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Resumo

O Problema de Realocação de Blocos é um problema importante em sistemas de armaze-
namento. Um exemplo de entrada para este problema consiste em um conjunto de blocos
distribuídos em pilhas, onde cada bloco é identi�cado por um número que representa sua
prioridade de recuperação e todas as pilhas têm um mesmo limite de altura. Apenas
blocos no topo de uma pilha podem ser movidos, com dois tipos de movimentos: ou um
bloco é recuperado, o que ocorre quando ele tem a mais alta prioridade de recuperação
entre os blocos empilhados, ou um bloco é realocado do topo de uma pilha para o topo de
outra pilha. O objetivo é recuperar todos os blocos, respeitando sua prioridade de recupe-
ração e executando o menor número de realocações. Resolver este problema é crítico em
sistemas de armazenamento, pois economiza tempo e recursos operacionais. Apresenta-
mos dois novos limitantes inferiores para o número de realocações em uma solução ótima.
Implementamos um algoritmo de deepening A* usando esses limites inferiores propostos e
outros limites inferiores bem conhecidos da literatura. Foi realizado um extenso conjunto
de experimentos computacionais mostrando que os novos limites inferiores melhoram o
desempenho do algoritmo exato, resolvendo mais instâncias otimamente do que quando
usando outros limites inferiores na mesma quantidade de tempo.



Abstract

The Blocks Relocation Problem is an important problem in storage systems. An input
instance for this problem consists of a set of blocks distributed in stacks where each block
is identi�ed by a retrieval priority number and each stack has the same maximum height
limit. Only blocks at the top of a stack can be moved: either a block is retrieved, if it
has the highest retrieval priority among the stacked blocks, or it is relocated to the top of
another stack. The objective is to retrieve all the blocks, respecting their retrieval priority
while performing the minimum number of relocations. Solving this problem is critical in
storage systems because it saves operational time and resources. We present two new
lower bounds for the number of relocations of an optimal solution. We implemented an
iterative deepening A* algorithm using these new proposed lower bounds and other well-
known lower bounds from the literature. We performed an extensive set of computational
experiments showing that the new lower bounds improve the performance of the exact
algorithm, solving to optimality more instances than when using other lower bounds in
the same amount of time.
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Chapter 1

Basics concepts and literature review

about the problem

This chapter is structured as follows: in Section 1.1 we explain the importance of the

Blocks Relocation Problem (BRP) in storage systems, in Section 1.2 we show a formal

description of the problem, in Section 1.3 we review the most important works in the

literature for the BRP, and in Section 1.4 we list the contributions of the thesis and the

organization of rest of the text.

1.1 Introduction

This work is focused on the Blocks Relocation Problem (BRP), also known as Container

Relocation Problem in the literature, which generally emerges from storage systems. In

storage systems, there are several types of items to be stored, such as containers and

pallets. We will refer to these items as blocks throughout the text. We consider that the

blocks are stored in a series of stacks, where, at each stack, one block is above another or

at the bottom of the stack. This is called the stacking area, which is the most common

type of storage system for containers. This type of storage only allows one to access the

top block of a stack, which can be relocated to the top of another stack or can be removed

and placed outside the stacking area, in a move called retrieval.

Consider a container terminal where blocks have to be retrieved from the stacking area

and loaded onto trucks, following a given precedence order called retrieval priority. The

precedence of these items may be motivated by several factors, such as the arriving order

of container transportation trucks or the delivery order of containers in a ship. Given a

stacking area and the precedence order of the blocks, the objective of BRP is to minimize

the number of relocations in order to retrieve all blocks.

The BRP is known to be NP-Hard [2]. There exist many works that tried to solve the

BRP with di�erent approaches. Some of them presented new lower bounds, which are used

by exact algorithms to solve the BRP [11, 19], others presented formulations in integer

linear programming [2, 18], and some of them presented heuristic approaches [11, 1, 10].
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Figure 1.1: An instance for the BRP with S = 6 (stacks), H = 3 (height), and N = 15
(blocks).

1.2 Problem Description and Basic De�nitions

Formally, in the BRP we are given N blocks b1, b2, . . . , bN distributed in a stacking area

consisting of S stacks s1, s2, . . . , sS, with a maximum height of H for each stack. The

height of a stack sx, denoted by height(sx), is the number of blocks stacked on it. Thus,

in any possible con�guration of the stacking area we must have height(sx) ≤ H for all

1 ≤ x ≤ S. Each block bi, for 1 ≤ i ≤ N , has a retrieval priority de�ned as i, which

indicates its retrieval order. Therefore, the lowest value means the highest priority, so b1
is the �rst block to be retrieved. In the version of the problem we consider, the retrieval

priorities are unique. There are other versions of the problem where di�erent blocks may

have a same retrieval priority, but we do not consider them in this work.

We denote by t the block with the highest retrieval priority in the stacking area, also

called target block of the stacking area, or target block of the instance. We call target

stack the stack containing block t. Similarly, we denote by tx the block with the highest

retrieval priority in stack sx, also called target block of stack sx. We also use the notation

Bx,y to represent a block that is in stack sx at height y.

Since we only have access to the block at the top of any stack, there are only two

available moves. A relocation is a move (or action) sx ⇒ sx′ that takes the top block of

stack sx and puts it at the top of stack sx′ , where it must be valid that height(sx′) < H

before the relocation. Also, a relocation from sx is allowed only if the target block t is in

sx, so that we can retrieve t latter, after relocating all blocks above it. The BRP problem

under this restriction is still NP-hard and this assumption is used in several works on the

literature [2]. A retrieval is a move (or action) sx ⇒ s0 that removes the top block of

stack sx from the stacking area if such block is t (s0 is an arti�cial stack). It is interesting

to note that it is an open question the complexity class of the decision version of the

problem, where one has to decide if there is a sequence of movements that clear an initial

stacking area if S ∗H −H + 1 ≤ N .

An instance of the BRP consists of the dimensions S and H of the stacking area, the

number N of blocks stored, and an initial con�guration of these blocks. A solution to

an instance of the BRP is a sequence of relocations and retrievals that clears the initial

stacking area. Note that the number of retrievals is constant and equal to N , so the goal

is to retrieve all the blocks respecting their retrieval priorities using the minimum number

of relocations. See Figure 1.1 for an example. In the example, we have t = 1 and we can
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only relocate blocks 7 and 10, in this order, before retrieving block 1. After relocating

blocks 7 and 10, we retrieve block 1, and then the new target block becomes t = 2. A

possible sequence of relocations to retrieve blocks 1, 2, 3, and 4 is S = {(s3 ⇒ s1), (s3 ⇒
s1), (s3 ⇒ s0), (s6 ⇒ s3), (s6 ⇒ s0), (s4 ⇒ s0), (s5 ⇒ s3), (s5 ⇒ s3), (s5 ⇒ s0)}.

