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Abstract. This work introduces an innovative parallel, fully-distributed finite element framework
for growing geometries and its application to metal additive manufacturing. It is well-known that
virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and
multiphysics analyses. Only high performance computing tools are able to handle such complexity
in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has
rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed
to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three
building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel
strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers.
Computational experiments consider the heat transfer analysis at the part scale of the printing process
by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis
assesses performance and identifies major sources of parallel overhead. A third numerical example
examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and
scalability were achieved in this work. Hence, this framework contributes to take on higher complexity
and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but
also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical
domain of interest grows in time.

Keywords: Parallel computing, domain decomposition, finite elements, adaptive mesh refinement,
additive manufacturing, powder-bed fusion.

1. Introduction

Additive Manufacturing (AM), broadly known as 3D Printing, is introducing a disruptive design
paradigm in the manufacturing landscape. The key potential of AM is the ability to cost-effectively
create on-demand objects with complex shapes and enhanced properties, that are near impossible or
impractical to produce with conventional technologies, such as casting or forging. Adoption of AM is
undergoing an exponential growth lead by the aerospace, defence, medical and dental industries and
the prospect is a stronger and wider presence as a manufacturing technology [70].

Nowadays, one of the main showstoppers in the AM industry, especially for metals, is the lack of
a software ecosystem supporting fast and reliable product and process design. Part qualification is
chiefly based on slow and expensive trial-and-error physical experimentation and the understanding
of the process-structure-performance link is still very obscure. This situation precludes further imple-
mentation of AM and it is a call to action to shift to a virtual-based design model, based on predictive
computer simulation tools. Only then will it be possible to fully leverage the geometrical freedom, cost
efficiency and immediacy of this technology.

This work addresses the numerical simulation of metal AM processes through High Performance
Computing (HPC) tools. The mathematical modelling of the process involves dealing with multiple
scales in space (e.g. part, melt pool, microstructure), multiple scales in time (e.g. microseconds, hours),
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coupled multiphysics [24, 45] (e.g. thermomechanics, phase-change, melt pool flow) and arbitrarily
complex geometries that grow in time. As a result, high-fidelity analyses, which are vital for part
qualification, can be extremely expensive and require vast computational resources. In this sense,
HPC tools capable to run these highly accurate simulations in a time scale compatible with the
time-to-market of AM are of great importance. By efficiently exploiting HPC resources with scalable
methods, one can drastically reduce CPU time, allowing the optimization of the AM building process
and the virtual certification of the final component in reasonable time.

Experience acquired in modelling traditional processes, such as casting or welding [17, 18, 50], has
been the cornerstone of the first models for metal AM processes [2, 13, 47, 53, 62]. At the part scale,
Finite Element (FE) modelling has proved to be useful to assess the influence of process parameters [59],
compute temperature distributions [20, 25], or evaluate distortions and residual stresses [27, 52, 61].
Recent contributions have introduced microstructure simulations of grain growth [49, 63] and crystal
plasticity [44], melt-pool-scale models [45, 72] and even multiscale and multiphysics solvers [43, 51, 64,
71, 73]. Furthermore, advanced frameworks (e.g. grounded on multi-level hp-FE methods combined
with implicit boundary methods [46]) or applications to topology optimization [68] have also been
considered.

However, in spite of the active scientific progress in the field, the authors have detected that very
little effort has turned to the design of large scale FE methods for metal AM. Even if computational
efficiency has been taken into consideration in several works, all approaches have been limited to
Adaptive Mesh Refinement (AMR) [26, 60] or simplifications [21, 37, 38, 66] that sacrifice the accuracy
of the model. Parallelism and scalability has been generally disregarded (with few exceptions [49, 57]),
even if it is fundamental to face more complexity and/or provide increased accuracy at acceptable CPU
times. For instance, for the high-fidelity melt-pool solver in [72], a simulation of 16 ms of physical time
with 7 million cells requires 700 h of CPU time on a common desktop with an Intel Core i7-2600.

The purpose of this work is to design a novel scalable parallel FE framework for metal AM at the
part scale. Our approach considers three main building blocks:

(1) Hierarchical AMR with octree meshes (see Sect. 2). The dimensions of a part are in the order
of [mm] or [cm], but relevant physical phenomena tend to concentrate around the melt pool
[µm]. Likewise, in powder-bed fusion, the layer size is also [µm], i.e. the scale of growth is
much smaller than the scale of the part. Hence, adaptive meshing can be suitably exploited
for the highly-localized nature of the problem. Here, a parallel octree-based h-adaptive FE
framework [7] is established.

(2) Modelling the growth of the geometry (see Sect. 3). In welding and AM processes, the addition
of material into the part has been typically modelled by adding new elements into the compu-
tational mesh. To this effect, the simulation starts with the generation of a static background
mesh comprising the substrate and the filling, i.e. the final part. Common practice in the
literature essentially considers two different techniques [19, 55]: quiet-element method and
Element-Birth Method (EBM). The only difference among them is how they treat the ele-
ments in the filling at the start of the simulation. While the former assigns to them penalized
material properties, perturbing the original problem; in the latter, they have no Degrees of
Freedom (DOFs). At each time step, the computational mesh is updated: elements inside the
incremental growth region are found with a search operation and assigned the usual material
properties or new degrees of freedom, respectively. This work extends the EBM to (1). The
parallelization approach is designed such that it can be accommodated in a general-purpose FE
code. It only requires two interprocessor communications and it is completed with an efficient
and embarrassingly parallel intersection test for rectangular bodies to drive the update of the
computational mesh (Sect. 3.2). Finally, a strategy is devised to balance the computational
load among processors, during the growth of the geometry (Sect. 3.3). The parallel and adap-
tive EBM is central to a parallel FE framework for growing domains and constitutes the main
novelty of this work.
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(3) State-of-the-art parallel iterative linear solvers. Compared to sparse direct solvers, iterative
solvers can be efficiently implemented in parallel computer codes for distributed-memory ma-
chines. However, they must also be equipped with efficient preconditioning schemes, i.e. pre-
conditioners able to keep a bound of the condition number, independent of mesh resolution,
while still exposing a high degree of parallelism. Examples of preconditioners that the frame-
work is able to use include Algebraic MultiGrid (AMG) [22] or Balancing Domain Decompo-
sition by Constraints (BDDC) [6], although they are not actually exploited in this work, for
reasons made clear in Sect. 4, related to the application problem.

As the originality of the framework centres upon the computational aspects to efficiently deal with
growing geometries, (1) and (2) are presented in an abstract way, i.e. without considering a refer-
ence physical problem. Afterwards, Sect. 4 considers an application to the heat transfer analysis of
metal AM processes by powder-bed fusion. Nonetheless, the authors believe that the framework can
readily be extended to a coupled thermomechanical analysis, as long as proper treatment of history
variables within the AMR framework can be guaranteed. Likewise, it may also be adapted to other
metal or polymer technologies, or even be useful to other domains of study, such as the simulation of
sedimentation processes.

Computer implementation was supported by FEMPAR [8, 9], a general-purpose object-oriented multi-
threaded/message-passing scientific software for the fast solution of multiphysics problems governed
by Partial Differential Equations (PDEs). FEMPAR adapts to a range of computing environments,
from desktop and laptop computers to the most advanced HPC clusters and supercomputers. The
FEMPAR-AM module for FE analyses of metal AM processes has been developed on top of this high-end
infrastructure. Its main software abstractions are described in Sect. 5. The exposition is intended to
help in the customization of any general-purpose FE code for growing domains.

The numerical study of the framework in Sect. 6 starts with a verification of the thermal FE
model against a well-known 3D benchmark. Validation of this heat transfer formulation has already
been object of previous works [20, 21] and it is not covered here. A strong-scaling analysis follows
in Sect. 6.2 to analyse the performance of the computer implementation and expose sources of load
imbalance, identified as a major parallel overhead threatening the efficiency of the implementation. The
simulation considers the printing of 48 layers in a cuboid, one layer printed per time step (followed
by an interlayer cooling step). A relevant outcome is the capability of simulating the printing and
cooling of a single layer (two linearized time steps) in a 10 million unknown problem in merely 2.5
seconds average with 6,144 processors. The last example in Sect. 6.3 considers a curved 3D shape
and follows the actual laser path point-to-point. A second order adaptive mesh with no geometrical
error is transformed during the simulation to accommodate the laser path. Regardless of having
nonrectangular cells, the parallel EBM is capable of tracking the laser path, as long as some quasi-
rectangularity conditions hold. In conclusion (see Sect. 7), the fully-distributed, parallel framework
presented in this work is set to contribute to the efficient simulation of AM processes, a critical aspect
long identified, though mostly neglected by the numerical community.

2. Mesh generation by hierarchical AMR

Physical phenomena are often characterized by multiple scales in both space and time. When the
smallest ones are highly-localized in the physical domain of analysis, uniformly refined meshes tend to
be impractical from the computational viewpoint, even for the largest available supercomputers.

The purpose of AMR is to reach a compromise between the high-accuracy requirements in the
regions of interest and the computational effort of solving for the whole system. To this end, the mesh
is refined in the regions of the domain that present a complex behaviour of the solution, while larger
mesh sizes are prescribed in other areas.

In this work, the areas of interest are known a priori and correspond to the growing regions. It is
assumed that the geometrical scale of growth is much smaller than the domain of study, as it is the
case of welding or AM processes. Besides, the framework is restricted to h-adaptivity, i.e. only the
mesh size changes among cells, in contrast to hp-adaptivity, where the polynomial order p of the FEs
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may also vary among cells. This computational framework is briefly outlined in this section; the reader
is referred to [7] for a thorough exposition.

