803 research outputs found

    Enriched Model of Case Based Reasoning and Neutrosophic Intelligent System for DDoS Attack Defence in Software Defined Network based Cloud

    Get PDF
    Software Defined Networking in Cloud paradigm is most suitable for dynamic functionality and reduces the computation complexity. The routers and switches located at the network's boundaries are managed by software-defined netwrking (SDN) using open protocols and specialised open programmable interfaces. But the security threats often degrade the performance of SDN due to its constraints of resource usage. The most sensitive components which are vulnerable to DDoS attacks are controller and control plane bandwidth. The existing conventional classification algorithms lacks in detection of new or unknown traffic packets which are malicious and results in degradation of SDN performance in cloud resources. Hence, in this paper double filtering methodology is devised to detect both known and unknown pattern of malicious packets which affects the bandwidth of the control panel and the controller. The case-based reasoning is adapted for determining the known incoming traffic patterns before entering the SDN system. It classifies the packets are normal or abnormal based on the previous information gathered. The traffic patterns which is not matched from the previous patterns is treated as indeterministic packet and it is defined more precisely using the triplet representation of Neutrosophic intelligent system. The grade of belongingness, non-belongingness and indeterminacyis used as the main factors to detect the new pattern of attacking packets more effectively. From the experimental outcomes it is proved that DDoS attack detection in SDN based cloud environment is improved by adopting CBR-NIS compared to the existing classification model

    Intelligent Inter and Intra Network Traffic Estimation Technique for DDoS Attack Detection using Fuzzy Rule Sets for QoS Improvement

    Get PDF
    The quality of service of any network has higher dependency at throughput, latency and service completion strategies. In modern communication systems, there are many loopholes, which could be used by some malicious users to perform various network attacks so that the performance of the network is degraded. There are many denial of service when an approach has been discussed towards the problem of network threats, but still suffers the quality of denial of service attack detection. Propose a service-constrained approach learns the network traffic in various ways like the traffic incurred within the network and that comes from external network. The method uses various features like hop count, hop details, payload, TTl, time and so on. To maintain a rule set with fuzzy value where each rule specifies the feature of genuine packet being received. The incoming packet has to meet any of the rules and the attribute of the packet has to lie between the ranges of values in the rule. The proposed method estimates the inter traffic and intra traffic through the routes of the packet being transferred to identify the genuine nature of the packet being received. In addition, the method maintains set of logs where the packet features are stored to compute the legitimate weight of each packet being received. Based on compute inter and intra traffic values the received packets trustworthy is computed to allow or deny the packet. The proposed method increases the accuracy of DDOS attack detection and helps to improve the performance of the network. DOI: 10.17762/ijritcc2321-8169.15085

    A survey of intrusion detection system technologies

    Get PDF
    This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection

    Forensics Based SDN in Data Centers

    Get PDF
    Recently, most data centers have adopted for Software-Defined Network (SDN) architecture to meet the demands for scalability and cost-efficient computer networks. SDN controller separates the data plane and control plane and implements instructions instead of protocols, which improves the Quality of Services (QoS) , enhances energy efficiency and protection mechanisms . However, such centralizations present an opportunity for attackers to utilize the controller of the network and master the entire network devices, which makes it vulnerable. Recent studies efforts have attempted to address the security issue with minimal consideration to the forensics aspects. Based on this, the research will focus on the forensic issue on the SDN network of data center environments. There are diverse approaches to accurately identify the various possible threats to protect the network. For this reason, deep learning approach will used to detect DDoS attacks, which is regarded as the most proper approach for detection of threat. Therefore, the proposed network consists of mobile nodes, head controller, detection engine, domain controller, source controller, Gateway and cloud center. The first stage of the attack is analyzed as serious, where the process includes recording the traffic as criminal evidence to track the criminal, add the IP source of the packet to blacklist and block all packets from this source and eliminate all packets. The second stage not-serious, which includes blocking all packets from the source node for this session, or the non-malicious packets are transmitted using the proposed protocol. This study is evaluated in OMNET ++ environment as a simulation and showed successful results than the existing approaches

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST
    • …
    corecore