Let bi be a block in some stack sx and let bj be some block that is placed below b in

the same stack, i.e., the height of bi in sx is greater than the height of bj. If i > j, then

bi is called a blocking block. In Figure 1.1, blocks 7, 8, 9, 10, 11, 13, and 14 are blocking

blocks.

1.3 Literature Review

Kim and Hong [11] proposed two variations for the BRP. In the �rst one, each block has

a unique retrieval priority and in the second one, two or more blocks can have the same

retrieval priority. They proposed a branch and bound algorithm for both variants of the

BRP. In the Branch and Bound Algorithm, the order in which the states (which are the

instances of the problem) of the state space (all the states that can be reached applying

one or more actions over the initial instance) are explored is inspired by the depth-�rst

search and backtracking strategies used in many state space search algorithms. That is,

given all the unexplored states, we pick the one reachable from the most recent explored

state to be the next one explored. If there exist two or more states that �t this de�nition,

the next state to be explored is the one with minimum sum of the number of performed

relocations so far plus the number of blocking blocks in on it.

In the same paper the authors propose a fast heuristic rule as a subroutine to create

a solution for the BRP. The expected number of additional relocations (ENAR) calculates

a valid lower bound in the number of relocations from the current state to the goal state.

In order to create a solution for the BRP the authors use ENAR as follows: suppose that

we want to relocate the top block tb of the target stack; for that, we can relocate such

block to at most S−1 other stacks, so we simulate such relocation creating at most S−1

new states; now, we calculate the ENAR of each new state; from all the stacks where we

can relocate the block tb, we pick a stack in which the ENAR value at the state where

the block tb was relocated to such stack is minimum. The authors compared results of

those two proposed methods.

Caserta, Schwarze, and VoB [1] proposed a binary representation of the stacking area,

which simpli�es the transition from the current state of the stacking area to a state

generated by a relocation or retrieval. In the binary (N +S)x(N +S) matrix M , the �rst

N rows and columns represent the blocks b1, b2, · · · , bN in the stacking area. The last S

rows and columns represent arti�cial blocks at an arti�cial height 0 of the stacking area.

More formally, the row and column N + i represent the arti�cial block bN+i with height

0 in the stack si. Such binary matrix M is �lled as follows: Mi,j = 1 if the block bi is

below the block bj at the same stack; otherwise, Mi,j = 0. They developed a lookahead

mechanism (heuristic) that is adapted to this binary representation. The heuristic rule

�rst calculates the target block of a stack (remember that the target block of each stack

is the block that has the highest priority); if a stack is empty, then its target block is
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N + 1. The following rules are applied to relocate the block bi that is at the top of the

target stack:

1. Relocate bi to the stack with the minimum target block such that bi does not become

a blocking block where it is relocated.

2. If there are no stacks with this property, then relocate bi to a stack with maximum

target block.

The authors compare their results with another method created by themselves, called

the corridor method [3]. They showed that the running time and the average of the

number of relocations is better than the corridor method.

Lee and Lee [15] introduced a new variant of the problem where each relocation have a

cost, which is the distance between the two stacks over which the relocation is performed.

The authors �rst present a greedy heuristic, which we describe next. If the target block

is at the top of a stack, then we retrieve it; otherwise, we relocate the top block tb of the

target stack sx to the nearest available stack sx′ such that sx′ < H. If we have two stacks

available, one stack sx′
1
to the left of sx and another stack sx′

2
to the right where |sx′

1
− sx|

is equal to |sx′
2
− sx|, then pick the stack with less height to relocate tb. The authors

then present a method to reduce the number of relocations of the heuristic. Lee and Lee

also created a mixed integer program in order to reduce the working time for the crane.

The crane is a machine that performs the relocations, the working time is proportional

to the distance of two stack for which perform the relocation, for example if we relocated

a block of the stack si to the stack sj the working time is |i− j| ∗ k. They used CPLEX

to solve integer program, which decreased in 5% the working time of the crane compared

with the heuristic.

Caserta and Voÿ [3] presented a new heuristic named corridor method using ideas from

genetic algorithms. After that, the same authors introduced a two-dimensional corridor

using the corridor method without limiting the height of the stacks [4]. They also proved

that the BRP is NP-Hard [2] and presented a binary linear programming model that

generates solutions for small instances. To break this limitation, realistic assumptions are

introduced, which allows them to create a new binary linear programming model and a

new heuristic to get good solutions for medium size instances.

Javanovic and VoB [10] proposed a new heuristic approach, which considers not only

the current block to be relocated but also the next block to be relocated. They named

this idea Min-Max heuristic. This heuristic reduces on average 5% on the number of

relocations comparing with the heuristic proposed by Caserta et al. [2].

Exposito and Batista [7] presented two exact algorithms based on the A* search frame-

work, one for the restricted BRP (where we can only relocate the top block of the target

stack) and one for the unrestricted one (where we can relocate the top block of any stack).

The A* search algorithm for the restricted BRP use as a lower bound the one proposed

by Zhu et al. [19], which is explained in Chapter 4 (we call it Lower Bound 3). The A*

for the unrestricted BRP use as a lower bound the number of blocking blocks only. As an

upper bound for the two algorithms they use a simple heuristic, which creates a solution

as follows: if the target block is at the top of a stack, then we retrieve it; otherwise,
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we relocate the block at the top of the target stack to another random stack sr where

height(sr) < T . With these, they were able to get 62% of optimal solutions in a dataset

created by themselves.

Tanaka et al. [17] presented a new lower bound based on previous lower bounds that

were created by Kim and Hong [11] and Zhu et al. [19]. The use of this new lower bound

on an exact algorithm results in �nding 1.848% more optimal instances than using the

previous lower bounds.

Following the same line of research, Tanaka and Mizuno [16] proposed an exact al-

gorithm for the unrestricted BRP with distinct priorities. They proposed three types of

dominance properties (for transitive relocation, independent relocations, and retrievals)

to eliminate unnecessary nodes in the search tree. They also improved the lower bound

proposed by Forster and Bortfeldt [9]. With those two enhancements they solve a large

number of benchmark instances, solving more instances to optimality than previous ap-

proaches from the literature.

