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Abstract

Epidemic outbreaks, such as the one generated by the coronavirus disease, have raised the need for more

efficient healthcare logistics. One of the challenges that many governments have to face in such scenarios is the

deployment of temporary medical facilities across a region with the purpose of providing medical services to

their citizens. This work tackles this temporary-facility location and queuing problem with the goals of minimiz-

ing costs, the expected completion time, population travel and waiting times. The completion time for a facility

depends on the numbers assigned to those facilities as well as stochastic arrival times. This work proposes a learn-

heuristic algorithm to solve the facility location and population assignment problem. Firstly a machine learning

algorithm is trained using data from a queuing model (simulation module). The learnheuristic then constructs

solutions using the machine learning algorithm to rapidly evaluate decisions in terms of facility completion and

population waiting times. The efficiency and quality of the algorithm is demonstrated by comparison with exact

and simulation-only (simheuristic) methodologies. A series of experiments are performed which explore the

trade offs between solution cost, completion time, population travel and waiting times.

Keywords: Facilities planning and design, Queuing, sim-learnheuristics, Simulation, Machine learning.

1 Introduction

Logistics plays a vital role in a large number of contexts. Apart from being massively a tool of study in supply
chain systems in the last decades, it has emerged in substantially different fields, such as healthcare (Ageron et al.,
2018; Moons et al., 2019), disaster management (Jahre et al., 2007; Oksuz and Satoglu, 2020), telecommunication,
and so on. Many logistics activities face the challenge of defining a set of potential facilities for supplying a set of
clients subject to many constraints, such as limited capacity and inventory. Depending on the application context,
these clients assume different classes, which vary from consumers themselves to physical locations –e.g., depots
and health centers. In general, this class of facility location problems (FLPs) regards to the taking of decisions to
decide how many facilities must be opened and where to locate them in order to minimize the total transportation
cost of the network. Moreover, depending on the application context, these decisions may be difficult to change
in the short-term, which highlights the importance of respective choices.

*Corresponding author: Christopher.Bayliss@liverpool.ac.uk
†Coauthor: jpanaderom@uoc.edu
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The location of facilities is crucial in healthcare systems. In such scenarios, the importance of strategically
selecting facilities is related to both mortality and morbidity rates. For example, by opening a small number of
facilities or poorly locating them, the resulting network leads to an increment in the number of deaths and diseases
in the community (Daskin and Dean, 2005). Therefore, incorrect facility location decisions have a serious impact
not only on the operational cost but also in the target community and customer service metrics (Ahmadi-Javid
et al., 2017), which are of greater importance when applied to healthcare. Especially in healthcare, these partic-
ularities encourage the use of simulation tools, such as discrete-event simulation (DES) techniques, to support
the forecasting and assessing of the potential impact of changes on patient flow, allocation needs, and, finally, to
investigate the complex relationships among different system variables. According to Jacobson et al. (2006), these
simulation tools allow managers to identify and explore alternative ways to reconfigure existing systems, in order
to improve their performance or design, while keeping the existing one unchanged.

In this work, we consider an epidemic situation in which a set of facilities must be strategically established
in order to offer proper healthcare treatment to a maximum number of individuals from a vulnerable population.
These individuals are allocated to nearby deployed facilities (Figure 1), where they queue for treatment (Figure
2). At each facility, a single queue/server is available to serve the assigned individuals. Note that multiple server
facilities can be modeled as multiple single facilities in close proximity. The first patient to arrive is the first to
be served –i.e., a first come first serve (FCFS) basis. Regarding the need for some people to receive multiple
treatments, from a facility planning perspective only the total number of required treatments needs to be known.
The objectives are to minimize: (i) the total travel time between residences and nearest facilities; (ii) the total
time spent queuing by individuals waiting for treatment, and (iii) the time required to deliver the vaccine to
the population. In other words, we aim to minimize the total time required to deliver the treatments to all of the
vulnerable population, i.e., to minimize the makespan. Minimizing travel time and queuing times make the process
more convenient and safer for the population, while minimizing the total time required to deliver the vaccine to
the population reduces costs. Minimizing total treatment time, or makespan, any ultra-low temperature vaccine
storage costs can also be minimized. According to Moons et al. (2019), by improving the efficiency of healthcare
logistics activities, such as those addressed in this work, the quality of care is increased and the related costs are
reduced. Therefore, by optimizing this whole process, not only will the population benefit from better services,
which reduces the probability of deaths or complications, but healthcare centers and governments can offer more
efficient services with lower costs.

This problem of delivering vaccines to a vulnerable population during an epidemic crisis can be formulated as
an uncapacitated facility location problem (UFLP) with queuing simulation. Here, “uncapacitated” refers to the
fact that each individual facility can treat the whole population, albeit in a relatively long amount of time. It is
referred to as a ‘temporary’ problem due to the particular scenario which is generated during a public healthcare
crisis. The UFLP is a popular NP-hard problem, formally stated in Balinski (1964a), which has been largely ap-
plied to logistics and supply chains. However, by integrating and introducing this problem with queuing strategies
in healthcare, a challenging integrated problem application for this type of crisis management is opened up. The
contributions of this work include the following. The integrated facility location and queuing problem is formu-
lated and solved for small instances as a mixed integer program. This work provides a black-box optimization
framework (learnheuristic) which integrates simulation, heuristic optimization and machine learning for solving
large scale instances of the integrated facility location and queuing problem. The learnheuristic is shown to provide
results of equal quality to those of the exact approach and a simulation-only (simheuristic) equivalent methodol-
ogy (see Section 9.3). That is, in this work, the learnheuristic extends the simheuristic framework by making use
of a machine learning module in order to improve computational efficiency. This work tackles the issue of solution
dependent decision costs that arise in the application of a constructive heuristic solution approach to the integrated
facility location and queuing problem. In particular, we outline how machine learning can be used to reduce ex-
cessive use of simulation that would be required for the accurate evaluation of dynamically changing decisions
costs. We propose a method for controlling population waiting times based on the allocation of treatment time
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Figure 1: Visual representation of the problem.
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Figure 2: Queuing process at each facility.

windows.
The rest of the paper is arranged as follows: Section 2 presents a literature review on related topics; Section 3

introduces the problem description; Section 4 presents a novel alternative mathematical formulation; Section 5
introduces our methodology; Sections 6, 7 and 8 present the DES, machine learning and optimization components
of the learnheuristic respectively; Section 9 analyzes a series of computational experiments and discusses the
achieved results; finally, Section 10 highlights the main conclusions of this work and proposes some lines for
future research.

2 Related Work

2.1 The Facility Location Problem

The FLP was initially introduced by Balinski (1964b), referred to as the plant location problem. In the existing
literature, many authors have used exact methods for solving it. In this sense, researchers deeply explored the
use of branch-and-bound algorithms. Efroymson and Ray (1966) propose a branch-and-bound algorithm for plant
location. They used a compact formulation of the FLP to take advantage of the fact that its linear programming
relaxation can be solved by inspection. Erlenkotter (1978) proposes a dual-based branch-and-bound algorithm
for solving the uncapacitated facility location problem (UFLP) based on a linear programming dual formulation.
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An enhanced version of this original algorithm was presented by Körkel (1989). Due to the NP-hard nature of
the problem, it can not be guaranteed that exact methods find high-quality solutions within reasonable computing
time for large problems. Thus, approximate methods become a natural choice for solving large-scale and realistic
instances in a reasonable amount of time. In that sense, several heuristics and metaheuristics algorithms have
been developed to solve the FLP and its variants. Therefore, de Armas et al. (2017) propose a fast savings-
based heuristic for solving the UFLP, which is then extended into an iterated local search (ILS) metaheuristic
framework. The proposed framework employs an acceptance criterion for accepting worse solutions within a
margin limit. Another interesting approach to solve the UFLP is presented by Hakli and Ortacay (2019), where an
improved scatter search algorithm to solve the UFLP is proposed. The authors apply different crossover techniques
to generate new solutions, and mutation operations to improve these solutions. Consequently, it could overcome
different population-based approaches, such as those based on swarm optimization and evolutionary algorithms.
Estrada-Moreno et al. (2020) present a metaheuristic algorithm based on the integration of a biased-randomized
procedure (Grasas et al., 2016) with an iterated local search (ILS) framework (Lourenço et al., 2019), to efficiently
cope with the single-source capacitated facility location problem with (SSCFLP) with soft capacity constraints.
The algorithm provides a good balance between efficiency and relative simplicity. Lai et al. (2010) propose a
hybrid algorithm based on combining a Benders’ decomposition algorithm with a genetic algorithm instead of the
costly branch-and-bound method. The computational results reported the algorithm is able to obtain good-quality
solutions efficiently. However, the author only compared its performance with the Benders’ original algorithm.
More recently, Martins et al. (2022) propose an Agile Optimization framework (do C. Martins et al., 2021), which
combines a biased-randomized algorithm with parallel programming techniques to provide real-time solutions for
the UFLP. This approach allows to react and adapt to fast-changing customer demands in the system, reoptimizing
the system every time new information is incorporated into the model.