2.1. Hierarchical AMR with octree meshes. Let us suppose that Ω ⊂ Rd is an open bounded
polyhedral domain, being d = 2, 3 the dimension of the physical space. Let T 0

h be a conforming and
quasi-uniform partition of Ω into quadrilaterals (d = 2) or hexahedra (d = 3), where every K ∈ T 0

h is
the image of a reference element K̂ through a smooth bijective mapping FK . If not stated otherwise,
these hypotheses are common to all sections of this document.

Hierarchical AMR is a multi-step process. The mesh generation consists in the transformation of
T 0
h , typically as simple as a single quadrilateral or hexahedron, into an objective mesh Th via a fi-

nite number of refinement/coarsening steps; in other words, the AMR process generates a sequence
T 0
h , T 1

h , . . . , T mh ≡ Th such that T ih = R(T i−1
h , θi), i = 1, . . . ,m < ∞, where R applies the refine-

ment/coarsening procedure over T i−1
h and θi : T i−1

h → {−1, 0, 1} is an array establishing the action
to be taken at each cell: -1 for coarsening, 0 for "do nothing" and 1 for refinement.

A cell marked for refinement is partitioned into four (2D) or eight (3D) children cells by bisecting all
cell edges. As a result, Th can be interpreted as a collection of quadtrees (2D) or octrees (3D), where
the cells of T 0

h are the roots of these trees, and children cells (a.k.a. quadrants or octants) branch
off their parent cells. The leaf cells in this hierarchy form the mesh in the usual meaning, i.e. Th.
Furthermore, for any cell K ∈ Th, l(K) is the level of refinement of K in the aforementioned hierarchy.
In particular, l(K) = 0 for the root cells and l(K) = l(parent(K)) + 1, otherwise. The level can also be
defined for lower dimensional mesh entities (vertices, edges, faces) as in [39, Def. 2.4]. Fig. 1 illustrates
this recursive tree structure with cells at different levels of refinement stemming from a single root.

Octree meshes admit a very compact computer representation, based on Morton encoding [56] by
bit interleaving, which enables efficient manipulation in high-end distributed-memory computers [14].
Moreover, they provide multi-resolution capability by local adaptation, as the leaves in the hierarchy
can be at different levels of refinement. However, they are potentially nonconforming by construction,
e.g. there can be hanging vertices in the middle of an edge or face or hanging edges or faces in touch
with a coarser geometrical entity.

T 0
h

Th

P1 P2 P3

0

1

2

3

l

Th

x

y

b
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1 2

Figure 1. The hierarchical construction of Th gives rise to a one-to-one correspon-
dence between the cells of Th and the leaves of a quadtree rooted in T 0

h . Th does not
satisfy the 2:1 balance, e.g. the red hanging vertex a is not permitted. Assuming a
discretization with conforming Lagrangian linear FEs, the value of the DOF at hang-
ing vertex b is subject to the constraint Vb = 0.5V1 + 0.5V2. Th is partitioned into
three subdomains, P1, P2 and P3, using the z-order curve obtained by traversing the
leaves of the octree in increasing Morton index. Adapted from [14].
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Nonconformity introduces additional complexity in the implementation of conforming FEs, espe-
cially in parallel codes for distributed-memory computers. This degree of complexity is nevertheless
significantly reduced by enforcing the so-called 2:1 balance relation, i.e. adjacent cells may differ at
most by a single level of refinement. In this sense, the mesh in Fig. 1 violates the 2:1 balance, because
hanging vertex a is surrounded by cells that differ by two levels.

In order to preserve the continuity of a conforming FE approximation, DOFs sitting on hanging
geometric entities cannot have an arbitrary value, they are constrained by neighbouring nonhanging
DOFs. The approach advocated in this work to handle the hanging node constraints [48] consists in
eliminating them from the local matrices, before assembling the global matrix. In this case, hanging
DOFs are not associated to global DOFs and, thus, a row/column in the global linear system of
equations.

2.2. Partitioning the octree mesh. Efficient and scalable parallel partitioning schemes for adap-
tively refined meshes are still an active research topic. Our computational framework relies on the
p4est library [14]. p4est is a Message Passing Interface (MPI) library for efficiently handling (forests
of) octrees that has scaled up to hundreds of thousands of cores [11]. Using the properties of the
Morton encoding, p4est offers, among others, parallel subroutines to refine (or coarsen) the octants
of an octree, enforce the 2:1 balance ratio and partition/redistribute the octants among the available
processors to keep the computational load balanced [14, 39]. Data structures and algorithms involved
in the interface between p4est and FEMPAR are detailed in [7]. They are configured according to a
two-layered meshing approach. The first or inner layer is a light-weight encoding of the forest-of-trees,
handled by p4est. The second or outer layer is a richer mesh representation, suitable for generic finite
elements.

The principle underlying the mesh partitioner is the use of space-filling curves. Octants within an
octree can be naturally assigned an ordering by a traversal across all leaves, e.g. increasing Morton
index, as shown in Fig. 1. Application of the one-to-one correspondence between tree nodes and octants
reveals that this one-dimensional sequence corresponds exactly to a z-order space-filling curve of the
triangulation Th. Hence, the problem of partitioning Th can be reformulated into the much simpler
problem of subdividing a one-dimensional curve. This circumvents the parallel scaling bottleneck that
commonly arises from dynamic load balancing via graph partitioning algorithms [40, 41].

However, the simplicity comes at a price related to the fact that, among space-filling curves, z-
curves have unbounded locality and low bounding-box quality [36]. In our context, this leads to the
emergence of poorly-shaped and, possibly, disconnected subdomains (with at most two components [15]
for single-octree meshes). Bad quality of subdomains affects the performance of nonoverlapping
Domain Decomposition (DD) methods [48].

3. Modelling the growth of the geometry

3.1. Parallel element-birth method. As mentioned in Sect. 1, the growth of the geometry is mod-
elled in a background FE mesh that, even if it is refined or coarsened, always covers the same domain.

Let Ω(t) be a growing-in-time domain. During the time interval [ti, tf ], Ω(t) transforms from an
initial domain Ωi to a final one Ωf . For the sake of simplicity, AMR is not considered for now, only
later in the exposition, and it is assumed that there exists (1) a background conforming partition
Th ≡ T 0

h = {K} of Ωf , where Ωf and T 0
h satisfy the hypotheses stated in the first paragraph of

Sect. 2.1, and (2) a time discretization ti = t0 < t1 < . . . < tNt = tf such that, for all j = 0, . . . , Nt, a
partition Th,j of Ω(tj) can be obtained as a subset of cells of Th. In other words, a body-fitted mesh of
Ωf can be built so that subsets of this mesh can be taken as body-fitted meshes of Ω(tj), j = 0, . . . , Nt.
As Ω(t) grows in time, the relation Th,i = Th,0 ⊆ Th,1 ⊆ . . . ⊆ Th,Nt

= Th,f holds.
This setting is typical in welding or AM simulations. In AM, for instance, it is frequently required

that the mesh of the component conforms to the layers. On the other hand, the method presented
below can be adapted with little effort to a more general setting, where the growth-fitting requirement
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is dismissed by resorting to unfitted or immersed boundary methods [10]. In this case, Th is a trian-
gulation of an artificial domain Ωart, such that it includes the final physical domain, i.e. Ωf ⊂ Ωart,
but it is also characterized by a simple geometry, easy to mesh with Cartesian grids.

Consider now partitions of Th of the form {Th,j , Th \ Th,j}, j = 0, . . . , Nt. In this classification,
the cells in Th,j are referred to as the active cells Kac, while the ones in Th \ Th,j as the inactive
cells Kin. The key point of the EBM is to assign degrees of freedom only in active cells, that is, the
computational domain, at any j = 0, . . . , Nt, is defined by Th,j = {Kac}. In this way, inactive cells
do not play any role in the numerical approximation; they have no contribution to the global linear
system, in contrast with the quiet-element method [55]. Besides, note the similarities of this approach
to the one employed in unfitted FE methods [5, 10], distinguishing interior and cut (active) cells from
exterior (inactive) cells.

This representation of a growing domain is completed with a procedure to update the computational
mesh during a time increment. The most usual approach is to use a search algorithm to find the set
of cells in Th,j+1 \ Th,j , j = 0, . . . , Nt − 1, referred to as the activated cells Kacd. Then, Th,j+1 =
Th,j ∪ {Kacd} defines the next computational mesh, as illustrated in Fig. 5. This means that Th,j+1

receives the old DOF global identifiers (and FE function DOF values) from Th,j and has new degrees
of freedom assigned in the activated cells. The initial value of these new DOFs is set with a criterion
that depends on the application problem, as seen in Sect. 4.

Therefore, in a parallel distributed-memory environment, there are two different partitions of Th,j
playing a role in the simulation: (1) into subdomains T ih,j , i = 1, . . . , nsbd and (2) into active Kac

and inactive Kin cells. Assuming a one-to-one mapping among subdomains and CPU cores, in our
approach [7], each processor stores the geometrical information corresponding to the subdomain portion
T ih,j of the global mesh and one layer of off-processor cells surrounding the local subdomain mesh, the
so-called ghost cells. With regards to (2), each cell is associated a status, e.g. an integer value, that
expresses whether it is an active or inactive cell. It follows that T ih,j can be composed of both active
and inactive cells.

As explained, the update of (2) follows from finding the subset Kacd. Local activated cells, i.e.
T ih,j ∩ {Kacd}, are found with the search algorithm. Afterwards, a nearest-neighbour communication
is carried out to update the status at the ghost cells. The second step is necessary to know whether a
face sitting on the interprocessor contour is in the interior or at the boundary of the domain Th,j+1.

