6,494 research outputs found

    Improving the Convergence of Vector Fitting for Equivalent Circuit Extraction From Noisy Frequency Responses

    Get PDF
    The vector fitting (VF) algorithm has become a common tool in electromagnetic compatibility and signal integrity studies. This algorithm allows the derivation of a rational approximation to the transfer matrix of a given linear structure starting from measured or simulated frequency responses. This paper addresses the convergence properties of a VF when the frequency samples are affected by noise.We show that small amounts of noise can seriously impair or destroy convergence. This is due to the presence of spurious poles that appear during the iterations. To overcome this problem we suggest a simple modification of the basic VF algorithm, based on the identification and removal of the spurious poles. Also, an incremental pole addition and relocation process is proposed in order to provide automatic order estimation even in the presence of significant noise.We denote the resulting algorithm as vector fitting with adding and skimming (VF-AS). A thorough validation of the VF-AS algorithm is presented using a Monte Carlo analysis on synthetic noisy frequency responses. The results show excellent convergence and significant improvements with respect to the basic VF iteration scheme. Finally, we apply the new VF-AS algorithm to measured scattering responses of interconnect structures and networks typical of high-speed digital systems

    Sudden stretching of a four layered composite plate

    Get PDF
    An approximate theory of laminated plates is developed by assuming that the extensioral and thickness mode of vibration are coupled. The mixed boundary value crack problem of a four layered composite plate is solved. Dynamic stress intensity factors for a crack subjected to suddenly applied stress are found to vary as a function of time and depend on the material properties of the laminate. Stress intensification in the region near the crack front can be reduced by having the shear modulus of the inner layers to be larger than that of the outer layers

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Um algoritmo exato para o problema de realocação de blocos usando novos limitantes inferiores

    Get PDF
    Orientadores: Eduardo Candido Xavier, Carla Negri LintzmayerDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O Problema de Realocação de Blocos é um problema importante em sistemas de armazenamento. Um exemplo de entrada para este problema consiste em um conjunto de blocos distribuídos em pilhas, onde cada bloco é identicado por um número que representa sua prioridade de recuperação e todas as pilhas têm um mesmo limite de altura. Apenas blocos no topo de uma pilha podem ser movidos, com dois tipos de movimentos: ou um bloco é recuperado, o que ocorre quando ele tem a mais alta prioridade de recuperação entre os blocos empilhados, ou um bloco é realocado do topo de uma pilha para o topo de outra pilha. O objetivo é recuperar todos os blocos, respeitando sua prioridade de recuperação e executando o menor número de realocações. Resolver este problema é crítico em sistemas de armazenamento, pois economiza tempo e recursos operacionais. Apresentamos dois novos limitantes inferiores para o número de realocações em uma solução ótima. Implementamos um algoritmo de deepening A* usando esses limites inferiores propostos e outros limites inferiores bem conhecidos da literatura. Foi realizado um extenso conjunto de experimentos computacionais mostrando que os novos limites inferiores melhoram o desempenho do algoritmo exato, resolvendo mais instâncias otimamente do que quando usando outros limites inferiores na mesma quantidade de tempoAbstract: The Blocks Relocation Problem is an important problem in storage systems. An input instance for this problem consists of a set of blocks distributed in stacks where each block is identified by a retrieval priority number and each stack has the same maximum height limit. Only blocks at the top of a stack can be moved: either a block is retrieved, if it has the highest retrieval priority among the stacked blocks, or it is relocated to the top of another stack. The objective is to retrieve all the blocks, respecting their retrieval priority while performing the minimum number of relocations. Solving this problem is critical in storage systems because it saves operational time and resources. We present two new lower bounds for the number of relocations of an optimal solution. We implemented an iterative deepening A* algorithm using these new proposed lower bounds and other well- known lower bounds from the literature. We performed an extensive set of computational experiments showing that the new lower bounds improve the performance of the exact algorithm, solving to optimality more instances than when using other lower bounds in the same amount of timeMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Container Handling Algorithms and Outbound Heavy Truck Movement Modeling for Seaport Container Transshipment Terminals

    Get PDF
    This research is divided into four main parts. The first part considers the basic block relocation problem (BRP) in which a set of shipping containers is retrieved using the minimum number of moves by a single gantry crane that handles cargo in the storage area in a container terminal. For this purpose a new algorithm called the look ahead algorithm has been created and tested. The look ahead algorithm is applicable under limited and unlimited stacking height conditions. The look ahead algorithm is compared to the existing algorithms in the literature. The experimental results show that the look ahead algorithm is more efficient than any other algorithm in the literature. The second part of this research considers an extension of the BRP called the block relocation problem with weights (BRP-W). The main goal is to minimize the total fuel consumption of the crane to retrieve all the containers in a bay and to minimize the movements of the heavy containers. The trolleying, hoisting, and lowering movements of the containers are explicitly considered in this part. The twelve parameters to quantify various preferences when moving individual containers are defined. Near-optimal values of the twelve parameters for different bay configurations are found using a genetic algorithm. The third part introduces a shipping cost model that can estimate the cost of shipping specific commodity groups using one freight transportation mode-trucking- from any origin to any destination inside the United States. The model can also be used to estimate general shipping costs for different economic sectors, with significant ramifications for public policy. The last part mimics heavy truck movements for shipping different kinds of containerized commodities between a container terminal and different facilities. The highly detailed cost model from part three is used to evaluate the effect of public policies on truckers\u27 route choices. In particular, the influence of time, distance, and tolls on truckers\u27 route selection is investigated.
    corecore