Usually, the inputs of combinatorial optimization problems are not deterministic in real life. Thus, they are
subject to random events, e.g., random failures of some components, stockouts due to random demands, etc.
Therefore, Simulation-based optimization approaches are required. In that sense, Correia and Saldanha-da Gama
(2019) reviewed the FLP with stochastic components, illustrating different methods that appeared in the liter-
ature during the last years for optimizing the FLP under uncertainty. Simheuristics (Castaneda et al., 2022) is
a simulation-optimization method based on the combination of simulation with metaheuristics, which has been
used for solving efficiency different combinatorial optimization problems with stochastic elements. In this regard,
Simheuristics have been used by different authors to solve the UFLP with stochastic demands. de Armas et al.
(2017) propose a simheuristic for solving the UFLP with stochastic demands. This approach combines an ILS
metaheuristic with Monte Carlo simulation to deal with uncertainty. The authors extended a set of deterministic
instances to test the simheuristic algorithm, considering that the demands are random variables that follow prob-
abilistic distribution functions. A similar approach is proposed in Quintero-Araujo et al. (2021), where authors
present the SimILS framework, a simheuristic algorithm combining Monte Carlo simulation with a metaheuristic
framework to solve the capacitated location routing problem (CLRP) with stochastic demands. Specifically, the
simulation is embedded into an ILS metaheuristic that uses different perturbation operators and biased random-
ization techniques to diversify the search. Other authors have focused on solving the FLP with fuzzy components,
which introduces a new layer of complexity. Verma et al. (2010) present a fuzzy theory model for dealing with
UFLP with fuzzy demands. Due to the problem’s complexity, the model can solve just small instances. A sim-
ilar approach is tackled in Uno et al. (2010), where authors consider that the demands represent fuzzy random
variables. To solve the problem, the authors model the problem as a fuzzy random programming problem using
α − level sets for fuzzy numbers, transforming the problem into a deterministic programming problem. Then,
they use a tabu search metaheuristic to solve the deterministic model. Our work combines heuristics, simulation
and machine learning to solve large stochastic UFLPs quickly.

Other authors consider the inputs deterministic but with dynamic behavior. The main idea is that some inputs
(e.g., customers’ demands, facility locations, etc.) might depend upon the specific configuration of the solution

4



being built (e.g., assigning a customer to one facility or another might change his / her demand value). Silva
et al. (2021) propose a set of three different linear relaxation-based heuristics (LRH) and an evolutionary heuristic
that hybridizes a genetic algorithm with a variable neighborhood descent (GA+VND) to solve the Dynamic Facil-
ity Location Problem with Modular Capacities (DFLPM). The objective of this problem consists in determining
locations and sizes of facilities to minimize location and demand allocation costs with decisions taken periodi-
cally over a planning horizon. Wang et al. (2021) present an approximation algorithm based on a primal-dual
scheme to solve the dynamic k-level facility location problem (k-DFLP), which is an extension of the UFLP. Wu
et al. (2022) propose a supervised learning-driven (SLD) heuristic to solve the capacitated facility location and
production planning (CFLPP) problem. The heuristic uses as features the solution values derived from linear pro-
gramming relaxation, Dantzig–Wolfe decomposition, and column generation, to derive an offline-learned oracle
on the optimal solution patterns.

Long waiting times and congestion in facilities are an important concern of decision makers in FLPs. Hence,
the behavior of the facilities – in terms of waiting times – has also been studied in combination with the FLP to
make the problem more closely resemble reality, resulting in the queuing facility location problem (QFLP), which
combine queuing theory with FLPs. Tavakkoli-Moghaddam et al. (2017) propose a new Pareto-based multi-
objective optimization model, called MOVDO, to solve the FLP with congestion and pricing policies, immobile
servers and random demands under service capacity, queuing capacity and multiple servers. Chaleshtori et al.
(2020) propose a mathematical model that considered jockeying to solve the Multi-layer congested facility location
problem (MLCFLPs). The model deliberated a combination of FLP and queuing systems, modeled with the
M/M/1 queuing network. Due to the complexity of the nonlinear problem, the solution method was enhanced by an
NSGA-II metaheuristic genetic algorithm to solve efficiently large-scale instances. A new structure for displaying
chromosomes was introduced to improve the genetic algorithm’s performance. Zamani et al. (2022) address the
problem of facility location with unreliable servers and impatient customers, where each facility functions as a
M/M/1 queuing system. They propose a nonlinear mathematical model and two piece-wise MILP relaxations
were presented for this problem. An exact solution method (the branch and bound algorithm) and an approximate
solution method (the antlion algorithm) were proposed. In this work simulation modeling is used to model queuing
processes, and machine learning is used to predict simulation results in order to avoid large computation times in
our heuristic solution methodology.

2.2 Facility Location Decisions in Healtcare

One of such problems in healthcare which copes with facility location decisions is the preventive healthcare facility
location problem (PHFLP). According to Gu et al. (2010), preventive healthcare can save lives and contribute
to a better quality of life by diagnosing serious medical conditions early. This problem consists of identifying
the optimal number and location of preventive healthcare facilities in order to maximize people participation,
which is ensured by considering that (i) each participating individual would seek services of the closest preventive
healthcare facility; (ii) the probability of participation to a preventive program decreases with distance; and (iii)

each open facility needs to have a minimum number of clients (Verter and Lapierre, 2002). In this context, Verter
and Lapierre (2002) proposed two exact approaches based on a general-purpose branch-and-bound procedure,
which exploit the problem structure during the solution process, to solve the PHFLP, modeled as an extension
of the maximal covering location problem (MCLP). The MCLP regards locating a predetermined number of
facilities in order to maximize the total coverage. The distance was considered as the major determinant of the
population’s participation in the system. The relationship between volume and quality of service was measured
by allowing more than a predetermined number of clients at each facility, to justify the quality of service and
the allocation of public funding. The model was reformulated in order to solve two larger real-life problems,
in which the authors suggested better solutions composed of fewer facilities than the current configuration. In
contrast with the last work, Zhang et al. (2009) proposed an approximate method to solve the PHFLP, based on
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a non-appointment system allocation of clients to facilities, according to their preferences and the determination
of the best set of locations. The total time required for receiving the preventive service –travel, waiting, and
service– was used as a measure of the accessibility of a healthcare facility, where a single queue is available.
Similarly to the previous work, the authors have assumed that clients would seek the services of the facility with
minimum expected total time. Consequently, they concluded that the expected number of participants from each
population zone decreases with the expected total service time for those zones, and centralizing the total system
capacity at locations preferred by clients is more effective than using a larger number of smaller facilities. On the
other hand, Gu et al. (2010) proposed a bi-objective model for performing the location optimization, solved by an
interchange algorithm, whose basic idea consists in relocating an opened facility to an unused one. This procedure
was accelerated by building two new data structures, referred to as ‘population group’ and ‘candidate string’, and
the authors estimated the traveling distance and time accurately through Google Maps API. Experiments showed
that this strategy improved a real-life application in Canada. Finally, Zambrano et al. (2016) proposed an agent-
based simulation to study the effect of redesigning the points of access to a hospital complex in Chile. The authors
considered different measure metrics to assess these effects, such as pedestrian density maps, saturation areas,
areas with high patient flow, pedestrian flow at entrances, and service levels in the access points. As a result, the
proposed approach, developed by using an AnyLogic library, has suggested the adding of new access points to
improve the original design in terms of service level and pedestrian flow density during peak hours. For a survey
in healthcare facility location, readers are referred to Ahmadi-Javid et al. (2017).