1.4 Contributions and text organization

In this work, we create two new lower bounds for the BRP. We also explore a new ap-

proach to tackle the problem by memorizing a part of the search space, named Pattern

Database [8]. We use these two lower bounds in a general exhaustive search, iterative

deepening A*, which avoids parts of the search space where the optimal solution is not

present. The use of the new lower bound, the pattern database, as well as a method to

stop the search earlier, saved a signi�cant amount of time in the exhaustive search.

The rest of the text is structured as follows. In Chapter 2 we present all the concepts

that are necessary to better explain our contributions. In Chapter 3 we give some details

about the algorithms we implemented. In Chapter 4 we present the three most important

lower bounds found in the literature and expose one of our new proposed lower bound. In

Chapter 5 we explain the concept of pattern databases and expose the other new proposed

lower bound. In Chapter 6 we show all the computational results of our experiments using

the two new lower bounds proposed comparing such results with existing lower bounds

explained in the Chapter 4. At last, in Chapter 7 we draw our conclusions.
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Chapter 2

Exact Exponential Time Algorithms to

Solve Combinatorial Optimization

Problems

In this chapter, we present some exact algorithms used to solve NP-Hard combinatorial

optimization problems, such as the BRP. Assuming P 6= NP, there is no polynomial time

algorithm to solve these problems, yet some exponential time algorithms are useful in

practice to solve them. We �rst show how a combinatorial problem can be modeled in

terms of State Space Search. Then, we will show some basic exact exponential time

algorithms, some of them using the State Space Search concept and some of them not.

Many researches present exact exponential algorithms as a main structure to solve the

Blocks Relocation Problem, as we showed in Section 1.3. The main algorithm that we

use in this dissertation is an exact exponential time algorithm where we use our two new

lower bounds.

2.1 State Space Search

A state space is the set of all possible con�gurations/states that an instance of the problem

can reach when the available actions are applied. Such instance is considered the initial

state of the state space. As we mentioned, we can explore the state space by applying

actions on a state s of the problem to get to a new state s′. Thus, the state space can

be seen as a graph in which two states are connected if there is an action that transforms

one state into the other.

A state space comprises six components: S, I, G, actions(s), successor(s, a), and

cost(s, a). Set S contains all possible states (including the initial one) that we can reach

from the initial state performing one or more actions. Set I contais the initial states of

the problem (I ⊆ S); for example, one initial state of the BRP is shown in Figure 1.1. Set

G contains the goal states of the instance to be solved (G ⊆ S). In the case of BRP, there

is only one goal state, which is the empty stacking area. The actions function, actions(s),

gives the actions that can be performed over a state s. In the BRP, given the target

stack sx if t is the top block then only one action can be performed, which is the retrieval
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of t. If t is not the top block, then for each one of the other stacks we have an action

corresponding to the relocation of the top block of the target stack to that stack. The

successor function, successor(s, a), gives the states reachable when action a is applied over

state s. In the case of BRP, each action (relocation or retrieval) reaches only one state

when it is applied. The cost function, cost(s, a), gives the cost of transforming a state s

into another state s′ ∈ successor(s, a). In the case of BRP, a retrieval and a relocation

have cost 0 and 1, respectively.

Summarizing, for BRP, a con�guration/state is any stacking area, the initial state is

the initial stacking area, the goal state is the empty stacking area, and the possible actions

are retrievals and relocations, which cost 0 and 1, respectively.

State space algorithms explore all the state space searching for a path between an

initial state and a goal state. The best-solution path is determined in terms of the size of

the path, time, resource consumption, or other aspects according to the problem. Real-

world planning problems (e.g., Vehicle routing, crew scheduling, production planning)

are combinatorial optimization problems that can be instantiated in terms of state space

search.

There exist many algorithms that explore a state space, but the most common methods

are Depth First Search (DFS) and Breadth First Search (BFS), which are unfeasible

methods for search space problems with exponential number of states in terms of the

size of the input instance. For these, we need more sophisticated algorithms, such as A*,

Branch-and-Bound, or Minimax.

2.2 Branch-and-Bound

A Branch-and-Bound (B&B) algorithm explores the state space of a problem in order to

�nd the best solution. Since the number of states is normally exponential with respect to

the size of the input, it uses bounds and the current best solution to avoid exploration of

a portion of the state space.

A B&B algorithm for a minimization problem such as BRP consists of four main

parts [5]. Let s be the initial state and g be the goal state of BRP. The �rst part consists

of a bounding function for any given state s′, which is provided for a given state subspace

S ′ (a set of all states that we can reach when applying one or more actions to the state

s′). More formally, let s′ be a state reached after a positive number of actions is applied

to s. The bounding function is calculated over state s′ and it returns a lower bound for

the best solution from s′ to g, obtainable in the subspace S ′. The bounding function is

the most important part of any B&B algorithm because low-quality bounding functions

cannot contribute to the process of stopping the search. The value of a bounding function

for a given state s′ is ideally equal to the value of the best solution. However, this state

s′ is an instance of the BRP and, as we mentioned in Chapter 1, solving this instance

optimally is an NP-Hard problem. Therefore, the goal is to �nd a good bounding function

using a limited amount of computation (i.e., polynomial time algorithm).

The second part of a B&B is a strategy for selecting the next state to be explored.

We usually desire to keep the number of explored nodes in the state space search low and
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save memory capacity of the computer.

The third part is a branching rule, to be applied if the state under investigation cannot

be discarded. A branching rule is a subdivision of the search space through the addition

of constraints that divide it into some search subspaces. When we apply a branching

rule, we are sure that the search subspace is smaller and �nite. Typically, the search

subspaces are disjoint and, in two di�erent search subspaces, we do not �nd the same

feasible solution.

The last part of a B&B algorithm is very crucial. It consists of producing a primal

solution. In general, any heuristic may be used, but if it is not possible to �nd one, then

we can estimate the cost of a solution with an in�nite value depending on the problem

that we are trying to solve. We use such primal solution as an initial upper bound for the

BRP and we can update the upper bound each time we �nd a better solution during the

search. The upper bound helps the algorithm to �cut� the search when we are in a branch

where the value of the lower bound is greater than the upper bound; this means that we

are sure that through this branch we cannot reach a solution of cost better than the cost

of the known upper bound (which is a solution, not necessary optimal for the BPR).