Bringing now briefly AMR into the discussion, some considerations with regards to the EBM must
be taken into account when applying mesh transformations. First, when refining a cell, its status is
inherited by the child cells. A cell can only be coarsened, when all siblings have the same status, oth-
erwise the computational domain is perturbed. Finally, after a partition/redistribution of cells across
processors, the status of the redistributed cells must be migrated with interprocessor communication.
Adding this to the update of the status at ghost cells, the EBM in a parallel AMR framework only
demands two extra interprocessor data transfers with respect to a standard FE simulation pipeline.

3.2. Parallel search algorithm. The update of the computational mesh consists in finding the cells
in the mesh that are inside the known growing region of the current time increment. In this sense,
the problem is a standard and well known collision detection that can be tackled with any of the
many existing algorithms. Our goal is to derive from them a strategy that is both computationally
inexpensive and highly-parallelizable for octree-based meshes.

The approach adopted in this work is founded on the Hyperplane Separation Theorem (HST) [12].
It states that given A and B two disjoint, nonempty and convex subsets of Rn, there exists a nonzero
vector v and a real number c, such that 〈x, v〉 ≥ c and 〈y, v〉 ≤ c, for any x ∈ A, y ∈ B. In other words,
the hyperplane 〈·, v〉 = c, with v its normal vector, separates A and B. A corollary of this theorem is
that, if A and B are convex polyhedra, possible separating planes are either parallel to a face of one of
the polyhedra or contain an edge from each of the polyhedra.

In our context, assuming the FE mesh is formed by rectangular hexahedra and the search volume
is a cuboid, as in Sect. 4, the purpose is to test the intersection between two cuboids (any mesh cell
vs search volume). In this case, the HST narrows down the number of potential separating planes to
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fifteen [28, 34]: three for the independent faces of the cell, three for the independent faces of the search
cuboid and nine generated by all possible independent pairs formed by an edge from the cell and an
edge from the search cuboid. It follows that two cuboids intersect, if and only if, none of the fifteen
possible separating planes exists.

A separating plane can be tested by comparing the projections of the cuboids onto a line perpen-
dicular to the plane, referred to as the separating axis (Fig. 2). If the intervals of the projections do
not intersect, then the cuboids do not intersect themselves. In [28], it is shown how this test amounts
to compare two real quantities that depend on the dimensions and unit directions of the cell, the
dimensions and unit directions of the search cuboid and the vector joining the centroids of the two
cuboids. For each separating axis, the nonintersection test in terms of these quantities is given in [28,
Tab. 1] or [35, Sect. 4.6].

separating plane

sep
ar
ati
ng
ax
is

Figure 2. Illustration of the HST. A separating plane can be tested by examining
whether the projections of the two convex bodies onto a line perpendicular to the
plane intersect or not.

At this point, it remains to see how this test can be exploited for the parallel search algorithm
with adaptive octree-based meshes. Dropping the assumption in Sect. 3.1 of sequential mesh inclusion,
i.e. Th,j 6= Th,j+1,∀j = 0, . . . , Nt, now Th,j is transformed into Th,j+1, by applying several refinement
(coarsening) operations to the octants intersecting (nonintersecting) the search cuboid of the j → j+1
time increment. The transformation finishes when all octants intersecting the search cuboid have a
given maximum level of refinement. In fact, these octants form precisely the subset Kacd. The number
of transformations required is problem-dependent, but it is upper-bounded by the difference between
the user-prescribed maximum and minimum levels of refinement.

Therefore, the mesh transformation from Th,j into Th,j+1 is carried out in a finite number of refine-
ment/coarsening steps, each one determined by a cell-wise search. Specifically, the criterion to decide
whether an octant is refined or coarsened is to perform the nonintersection test against the search
cuboid. If it passes (fails), the octant is coarsened (refined). An example of this procedure is shown
in Fig. 3. As observed, if all processors know the dimensions of the search cuboid, the algorithm is
embarrassingly parallel, in particular, it does not require interprocessor communication. By construc-
tion of p4est a subdomain can only prescribe refinement/coarsening operations to its own local cells.
It follows that the nonintersection test on ghost cells is redundant; the status of ghost cells must be
updated at the end of the mesh transformation with a nearest-neighbour communication.

The search algorithm can be further accelerated by intersecting beforehand the search cuboid (or
a bounding box of it) against the subdomain limits. In this case, the procedure can be skipped on
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(a) Given Th,j , j = 0, . . . , Nt, compute the search
volume for the time increment ∆tj→j+1.
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(b) Loop over cells in Th,j . If nonintersection test
fails (passes), then mark cell for refinement (coars-
ening). Some examples are highlighted (R = re-
fine, C = coarsen).
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(c) Refine, coarsen and redistribute cells.
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(d) Repeat (B)-(C) until all cells with maximum
level of refinement that intersect the cuboid have
been found.

Figure 3. 2D example illustrating the iterative procedure to transform Th,j into
Th,j+1. The maximum and minimum levels of refinement are 4 and 2. The level
of each cell is written at their lower left corner. Each colour represents a different
subdomain. Note that, from one step to the next one, some cells that do not intersect
the search volume have to be refined to keep the 2:1 balance.

those subdomains that do not intersect the cuboid. On the other hand, faster tests can be designed for
uniformly refined meshes, such as checking whether the centroid of the cell is inside the search cuboid.
Note that this test is not equivalent to the method of separating axes. Besides, it is not suitable for
octree meshes. For instance, it may not transform the mesh at all if the search cuboid sits on top of
heavily coarsened cells.

Apart from that, the algorithm is limited to rectangular meshes and search volumes. In more general
cases, e.g. high-order meshes, the hypothesis of convexity may not hold; i.e. the hyperplane separation
theorem cannot be the starting point; a more general method must be adopted instead. However, as
shown in the example of Sect. 6.3, a high order mesh can be configured such that the search cuboid
always overlaps a region of the mesh, with enough resolution to assume its cells are quasi-rectangular.
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3.3. Dynamic load balancing. When designing a scalable application, the partition into subdo-
mains must be defined such that it evenly distributes among processors the total computational load.
However, to this goal, the EBM adds two mutually excluding constraints; indeed, while the size of data
structures and the complexity of procedures that manipulate the mesh grow with the total number of
cells, those concerning the FE space, the FE system and the linear solver depend on the number of
active cells (i.e. number of DOFs).

The distribution of computational work can be tuned by allowing for a user-specified weight function
w that assigns a non-negative integer value to each octant. The partition can then be constructed by
equally distributing the accumulated weights of the octants that each processor owns, instead of the
number of owned octants per processor. As p4est provides such capability (see [14, Sect. 3.3]), the
remaining question is to decide how to define w, taking into account the constraints above.

The answer depends on how the computational time is distributed among the different stages of the
FE simulation pipeline. In the context of growing domains, FE analysis is a long transient and it may
be often desirable to reuse the same mesh for several time steps, seeking to minimize the AMR events
and, thus, reduce simulation times. In this scenario, the number of time steps (linear system solutions)
is greater than the number of mesh transformations and w should favour the balance of active cells.
With this idea in mind, the weight function can be defined as

wK =

{
wa if K ∈ {Kac}
wi if K ∈ {Kin}

(1)

where wa ∈ N and wi ∈ N0.
The effect of this weight function is illustrated in Fig. 4. A uniform distribution of the octree octants,

(wa, wi) = (1, 1), may lead to high load imbalance in the number of DOFs per subdomain. There can
even be fully inactive parts, as shown in Fig. 4(a), leaving the processors in charge of them mostly
idling during local integration, assembly and solve phases. In contrast, (wa, wi) = (1, 0) gives the
most uniform distribution of {Kac}, but it can also lead to extreme imbalance of {Kin} and, thus, the
whole set of triangulation cells. Alternatively, pairs (wa, wi) satisfying wa � wi offer good compromise
partitions.

4. Application to metal AM

4.1. Heat transfer analysis. After introducing the ingredients of the parallel FE framework for
growing geometries, the purpose now is to apply it to the thermal analysis of an additive manufacturing
process by powder-bed fusion, such as Direct Metal Laser Sintering (DMLS). This manufacturing
technology is illustrated in [21, Fig. 1]. This will be the reference problem for the subsequent analysis
with numerical experiments.

Let Ω(t) be a growing domain in R3 as in Sect. 3. Here, Ω(t) represents the component to be
printed. The governing equation to find the temperature distribution u in time is the balance of
energy equation, expressed as

C(u)∂tu−∇ · (k(u) ∇u) = f, in Ω(t), t ∈ [ti, tf ], (2)

where C(u) is the heat capacity coefficient, k(u) ≥ 0 is the thermal conductivity and f is the rate
of energy supplied to the system per unit volume by the moving laser. C(u) is given by the product
of the density of the material ρ(u) and the specific heat c(u), but one may consider a modified heat
capacity coefficient to also account for phase change effects [20] or compute C(u) with the CALPHAD
approach [42, 43, 67].

Eq. (2) is subject to the initial condition

u(x, ti) = u0(x) (3)

and the boundary conditions [21, Fig. 2] are (1) heat conduction through the building platform,
(2) heat conduction through the powder-bed and (3) heat convection and radiation through the free
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(a) A default partition, that is, (wa, wi) = (1, 1),
can result in a poor balancing of DOFs and even
fully inactive parts (e.g. green subdomain).

(b) By setting partition weights to, e.g.
(wa, wi) = (10, 1), the active cells can be bal-
anced, leading to a more equilibrated parallel dis-
tribution of the DOFs.

Figure 4. 2D example illustrating how partition weights can be used to balance
dynamically the DOFs across the processors. Each colour represents a different sub-
domain. Active cells are enclosed by a thick contour polygon, representing the com-
putational domain.

surface. After linearising the Stefan-Boltzmann’s law for heat radiation [20], all heat loss boundary
conditions admit a unified expression in terms of Newton’s law of cooling:

qloss(u, t) = hloss(u)(u− uloss(t)), in ∂Ωloss(t), t ∈ [ti, tf ], (4)

where loss refers to the kind of heat loss mechanism (conduction through solid, conduction through
powder or convection and radiation) and the boundary region where it applies (contact with building
platform, interface solid-powder or free surface).