Among the many applications of simulation models in healthcare, several studies address their use for re-
ducing waiting times in different systems. For instance, Reese et al. (2017) proposed a DES model to evaluate
and enhance the performance of walk-in clinics where patients are served without appointments. The resulting
methodology was able to provide realistic predictions for the system behaviour under different scenarios. Another
example of using simulation modeling for reducing waiting times in healthcare was addressed by Monks and
Meskarian (2017). The authors concluded that reducing waiting times when emergency departments (EDs) are of
low performance is hard to get. Nuñez-Perez et al. (2017) have also addressed the analysis of accident and emer-
gency (A&E) departments in their study. The authors proposed a DES, which is posteriorly validated to establish
whether it is statistically comparable with the real-world. Several performance indicators, such as improvement
in patient waiting times, resource utilization, the design of facilities and healthcare networks, reduction of access
time to healthcare services, were computed and analyzed. A survey regarding the use of DES in healthcare can
be found in Jun et al. (1999), while other examples of simulation for reducing waiting times are addressed in
Rohleder et al. (2011) and Martinez et al. (2016).

According to Lakshmi and Iyer (2013), queuing models consist of another trend that is available to support
healthcare decision-makers in the following areas: waiting time and utilization analysis, system design, appoint-
ments, and system analysis. These authors also have addressed the use of simulation-based queuing models in
healthcare, where such models offer support to researchers on investigating the accuracy of analytic formulations
and solutions that have simplified a queuing problem. Moreover, they state that minimizing the time that patients
have to wait and maximizing the utilization of the servers or resources are conflicting goals. A survey in queu-
ing theory in healthcare –in the areas of waiting time and utilization analysis, system design, and appointment
systems– is found in Fomundam and Herrmann (2007). Silva and Serra (2008) addressed a similar problem as the
one studied in this work, where emergency service centers must be located and the demand to those centers must
be allocated. However, in their case, they introduced priority levels which represent the urgency of the requested
service, resulting in the priority queuing covering location problem (PQCLP).
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3 Problem Description

This work considers the medical facility location problem for vaccinating or testing a population during an epi-
demic. From a set of possible facilities J, a subset of these is to be selected to open (O⊆ J). Each member of the
population (P) has to be assigned to an open facility j ∈ O. Each facility opened incurs an opening cost c j. The
treatment of a population member i at their assigned facility j incurs a cost of ei j. While determining which facil-
ities to open and which facilities to assign each population member to we seek to minimize costs. If our objective
is only to minimize costs then the optimal solution may involve opening very few facilities. The drawbacks of
such a solution include the following: (i) the total treatment time (overall makespan) required to treat the entire
population may be very long; (ii) the total travel distance for the population may be very large; and (iii) queues
at the facility may be large as will waiting times. As such we consider the minimization of total time, total travel
distance, and waiting times in addition to minimizing costs. Minimizing waiting time reduces the risk of further
infections as well as making the process as seamless and convenient as possible for the population. The total
treatment time is defined as the time between the treatment of the first member of population and the treatment
of the last member of the population. Assuming that treatment begins at the same time at all opened facilities the
total treatment time is the maximum of the treatment times of all of the facilities.

 

 

 

 

 

 

 

 

    

A B 

Scenario 1: Facility A open.        Cost 10, travel time=2, waiting time=1, treatment time=2 

Scenario 2: Facility B open.        Cost 10, travel time=4, waiting time=1, treatment time=2 

Scenario 3: Facilities A and B open.  Cost 20, travel time=2, waiting time=0, treatment time=1 

Figure 3: Small numerical example.

For clarification of the problem being addressed, consider the small example in Figure 3. There are two
possible single server facilities A and B and a population of 2. There are three possible open facility solutions. In
scenario 1 facility A is opened, facility A is located conveniently for both population members in terms of travel
time, whereas it is not in scenario 2 were facility B is opened. In both scenarios 1 and 2, only a single facility
is opened, which leads to waiting time for one population member, if they arrive at the same time. Also, since a
single server facility can only serve one population member at a time, the minimum treatment time is two units
of server time. In scenario 3 both facilities are opened, leading to doubled facility opening costs, zero waiting
time since each population member can go to a different facility, and a total treatment time of one, since both
population members can be served at the same time.

Each population member is also to be assigned to a time window w from the set of possible time windows W .
Assigning time windows provides a mechanism for controlling the arrival process and therefore queue sizes and
waiting times. It also allows us to address priority constraints, such as vaccinating the most vulnerable first. The
exact arrival time of a population member during their assigned time window is still, however, uncertain. The time
gap between consecutive time windows may represent a staff break or an overnight period. When a population
member arrives at their assigned facility they join the queue for treatment. The facilities operate on a first come
first serve (FCFS) basis. The queue size is assumed to unlimited at each facility. Limiting the number of people
assigned to each time window and minimizing waiting times provides the mechanism for avoiding very large
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queues. Each treatment at each facility j ∈ O consumes an amount of time h j. Facilities may have the capability
to treat people in parallel, they may also have layouts that influence their capacity.

4 Mathematical Formulation

The following models the facility location problem with travel time, waiting time and total treatment time mini-
mization as a mixed integer programming model. The model is solved for a set of scenarios (S), in each of which,
the arrival time delay of each member of the population, after the beginning of their assigned time, window is
known. In this model population members are assigned to one of the open facilities, as opposed to automatically
being assigned to their nearest facility. Objective (1) minimizes costs of opening facilities and treating patients.
δ j is a binary decision variable which indicates whether facility j is selected, c j is the cost of opening facility j.
xi jw is a binary variable indicating which facility j and arrival time window w population member i is assigned to
for treatment, ei jw is the cost of treating population member i at facility j in time window w. A weight of (1−ψ)

is given to cost considerations. Objective (1) includes penalties that are proportional to the total population trans-
port time T t , plus total population queuing time T q

s and overall treatment time T o
s in each population arrival time

scenario. Time penalties are weighted by ψ , furthermore each penalized time has its own weight. α , β and γ are
the weights given for penalizing T t , T q

s and T o respectively. Note that since we assume deterministic travel times,
the total population travel time T t is deterministic whereas the total queuing time T q

s and overall treatment times
T o

s depend on uncertain population arrival times. By varying the values of ψ , α , β and γ we can explore the trade
offs between solution cost, travel time, waiting time and treatment time (Section 9.4).

min (1−ψ)

(
∑
j∈J

c jδ j +∑
i∈P

∑
j∈J

∑
w∈W

ei jwxi jw

)
+ψ

(
αT t +

1
|S|∑s∈S

(βT q
s + γT o

s )

)
. (1)

Constraint (2) requires that population members are assigned to one opened medical facility. The set P may
represent an entire local population or a prioritized subset of it.

∑
j∈J

∑
w∈W

xi jw = 1, ∀i ∈ P. (2)

Constraint (3) ensures that population members are assigned to an opened medical facility.

δ j ≥ ∑
w∈W

xi jw, ∀i ∈ P, ∀ j ∈ J. (3)

Constraint (4) states that treatment times can only be assigned to population members at their assigned facility. K

is the set of treatment times. yi jks is a binary decision variable that takes a value of 1 if population member i is
assigned to treatment time k at facility j in population arrival time scenario s. S is the set of arrival time scenarios.