2.3 Iterative Deepening Depth-First Search

Iterative Deepening Depth-First Search (IDDFS) is a state space search strategy where

the depth of the DFS is limited. Such depth-limited version of DFS runs many times, and

in each time we increase the depth until the goal is found (the optimal solution for BRP).

The complexity of the algorithm will be given in terms of the branching factor and the

depth of the state space search, described next.

The node branching factor (bf) of a problem is the average number of new states

generated by applying one single action to a given state. The depth (d) is the length of

the shortest sequence of actions that map the initial state into the goal state. The time

complexity of a search algorithm in this model of computation is simply the number of

states that are expanded in the search. Furthermore, we assume that the space complexity

of the algorithm is the number of states that must be stored. Next we present and analyze

two classic algorithms in the �eld of computer science, Breadth-First Search (BFS) and

Depth-First Search (DFS), in terms of bf and d. IDDFS takes advantage of BFS and

DFS, and we use this algorithm together with a Branch and Bound algorithm as our

method to test our two new lower bounds.

Breadth-First Search (BFS) expands all the states that are one action distant from the

initial state, then expands all states that are two actions distant from the initial state, then

three actions, and so on, until it reaches the goal state. In the worst case, BFS generates

bf nodes in the �rst level, bf 2 nodes in the second level, and so on, until it reaches depth

d, where bfd nodes are generated and a solution is found. Therefore, the worst-case time

complexity is O(bfd+1). One main characteristic of BFS is that we have to save all nodes

expanded before �nding a solution, so we have to expand bf 1+bf 2+· · ·+bfd nodes, which

means the space complexity of all of them is O(bfd+1). BFS is exponential in the space

complexity, therefore it is not practical for some problems because too much memory is
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necessary and in practice such memory is not available.

Depth-First Search (DFS) avoids the memory limitation of BFS and it works as follows.

The most recently explored node is expanded generating bf new nodes; after that, we have

to expand one node among these bf new nodes in an arbitrary order (e.g., lexicography

order). We keep this process until no more nodes can be expanded, then we backtrack to

the next most recently expanded node, and we repeat this action until the goal node t is

found or all states of the state space are explored. The property of the DFS is that we

keep in memory only the path between the initial state and the current state where the

DFS is, which means that the space complexity of the DFS is O(d × bf) but note that

the worst case time complexity to �nd a solution is also O(bfd+1).

Korf [13] took advantage of those two searches and created a new algorithm named

Iterative Deepening Depth-First Search. The algorithm is described as follows: �rst,

perform a DFS with a maximum depth d′ calculated with some function (in the case of

the BRP, we can assign to d′ a lower bound value on the instance) at the beginning of the

algorithm; if a goal state is found at a depth d′, then we stop the search; otherwise, perform

a second DFS with a maximum depth d′+1; if a goal state is found at a depth of d′+1, then

stop the search; otherwise, perform a third DFS with a maximum depth d′+2, and so on.

IDDFS seems to have a great disadvantage of wasting computation to �nd the goal depth

because it repeats the exploration of the same nodes in di�erent Depth-First Searches.

However, its time complexity is the same of BFS and DFS (O((d− d′)× bfd+1)). IDDFS

uses DFS as its main structure, so it needs only to store the nodes which represent the

current path analyzed. Since the maximum depth of the path is d, the space complexity

is O(d× bf) and the time complexity remains exponential.

2.4 Pattern Databases

In this section, we explain some concepts needed to present one of our new lower bounds,

shown in Chapter 5. A Pattern Database (PDB) stores a collection of solutions of a

sub-space state. To explain how such sub-space state is created we will introduce �rst the

concept of abstraction.

An abstraction is a function φ that maps each state s from the state space S to some

other state as from the abstract state space (sub-space state) AS which preserves paths

and goal states. Let a be an action, and let s and s′ be states from S. Let ca(s, s′) be the
cost of applying an action a to s and obtaining s′ as a result at the state space S, and
let c′a(s, s

′) be the cost of applying an action a to s and obtaining s′ as a result at the

abstract state space AS. The following must holds:

• If s ∈ S, then φ(s) ∈ AS.

• The cost ca(s, s
′) of applying a on s in order to reach s′ is smaller than c′a(φ(s), φ(s

′))

the cost of applying a on φ(s) ∈ AS in order to reach φ(s′) ∈ AS.

Abstraction replaces one state space with another state space, called abstract state

space, that is easier to be searched. Figure 2.1 shows the idea and the de�nition of the
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abstraction. Note that the abstract search space is supposed to be smaller than the

original search space.

Figure 2.1: Original and abstract search space.

We illustrate the idea of the abstraction with an example using the well-known Tower

of Hanoi problem, which consists of three rods that hold a number of di�erent-sized disks

(n disks). Initially, the n disks are all stacked on one rod where the largest disk is at

the bottom of the stack, the second largest one is above the largest one, and so on, until

the smallest disk is at the top. The task is to transfer all the disks to another rod such

that they keep the same initial con�guration. The constraints to move the disks are that

only the top disk on any rod can be moved at any time and that larger disks can never

be placed on top of smaller disks. For the 3-rod version, there is a simple deterministic

algorithm that provably returns an optimal solution. The minimum number of moves is

2n − 1. For the 4-rod version of the problem, there exists a deterministic algorithm for

�nding a solution and a conjecture that it is optimal, but the conjecture remains open.

Let S be the set of all states that can be reached from an initial con�guration with n

disks for the 4-rod Tower of Hanoi and let AS be the set of all states that can be reached

from an initial con�guration with m disks for the 4-rod Tower of Hanoi, such that m < n.

There exists an abstraction function that takes m disks of any state s ∈ S and can be

mapped to a state s′ ∈ AS. Such function works in the following way. It selects any m

disks from s and then it resizes each of them so that they have sizes from 1 to m (keeping

the relative sizes). To create a state s′, we place these m disks in the same corresponding

rod they were in s keeping their relative positions. Suppose that we have n = 5 and

m = 3. We can, for instance, select disks of sizes 2, 4, and 5 from s which are in rods 1,

4, and 4, respectively, with disk 4 above disk 5. Then we resize them to sizes 1, 2, and 3,

respectively. To create state s′, we place disks 1, 2, and 3 in rods 1, 4, and 4, respectively,

with disk 2 above disk 3.