The weak form of the problem defined by Eqs. (2)-(4) can be stated as: Find u(t) ∈ Vt = H1(Ω(t)),
almost everywhere in (ti, tf ], such that

(C(u)∂tu, v)− (k(u)∇u,∇v) + 〈hloss(u)u, v〉∂Ωloss = 〈f, v〉+ 〈hloss(u)uloss, v〉∂Ωloss , ∀v ∈ Vt. (5)

Considering now Th the triangulation of Ωf , Vh ⊂ Vtf a conforming FE space for the temperature
field and {ϕj(x)}Nh

j=1 a FE basis of the space Vh, the semi-discrete form of Eq. (5), after discretization
in space with the Galerkin method and integration in time, e.g. with the semi-implicit backward Euler
method, reads [

Mn
C

∆tn+1
+ An + Mn

loss

]
Un+1 = bn+1

f +
Mn

C

∆tn+1
Un + bnloss,

U(0) = U0,

(6)

where the time interval of interest [ti, tf ] has been divided in subintervals ti = t0 < t1 < . . . < tNt
= tf

with ∆tn+1 = tn+1− tn variable for n = 0, . . . , Nt− 1. As a result of using the EBM (Sect. 3), Eq. (6)
is only constructed in Ω(tn), n = 0, . . . , Nt − 1. In other words, local integration and assembly of
Eq. (5) is only carried out at the subset of active elements {Kac} = Th,n.
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Moreover, U(t) = (Uj(t))
Nh
j=1 and U0 = (U0

j )
Nh
j=1 are the components of Uh(t) and Ui

h with respect
to the basis {ϕj(x)}Nh

j=1, and the coefficients of M�, A and b� are given by:

Mn,ij
C = (C(Un)ϕi, ϕj)Ω(tn), Mn,ij

loss = 〈hloss(U
n)ϕi, ϕj〉∂Ωloss∩∂Ω(tn), An,ij = (k(Un)∇ϕi,∇ϕj)Ω(tn)

bn+1,i
f = 〈ϕi, fn+1〉Ω(tn), bn,iloss = 〈hloss(U

n)ϕi,Uloss(t
n+1)〉∂Ωloss∩∂Ω(tn).

An important characteristic of the physical problem is that, due to high heat capacity of metals and
small time steps necessary to meet accuracy requirements, Eq. (6) is often a mass-dominated linear
system. As a result, Jacobi (or diagonal) preconditioning is adopted in the numerical examples of
Sect. 6. Although this preconditioner does not alter the asymptotic behaviour of the condition number
of the conductivity matrix (O(h−2)), it corrects relative scales of Eq. (6) arising from the fact that
meshes resulting from (1) have cells at very different refinement levels, i.e. highly varying sizes.

4.2. FE modelling of the moving thermal load. As pointed out in Eq. (2), f is a moving thermal
load that models the action of the laser in the system. But the moving heat source also drives the
growth of the geometry in time, as the sintering process triggered by the laser transforms the metal
powder into new solid material.

Therefore, the FE modelling of the printing process requires a method to apply the volumetric heat
source f in space and time and track the growing Ω(t). The EBM presented in Sect. 3.1 can serve both
purposes, as seen in Fig. 5. In this case, the set of activated cells Kacd, representing the incremental
growth region, is also affected by the laser during the time increment, i.e. the heat source term is also
integrated in these cells.

Laser

Kacd: Activated in ∆t
Th,j : Active at tj
Kin: Inactive (powder)
Kin: Inactive (gas)

Contour at tj+1

Heat conduction
Heat conv. & rad.

Th,j+1

Th

Figure 5. Illustration of the element-birth method applied to the thermal simulation
of an AM process. As shown with this 2D FE cartesian grid, for any j = 0, . . . , Nt,
DOFs are only assigned to the set of active cells {Kac} = Th,j+1. A search algorithm
is employed to identify the set of activated cells {Kacd} = Th,j+1 \ Th,j , where the
laser is focused during ∆t. The computational mesh is then updated, by assigning
new DOFs in Kacd. Afterwards, the energy input, as stated by Eq. (7), is uniformly
distributed over Kacd. Adapted from [21].

Another comment arises on the update of the computational mesh. In general, one aims to follow
the actual path of the laser in the machine, as faithfully as possible. To this end, the search algorithm
of Sect. 3.2 comes into play. The information of the laser path, together with other process parameters,
such as the laser spot width, defines the search volume containing the cells affected by the energy input
during the time step [20], subsequently referred to as the Heat Affected Volume (HAV).

If f is taken as a uniform heat source, the average density distribution is computed as

f =
η W

Vacd
, (7)

where W is the laser power [watt], η is the heat absorption coefficient, a measure of the laser efficiency
and Vacd is the volume of activated cells, i.e. intersecting the HAV. Goldak-based or surface Gaussian
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distributions may also be considered. In those cases, the heat source is evaluated with their corre-
sponding analytical expressions in Kacd. On the other hand, the initial temperature of the new DOFs
is set to the same value as the initial value at the building platform. More accurate alternatives are
analysed in the literature [55], but this aspect of the model is not relevant to the overall performance
of the framework.

5. Computer implementation.

This section describes the software design of a parallel FE framework for growing domains, the
so-called FEMPAR-AM module, atop the services provided by FEMPAR [8]. FEMPAR is an open source,
general-purpose, object-oriented scientific software framework for the massively parallel FE simulation
of problems governed by PDEs. FEMPAR software architecture is composed by a set of mathematically-
supported abstractions that let its users break FE-based simulation pipelines into smaller blocks that
can be used and/or extended to fit users’ application requirements. Each abstraction takes charge of
a different step in a typical FE simulation, including, among others, mesh generation, adaptation, and
partitioning, construction of a global FE space and DOF numbering, numerical evaluation of cell and
facet integrals and linear system assembly, linear system solution or generation of simulation output
data for later visualization. The reader is referred to [7, 8] for a detailed exposition of the main software
abstractions in FEMPAR. Although FEMPAR-AM exploits most of the software abstractions provided by
FEMPAR, the discussion in this section mainly focuses on those which had to be particularly set up
and/or customized to support growing domains. Apart from this, the section also presents newly
introduced software abstractions which are particular to FEMPAR-AM. The exposition is intended to
help the reader grasp how any general-purpose FE framework can be customized in order to deal with
growing domains.

As FEMPAR-AM relies on the EBM (Sect. 3.1), the first software requirement that has to be fulfilled
by the underlying FE framework is the ability to build global FE spaces that only carry out DOFs for
cells which are active at the current simulation step. In FEMPAR, a global FE space is built from two
main ingredients: (1) triangulation_t [8, Sect. 7], which represents the geometrical discretization of
the computational domain into cells, and (2) reference_fe_t [8, Sect. 6], which represents an abstract
local FE on top of each of the triangulation cells. A particular type extension of reference_fe_t,
referred to as void_reference_fe_t [8, Sect. 6.5], implements a local FE with no degrees of freedom.
The data structure in charge of building the global FE space, i.e. fe_space_t [8, Sect. 10], is general
enough such that one may use a different local FE on different regions of the computational domain.
By mapping active cells to standard (e.g. Lagrangian) FEs and inactive cells to void FEs, fe_space_t
is constructed such that it assigns global DOF identifiers only to the nodes of active cells; while nodes
surrounded by inactive cells do not receive a DOF identifier and, as a result, they neither assemble
any contributions from local integration nor form part of the global linear system. On the other hand,
the triangulation_t software abstraction lets its users exploit the so-called set_id [8, Sect. 7.1], a
cell-based integer attribute. Each cell of the triangulation can be assigned a set_id number to group
the cells into different subsets. In our case, this variable is used to store the current status of the
cell in the mesh and, by fe_space_t, to determine which reference_fe_t (i.e. local FE space) to
put atop each cell (see discussion above). The update of the set_id in the local cells is carried out
within the search algorithm (Sect. 3.2), whereas the update in the off-processor ghost cells reuses an
existing procedure in triangulation_t that invokes a nearest-neighbour communication. Another
readily available method of triangulation_t takes charge of migrating the set_id values when the
mesh is redistributed; see Sect. 3.1.

Apart from the special set up of fe_space_t described in the previous paragraph, FEMPAR-AM also re-
quires to customize fe_space_t (as-is in FEMPAR) to support growing domains. In particular, one needs
to inject DOF values of any field (e.g. temperature in thermal AM) from Th,j−1 into Th,j and assign
initial DOF values to activated cells. For this purpose, FEMPAR-AM implements growing_fe_space_t,
a data type extending the standard fe_space_t, that provides an special method, referred to as
increment(), performing this operation. The implementation of this procedure depends on how data
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structures in charge of handling DOFs and DOF values are laid out and, more importantly, on whether
each processor stores DOF values only in its local subdomain portion or also at the ghost cells layer.
In the first case, an extra nearest-neighbour communication is needed to update DOF values at nodes
sitting on a subdomain interprocessor interface.