∑
k∈K

yi jks ≤ ∑
w∈W

xi jw, ∀i ∈ P, ∀ j ∈ J, ∀s ∈ S. (4)

Constraint (5) states that each treatment time at each facility in each scenario can only be assigned to at most 1
member of the population.

∑
i∈P

yi jks ≤ 1, ∀k ∈ K, ∀ j ∈ J, ∀s ∈ S. (5)

Constraint (6) states that each member of the population is assigned to a treatment time in each scenario.

∑
j∈J

∑
k∈K

yi jks = 1, ∀i ∈ P, ∀s ∈ S. (6)
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Constraint (7) states that each population member can only be assigned to a treatment time that starts when they
arrive or after they arrive at their assigned facility. ta

is is the time that population member i arrives at their assigned
facility in population arrival time scenario s. τ jk is the start time of treatment slot k at facility j. Treatment start
times can be replicated for the case where facilities have multiple servers, i.e., ta

is can be the same for any two
i1, i2 ∈ P. The duration between consecutive treatment slots includes the time to perform the treatment as well as
any breaks or safety margin. For the case where treatment slots are of equal duration h j denotes the duration of
treatment slots at facility j, or equivalently, single service time.

∑
j∈J

∑
k∈K

yi jksτ jk ≥ ta
is,∀i ∈ P, ∀s ∈ S. (7)

Constraint (8) states that each population member arrives at their assigned facility at time ta
is, which depends on

the time at which their arrival time window starts (σ jw) plus a stochastic arrival time delay ui jws. ui jws is a random
variable representing the time uncertainty of the arrival of population member i in scenario s for their arrival at
their assigned facility j. We assume that the uncertain arrival time of a population member occurs within their
assigned time window, ui jws ∈ [0,m jw], modeling early arrivals is a trivial extension. m jw denotes the duration
of time window w (m jw = σ j(w+1)−σ jw). The periods between time windows may correspond to staff breaks or
overnight periods. If the time per treatment at facility j is h j on average, then the maximum number of population
members that can be assigned to time window w is χ jw =

⌈
m j
h j

⌉
.

ta
is = ∑

j∈J
∑

w∈W
xi jw (σ jw +ui jws) ,∀i ∈ P, ∀s ∈ S. (8)

Constraint (9) expresses the total travel time of the population in terms of the customer-facility decisions xi jw,
where di j is the distance between the domicile of population member i and facility j. Note that travel times are
deterministic, only facility arrival times are treated as stochastic inputs.

T t = ∑
i∈P

∑
j∈J

∑
w∈W

xi jwdi j. (9)

Constraint (10) states that the overall time required to treat the population, in any population arrival time scenario
s, is greater than any of the assigned treatment slot times. Since we are penalizing the total treatment time in the
objective this constraint will be satisfied to equality.

T o
s ≥∑

j∈J
∑
k∈K

yi jksτ jk,∀i ∈ P, ∀s ∈ S. (10)

Constraint (11) states that the overall waiting time, in any population arrival time scenario s, is equal to the sum
of all allocated treatment slot times minus the sum of all arrival times (through the associativity of the addition of
real numbers).

T q
s = ∑

i∈P

((
∑
j∈J

∑
k∈K

yi jksτ jk

)
− ta

is

)
, ∀s ∈ S. (11)

Constraints (12)-(14) specify the binary variables.

δ j ∈ {0,1} , ∀ j ∈ J. (12)

xi jw ∈ {0,1} , ∀i ∈ P, ∀ j ∈ J, ∀w ∈W. (13)

yi jks ∈ {0,1} , ∀i ∈ P, ∀ j ∈ J, k ∈ K, ∀s ∈ S. (14)
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5 Learnheuristic Solution Methodology

This work proposes a learnheuristic algorithm (Calvet et al., 2017) for selecting temporary-facility locations and
assigning population members to facilities and arrival time windows. Such an approach is useful in cases where
decision costs are dynamic. In this case decision costs are dynamic because facility completion times and popu-
lation waiting times depend on the number of people assigned to a facility, which itself depends on which other
facilities are open, which are changed one at a time within a constructive heuristic solution procedure. This type
of dynamic decision cost is referred to as “solution dependent decision costs”. A consequence of solution de-
pendent decision costs, within each stage of a constructive heuristic methodology, is that the accurate evaluation
of decision costs requires a re-evaluation of the each aspect of the solution that will be effected by each possible
subsequent decision. In this case, this process will involve multiple sets of repeat simulations, due to the stochastic
components of the problem, in particular waiting and treatment times different facilities. In order to reduce the
required computation effort, a learnheuristic uses a machine learning algorithm to predict decision costs within
each stage of a constructive heuristic instead of simulation.

The learnheuristic algorithm is outlined in Algorithm 1. The initial step of the learnheuristic is to generate in-
put data for the machine learning module (line 3). Following this, the learnheuristic is an iterative algorithm (lines
6 to 26) which generates new “promising” solution in each iteration. Each promising solution is tested using the
simulation model (line 19). The simulation returns the average waiting (tq

j (bestSol)) and treatment (to
j (bestSol))

times for each open facility in the promising solution ( j ∈ bestSol), which are used to calculate the stochastic ob-
jective value of the solution. Within each learnheristic iteration multiple runs of a biased randomized constructive
algorithm (Section 8) are performed (lines 9 to 17). Decision costs are evaluated within the constructive algorithm
using machine learning algorithm predictions (Section 7). The solution with the best estimated objective value
from a set of runs of the biased randomized algorithm is deemed the promising solution.

6 Simulation Module

The simulation component is used to obtain information regarding the performance of a solution under stochastic
population arrival times. Moreover, the simulation is used to calculate average population waiting times and over-
all treatment times, i.e, T q

s and T o
s of Objective (1), respectively. The simulation model generates random arrival

times for each population member within their assigned time window and then simulates the arrival-queuing-
treatment process at each open facility. Algorithm 2 outlines the simulation model. Lines 9 to 20 of Algorithm 2
outline the process of generating an arrival scenario for one facility, while lines 21 to 25 describe the simulation
of the queuing process and calculation of the average total waiting and treatment times.

For the case of a single server facility with fixed treatment time and uncertain arrival times, QueueSim of line
22 of Algorithm 2 corresponds to Algorithm 3, which cycles through the arrivals list in chronological order while
updating the total waiting and treatment time.

7 Machine Learning Module

We assume that total waiting time and treatment time are dependent upon the number of patients assigned to
a facility (see Figures 4 and 5). As such, our machine learning algorithms will predict expected waiting times
and overall treatment times as functions of the numbers of population members assigned to each facility j. The
machine learning prediction problems for each facility j can be represented as follows:

t̃q
j = MLq

j

(
|W |

∑
w=1
|P jw|

)
. (15)
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Algorithm 1 Learnheuristic algorithm.

1: Inputs: Iterations (number of iterations), BRRuns (number of biased randomization iterations used in each
learnheuristic iteration), λ (biased randomization parameter), simulation (simulation model), ML (machine
learning algorithms).

