446 research outputs found

    Matheuristics: using mathematics for heuristic design

    Get PDF
    Matheuristics are heuristic algorithms based on mathematical tools such as the ones provided by mathematical programming, that are structurally general enough to be applied to different problems with little adaptations to their abstract structure. The result can be metaheuristic hybrids having components derived from the mathematical model of the problems of interest, but the mathematical techniques themselves can define general heuristic solution frameworks. In this paper, we focus our attention on mathematical programming and its contributions to developing effective heuristics. We briefly describe the mathematical tools available and then some matheuristic approaches, reporting some representative examples from the literature. We also take the opportunity to provide some ideas for possible future development

    Clustering search

    Get PDF
    This paper presents the Clustering Search (CS) as a new hybrid metaheuristic, which works in conjunction with other metaheuristics, managing the implementation of local search algorithms for optimization problems. Usually the local search is costly and should be used only in promising regions of the search space. The CS assists in the discovery of these regions by dividing the search space into clusters. The CS and its applications are reviewed and a case study for a problem of capacitated clustering is presented.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal do MaranhãoUniversidade Federal de São Paulo (UNIFESP)Instituto Nacional de Pesquisas EspaciaisUNIFESPSciEL

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Solving Vehicle Routing Problems under Uncertainty and in Dynamic Scenarios: From Simheuristics to Agile Optimization

    Get PDF
    [EN] Many real-life applications of the vehicle routing problem (VRP) occur in scenarios subject to uncertainty or dynamic conditions. Thus, for instance, traveling times or customers' demands might be better modeled as random variables than as deterministic values. Likewise, traffic conditions could evolve over time, synchronization issues should need to be considered, or a real-time re-optimization of the routing plan can be required as new data become available in a highly dynamic environment. Clearly, different solving approaches are needed to efficiently cope with such a diversity of scenarios. After providing an overview of current trends in VRPs, this paper reviews a set of heuristic-based algorithms that have been designed and employed to solve VRPs with the aforementioned properties. These include simheuristics for stochastic VRPs, learnheuristics and discrete-event heuristics for dynamic VRPs, and agile optimization heuristics for VRPs with real-time requirements.This work was partially funded by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033), the SEPIE Erasmus+ Program (2019-I-ES01-KA103-062602), the Barcelona City Council and Fundacio "la Caixa" under the framework of the Barcelona Science Plan 2020-2023 (21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Ammouriova, M.; Herrera, EM.; Neroni, M.; Juan, AA.; Faulin, J. (2023). Solving Vehicle Routing Problems under Uncertainty and in Dynamic Scenarios: From Simheuristics to Agile Optimization. Applied Sciences. 13(1). https://doi.org/10.3390/app1301010113

    A Metaheuristic-Based Simulation Optimization Framework For Supply Chain Inventory Management Under Uncertainty

    Get PDF
    The need for inventory control models for practical real-world applications is growing with the global expansion of supply chains. The widely used traditional optimization procedures usually require an explicit mathematical model formulated based on some assumptions. The validity of such models and approaches for real world applications depend greatly upon whether the assumptions made match closely with the reality. The use of meta-heuristics, as opposed to a traditional method, does not require such assumptions and has allowed more realistic modeling of the inventory control system and its solution. In this dissertation, a metaheuristic-based simulation optimization framework is developed for supply chain inventory management under uncertainty. In the proposed framework, any effective metaheuristic can be employed to serve as the optimizer to intelligently search the solution space, using an appropriate simulation inventory model as the evaluation module. To be realistic and practical, the proposed framework supports inventory decision-making under supply-side and demand-side uncertainty in a supply chain. The supply-side uncertainty specifically considered includes quality imperfection. As far as demand-side uncertainty is concerned, the new framework does not make any assumption on demand distribution and can process any demand time series. This salient feature enables users to have the flexibility to evaluate data of practical relevance. In addition, other realistic factors, such as capacity constraints, limited shelf life of products and type-compatible substitutions are also considered and studied by the new framework. The proposed framework has been applied to single-vendor multi-buyer supply chains with the single vendor facing the direct impact of quality deviation and capacity constraint from its supplier and the buyers facing demand uncertainty. In addition, it has been extended to the supply chain inventory management of highly perishable products. Blood products with limited shelf life and ABO compatibility have been examined in detail. It is expected that the proposed framework can be easily adapted to different supply chain systems, including healthcare organizations. Computational results have shown that the proposed framework can effectively assess the impacts of different realistic factors on the performance of a supply chain from different angles, and to determine the optimal inventory policies accordingly

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    Network Flexibility for Recourse Considerations in Bi-Criteria Facility Location

    Get PDF
    What is the best set of facility location decisions for the establishment of a logistics network when it is uncertain how a company’s distribution strategy will evolve? What is the best configuration of a distribution network that will most likely have to be altered in the future? Today’s business environment is turbulent, and operating conditions for firms can take a turn for the worse at any moment. This fact can and often does influence companies to occasionally expand or contract their distribution networks. For most companies operating in this chaotic business environment, there is a continuous struggle between staying cost efficient and supplying adequate service. Establishing a distribution network which is flexible or easily adaptable is the key to survival under these conditions. This research begins to address the problem of locating facilities in a logistics network in the face of an evolving strategic focus through the implicit consideration of the uncertainty of parameters. The trade-off of cost and customer service is thoroughly examined in a series of multi-criteria location problems. Modeling techniques for incorporating service restrictions for facility location in strategic network design are investigated. A flexibility metric is derived for the purposes of quantifying the similarity of a set of non-dominated solutions in strategic network design. Finally, a multi-objective greedy random adaptive search (MOG) metaheuristic is applied to solve a series of bi-criteria, multi-level facility location problems

    Simheuristic and learnheuristic algorithms for the temporary-facility location and queuing problem during population treatment or testing events

    Get PDF
    Epidemic outbreaks, such as the one generated by the coronavirus disease, have raised the need for more efficient healthcare logistics. One of the challenges that many governments have to face in such scenarios is the deployment of temporary medical facilities across a region with the purpose of providing medical services to their citizens. This work tackles this temporary-facility location and queuing problem with the goals of minimizing costs, the expected completion time, population travel and waiting times. The completion time for a facility depends on the numbers assigned to those facilities as well as stochastic arrival times. This work proposes a learnheuristic algorithm to solve the facility location and population assignment problem. Firstly a machine learning algorithm is trained using data from a queuing model (simulation module). The learnheuristic then constructs solutions using the machine learning algorithm to rapidly evaluate decisions in terms of facility completion and population waiting times. The efficiency and quality of the algorithm is demonstrated by comparison with exact and simulation-only (simheuristic) methodologies. A series of experiments are performed which explore the trade offs between solution cost, completion time, population travel and waiting times.Peer ReviewedPostprint (author's final draft
    • …
    corecore