The following paragraphs introduce the main software abstractions exclusive to FEMPAR-AM. They
are in charge of supporting the update of the computational mesh, tracking the growth of the domain,
and driving the main top-level AM process simulation loop. The software subsystem is formed by
(1) activation, a customizable object enclosing data structures and methods necessary to find, at
each time step, the subset of activated cellsKacd, (2) cli_laser_path, an AM-specific object to handle
the geometrical information of the laser path, and (3) discrete_path, also AM-specific, to generate
the space-time discretization of the laser path. To clarify their structure, contents and relationships,
an UML class diagram is constructed in Fig. 6.

activation contains the search_volume abstract object, a placeholder for the geometrical descrip-
tion of the region to be activated during the time increment. Being a placeholder means that the
instance is designed to allocate the minimum required memory space to hold a single search volume
at a time. As the definition of the activated region depends on the application at hand, the client
must specialize the behaviour of the object to its needs. In particular, extensions of this data type
must have all the member variables and implement the methods needed to compute and update the
dimensions and vertex coordinates defining the search cuboid at each time increment. In our context,
heat_affected_volume is the AM-tailored search volume extended object. activation implements
two public methods to satisfy the user requirements in the update of the computational mesh: (1)
update_search_volume(subsegment) and (2) overlaps_search_volume(cell). The former fills the
search volume coordinates for a given time increment and the latter is used to test for collision be-
tween the search cuboid and any cell of the triangulation, using the method described in Sect. 3.2.
Alg. 1 implements the update and increment of the computational domain, i.e. the Th,j−1 into Th,j
transformation, described in Sect. 3.2 and Fig. 3. For simplicity all steps regarding the treatment of
the FE space and global FE functions are omitted, but they must be projected and redistributed. As
observed, methods (1) and (2), invoked at Lines 1 and 7, fulfill important steps of the procedure.

Among the application-specific objects, cli_laser_path takes charge of managing the geometrical
information of the laser path. The data comes in the same Common Layer Interface (CLI) ASCII file
sent to the numerical control of the machine. CLI [69] is a common universal format for the input of
geometry data to model fabrication systems based on layer manufacturing technologies. In the context
of AM, a CLI file describes the movement of the laser in the plane of each layer with a complex se-
quence of polylines, to define the (smooth) boundary of the component, and hatch rectiliniar patterns
for the inner structures (see [69] for several examples). cli_laser_path holds a parser for this file
format (parse(file_path)) and accommodates its hierarchical structure in the following way: First,
it aggregates an array of layer entities. For each layer in the CLI file, a layer instance is created and
the layer height is stored. Likewise, for each polyline or hatch associated to the layer, an instance of
polyline or hatch is created and filled with their plane coordinates. The class is supplemented with
several query methods (e.g. get_layer(layer_id), get_hatch(hatch_id), get_point(point_id)),
such that the user can navigate through the laser path subentities and extract their point coordinates.
Although not implemented, a polymorphic superclass laser_path of cli_laser_path may be intro-
duced to consider other file formats. In this way, new file formats can be accommodated with new
child extensions of laser_path; at the moment, FEMPAR-AM can only support CLI files.

Closely associated to cli_laser_path is discrete_path, an entity that generates the space-time
discretization of the laser path. Given that the printing process is tightly related to the movement of
the laser, it is more natural to discretize the laser path with a step length ∆x, instead of a time step.
discrete_path takes the user-prescribed step length and the current polyline or hatch segment and
divides it into subsegments of ∆x size with the method discretize(polyline/hatch). To support
the time integration, discrete_path also computes the time increment associated to each subsegment
as

∆t = ∆x/Vscanning, (8)
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activation
...

+update_search_volume(subsegment) : void
+overlaps_search_volume(cell) : bool
...

search_volume
...

#update (discrete_path) : void
...

heat_affected_volume
−previous_laser_position : point
−current_laser_position : point
−laser_width : real
−laser_length : real
−layer_thickness : real
−vertices : point[1..8]
−centroid : point
...

#update (discrete_path) : void
...

discrete_path

−step_length : real
−scanning_speed : real
−relocation_speed : real
−subsegments : subsegments[1..*]
...

+get_scanning_time() : real
+get_relocation_time() : real
+discretize(polyline) : void
+discretize(hatch) : void
+get_subsegment(subsegment_id) : subsegment
...

cli_laser_path
...

−parse(file_path) : void
+get_layer(layer_id) : layer
+get_num_layers() : int
...

layer

−layer_height : real
...

−set_height(height) : real
+get_polyline(polyline_id) : polyline
+get_hatch(hatch_id) : hatch
+get_num_polylines() : int
+get_num_hatches() : int
...

polyline

−points : point[1..*]
...

+get_point(point_id) : point
+get_num_points() : int
...

hatch
−begin : point
−end : point
...

+get_begin() : point
+get_end() : point
...

1 1..*

1

1..* 1..*

Figure 6. UML class diagram of the software subsystem that FEMPAR-AM uses to
support the update of the computational mesh in Alg. 1 and to drive the AM process
simulation, tracking the laser path, in Alg. 2. point is a simple class encapsulating
three real-valued coordinates, whereas subsegment encapsulates two point instances.

where Vscanning is the scanning speed. At each time step, discrete_path feeds activation with
the current subsegment via update_search_volume(subsegment). After activation generates the
current search volume and drives the mesh transformation, see Alg. 1, standard FE simulation steps
follow until solving the linear system modelling the printing during the current time increment. The
sequence is repeated until all subsegments have been simulated. Following this, the system is allowed
to cool down, while the laser moves to the begin point of the next entity in the laser path or a new
layer is spread. For the cooling step, discrete_path also computes recoat and relocation time as the
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Algorithm 1: update_and_increment_computational_domain(subsegment) (see also Fig. 3)
1 activation.update_search_volume(subsegment) /* fill search volume coordinates for current subsegment */

2 found_cell_for_refinement ← true
3 while found_cell_for_refinement do /* repeat until all max level cells intersecting the search volume found */
4 found_cell_for_refinement ← false
5 for cell ∈ triangulation do
6 if cell.is_local() then /* local = owned by the current MPI task */
7 if activation.overlaps_search_volume(cell) then /* cell intersects the search volume (see Sect. 3.2) */
8 if cell.get_level() < max_level_of_refinement then
9 cell.set_for_refinement()

10 found_cell_for_refinement ← true
11 else
12 cell.set_for_do_nothing()
13 end if
14 else /* cell does not intersect the search volume */
15 if cell.get_level() > min_level_of_refinement then
16 cell.set_for_coarsening()
17 else
18 cell.set_for_do_nothing()
19 end if
20 end if
21 end if
22 end for
23 triangulation.refine_and_coarsen()
24 ... /* FE space and global FE functions projection/interpolation apply here */

25 set_partition_weights() /* construct weight function as in Eq. (1) */

26 triangulation.redistribute()
27 ... /* FE space and global FE functions redistribution apply here */

28 end while
29 mark_activated_cells()
30 growing_fe_space.increment() /* inject DOF values of Th,j−1 into Th,j and initialize DOF values in Kacd */

quotient of the distance between the end point of the current polyline or hatch and the begin point of
the next one divided by the relocation speed Vrelocation.

A relevant feature of the design is that discrete_path is another placeholder container object,
i.e. it only stores the discretization for the current polyline or hatch being printed and it is updated
while looping over the laser path entities. Using the cli_laser_path recursive construction and the
design of discrete_path, this loop, which is the one at the top level of FEMPAR-AM simulations, can
be written in a compact form that reflects the actual printing process, as shown in Alg. 2 and Alg. 3.
Note that the cost of the operations involved in filling and discretizing the laser path is negligible w.r.t.
other stages of the simulation that concentrate the bulk of the computational cost (e.g. linear solver).
Given this, and the fact that each processor must know the global search cuboid coordinates (see
Sect. 3.2), data generated by cli_laser_path and discrete_path is not distributed, it is replicated
in each processor to avoid extra communications.

Other minor thermal AM customizations that supplement the design are heat_input, a polymor-
phic and extensible entity with a suite of heat source term descriptions (e.g. uniform, surface Gauss or
Goldak double ellipsoidal); property_table, an auxiliary object to allow the client to linearly inter-
polate properties that are known in tabular format, in order to evaluate temperature-dependent prop-
erties; and heat_transfer_discrete_integration_t, a subclass of discrete_integration_t [8,
Sect. 11.2], in charge of evaluating the entries of the matrices and vectors defining the linear system
of Eq. (6).
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Algorithm 2: Top-level simulation loop of FEMPAR-AM
1 for layer ∈ laser_path do
2 for polyline ∈ layer do
3 discrete_path.discretize(polyline) /* divide polyline into user-prescribed ∆x-sized subsegments */

4 simulate_printing_process(discrete_path) /* see Alg. 3 */

5 end for
6 for hatch ∈ layer do
7 discrete_path.discretize(hatch) /* divide hatch into user-prescribed ∆x-sized subsegments */

8 simulate_printing_process(discrete_path) /* see Alg. 3 */

9 end for
10 end for

Algorithm 3: simulate_printing_process(discrete_path)
1 for subsegment ∈ discrete_path do
2 update_and_increment_computational_domain(subsegment) /* see Alg. 1 */

3 ... /* for simplicity, remaining simulation steps until linear system solution are omitted, but follow here */

4 end for
5 relocation_time← discrete_path.get_relocation_time()
6 simulate_cooling(relocation_time) /* solve Eq. (6) without heat input (laser relocation or layer recoat) */

6. Numerical experiments and discussion

6.1. Verification of the thermal FE model. First, the thermal FE model presented in Sect. 4
is verified against a 3D benchmark present in the literature [30, 46] that considers a moving single-
ellipsoidal heat source on a semi-infinite solid with null fluxes at the free surface.

Assuming an Eulerian frame of reference (x, y, z), consider a heat source located initially at z = 0
that travels at constant velocity v along the x-axis on top of the semi-infinite solid defined by z ≤ 0.
The heat source distribution, derived from Goldak’s double-ellipsoidal model [33], is defined by

q(x, y, z, t) =
6
√

3

π
√
π

Q

abc
exp

[
−3

(
(x− vt)2

a2
+
y2

b2
+
z2

c2

)]
, (9)

where Q is the (effective) rate of energy supplied to the system, v is the velocity of the laser and a, b, c
are the main dimensions of the ellipsoid, as shown in Fig. 7(a).