2: //Generate input data for the machine learning algorithms.
3: generateAndCollectData() (Algorithm 4)
4: bestStochasticSol = /0
5: bestStochasticOb jVal = 0
6: for i = 1 to Iterations do
7: bestSol = /0
8: bestOb jVal = 0
9: for j = 1 to BRRuns do

10: //Generate a new solution using the biased randomization heuristic.
11: (sol,ob jVal)← heuristic(λ ,ML) (Algorithm 5)
12: //Update best solution and its value.
13: if ob jVal > bestOb jVal then
14: bestSol = sol
15: bestOb jVal = ob jVal
16: end if
17: end for
18: //Test the best solution in simulation.
19:

({
tq

j (bestSol) , ∀ j ∈ bestSol
}
,
{

to
j (bestSol) , ∀ j ∈ bestSol

})
= simulation(bestSol) (Algorithm 2)

20: //Calculate the stochastic objective value stochasticOb jVal using Equation (1).
21: //Update best stochastic solution and its value.
22: if stochasticOb jVal > bestStochasticOb jVal then
23: bestStochasticSol = bestSol
24: bestStochasticOb jVal = stochasticOb jVal
25: end if
26: end for
27: Output: bestStochasticSol, bestStochasticOb jVal

t̃o
j = MLo

j

(
|W |

∑
w=1
|P jw|

)
. (16)

Where |Pjw| is the number of population members assigned to time window w at facility j. For any given set
of open facilities O, the magnitudes of the sets P jw are uniquely determined according to the nearest-facility-first-
available-time-window assignment rule. For each facility one machine learning algorithm is trained for predicting
waiting time and another one trained predicting for total treatment time. In this work the machine learning algo-
rithm is a nearest neighbor approach (Witten et al., 2011) with linear interpolation, a similar approach was used by
Bayliss et al. (2020) for solving a team orienteering problem with solution dependent decision costs. We recom-
mend that the choice of machine learning algorithm is made on a case by case basis, as more complicated machine
learning algorithms become necessary as simulation complexity increases.

7.1 Nearest Neighbor with Linear Interpolation

The data for the nearest neighbor with linear interpolation predictions is obtained from the simulation model
outlined in Section 6, data collection is performed before the learnheuristic optimization phase (line 3 Algorithm
1). Let F j denote the data collected from simulations of facility j. Let f j

k denote the kth data point in that set. f j
k

is a tuple containing the average total waiting time
(

q
(

f j
k

))
, average total treatment time

(
o
(

f j
k

))
and number

of arriving population members
(

p
(

f j
k

))
that occurred at facility j. That is, f j

k =
(

q
(

f j
k

)
,o
(

f j
k

)
, p
(

f j
k

))
,

where q(), o() and p() are functions that return the total waiting time, overall treatment time and total number
of assigned population members of a data point. When waiting time and treatment time predictions are required

11



Algorithm 2 Simulation of queues at open facilities. simulation(O)

1: Inputs: The set of open facilities O =
{

j ∈ J|δ j = 1
}

. The set of population members assigned to each
facility in each time window P jw =

{
i ∈ P|xi jw = 1

}
, ∀ j ∈ O, ∀w ∈ W . Number of repeat simulations

(repeatSimulations = |S|).
2: //Initialize average waiting time (tq

j (O)) and treatment time (to
j (O)) variables for each facility j ∈ O.

3: tq
j (O)← 0, ∀ j ∈ O

4: to
j (O)← 0, ∀ j ∈ O

5: //Perform repeat simulations.
6: for s = 1 to repeatSimulations do
7: //Consider each open facility.
8: for j ∈ O do
9: //Reset the list of facility arrival times.

10: arrivalTimes← /0
11: for w ∈W do
12: for i ∈ P jw do
13: //Sample a random arrival time for population member i in

[
σ jw,σ j(w+1)

]
. M jw () denotes the quan-

tile function (F−1) for the distribution of arrival times at facility j, whatever that may be, in arrival
time window w.

14: ta
is = σ jw +M jw (random(0,1))

15: //Add their arrival time to the arrival time list.
16: arrivalTimes← (arrivalTimes, ta

is)
17: end for
18: end for
19: //Sort the list of arrival times in ascending order.
20: Sort (arrivalTimes,ascending)
21: //Simulate the queue at facility j for the current arrival time list arrivalTimes.
22: (waitingTime, treatmentTime)← QueueSim j (arrivalTimes) (Algorithm 3)
23: //Update average waiting time and average treatment time.
24: tq

j (O)← tq
j (O)+ waitingTime

repeatSimulations

25: to
j (O)← to

j (O)+ treatmentTime
repeatSimulations

26: end for
27: end for
28: Output:

({
tq

j (O) , ∀ j ∈ O
}
,
{

to
j (O) , ∀ j ∈ O

})

for facility j when p population members are assigned to that facility, we firstly check if the data set F j contains
a data point with a matching number of assigned population members. If data point f j

k′ is found to be that match,

then the predicted waiting time and treatment time are q
(

f j
k′

)
and o

(
f j
k′

)
respectively. When there is no exact

match, we identify the two data points with the closest matching assigned population members above ( f j
k′ ) and

below ( f j
k′′ ) p. f j

k′ = argmin
f j
k∈F j

{
p
(

f j
k

)
> p
}

and f j
k′′ = argmax

f j
k∈F j

{
p
(

f j
k

)
< p
}

. The linearly interpolated prediction

for waiting time is calculated using Equation (17).

t̃q
j = q

(
f j
k′

)
+

 p− p
(

f j
k′

)
p
(

f j
k′′

)
− p

(
f j
k′

)
(q

(
f j
k′′

)
−q
(

f j
k′

))
. (17)

The treatment time prediction is calculated in the same way by replacing q with o.

7.2 Data Sampling with a Limited Simulation Budget

As described above, the data for the nearest neighbour with linear interpolation predictions are collected in the
initial phase of the proposed approach. In this phase we have a budget of simulation runs B j for each facility.
The size of the simulation budget directly influences run time, since the simulation is time-expensive due to its
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Algorithm 3 Queue simulation of facility j. QueueSim j (arrivalTimes)

1: Inputs: arrivalTimesi, ∀i ∈ P jw, ∀w ∈W the arrival times of each assigned population member sorted in
ascending order.

2: //Initialise clock time and total waiting time.
3: clockTime← 0, waitingTime← 0
4: //Cycle through the arrivals list.
5: for t ∈ arrivalTimes do
6: waitingTime← waitingTime+max(0, clockTime− t)
7: clockTime←max(clockTime, t)+h j
8: end for
9: Output: (waitingTime, clockTime)

relatively high computational requirements. We have a choice on how this budget is spent, that of the number of
simulations used to evaluate each sample point, where a sample point is a number of population members that
may be assigned to the facility. Let H j, denote the number of sample points that will be generated, then let the
number of repeat simulations used to evaluate each sample point be R j = d

B j
H j
e. We then sample H j possible

numbers of assigned population members at equal intervals between 1 and Pmax (the total population size). This
data generation and collection process is represented in Algorithm 4.

Algorithm 4 Data generation and collection. generateAndCollectData()

1: Inputs: H j, R j, J, Pmax.
2: //Generate and collect data samples for all facilities j ∈ J.
3: for j ∈ J do
4: //Initialise data sets, which facility is open and the number of repeat simulations per sample point.
5: F j← /0
6: O←{ j}
7: repeatSimulations← R j
8: for i = 1 to H j do
9: //Set the number of assigned population members.

10: |P| ←
⌊

1+(i−1)
(

Pmax−1
h j−1

)⌋
11: //Run the simulation.
12:

({
tq

j (O)
}
,
{

to
j (O)

})
← simulation(O) (Algorithm 2)

13: //Collect the data.
14: F j← F j ∪

{(
tq

j (O) , to
j (O) , |P|

)}
15: end for
16: end for
17: Output: F j, ∀ j ∈ J

8 Optimization Module

Our approach is based on the constructive heuristic proposed by ?. It starts from an initial solution in which all
facilities are open. It then proceeds to close facilities until the savings of closing any other facility is negative.
This procedure is outlined in Algorithm 5.

Candidate facilities are sorted in decreasing order of their associated savings value, then a list position index is
selected according to a geometric distribution (line 10 Algorithm 5). In that equation, |+ ve savings| denotes the
number of remaining open facilities which have a positive savings value. For 0 < λ ≤ 1 the geometric distribution
assigns higher selection probabilities to facilities with higher savings values. λ is the probability that facility
associated with the highest saving is selected and then closed. The geometric distribution is a natural choice
for biased randomization, since the parameter λ provides a single lever controlling the balance between search
diversification and intensification.
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Algorithm 5 Biased randomized constructive heuristic. heuristic(λ ,ML)

1: Inputs: λ , ML (machine learning algorithm).
2: //Set all facilities as open and set the initial objective value (the same every time).
3: O← J
4: ob jVal← initialOb jVal
5: //Initialize the savings list (same every time).
6: saving j← initialSaving j, ∀ j ∈ O
7: //Select facilities to close until the objective cannot be improved.
8: while ∃ saving j∈O ≥ 0, do
9: //select a facility to close randomly from the sorted savings list according to a geometric distribution.