We can compute the PDB with a BFS algorithm starting at the target pattern and until

we reach all the states in the abstract space state. The complexity of such computation

using BFS is exponential in space and time. This technique is frequently used in order

have lower/upper bounds in an exact algorithm.
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Chapter 3

Implemented Algorithms

In this chapter we present the general idea of the exact algorithm we used in our compu-

tational experiments.

3.1 Iterative Deepening A* Algorithm

In this section we describe the exact algorithm we used in our computational experiments,

which is the Iterative Deepening A* (IDA*) algorithm. The IDA* was �rst introduced by

Korf [12] in 1985 as a general search method, and has been applied to several problems.

For the BRP problem, it was �rst considered by Zhu et al. [19], and then by other authors

such as Tanaka and Takii [17].

In general, these search algorithms use upper and lower bounds in order to avoid the

exploration of some parts of the search space where optimal solutions are not present. An

outline of the exact algorithm is described below:

1. Given the initial stacking area, calculate a lower bound costcur and an upper bound

UB, which is the cost (number of relocations) of a heuristic solution.

2. Use a branch and bound algorithm (B&B) to search for a solution whose number

of relocations is not greater than costcur. During the execution of the B&B, if a

feasible solution with value better than UB is found, then update UB. In the B&B

execution, nodes are pruned using costcur as a maximum cost, i.e., if a node is such

that its lower bound is greater than costcur, then the node is pruned from the search.

3. If no solution with cost equal to costcur was found, then update costcur withmax{costcur+
1, costnew}, where costnew is the minimum among all lower bounds found in the

pruned nodes of the current B&B exploration.

4. If costcur ≥ UB, then stop the search since an optimal solution with value UB was

found; otherwise, go to 2.

The iterative deepening A* algorithm is shown in Algorithm 1.
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Algorithm 1 Pseudocode for the iterative deepening A* algorithm, which receives an
initial stacking area state S.
1: function IDA*(S)
2: costcur ← Lower Bound for S
3: UB ← Cost of an initial heuristic solution for S
4: while costcur < UB do
5: costnew,UBnew ← B&B(S, costcur, 0)
6: costcur ← max{costcur + 1, costnew}
7: UB← min{UB,UBnew}
8: return UB

The branch and bound algorithm uses a depth-search strategy. The algorithm is shown

in Algorithm 2 and in the three following sections we explain branching, pruning, and how

to generate an initial solution for it. Chapter 4 shows the lower bounds.

We use the notation Bx,y to represent a block that is in stack sx at height y. Recall

that t is the target block of the stacking area and tx is the target block of stack sx.

3.1.1 Branching Strategy at the B&B algorithm

Consider a node of the search that represents a state S after k relocations have been done

along the current path of the B&B algorithm. The next nodes that are children of S are

generated according to the following criteria:

1. If the block with the highest priority t is at the top of some stack, then the next

node is generated with t being retrieved (line 7).

2. Otherwise, we have to relocate the blocking block Bx,h from the top of the target

stack sx, which has height h, to another stack sx′ . For each each stack sx′ such that

height(sx′) < H and sx′ 6= sx, we create a new node where Bx,h is relocated to sx′ .

We explore the new nodes in the following order. First, we explore nodes representing

states where Bx,h was relocated to a stack sx′ such that block Bx,h did not become a

blocking block at sx′ (lines 17-22). Then we explore nodes representing states such that

Bx,h was relocated to sx′ , but it became a blocking block at sx′ (lines 23-28).

3.1.2 Pruning at the B&B algorithm

Let S be a state after k relocations have been done during the B&B search. We stop the

search in the subspace of S if a lower bound for the number of relocations at state S plus

k is greater than costcur. This node can be safely pruned since no solution with costcur
will be found from state S (line 14).

3.1.3 Initial solution

Tanaka and Takii [17] proposed a heuristic to generate a valid solution to the BRP, which

is the one we use to generate an initial solution.



23

Algorithm 2 Pseudocode for the branch and bound algorithm. It receives a stacking
area state S, the target cost costcur of the solution to be found, and the number reloc of
relocations already performed. It returns the minimum of all lower bounds found, and
the best upper bound found.

1: function B&B(S, costcur, reloc)
2: costnew ←∞
3: UBnew ←∞
4: if S is empty then
5: UBnew ← reloc
6: return costnew,UBnew

7: if t is at the top of a stack then
8: Retrieve t from S
9: return B&B(S, costcur, reloc)

10: Let sx be the stack of the block t
11: Let y be the height of the block t
12: h← height(sx)
13: LB ← Lower bound for S + reloc
14: if LB > costcur then
15: costnew ← LB
16: return costnew,UBnew

17: for x′ ∈ {1, . . . , S} and sx′ 6= sx do
18: if height(sx′) < H and Bx,h < tx′ then
19: S ′ ← New state by relocating block Bx,h to stack sx′

20: costx′ ,UBx′ ← B&B(S ′, costcur, reloc + 1)
21: costnew ← min{costnew, costx′}
22: UBnew ← min{UBnew,UBx′}
23: for x′ ∈ {1, . . . , S} and sx′ 6= sx do
24: if height(sx′) < H and Bx,h > tx′ then
25: S ′ ← New state by relocating block Bx,h to stack sx′

26: costx′ ,UBx′ ← B&B(S ′, costcur, reloc + 1)
27: costnew ← min{costnew, costx′}
28: UBnew ← min{UBnew,UBx′}
29: return costnew,UBnew
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Let Bx,y = t and Bx,h be the block to be relocated, where h = height(sx). There are

two possibilities. If Bx,h can be relocated to a stack without generating a blocking block,

then we relocate it to one such stack sx′ that has a target block tx′ of highest priority. If

Bx,h always becomes a blocking block after relocation, then let stacks sx1 and sx2 be stacks

such that sx1 6= sx, sx2 6= sx, height(sx1) < H, height(sx2) < H, and whose target blocks

have the lowest and second lowest retrieval priorities, respectively. If height(sx1) = H−1

and sx2 exists, then stack sx2 is selected as the destination stack; otherwise, stack sx1 is

selected.

We create an initial solution where relocations are done following these rules until the

target block can be retrieved. The process then continues to the next target block until

all blocks are retrieved.
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Chapter 4

Lower Bounds

In this chapter, we present lower bounds that we use in the experiments with the branch

and bound algorithm. First, we present some lower bounds from the literature [11, 19, 17]

in Sections 4.1 to 4.3. In Section 4.4 we show a new combinatorial lower bound that we

proposed and then in Section 5.3 we present another new lower bound based on the use

of pattern databases. We emphasize that the new lower bounds we present in this thesis

work for the restricted variation of the BRP where blocks have unique priorities.

