n = w+τ ,then

λβ = –
1
τB

– w–ρκn.
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Finally, if κn �= 0, 1
τ

= 0, (τA = τB), ρ±
n = – w+

w–
1
κn

and λ±
n = – 1

τB
± √

–w–w+κn. If κn = 0, 1
τ

= 0,
there is no solution for ρ . �

Remark When μ = 0, M is diagonal: the N first eigenvalues are – 1
τB

, the N next eigen-
values are – 1

τA
. We have in this case λ+

n = – 1
τB

and λ–
n = – 1

τA
. Therefore, in order to be

coherent with this diagonal form of L when μ = 0, we order eigenvalues and eigenvectors
ofM such that the N first eigenvalues are λβ = λ+

n , β = 1, . . . , N , and the N next are λβ = λ–
n ,

β = N + 1, . . . , 2N .

D.2.2 Stability of eigenmodes
Stability of eigenmodes when W is symmetric If W is symmetric, its eigenvalues κn are
real, but λβ , β = 1, . . . , 2N , can be real or complex, depending on κn, as μ is positive.

We have four cases:
• κn < 0. Then, from (71), λβs are real, and there are two cases. If 1

τ
> 0, the eigenvalues

λβ , β = 1, . . . , N , can have a positive real part (unstable), while λβ , β = N + 1, . . . , 2N , has
always a negative real part (stable); for 1

τ
< 0, the situation is inverted. In both cases, the

eigenvalue λβ has a positive real part if

μ > –
1
κn

τAτB

(τB – τA)2 ≡ μn,u,

which reads, using the definition of μ, as follows:

w–w+ > –
1

τAτB

1
κn

. (73)

Thus, τA, τB play a symmetric role. If 1
τ

= 0 (τA = τB), all eigenvalues are real. Eigenvalues
λ–

n are all stable. The eigenvalue λ+
n becomes unstable if w–w+ > – 1

τ2
A

1
κn

, corresponding to
(73).

Proof There are two cases.
– 1

τ
> 0 ⇔ τA < τB.

λβ = –
1

2τAB
± 1

2τ

√
1 – 4μκn > 0

⇔ ±√1 – 4μκn >
τ

τAB
.

Only + is possible (because τ and τAB are positive). This gives

1 – 4μκn >
τ 2

τ 2
AB

,

1 –
τ 2

τ 2
AB

= –4
τAτB

(τB – τA)2 > 4μκn,

which is possible because κn < 0. Thus, λβ is unstable if

μ > –
1
κn

τAτB

(τB – τA)2 ≡ μn,u.
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– 1
τ

< 0 ⇔ τA > τB.

–
1

2τAB
± 1

2τ

√
1 – 4μκn > 0

⇔ ±√1 – 4μκn <
τ

τAB
.

Only – is possible (because τ < 0). This gives

1 – 4μκn >
τ 2

τ 2
AB

,

the same condition as in the previous item.
– If 1

τ
= 0, λβ = – 1

τA
∓ √

–w–w+κn so that eigenvalues are real. The eigenvalue with the
minus sign (λ–

n ) are all stable. The eigenvalue λ+
n becomes unstable if

w–w+ > –
1
τ 2

A

1
κn

. �

• κn > 0. Then λβ , β = 1, . . . , 2N , are real or complex. If 1
τ

�= 0, they are complex if

μ >
1

4κn
≡ μn,c.

In this case the real part is – 1
2τAB

, the imaginary part is ± 1
2τ

√
1 – 4μκn, and all eigenvalues

are stable. If μ ≤ μn,c, eigenvalues λβ are real and all modes are stable as well. Indeed:
– If 1

τ
= 0, all eigenvalues are equal to – 1

2τAB
, hence are stable.

– If 1
τ

> 0 ⇔ τA < τB.

–
1

2τAB
± 1

2τ

√
1 – 4μκn > 0

⇔ ±√1 – 4μκn >
τ

τAB
,

which is not possible because τ
τAB

> 1, whereas
√

1 – 4μκn < 1.
– If 1

τ
< 0 ⇔ τA > τB.

–
1

2τAB
± 1

2τ

√
1 – 4μκn > 0

⇔ ±√1 – 4μκn <
τ

τAB
.

Only – is possible because τ < 0.

1 – 4μκn >
τ 2

τ 2
AB

,

which is not possible because τ
τAB

> 1, whereas
√

1 – 4μκn < 1.
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Stability of eigenmodes when W is asymmetric If W is asymmetric, eigenvalues κn are
complex, κn = κn,r + iκn,i. We write λβ = λβ ,r + iλβ ,i, β = 1, . . . , 2N , with

⎧⎨
⎩

λβ ,r = – 1
2τAB

± 1
2τ

1√
2
√an + un;

λβ ,i = ± 1
2τ

1√
2
√un – an,

where an = 1 – 4μκn,r and un =
√

(1 – 4μκn,r)2 + 16μ2κ2
n,i =

√
1 – 8μκ2

n,r + 16μ2|κn|2. Note
that we recover the real case when κn,i = 0 by setting un = an.

Instability occurs if

an + un > 2
τ 2

τ 2
AB

,

a condition depending on κn,r and κn,i.
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