10: index = Mod
(⌊

log(uniRand(0,1))
log(1−λ )

⌋
, |+ ve saving|

)
11: O← O\{Oindex}
12: ob jVal← ob jVal− savingindex
13: //Update the savings values for closing the remaining open facilities.
14: updateSavings(Oindex) (Algorithm 6)
15: end while
16: Output: (O, ob jVal)

8.1 Savings Calculation

For the case of Objective (1) the saving for removing facility j from the set of open facilities O is given by Equation
18.

saving j = (1−ψ)

(
c j− ∑

i∈P j

(
ei j− eiN(i)

))
−ψ

(
α ∑

i∈P j

(
di j−diN(i)

)
+β

(
∑

k∈O
tq
k (O)− ∑

k∈O\{ j}
tq
k (O\{ j})

)
+ γ

(
max
k∈O

(
to
k (O)

)
− max

k∈O\{ j}

(
to
k (O\{ j})

)))
(18)

Here, P j denotes the set of population members currently assigned to facility j. N (i) denotes the open facility
that population member i is allocated to when facility j is closed, given which are the other remaining open
facilities. In this case population members are always assigned to the nearest open facility, as a heuristic approach
for reducing travel times. The first term of Equation (18) evaluates the cost savings associated with opening facility
j. The second term accounts for savings associated with travel time, waiting times and total treatment time. tq

j (O)

denotes the expected waiting time at facility j when the set of open facilities is O and to
j (O) denotes the total

expected treatment time at facility j when the set of open facilities is O. A similar but complementary equation
exists for the saving associated with opening a facility. In this work tq

j (O) and to
j (O) ( j ∈ O) are estimated from

the simulation model given in Algorithms 2 and 3, making this savings calculation very computationally expensive
if used within the heuristic framework introduced in de Armas et al. (2017), since repeat simulations would have
to be implemented for each facility every time a facility is added or removed from the current solution in order
to estimate the savings associated with each possible subsequent decision. As a tractable alternative we propose
to adopt a learnheuristic approach in which the values of tq

j (O) and to
j (O) are predicted from machine learning

algorithms trained in an initial training phase.

8.2 Updated Savings when Closing a Facility

Every time a facility is closed the population members assigned to that facility are assigned to the next nearest

open facility j in the first time window w′ such that
w′

∑
w=1
|P jw| <

w′

∑
w=1

χnw. We then update the savings associated

with closing the remaining open facilities which these population members have been reassigned to. Their savings
values, in turn, depend on the effect that reassigning population members to their nearest alternative open facility
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has on waiting times and treatment times. The procedure outlined in Algorithm 6 is utilized. Firstly, the selected
facility j is closed by removing it from the set of open facilities (line 3). The next task is to assign the population
members who were assigned to facility j to their next nearest open facility (line 8) and to keep track of the set of
facilities whose will have more population members assigned to them (line 10). The set of population members
assigned to facility j is cleared (line 13). The predicted waiting times for each facility and overall treatment time
are updated using the machine learning algorithms (lines 16-19), these provide the reference values for updating
the savings values associated with each of the remaining open facilities. We then update the savings values for
each facility which has had population members reassigned to them due to the closure of facility j (the facility
set µ), the savings values associated with the facilities not in this set (O \ {µ}) will not have changed since its
last update. To do this we need to calculate the number of population members that will be assigned to each other
facility for each facility that can be closed next (lines 23-33). Then the machine learning algorithms are used to
predict next possible waiting times and overall treatment times associated with each facility which can be closed
next (lines 38-41). The deterministic and non-dynamic saving contributions are opening costs, assignment costs
and travel times (lines 22 and 32 respectively). Once the savings list is updated a new facility can be selected for
closure.
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Algorithm 6 Close facility j and update savings of remaining open facilities. updateSavings( j)

1: Inputs: j (closing facility)
2: //Close facility j
3: O← O\{ j}
4: //Initialize the set of facilities whose number of assigned population members will increase.
5: µ ← /0
6: for i ∈ P j do
7: //Add the population member to their new facility N (i) and to their new time window L(i).
8: PN(i)L(i)← PN(i)L(i)∪{i}
9: // Update the set of facilities whose assigned number of population members will change.

10: µ ← µ ∪{N (i)}
11: end for
12: //Clear the set of population members assigned to facility j.
13: P j← /0
14: //Update the predicted waiting times for each remaining open facility t̃q

j and the overall treatment time T̃ o.
15: T̃ o = 0
16: for k ∈ O do

17: t̃q
k = MLq

k

(
|W |
∑

w=1
|Pkw|

)

18: T̃ o = max

(
T̃ o,MLo

k

(
|W |
∑

w=1
|Pkw|

))
19: end for
20: //Update the savings values for closing facilities in µ .
21: for k ∈ µ do
22: savingk = (1−ψ)ck
23: //Initialize storage of the new number of assigned population members of the remaining open facilities if

facility k is closed.

24: εl =
|W |
∑

w=1
|Plw|, ∀l ∈ J

25: //Initialize the set of facilities whose number of assigned population members will increase if facility k is
closed.

26: ν ← /0
27: //Add the number of population members assigned to facility k to the next nearest open facility in the first

available time window.
28: for i ∈ Pk do
29: εN(i) = εN(i)+1
30: ν ← ν ∪{N (i)}
31: //Update savings value account for fixed costs and travel distance changes.
32: savingk = savingk +(1−ψ)

(
eik− eiN(i)

)
+ψα

(
dik−diN(i)

)
33: end for
34: //Initialize new predicted overall treatment time if facility k is closed.

35: T̂ o = ∑
l /∈ν∪{k}

max

(
T̂ o,MLo

l

(
|W |
∑

w=1
|Plw|

))
36: //Account for savings due to waiting time changes due closing facility k using machine learning algorithm

predictions.
37: savingk = savingk + t̃q

k
38: for l ∈ ν do

39: savingk = savingk +ψ

(
β

(
t̃q
l −MLq

l

(
|W |
∑

w=1
εl

)))

40: T̂ o = max

(
T̂ o,MLo

l

(
|W |
∑

w=1
εl

))
41: end for
42: //Account for the predicted change in overall treatment time.
43: savingk = savingk +ψγ

(
T̃ o− T̂ o

)
44: end for
45: Output: savingk, ∀k ∈ O
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9 Computational Experiments

In Section 9.1, we consider the effects of different population arrival time distributions in conjunction with a
range of time window durations. In Section 9.2, we consider how to allocate a simulation budget for generating
input data for the machine learning module. In Section 9.3, we compare the proposed learnheuristic with exact,
simulation-based and greedy algorithm alternatives for a range of problem types and sizes. Finally, in Section 9.4,
we analyze the trade offs between solutions cost, travel times, waiting time and total treatment time.

9.1 Arrival Distribution, Variance and Time Window Duration

The results in this section are based on the case of 2000 population members arriving at a single facility which
treats one person every minute. The results reported in Table 1 are each based on 10000 repeats of the simulation
model outlined in Section 6. The experiments is repeated for all combinations of two different arrival time distri-
butions (uniform random and triangle), three arrival time ranges (80,100 and 120) and three different values for
time window duration (80, 100 and 120). Both arrival time distributions are symmetrical and the average arrival
time of population members within their assigned time window is the middle of that time window. In cases where
the arrival time range exceeds the time window duration, we model both early and late arrivals. For the case where
the time window duration is 100 and the arrival time range is 80, the average arrival time will be 50 minutes into
the time windows and all arrival will occur between 10 and 90 minutes into the time windows—which implies a
gap between consecutive time windows which may be useful for clearing queues which remain at the end of time
windows.