4.1 LB1

This lower bound was presented by Kim and Hong [11] and it was named Lower Bound 1

(LB1) throughout the literature. The main observation used in this lower bound comes

from the concept of blocking blocks. Given a current state of the stacking area, LB1 is

de�ned as the number of blocking blocks in all the stacks of the stacking area. Remember

that b is a blocking block if there is another block a < b in the same stack of b and

positioned below it. This is a valid lower bound because at least such blocks must be

relocated to clear the stacking area.

4.2 LB2 and LB3

Lower Bound 2 (LB2) was proposed by Zhu et al. [19]. For a given state of the stacking

area, LB2 is de�ned as the number of blocking blocks in the stacking area (LB1) plus

the number of blocking blocks above the target block t that even after relocation are still

blocking blocks.

More formally, suppose that the target block t is Bx,y (it is in stack sx at height y). This

means that we have to relocate the blocks Bx,y+1,Bx,y+2, . . . ,Bx,h, where h = height(sx).

We thus check if each one of these blocks keeps the status of being a blocking block

even after we relocate them, regardless of which stack it is relocated to. A block Bx,y′ , for

y′ ∈ [y+1, h], will be a blocking block after relocation if Bx,y′ > tx′ for all x′ ∈ {1, 2, . . . , S}
such that sx′ 6= sx.

Lower Bound 3 (LB3) was also proposed by Zhu et al. [19] as an improvement over

LB2. It is computed in an iterative process as follows. First, we compute the number
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of blocking blocks above t in the target stack and add to this value the amount of these

blocking blocks that remain being a blocking block even after relocating them, in a process

similar to LB2. Then, we remove these blocks and the target block, so that a new target

block is identi�ed in this new con�guration. Then the calculation is repeated for the

blocks above the new target block. This process is repeated until all blocks are removed.

The value of LB3 is obtained by adding all these values.

In the computational experiments, the use of LB3 in the exact algorithm resulted in

more optimal solutions being found than when using LB1 and LB2. The algorithm to

compute LB3 has time complexity O(SN), where S is the number of stacks and N is the

number of blocks in the instance.

4.3 LB4

Using the same previous notation, suppose that the target block t is Bx,y. We have to

relocate blocks Bx,y+1,Bx,y+2, . . . ,Bx,h, where h = height(sx). After relocating a block

Bx,y′ where y
′ ∈ [y + 1, h] to some stack sx′ , there are two possibilities: (1) Bx,y′ becomes

a blocking block in sx′ or (2) it does not become a blocking block in sx′ , which means that

Bx,y′ becomes the new target block of stack sx′ . In this last case, it may happen that one

of the other blocks to be relocated, Bx,y+1,Bx,y+2, . . . ,Bx,y′−1, becomes a blocking block

if relocated to sx′ , blocking the new target block of this stack, which is Bx,y′ . Tanaka and

Takki [17] used this observation to create a new lower bound, which they denote by LB4.

We give a brief overview of how LB4 is computed. First, the height limit H is relaxed

for the stacks sx′ where height(sx′) < H. These stacks are the ones for which blocks above

t can be relocated to. We denote these stacks by su1 , su2 , . . . , suk
where height(sui

) < H

and sx 6= sui
for 1 ≤ i ≤ k. Now the algorithm performs an enumeration process relocating

each blocking block above t in the following order, �rst Bx,h, then Bx,h−1 and so on. We

want to �nd the number of these blocks that remain being a blocking block even after

relocating them. In the enumeration process, the current block is relocated either to a

stack where it becomes a blocking block, or to a stack where it becomes a new target block,

creating two possible branches in the enumeration tree. In the �rst case, the current block

can be relocated to any stack where it becomes a blocking block, since the target block of

that stack does not change. In the second case Tanaka and Takki [17] show that we can

only consider the case where the current block is relocated to the stack with minimum

target block value.

Let b be the number of blocking blocks above the target stack t = Bx,y, i.e., b = h− y.
After enumerating all O(2b) possibilities of relocations of the blocking blocks above t, we

consider the relocation of blocks Bx,y+1,Bx,y+2, . . . ,Bx,h that resulted in the least number

of blocking blocks. We add to LB4 this value and b, and as in LB3, remove the current

target block and all blocks above it, and repeat the process to the next target block. We

repeat this process until all blocks are removed.

The algorithm to compute LB4 has time complexity O(S logS + 2b logS), where S is

the number of stacks and b is the number of blocks above the current target block.
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4.4 LB-LIS

In this section, we present a new lower bound, which we call LB-LIS. Given a state of the

problem (stacking area), let Bx,y be the target block t. In this iteration we have to relocate

the blocks Bx,y+1,Bx,y+2, . . . ,Bx,h, where h = height(sx). Let t1, . . . , tx−1, tx+1, . . . , tS be

the target blocks of each remaining stack.

We create an auxiliary binary matrix M , where Bx,y+1,Bx,y+2, . . . ,Bx,h are the labels

of the rows (�rst column of color yellow in Figure 4.1) and t1, . . . , tx−1, tx+1, . . . , tS are the

labels of the columns (bottom row of color red in Figure 4.1). We �ll this matrix in the

following manner: for each y′ ∈ [y+ 1, h], and x′ ∈ [1, S] \ {x}, if Bx,y′ is greater than tx′ ,

or if height(sx′) = H, then M [Bx,y′ , tx′ ] = 1; otherwise M [Bx,y′ , tx′ ] = 0. The idea of such

matrix is to show in which stack other than sx, Bx,y′ is also a blocking block if relocated

to it. In Figure 4.1, columns labels go from left to right and rows labels go from bottom

to top.

Figure 4.1: Example of auxiliary matrix created to calculate LB-LIS. In this example,
assume t = 1 and it is block B4,1 and that B4,2 = 12, B4,3 = 11, B4,4 = 10, B4,5 = 3,
B4,6 = 7, B4,7 = 2 (yellow column). Also assume that t1 = 13, t2 = 9, t3 = 8, t5 = 6,
and t6 = 5 (red row). The numbers inside the circles are the size of the longest increasing
subsequence for each B4,y′ , for y

′ ≥ 2.

For each Bx,y′ where y < y′ ≤ h, we create a sequence Seq(Bx,y′) = (Bx,y′ ,Bx,y′−1, . . . ,Bx,y+1),

where y is the height of the target block. Then, we calculate the size of the Longest In-

creasing Subsequence (LIS), not necessarily consecutive, taking Seq(Bx,y′) as input.