The problem at hand is linear and admits a semi-analytical solution using Green’s functions [16, 23]
given by

u(x, y, z, t) = u0 +
6
√

3

π
√
π

αQ

k

∫ t

0

exp
[
−3
(

(x−vt)2
a2+12α(t−τ) + y2

b2+12α(t−τ) + z2

c2+12α(t−τ)

)]
√

(a2 + 12α(t− τ))(b2 + 12α(t− τ))(c2 + 12α(t− τ))
dτ, (10)

with u0 the initial temperature and α = k/ρc the thermal diffusivity.
Using the symmetry of the problem, the numerical simulation considers a cuboid with coordinates

given in Fig. 7(b). The path of the laser follows a segment centred along the edge of the cuboid that
sits on the x-axis. Null fluxes apply at the top surface and the lateral face of symmetry, whereas
Dirichlet boundary conditions apply at the remaining contour surfaces to account for the semi-infinite
solid.

An h-adaptive linear FE mesh is employed, where the smallest size is prescribed around the welding
path. Starting with the initial mesh shown in Fig. 8(a) and assigning u0 = 20, Q = 50, v = 1, α = 0.1,
k = 1 and (a, b, c) = (0.3, 0.15, 0.25), a convergence test is carried out.

For a parabolic heat equation with sufficiently smooth solution, the error in L2([0, T ];H1
0 (Ω)) with

a Backward Euler time integration scheme is proportional to (hp + ∆t) (see Theorem 6.29 in [29]),
where p is the order of the FE. Since p = 1 in this experiment, the time discretization should be
refined at the same rate of the space discretization.
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a b
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(a) Single-ellipsoidal heat source model.

(2,0,0)

(0,0,0)

v

(3,-2,-2)

(3,0,-2)

(-1,0,-2)

(-1,0,0)

(-1,-2,0)

(3,-2,0)

(3,0,0)

(b) Domain of analysis, boundary conditions and
welding path. Homogeneous Neumann boundary
conditions apply at the top surface and the lateral
face of symmetry. Dirichlet boundary conditions
apply elsewhere.

Figure 7. 3D semi-analytical benchmark problem. Heat source distribution, geom-
etry and boundary conditions.

(a) Initial adapted octree mesh. (b) Temperature contour plot at t = 0.5 (3rd re-
finement step).

Figure 8. 3D semi-analytical benchmark problem. Initial mesh and contour plot.

Taking this into consideration with an initial time step of ∆t = 0.008, Fig. 9 shows that the
numerical error in L2([0, T ];H1

0 (Ω)) of the 3D semi-analytical benchmark decreases at the same rate
as the theoretical one. This indicates a correct implementation of the thermal FE model.

6.2. Strong-scaling analysis. Next, the focus is turned to analysing the performance of FEMPAR-AM
with a strong-scaling analysis1. The model problem for the subsequent experiments is designed to be

1Strong scalability is the ability of a parallel system (i.e. algorithm, software and parallel computer) to efficiently
exploit increasing computational resources (CPU cores, memory, etc.) in the solution of a fixed-size problem. An ideally
strongly scalable code decreases CPU time exactly as 1/P , where P is the number of processors being used. In other
words, if the system solves a size N problem in time t with a single processor, then it is able to solve the same problem
in time t/P with P processors.
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Figure 9. 3D semi-analytical benchmark problem. Convergence test.

geometrically simple, but with a computational load comparable to a real scenario of an industrial
application.

According to this, the object of simulation is now the printing of 48 layers of 31.25 [µm] on top of
a 32x32x16 [mm] prism. After printing the 48 layers, the prism has dimensions of 32x32x17.5 [mm],
as shown in Fig. 10(a).

Concerning the process parameters, the power of the laser is set to 400 [W], the volumetric deposition
rate during scanning is dp = 10.0 [mm3/s] and the time allowed for lowering the platform, recoating
and layer relocation between layers is tr = 10.0 [s].

Apart from that, the material chosen is the Ti6Al4V Titanium alloy. The temperature dependent
density, specific heat and thermal conductivity are obtained from a handbook and plotted in [21].

A constant heat convection boundary condition applies on the boundary of the cube with hout = 50
[W/m2K] and uout = 35 [◦C]. The initial temperature of both the prism and each new layer is u0 = 90
[◦C].

The root octant of the octree mesh is defined to cover a 32x32x32 [mm] cube region. The octree
is transformed during the simulation to model the layer-by-layer deposition process, by prescribing
a maximum refinement level of 11, i.e. assigning a mesh size of h = 32, 000/211 = 15.625 [µm], to
the elements inside the layer that is currently being printed. A mesh gradation is then established
according to the distribution of thermal gradients (highest at the printing region, lowest at the bottom
of the cuboid). The mesh size in the (x, y) plane is fixed, whereas it decreases in both z-directions, until
reaching a minimum level of refinement of 4 at the top and bottom of the prism. The computational
domain is then defined by the initial prism and the layers that have been printed up to the current
time. As seen in Fig. 10(b), most elements end up concentrating around the current layer, due to
the coarsening induced by the 2:1 balance, but this is also the region with the highest temperature
variations.

This refinement strategy leads to a simulation workflow that, for each layer, comprises the following
steps:

(1) Remeshing: The previous mesh is refined and coarsened to accommodate the current layer.
(2) Redistribution: The new mesh is partitioned and redistributed among all processors to

maintain load balance.
(3) Activation: New DOFs are distributed and initialized over the cells within the current layer.
(4) Printing: The problem is solved for the printing step. This step consists in the application of

the heat needed to fuse the powder of the current layer and the time increment is calculated
as ∆t = tp = Vlayer/dp [s].
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(0,0,0) (32,0,0)

(0,0,16) (32,0,16)
(0,0,17.5) (32,0,17.5)48 layers of 31.25 [µm]

Initial prism
Printed region

(a) Setting of the example. The initial prism and
the printed region are plotted in light and dark
brown.

(0,0,0) (0,0,0)

(b) Illustration of the refinement strategy for
maximum and minimum refinement levels of 8 and
3, resp. Computational domain in light cyan.

Figure 10. Strong-scaling problem set up. Plane XZ view of the setting and the mesh.

(5) Cooling: The problem is solved for the cooling step, accounting for lowering of building
platform, recoat time and laser relocation with a time increment of ∆t = tr [s]. During the
cooling step, the laser is off and the prism is allowed to cool down.

According to this workflow, the simulation of each layer is carried out in two time steps, printing and
cooling, so the total number of time steps is 48 · 2 = 96. However, with the exception of the first
layer, each new layer is meshed with a single refine and coarsen step. Hence, the simulation has about
half as many AMR events as time steps. Besides, the linear system in Eq. (6), arising at each time
step, is solved with the Jacobi-Preconditioned Conjugate Gradient (PCG) method with unit relaxation
parameter.

The numerical experiments for this example were run at the Marenostrum-IV [54] (MN-IV) super-
computer, hosted by the Barcelona Supercomputing Center (BSC). It is equipped with 3,456 compute
nodes connected together with the Intel OPA HPC network. Each node has 2x Intel Xeon Platinum
8160 multi-core CPUs, with 24 cores each (i.e. 48 cores per node) and 96 GBytes of RAM.

Apart from that, FEMPAR-AM was compiled with Intel Fortran 18.0.1 using system recommended
optimization flags and linked against the Intel MPI Library (v2018.1.163) for message-passing and the
BLAS/LAPACK library for optimized dense linear algebra kernels. All floating-point operations were
performed in IEEE double precision.

The parallel framework is set up such that each subdomain is associated to a different MPI task,
with a one-to-one mapping among MPI tasks and CPU cores. Regarding dynamic load balancing, the
partition weights are set to wa = 10 for active cells and wi = 1 for inactive cells. Using linear FEs,
the average total number of cells Ncells and global DOFs Ndofs (excluding hanging DOFs) across all
time steps are 12,585,216 and 10,273,920. Note that, if a fixed uniform mesh was used, specifying the
maximum refinement level of 11 all over the cube, the number of cells would be (211)3 = 8.59 · 109 and
the number of DOFs would grow from (211+1)2(211/2+1) = 4.30·109, initially, to (211+1)3 = 8.60·109,
at the end of the simulation. Hence, it is readily exposed how h-adaptivity drastically reduces (almost
by three orders of magnitude) the size of the problem and the required computational resources, while
preserving accuracy around the growing printing region.

Fig. 11 and Tab. 1 report speed-up and total simulation wall time [s] of FEMPAR-AM using the
Jacobi-PCG method, as the number of subdomains is increased. As observed, FEMPAR-AM scales up
to 6,144 fine tasks with a peak speed-up of 19.2. Above 6,144 cores, time-to-solution increases due
to parallelism related overheads (e.g. interprocessor communication); more computationally intensive
simulations (i.e. larger loads per processor) would be required to exploit additional computational
resources efficiently. As observed, the total wall time reduces with the number of subdomains to
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approximately two minutes. This means that it takes 2.5 seconds in average to simulate the printing
and cooling of a single layer (in two time steps). However, at larger scales of simulation and/or different
problem physics, weakly scalable 2 methods, such as AMG or BDDC, may have superior performance.
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Figure 11. Strong-scaling example: Results of FEMPAR-AM for (wa, wi) = (10, 1).
Maximum speed-up of 19.2 and minimum wall time of 117 [s] is attained at 6,144
processors.