Table 1: The effect of arrival distributions, arrival time range variance on total waiting and overall treatment time.

Average waiting time Average total treatment time
Arrival Arrival Time window duration

distribution time range 80 100 120 80 100 120
Uniform 80 19064.0 27862.6 42784.5 2011.9 2015.6 2025.4

100 25022.0 20541.6 27959.1 2015.2 2012.9 2031.2
120 27401.5 26571.0 20959.2 2020.7 2016.2 2040.6

Triangle 80 31662.2 46311.7 60958.6 2057.6 2064.9 2073.7
100 25035.5 37368.3 50508.8 2064.6 2070.7 2079.4
120 20719.5 30200.0 41515.2 2074.4 2077.4 2093.3

Table 1 shows that a uniform random arrival pattern helps to reduce both waiting time and treatment time
in all cases, this makes sense since the reduced rate of arrivals at the beginning of time windows, in the case of
triangle distributed arrivals, leaves less time to treat the increased number of arrivals that occur in the remainder
of the time window. The increased rate of arrivals that occurs in the middle of time window then leads to larger
queues and hence larger waiting times. The next most obvious pattern, that is visible in Table 1, is that smaller
time windows help to reduce overall treatment times. The reason for this is that the final time windows typically
have very few population members assigned to them, but people may still arrive towards the end of the time
window, as a result reducing the duration of time windows helps to improve the efficient use of the final time
window. Table 1 reveals that, for the case of uniform random arrivals waiting times are reduced when the time
window duration matches the arrival time range. When the arrival range exceeds the time window duration, people
arrive before the beginning of the first time window and creates in initial queue that can propagate through the
remainder of the process. When the arrival range is less than the time window duration people arrive in a greater
concentration which increases the risk of queue formation. It is worth noting that: more people can be allocated
to larger time windows. Although the average arrival rate is the same, larger time windows with proportionately
more people assigned to them, have a greater potential for larger queues, and therefore waiting times and total
treatment times. For the case of a triangle distribution smaller time windows reduce average waiting times in all
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cases, which is because triangle distributed arrival patterns always induce a risk of queue formation in the middle
of time windows, and smaller time windows means that fewer people are assigned
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Figure 4: The effect of simulation budget utilization on waiting time prediction accuracy.

to each time window which reduces the average number of arrivals in the middle of each time window which
reduces queue sizes as a result. In fact, reducing time windows should have the effect of making the overall arrival
pattern tend to a uniform random arrival process, regardless of the arrival time distribution of the population.
Small time windows corresponds to a flexible appointment approach.

9.2 Utilization of Simulation Budget for Generating Input Data for the ML Module

Given a budget of simulation repeats, we can choose to sample few scenarios each evaluated using a large number
of repeat simulations, or sample a wide range of scenarios each evaluated using few repeat simulations. In the
former case we have high accuracy estimates of few points, in the latter we have low accuracy estimates of many
points. The ideal trade-off is to have quite accurate estimates of quite a lot of points. Figures 4 and 5 show how the
sample size (H j) effects prediction accuracy when there is a fixed simulation budget for evaluating those sample
points. The RMSE values in those figures were calculated by comparing nearest neighbor with linear interpolation
predictions with values calculated from 1000 repeat simulations for all possible number of arrivals between 1 and
pmax. Figure 4 shows that, for the case of waiting times, a simulation budget of 10000, a maximum population size
of 2000, average treatment time of 1 minute, times windows of 250 minutes with 250 treatments per time window,
it was found that 100 sample points each evaluated using 100 repeat simulations results in the lowest root mean
square error (RMSE). Fewer sample points, evaluated using more repeat simulations, fails to improve prediction
accuracy because the linear interpolations between sampled points become more inaccurate. More sample points
evaluated using fewer repeat simulations leads to inaccurate data, as shown by the increasing deviation of the
training data and predictions from the actual waiting times. Figure 5 illustrates a similar effect for the treatment
time predictions, where 400 sample points each evaluated using 25 repeat simulations leads to the lowest RMSE.
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From figures 4 and 5, we can also conclude that treatment times are easier to predict than waiting times. Firstly,
we see that we are able to obtain more accurate treatment time predictions based on data generated using fewer
repeat simulations per sample point. Secondly, this makes sense from the perspective that arrival patterns with
different total waiting times can lead to the same overall treatment time. For instance, a uniform arrival pattern
and an arrival pattern where all population members arriving at the beginning of their assigned time window can
both have equal total treatment time but vastly different total waiting times.

Figures 4 and 5 also reveal non-linearity and discontinuity in total waiting and treatment times as the number of
assigned population members is increased. In this case, the discontinuities occur at intervals of 250 minutes, which
is the duration of a time window. The jumps are sharper for the case of total treatment times and correspond to the
need to allocate very few people to a new time window because the earlier ones are full. For the case of waiting
times, these jumps are accompanied by a superlinear increase, which occurs as the number of people assigned to
the last time window approaches its maximum value. This reveals that waiting times can be greatly reduced by
under-subscribing time windows. Furthermore, a larger scale superlinear increase in waiting time occurs due to a
cumulative effect of time windows overflowing into the next one. This means that breaks in between consecutive
time windows can be beneficial for reducing total waiting times.
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Figure 5: The effect of simulation budget utilisation on treatment time prediction accuracy.

9.3 Comparison of Algorithms over a Range of Problem Sizes

This section compares the proposed learnheuristic (LH) with the exact formulation (EXACT) solved using the
commercial solver CPLEX, a simulation equivalent of the proposed method (SH) and a greedy heuristic imple-
mentation based on the proposed learnheuristic (GLH). The termination criteria for the EXACT approach is to
terminate upon the first of two events, 1) proven optimal solution found; or 2) solution time reaches 7200 seconds.
In particular, SH is exactly the same as LH except that every time LH uses a machine algorithm prediction for
evaluating decision costs, SH uses the simulation. SH will allow us to demonstrate what is gained by using LH
instead of a simulation optimization based approach. LH and SH both perform 500 iterations with 5 applications
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of the biased randomized constructive heuristic in each learnheuristic iteration, λ is selected randomly in [0,1] at
the beginning of each learnheuristic iteration. GLH is exactly the same as LH except that only one LH iteration
performed and the parameter λ is set to 1 so that the constructive heuristic behaves as a greedy algorithm (?).

Table 2: Comparison of algorithms for a variety of problem sizes.

Solution
Objective Travel Waiting Treatment time s

|S| |J| |P| |m jw| Method value Costs time time time (log10)
1 1 20 20 EXACT 34.93 40.85 7.23 30.52 23.74 -1.23