In Figure 4.1, if Bx,y′ = 2, then Seq(Bx,y′) = (2, 7, 3, 10, 11, 12) and thus LIS(Seq(Bx,y′)) =

5. If Bx,y′ = 7, then Seq(Bx,y′) = (7, 3, 10, 11, 12) and LIS(Seq(Bx,y′)) = 4. If Bx,y′ = 3,

then LIS(Seq(Bx,y′)) = 4, and so on. The numbers inside the circles in Figure 4.1 show

the size of the LIS for each Bx,y′ .

Notice that, for each Bx,y′ , we know in how many stacks it does not become a blocking

block after relocating it: it is the number of zeros in its corresponding row, denoted by

zeros(y′). If we consider only the blocks that belong to the LIS of Seq(Bx,y′), no matter

how the relocations of those blocks are performed, it will generate at least reloc(x, y′) =

max{0,LIS(Seq(Bx,y′)) − zeros(y′)} blocking blocks. Let reloc(t)max be the maximum
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value among all values of reloc(x, y′) for y′ ∈ [y + 1, h]. A valid lower bound is thus

created taking this maximum value plus the number of blocking blocks above t in the

target stack. We then remove t and all blocking blocks that are above t from the stacking

area and repeat this process considering the new target block (similarly to what is done

in LB3). The value of LB-LIS is obtained summing all these partial values.

The algorithm to compute LB-LIS has time complexity O(Sb + S2), where S is the

number of stacks and b is the number of blocks above the current target block.

Consider another example presented in Figure 4.2a. The target block is B4,2 (blue

block), and the two blocks above it, B4,3 and B4,4, are blocking blocks. So, we create matrix

M (to the left of Figure 4.2a), with B4,3 and B4,4 as rows (in yellow), and in the bottom

of the columns (in red) we have the target blocks of each one of the other stacks. We �ll

the matrix according to the rule explained before. In this case, reloc(4, 3) = 1 − 1 = 0

and reloc(4, 4) = 2− 1 = 1. So, for now LB-LIS has value 1 + 2, which is the maximum

reloc value plus the number of blocking blocks above the target block.

In the next iteration, after removing the target block and blocking blocks above it, we

have the state presented in Figure 4.2b. All blocks B3,2, . . . ,B3,6 are blocking blocks. Using

these blocks as rows and the remaining target blocks as columns, we construct matrix M

(to the left in Figure 4.2b). We have reloc(3, 6) = 3 − 2 = 1, reloc(3, 5) = 2 − 1 = 1,

reloc(3, 4) = 2 − 2 = 0, reloc(3, 3) = 1 − 0 = 1, and reloc(3, 2) = 1 − 1 = 0. So, LB-LIS

is incremented by 1+ 5, being now equal to 9. Proceeding in this manner, the �nal value

of LB-LIS is 22, while LB1 (grey blocks) is 17, LB3 is 18, and LB4 is also 22.

Now we prove the correctness of this lower bound.

Theorem 4.4.1 LB-LIS is a valid lower bound for the BRP.

Proof. Let I be an instance of the BRP problem, and for each block bi of this instance,

let r(bi) be the number of relocations bi requires in an optimal solution OPT. The cost

of OPT is thus
∑N

i=1 r(bi). To show that LB-LIS is a valid lower bound, we are going to

show that we can split the value of LB-LIS among all blocks, namely we will �nd lis(bi)

for each i = 1, . . . , N , such that
∑N

i=1 lis(bi) ≤
∑N

i=1 r(bi).

The value of LB-LIS is the sum of partial values of the lower bound computed in

a series of iterations, where on each iteration we have a stacking area state S, and its

corresponding target block t = Bx,y. Let h be the height of the stack containing t. We

compute the number of relocations for blocks above t as described previously, i.e., the

maximum value of reloc(x, y′) for y < y′ ≤ h plus the number of blocking blocks above t.

After that, we remove t and all blocking blocks above it and proceed to the next iteration

with a new state and target block. Let R be the partial value computed in one iteration

of the computation of LB-LIS, and let Bx,y+1, . . . ,Bx,h, be the blocking blocks of this

iteration. For each block Bx,y′ , for y < y′ ≤ h, we assign lis(Bx,y′) = R/(h − y), i.e.,

we split the value of R equally among all blocks involved in this iteration. First notice

that each block bi of the instance is assigned a value lis(bi) only once, since after being

considered in some iteration it is removed from the instance. So we only need to show

that R ≤
∑h

y′=y+1 r(Bx,y′).

In any iteration, the target block and its corresponding blocking blocks are in the same

relative con�guration as in the initial state. The only di�erence is that some other blocks
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(a) Instance of the BRP and how to calculate the LB-LIS for the

target block 1 (blue color).

(b) Same instance after retrieving block 1 and removing all blocks

above it. Now we can calculate LB-LIS for the target block 2 (blue

color).

Figure 4.2: Example of how to compute LB-LIS.

may have been removed in previous iterations. Let r′(bi) be the number of relocations

su�ered by a block bi in an optimal solution considering the state of the current iteration

as the initial state. One can easily see that

h∑
y′=y+1

r′(Bx,y′) ≤
h∑

y′=y+1

r(Bx,y′).

Since to retrieve the current target block t, reloc(t)max accounts for the number of blocking

blocks that will still be blocking blocks after relocation in the current stacking area state,

we have that

R = reloc(t)max +#(blocking blocks above t) ≤
h∑

y′=y+1

r′(Bx,y′)

and the result follows. ut
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Chapter 5

Pattern Databases

A Pattern DataBase (PDB) [6] basically consists of precomputed optimal solutions for

small instances of the problem that are stored in a hash table. This way, when exploring

some node during the search for an optimal solution, if this node corresponds to a solution

stored in the PDB, we can stop the exploration and obtain its optimal solution from the

PDB. In order to increase the usefulness of the PDB, generally one represents solutions

in an abstract manner, such that several nodes are represented by a same solution in

the PDB. We notice that the use of PDB and abstract states as a caching strategy of

precomputed solutions was used before for the BRP problem by Ku and Arthanari [14].

Our contributions in this chapter are showing how to use PDBs to create a new lower

bound for the BRP, the presentation of an algorithm to generate the PDB together with

a prove of its correctness, and some ideas on how to save memory space using the PDB.

In the following sections, we describe some de�nitions necessary to understand how to

generate and use the PDB for the BRP.