Another point of interest is to analyse the fraction of total wall time spent in different phases of
the simulation and their scalability, shown in Fig. 12. As observed, the assembly phase dominates at
low number of tasks, followed by the triangulation one. However, while assembly is the most scalable
simulation phase, the triangulation is the least one. That is why the latter gradually dominates with
increasing number of tasks and also leads the degradation of parallel efficiency. It is interesting to see
that the solver phase is not relevant, with the exception of a (reproducible) spike in computation time
at 786 and 1536 tasks. While the low-importance is caused by solving a relatively simple problem
that can be efficiently preconditioned with the Jacobi method (the average number of iterations is
merely 68), the abnormal deviation could be explained by the irregularity of the partition, although
the authors were not able to find clear correlation. Another particularity related to the construction of
the problem is that, when following a z-ordering, active and inactive cells are generally mixed. Hence,
a standard (wa, wi) = (1, 1) partition more or less equally distributes the active cells. It follows that
there is a rather low sensitivity to the partition weights.

Further insights are drawn by studying the local distribution of cells and DOFs in space (among
processors) and in time (among layers) up to 3,072 processors. As the number of cells and DOFs vary
for each layer, all geometrical quantities are studied in terms of the mean µ and the coefficient of
variation cv, also known as relative standard deviation, which is the ratio of the standard deviation σ
to the mean µ. cv measures the extent of variability in relation to µ. Thus, it can be used to compare
the variability among different quantities.

Given a quantity x(t, p) that can depend on the time step and processor, the time average at
every processor is represented as µt(x), the average among processors at every time step as µp(x)
and the mean value across processors and time steps as µ(x). In what follows, the magnitude of x is
studied with µ(x), whereas dispersion is analysed with the coefficient of variation among processors,

2Weak scalability is the ability of a parallel system to efficiently exploit increasing computational resources in the
solution of a problem with fixed local size per processor. An ideally weakly scalable code does not vary the time-to-
solution with the number of processors and fixed local size per processor. In other words, if the system solves a problem
in time t with a given amount of processors, then it is able to solve also in time t an X times larger problem with X

times the number of processors. The Jacobi method is not weakly scalable because the number of iterations grows with
the global problem size.
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P
Total wall

SP = t48
tP

EP = SP

P/48 n̄local
dofs n̄iters

time [s]

48 2,244 1.00 1.00 222,355

68

96 1,205 1.86 0.93 111,812

192 660 3.40 0.85 56,390

384 382 5.87 0.73 28,533

768 307 7.31 0.46 14,508

1,536 221 10.15 0.32 7,418

3,072 133 16.87 0.26 3,827

6,144 117 19.18 0.15 1,993

12,288 137 16.38 0.06 1,052

Table 1. Strong-scaling analysis results of FEMPAR-AM for (wa, wi) = (10, 1). Total
wall time accounts for the computational time of all simulation stages. SP is the
speed-up, EP is the parallel efficiency, n̄local

dofs is the average size of the local fine problem
across processors and time steps and n̄iters is the average number of iterations of the
Jacobi-PCG solver across time steps.
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Figure 12. Strong-scaling example: Results of FEMPAR-AM for (wa, wi) = (10, 1) per
simulation phases. The triangulation phase accounts for the remesh and redistribute
steps of the simulation workflow, including projections and redistributions of the FE
solution, whenever the mesh is transformed or redistributed. The activation phase
accounts for the search of activated cells and the generation of the FE space with
new DOFs assigned within the current layer. The assembly phase consists of local
integration of the weak form and construction of the global linear system, during
printing and cooling steps. Finally, the solver phase includes the solution of the linear
system, also during printing and cooling steps. Although the assembly phase is initially
dominant, computational time and scalability are dominated by the triangulation
phase.

i.e. cpv(x) = σp(x)/µp(x). This statistic informs about possible computational load unbalances, due
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to an uneven distribution of x among processors. As cpv(x) depends on the time step, for the sake of
simplicity, the average across time steps µt(cpv(x)) is reported instead.

Tab. 2 gathers the local distribution of cells and degrees of freedom (excluding the hanging ones).
The values of µt(cpv(x)) show that the local number of cells is slightly unbalanced, but the local weighted
number of cells, i.e. the sum of the cell weights at each processor for (wa, wi) = (10, 1), is perfectly
balanced. Apart from that, Fig. 13 shows that the number of cells oscillates with the height of the
layer, but it does not grow in time. This behaviour propagates to other quantities such as the number
of active cells or DOFs and it is caused by the 2:1 balance: The cells concentrate at the current layer
and immediately below. Even if the domain grows in time, the number of cells away from the layer is
much smaller than the number of those close or at the layer.

ncells nweighted
cells nactive

cells ndofs

P µ µt(cpv) µ µt(cpv) µ µt(cpv) µ µt(cpv)

48 262.2k 0.61 2,228k 0.00 218.5k 0.08 222.4k 0.26

96 131.0k 0.75 1114k 0.00 109.2k 0.10 111.8k 0.37

192 65.5k 1.02 557k 0.01 54.6k 0.14 56.4k 0.45

384 32.8k 1.44 279k 0.01 27.3k 0.20 28.5k 0.63

768 16.4k 2.28 139k 0.02 13,7k 0.31 14.5k 0.73

1,536 8.2k 3.46 69.6k 0.05 6,8k 0.48 7.4k 1.10

3,072 4.1k 5.46 35.8k 0.09 3,4k 0.76 3.8k 1.39

Table 2. Strong-scaling example. FEMPAR-AM for (wa, wi) = (10, 1). Local distribu-
tion of cells and degrees of freedom (excluding hanging). µt(cpv) expressed in %.
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Figure 13. Evolution of global number of cells with the height of the layer.

It is also apparent that the pair (wa, wi) = (10, 1) effectively equilibrates the number of active
cells among processors. Hence, degrees of freedom are also evenly distributed, though with a slightly
higher dispersion. This is especially beneficial for the integration and assembly phases, as they are
implemented in FEMPAR, such that the bulk of the computational load is concentrated on the active
cells set, and also the linear solver phase, as the size of the local systems depend on the number
of DOFs that the processor owns. On the other hand, mesh generation, refinement, coarsening and
redistribution phases suffer from an uneven distribution of total cells.

Concerning the local number of subdomain neighbours and interface DOFs, in Tab. 3, high variations
in space expose the extreme irregularity of Z-curve partitions. Due to the refinement strategy in
Fig. 10(b) and the Z-ordering, most subdomains are embedded in the current layer, while only few are
made of bottom coarser cells. This explains why, as seen in the fourth column, listing the maximum
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number of neighbours across processors and time steps, there can be subdomains touching all the
remaining ones. Even if the partition becomes increasingly regular with P , the imbalance of neighbours
and interface DOFs increases synchronization times in important operations of the Jacobi-PCG, such
as the matrix-vector product. It could also be the main cause for the deviation observed in the solver
times of Fig. 12.

nneighbours ninterface
dofs

P µ µt(cpv) max µ µt(cpv)

48 14 47.9 48 7.1k 35.1

96 16 62.5 95 4.8k 34.4

192 17 79.4 191 3.3k 28.3

384 18 91.1 383 2.3k 25.8

768 19 103.6 767 1.6k 20.5

1,536 20 92.0 1,024 1.1k 20.7

3,072 21 80.1 1,048 0.8k 16.6

Table 3. Strong scaling example. Local distribution of subdomain neighbours and
interface degrees of freedom. µt(cpv) and cv expressed in %.

6.3. Extruded wiggle. If the previous example focused in performance, the one in this section aims
to show the capabilities of the framework in a more realistic scenario. The setting now is the printing
of a 3D curved geometry following the actual scan path, instead of a layer-averaging approach. In this
way, the geometry is no longer rectangular, the temperature field is captured with higher detail and,
more importantly, the parallel search algorithm introduced in Sect. 3.2 is more intensively stressed.

The simulation spans the build of eight 60 [µm] layers on top of a 7.68 [mm] height extruded wiggle.
The geometry, represented in Fig. 14, is obtained in the following way: (1) a one-dimensional wiggle is
defined by joining two parabolic functions, the distance between its edges is 30.72 [mm]; (2) extrusion
along the x-axis yields a 15.36 [mm] thick plane wiggle; (3) extrusion perpendicular to the xy-plane
completes the 3D shape.

One feature of the simulation is the use of second order lagrangian FEs both for geometry and con-
tinuous FE space approximations. In particular, given that the wiggle is parametrized by (piecewise)
polynomials of order less or equal than two, an exact discretization can be easily defined. Although
this choice clashes with the rectangularity assumption of the search algorithm in Sect. 3.2, if the HAV
overlaps a refined enough region, the mesh cells can be regarded as quasi-rectangular. As a result,
the meshing approach considers two different user-prescribed minimum levels of refinement: the (1)
absolute one, a lower bound of the level of any cell in the mesh, and the (2) search one, i.e. the lowest
level a cell below the layer being printed must have to ensure quasi-rectangularity. It is apparent that
(1) is always lower or equal than (2).

The octree mesh is constructed by working on two different configuration spaces; p4est generates
and transforms the mesh in a reference unit cube, whereas FEMPARmaps the unit cube mesh coordinates
into the physical wiggle. The root octant of the octree mesh is mapped into a 30.72 [mm] height wiggle.
The absolute minimum level of refinement is set to three, enough to have an exact discrete geometry;
the search one is set to five, after several trial and error experiments; and the maximum one at the
HAV is ten, i.e. there are two cells along the thickness of the layer. This setting is apparent in
Figs. 14(a) and 14(c). The initial computational domain has a height of 7.68 [mm], cells located above
this threshold are inactive. After printing the eight layers, the active region reaches 8.16 [mm] height.
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(a) The absolute minimum level of refinement at
the bottom of the wiggle is three, while the search
one below the current layer is at least five. A
blue shaded area indicates the highly-refined cell
concentration at the current layer.
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(b) Contour plot of temperatures for the given
time step. The relevant thermal features are lo-
calized around the HAV and its tail.