SH 34.93 40.85 7.23 30.52 23.74 -1.98
LH 34.93 40.85 7.23 30.52 23.74 -2.06

GLH 34.93 40.85 7.23 30.52 23.74 -2.55
2 2 40 20 EXACT 53.06 55.35 15.96 75.41 48.47 1.49

SH 53.06 55.35 15.96 75.41 48.47 -1.44
LH 53.06 55.35 15.96 75.41 48.47 -1.87

GLH 53.06 55.35 15.96 75.41 48.47 -2.13
3 4 80 40 EXACT 95.57 87.9 32.09 211.15 90.58 3.8

SH 95.93 82.98 33.37 231.89 106.8 -0.56
LH 95.93 82.98 33.37 231.89 106.8 -1.36

GLH 96.16 85.52 31.77 219.28 105.52 -1.84
4 8 160 40 EXACT - - - - - -

SH 175.6 168.35 50.66 366.17 154.27 0.31
LH 175.6 168.35 50.66 366.17 154.27 -0.74

GLH 175.88 168.25 48.99 367.5 158.29 -1.4
5 16 320 80 EXACT - - - - - -

SH 325.36 337.93 83.86 580.83 222.64 0.84
LH 325.26 337.93 83.25 580.42 222.67 -0.23

GLH 328.74 408.74 71.64 248.99 114.64 -0.75
10 32 640 80 EXACT - - - - - -

SH 639.13 629.1 137.69 1496.34 373.55 1.79
LH 639.6 630.55 139.53 1509.14 352.3 0.33

GLH 645.16 805.32 110.48 582.41 151.11 -0.1
20 64 1280 160 EXACT - - - - - -

SH 1035.3 1299.77 201.67 840.84 267.53 2.84
LH 1035.14 1299.24 201.61 858.82 250.53 1

GLH 1042.57 1324.97 200.99 755.13 250.74 0.6
30 128 2560 160 EXACT - - - - - -

SH 2046.76 2602.77 331.49 1674.6 373.48 3.64
LH 2046.53 2603.26 334.56 1666.96 372.63 1.76

GLH 2057.2 2628.43 329.62 1592.15 383.08 1.41
40 256 5120 320 EXACT - - - - - -

SH - - - - - -
LH 2884.76 3598.96 381.75 2606.57 676 2.6

GLH 2897.07 3600.46 386.92 2708.8 681.23 2.07
50 512 10240 320 EXACT - - - - - -

SH - - - - - -
LH 5745.66 7208.54 567.54 5347.34 1141.28 3.39

GLH 5760.43 7229.63 564.99 5311.24 1177.16 2.72
100 1024 20480 640 EXACT - - - - - -

SH - - - - - -
LH - - - - - -

GLH 9957.42 12773.4 988.61 7425.32 1796.76 3.37

For each problem size a range of different problem types are considered. The types of instance are varied
according to the spatial distribution of nodes, two cases are considered: (i) x and y coordinates of each node are
selected according to a uniform random distribution in [0,1]; and (ii) the x and y coordinates of nodes are generated
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Figure 6: Solutions times and objective values relative to the best known for all solution methodologies for all
sizes and types.

using polar coordinates, firstly an angle is selected θ ∈ [0,360) and a radius r ∈ [0,0.5], then x = rcos(θ) and
y = rsin(θ). In this approach nodes are distributed in a circle with increased density in the center, resembling a
city-like arrangement. The instance types for each problem size are also varied according constant (30) or random
(uniform random [0,30]) facility costs and constant (1) or random (uniform random [0,1]) treatment costs per
population member, i.e., 4 combinations, making 8 instances for each problem size. The details regarding the
problem sizes considered are given in Table 2.

The results in Table 2 report the objective values, solution costs, travel time, waiting time, overall treatment
time and solution time for each solution methodology on average over the 8 instances for each problem size.
Solution times are given as log10, which gives the number of zeros/order of magnitude of solution time in seconds,
i.e., 2=100 seconds and 3=1000 seconds. These statistics are calculated by testing the final solutions in 500 repeat
simulations starting from a different random seed to that used during the optimization process. Figure 6 plots
the objective values, relative to the best achieved, and solution times for all solution methodologies, all problem
sizes and all problem types. Table 2 and Figure 6 firstly show that the EXACT approach was only able to solve
instances in the three smallest problem sizes before out of memory errors occurred. For these instances the
heuristic methodologies each found solution of equal or similar quality and in a fraction of the time required by
the EXACT approach. For the next five sets of increasingly sized problems SH, LH and GLH were able to provide
solutions, with SH and LH providing solutions of equal or very similar quality. GLH provided notable lower
quality solutions, which highlights the benefit of biased randomization. For larger problem sizes solution times
for SH became an issue due to its excessive use of the simulation module, which highlights the benefit of the LH,
that of allowing us to tackle even larger problems. Regarding the significance of the differences between the 4
algorithms, only GLH gave solutions with noticeably different objective values to those of EXACT, SH and LH.
Based on independent sample t-tests, the difference between GLH and LH was significant at the 0.05 α level in
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instances involving populations of 320, 640, 1280 and 2560. In the other instances GLH was able to find solutions
of comparable quality to LH such that the reported differences have a greater than 5% chance of being attributable
to chance.
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Figure 7: Matrix scatter plot of the costs, travel times, waiting times and overall treatment times associated with
the efficient solutions.

9.4 The Trade Off Between Costs, Travel Time, Waiting Time and Completion Time

The experiments in this section are based on an example problem instance involving a population size of 2560,
a maximum number of facilities of 128, a time window size of 320, treatment times of one minute, population
members arrive at their assigned facility according to a uniform random distribution during their assigned time
window, the nodes distributed according to the polar coordinate approach described in Section 9.3, treatment costs
and facility opening costs are fixed at 1 and 30 respectively.

In order to explore the trade offs between the considered objectives 5000 LH iterations were performed, with
the other parameters set to the same values as those specified in Section 9.3, and the set of non-dominated solutions
were collected. In each LH iteration the weights given to each objective (ψ,α,β ,γ) were randomized according to
a uniform random distribution, ψ ∈ [0,1], α,β ,γ were similarly sampled before being divided by their sum, such
that their sum was 1. A solution is dominated if there exists another solution that has better or equal characteristics
across all objectives with at least one of them being better. The set of non-dominated is the composite of the set
of dominated solutions and defines an efficient frontier of solutions. Figure 7 plots this efficient set of solutions
using a matrix of scatter plots, with rows and columns corresponding to each objective, this allows us to judge the
nature of the trade offs between each pair of objectives.

Figure 7 shows that the cost is a conflicting objective with travel time, waiting time and treatment time. The
reason for this is that reducing travel time, waiting time and treatment time requires the opening of more facilities
which increases costs. Figure 7 also shows that there are diminishing returns for each extra facility that is opened,
as costs approach 4000 the reductions in travel time, waiting time and treatment time approach zero. Travel time,
waiting time and treatment time are in general non-conflicting objectives. Waiting time and treatment time only
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become competing objectives when optimizing the approach for controlling the arrival process, i.e., large queues
ensure high server utilization, which reduces overall treatment time at the expense of increased waiting times.

10 Conclusions

This work considers an integrated facility location and queue optimization problem, and outlines a scalable op-
timization approach for determining the set of facilities to open and which facilities population members can be
assigned to. The problem was formulated as a mixed integer program which could be solved for small instances.
In order to solve large instances of this stochastic problem, a learheuristic algorithm was proposed. It integrates
a biased randomization algorithm with simulation and machine learning components. The simulation model was
used provide training data for the machine learning algorithm and for evaluating promising solutions that were
identified by the learnheuristic algorithm. The machine learning algorithm was used to avoid excessive use of the
simulation model when updating the solution dependent decision costs within the biased randomized constructive
algorithm.

Population members were assigned to facilities as well as time windows, in a flexible appointment fashion.
Experimental results showed that the choice of time window duration should be chosen as a function of the arrival
time distribution of the population, and that, in general, smaller time windows help to reduce average waiting
times as well as total treatment times regardless of the actual arrival time distribution of the population. Also,
the way in which a budget of simulation runs is used to generate input data for the machine learning algorithm
of the learnheuristic is an important design decision. In particular, we are faced with finding a balanced trade off
between a large amount of inaccurate input data and a small amount of accurate input data.

In comparison with exact solutions, which were only available for small relatively trivial problem instances, the
proposed heuristic approaches provided solutions of equal or similar quality in a fraction of the time required by the
exact approach. The solution times of simulation-only implementation of the learnheuristic became inordinately
large as the problems sizes were increased. The learnheuristic approach was between 1 and 2 orders of magnitude
faster than the simulation-only approach, while at the same time providing solution of equal or very similar quality
to the the simulation-only approach.

Experimental results revealed the nature of the trade offs between cost, travel time, waiting time and treatment
time. In general, cost was a conflicting objective with travel time, waiting time and treatment time, namely
because reducing travel, waiting and treatment times requires the opening of more facilities, which increase costs.
The results also indicated a case of diminishing returns from increasing the number of facilities opened.
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