(c) Close-up of the mesh around the HAV. The
search algorithm finds the cells inside the HAV on
top of a quasi-rectangular region and assigns to
them the maximum level of refinement (10).

(d) Close-up of the contour plot around the HAV.
Away from the HAV, highly-refined layer cells are
only necessary to capture the growing geometry;
they do not increase the resolution.

Figure 14. Mesh and temperature contour plot of the 3D wiggle at an intermediate
time step of the simulation of the first layer for (wa, wi) = (10, 1).
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Regarding the laser path, odd layers are built with nonoverlapping hatches along the x-axis, whereas
even ones along the y-axis. Even though the scanning path is orthogonal, the mesh cells are skewed due
to the cube-to-wiggle mapping. Therefore, during the simulation, the search algorithm generally tests
the intersection of non-aligned cuboids. A uniform heat input of 200 [W] and heat absorption η of 0.5
is distributed in a 0.96x0.48x0.06 [mm] HAV. Note that the HAV has been scaled 1% extra in the xy-
plane for safety, a practice that is advisable even for linear FEs to avoid failures of the search algorithm
in situations that depend on arithmetic precision. The scanning speed is 100 [mm/s] and the relocation
speed is 200 [mm/s]. This means that the time step during printing is 0.96/100 = 9.6 · 10−3 [s].

The material is, once again, Ti6Al4V, and the initial and boundary conditions are also the same
of the previous example, i.e. u0 = 90 [◦C] and convection on the boundary (hout = 50 [W/m2K] and
uout = 35 [◦C]). An important simplification is that the powder is not simulated. Although modelling
the powder bed has already been object of study by the authors [58], it is left out of this example,
because it does not contribute to the main purpose, i.e. the study of the search algorithm.

The simulation workflow is the same as the one in Sect. 6.2, but the time discretization is set up such
that, at each time step, 0.96 [mm] along the laser path are advanced, not a whole layer. Simulation
steps (1) to (4), i.e. mesh transformation, activation and printing step, are carried out at every 0.96
[mm] step, while cooling (5) steps only apply between hatches and layers. In this strategy, the mesh
explicitly tracks the laser path, but there are many more AMR events than time steps, because the
next HAV is not accommodated in a single refine and coarsen step, but (at most) 11 − 5 = 6 steps.
Although not covered in this work, other simulation strategies could be analysed. For instance, one
could mesh the whole layer as in Sect. 6.2, then simulate printing following the laser path point to
point. Compared to the laser-tracking mesh approach, there would be many more time steps than
mesh transformations, but the problem solved at each time step would also be bigger.

Numerical experiments were run with 96 MPI tasks one-to-one assigned to 96 cores, distributed in
six computing nodes. Each node has 2x Intel Xeon E5-2670 multi-core CPUs, with 8 cores each and
64 GBytes of RAM. The computing nodes were located at the Acuario [1] computer cluster, hosted by
the International Centre of Numerical Methods in Engineering (CIMNE) in Barcelona, Spain. Linear
systems were solved with a nonrelaxed Jacobi-PCG method. Contour plots were generated in ParaView
5.1.0 [3] with second order visualization cells written in VTK format [65].

Simulation results at several time steps are gathered in Figs. 14 and 16 for (wa, wi) = (10, 1). Average
global problem size is 2.0M (nonhanging) DOFs and total number of time steps is 8,727. For 96 MPI
tasks, the average number of local DOFs is 21.1k and µt(cpv(x)) = 3.3%, with cpv(x) = σp(x)/µp(x). In
front of the strong-scaling example, dispersion of local DOFs is higher and the total number of DOFs
notably oscillates in time (Fig. 15) due to the laser-tracking refinement strategy.
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Figure 15. Total number of (nonhanging) dofs heavily oscillates with the laser-
tracking refinement approach. Increasing/decreasing trend reverses at the start of
a new layer.

The duration of the simulation is 13 [h]; each layer is printed in 97 [min] average, but the individual
time varies significantly, due to the oscillation of total number of DOFs. On the other hand, average
number of Jacobi-PCG iterations is 381. In spite of being numerous, mesh generation, adaptation
and redistribution roughly amounts to 52% of the simulation time. Next phases by runtime are local
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(a) As the mesh must be layer-conforming, many cells concentrate at the last printed layers, even though
they do not contribute to capture better the thermal field.
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(b) Homogeneous (same level) coarsening at the last layer indicates that there are no interior or boundary
holes, i.e. cells that the search algorithm has failed to activate.

Figure 16. Mesh and temperature field at intermediate time steps of the sixth 16(a)
and eighth 16(b) layers.

integration and assembly (22%) and linear solver (24%). An important outcome is that activation
with the HST nonitersection test and initialization of new DOFs only occupies 3% of the simulation.



PARALLEL FE FRAMEWORK FOR GROWING GEOMETRIES IN METAL AM 27

Moreover, mesh and contour plots (e.g. Fig. 16(b)) do not expose any holes during the filling of the
layers. Therefore, the parallel search algorithm is both efficient and robust in this example.

Apart from that, there is a pronounced sensitivity to the partition weights. Indeed, Tab. 4 gathers
distribution of DOFs and runtimes for several pairs of (wa, wi). A weighted partition decreases up
to 34% the computation time with respect to a nonweighted one. Runtime decrease affects especially
the assembly and solver phases, whose complexity depends on the number of active cells or DOFs,
respectively. Reductions could be more significant for larger number of subdomains P , because the
disequilibrium of local DOFs grows with P . Hence, partition weights not only dynamically equilibrate
the DOFs among processors, they also have the potential to significantly shorten simulation times.
Besides, in relation to the discussion at the end of Sect. 3.3, performance of pairs (wa, wi) satisfying
wa � wi is barely distinguished from (wa, wi) = (1, 0), i.e. they appear capable of equilibrating the
computational load, while precluding extreme imbalance of cells.

ndofs Runtime Phase percentage [%]

(wa,wi) µ µt(cpv) [%] T [h] T/T(1,1) [%] Triang. Activation Assembly Solver

(1,1)

21.1k

25.6 19.7 100 48 3 26 23

(2,1) 15.4 15.2 77 51 2 23 24

(10,1) 3.3 13.0 66 52 3 22 24

(100,1) 3.0 13.0 66 52 2 23 23

(1,0) 2.4 13.0 66 51 2 23 24

Table 4. Sensitivity of DOF distribution and computation times to the partition
weights. Simulation phases correspond to the same ones described in Fig. 12. Com-
pared to the nonweighted case, partition weights equilibrate the DOF distribution and
reduce up to 34% the total simulation runtime.

A final comment arises on two computational bottlenecks identified in this example that guide
how the framework could be further improved, towards dealing with real industrial scenarios. The
first and most obvious one is the layer-conforming mesh constraint that precludes coarsening at cells
touching the active/inactive interface (e.g. Fig. 16(a)). Unfitted FE methods could likely get rid of
this requirement and dramatically drop the mesh size. On the other hand, even if concurrency in space
is efficiently exploited, the framework is still fully sequential in time. Very small time steps must be
prescribed to follow the laser with high precision, leading to extremely long transient simulations. This
motivates exploring adaptive space-time approximations and solvers [4, 31, 32]. The idea is to provide
the solution at all time steps in one shot using the vast computational resources available nowadays.

7. Conclusions

This work has introduced a novel HPC numerical framework for growing geometries that has been
applied to the thermal FE analysis of metal additive manufacturing by powder-bed fusion at the part
scale. The abstract framework is constructed from three main blocks (1) hierarchical AMR with octree
meshes, distributed across processors with space-filling curves; (2) the extension of the element-birth
method to (1); to track the growth of the geometry with an embarrassingly parallel search algorithm,
based on the hyperplane separation theorem; and (3) state-of-the-art parallel iterative linear solvers.

After implementation in FEMPAR, an advanced object-oriented FE code for large scale computational
science and engineering, a strong-scaling analysis, of a problem with 10M unknowns, evaluated the
performance of the code up to 12,288 CPU cores. Timing of simulation phases and statistical treatment
of cell- and DOF-related quantities revealed uneven DOF distribution and partition irregularity as the
main sources of load imbalance, thus increasing parallel overhead.
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A second numerical example of 2.0M unknowns in a curved geometry examined the search algorithm,
driving the update of the computational domain. The results not only verified efficiency and robustness
of the search routine, but also showed that the mesh rectangularity assumption of the algorithm can
be slightly relaxed. A further study exposed the potential of partition weights to tune dynamic load
balance and bring down simulation times; the weight function has been defined to seek a compromise
between equally distributing among processors the number of cells or DOFs.

Average simulation times per time step were cut down to 1.2 [s] and 5.4 [s] in the first and second
examples. Even at the rate of 1 [s] per time step, fully resolved high-fidelity AM simulations, involving,
e.g. other physics than heat transfer, stronger nonlinearities, historical variables, among others, can
still take long hours in massively parallel systems. Higher efficiency and parallelism could be attained
by resorting to (1) unfitted FE methods [10] to eliminate the mesh body- and layer-fitting requirement
and (2) weakly scalable adaptive and nonlinear space-time solvers that also exploit concurrency in
time.

In spite of the limitations, FEMPAR-AM is, to the authors knowledge, the first fully parallel and
distributed FE framework for part-scale metal AM and the numerical experiments have shown the
potential to efficiently address levels of complexity and accuracy unseen in the literature of metal AM.
Apart from turning to other part-scale physics in metal or polymer AM, this HPC framework could
also be useful for other growing-geometry problems, as long as the growth is modelled by adding new
elements into the computational mesh.
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