5.1 Abstract state of the BRP

We start by describing how to represent a state of a stacking area in an abstract manner,

such that several stacking areas correspond to a same abstract state. The abstract state

we use is essentially the same one used by Ku and Arthanari [14].

We present a function abState(I, B) that takes as input an instance I of the BRP with

N blocks and a subset B of the blocks (B ⊆ {b1, b2, . . . , bN}). The function generates a

new instance I ′ containing only the blocks in B and preserving their relative positions.

The blocks in N \B are removed and the blocks in B are relabeled from 1 to |B|, keeping
the priority order. Therefore, this function creates a new smaller instance that is based

on the original instance I. See Figure 5.1 for an example.

Another important observation is that in the BRP all relocations cost 1 no matter

what is the distance between stacks. Therefore, the order of the stacks are not relevant,

and many states of the stacking area are equivalent if we always sort the stacks by the

following general criterion: �rst place the empty stacks to the right and then rearrange

the remaining stacks in ascending order by the value of the target block in each stack.

An abstract state for an instance I of the BRP, denoted by abs(I), consists of the same
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Figure 5.1: Let I (left) be an instance of the BRP, and consider the set B =
{11, 12, 13, 14, 15, 16, 17}. The instance generated by abState(I, B) is shown to the right
where blocks 11, 12, . . . , 17 are re-labeled respectively to 1, 2, . . . , 7.

instance I but with the stacking area organized in the order described above.

We assume that abState(I, B) always generate an abstract state of the resulting in-

stance, i.e., it is equivalent to abs(abState(I, B)). So in the example of Figure 5.1, the

stack 2, containing block 6, would become the rightmost stack. The pattern database for

the BRP consists of optimal solutions for all abstract states representing instances with

at most |B| blocks.

5.2 Building the Pattern Database

In general, a PDB is built by running a breadth-�rst search backwards from the goal state

(the empty stacking area) until all states in the abstract state space are reached. In our

case, we want to generate all optimal solutions for instances with up to N ′ blocks, for

given values S (number of stacks) and H (maximum stack height) for the stacking area.

We use the following steps to build the PDB for the BRP. Let I be an instance where

the stacking area is empty and the arti�cial stack (s0) has N
′ ordered blocks on it (block

i above i − 1, for i ∈ {2, 3, · · · , N ′}). The main steps of the algorithm that creates the

PDB are:

1. Insert (I, 0) into a queue.

2. Remove instance (I ′, k) from the queue.

3. If abs(I ′) was not visited:

• Generate at most S new instances I ′x where the top element from the arti�-

cial stack s0 is relocated to each stack sx inside the stacking area such that

height(sx) < H. Insert the abstract state of these new instances into the queue

with cost k, i.e., insert (abs(I ′x), k) into the queue.

• Generate S − 1 new instances I ′x where we relocate a top block of some stack

sx (except the stack of the target block) to the stack of the target block of I ′.

Insert the abstract state of these new instances into the queue but with cost

k + 1, i.e., insert (abs(I ′x), k + 1) into the queue.

4. Mark abs(I ′) as visited and set its cost as k.
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5. If the queue is empty, then �nish the algorithm; otherwise, go to step 2.

A detailed pseudocode of the algorithm used to create the PDB is presented in Algo-

rithm 3.

Algorithm 3 Pseudocode of a Breath First Search algorithm used to generate the PDB
consisting of all abstract instances with N blocks and S stacks with maximum height H.

1: function BFS-PDB(N ′, S, H)
2: PDB← ∅
3: Let Q be an empty queue
4: Let I be the state representing an instance with empty stacks sI0, . . . , s

I
S

5: for i← 1 to N ′ do
6: Push block bi into s

I
0

7: Insert (I, 0) into Q
8: while Q is not empty do
9: (I ′, k)← dequeue(Q)

10: if I ′ is not in PDB then
11: if sI

′
0 is not empty at I ′ then

12: for x ∈ {1, . . . , S} such that height(sI
′

x ) < H do
13: Relocate the top block from sI

′
0 to sI

′
x

14: Insert a copy of (I ′, k) into Q
15: Relocate the top block from sI

′
x to sI

′
0

16: Let sI
′

x∗ be the target stack of the stacking area I ′

17: for x ∈ {1, . . . , S} such that sI
′

x 6= sI
′

x∗ do
18: if height(sI

′
x ) > 0 and height(sI

′
x∗) < H then

19: Relocate the top block from sI
′

x to sI
′

x∗
20: Insert copy of (I ′, k + 1) into Q
21: Relocate the top block from sI

′
x∗ to s

I′
x

22: Insert I ′ into the PDB with value k
23: return PDB

Now we prove the correctness of the algorithm. First notice that the algorithm gener-

ates all possible states of N ′ blocks in a stacking area of sizes S and H.

Theorem 5.2.1 For any given stacking area state I ′ with N ′ blocks and stacking area

sizes S and H, abs(I ′) is generated by the algorithm.

Proof. Let (m1,m2, . . . ,mf ) be an optimal sequence of movements (relocations or re-

trievals) that clears the state I ′. Consider an initial state where all blocks are stacked

in the arti�cial stack s0 in increasing order from bottom to top. The inverse sequence of

these movements (m−1f ,m−1f−1, . . . ,m
−1
1 ) applied to this initial state consists only of inser-

tions from s0 to a stack sx or relocations of a block from one stack to the current target

stack. For simplicity, rename the movements (m−1f ,m−1f−1, . . . ,m
−1
1 ) to (m′1,m

′
2, . . . ,m

′
f ),

i.e., m−1i = m′f−i+1 for i = f, . . . , 1. We can prove by induction on f that the algorithm

will generate the state abs(I ′f ) representing the application of movements (m′1,m
′
2, . . . ,m

′
f )

applied to an initial state with blocks stacked in ascending order at the arti�cial stack
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s0. For f = 1, since the algorithm generates all states with the top element in s0,

block bN ′ , relocated to each stack sx, one of these states corresponds to abs(I ′1). Now

assume that the algorithm generated a state corresponding to abs(I ′f−1), where move-

ments (m′1,m
′
2, . . . ,m

′
f−1) were applied. This state is saved in the queue and when it is

evaluated, the algorithm will perform all types of movements possible, either relocating a

stacked block to the top of the target stack, or relocating a block from s0 to each possible

stack sx. One of these movements corresponds to m′f , so abs(I ′) is generated. ut

Since the algorithm generates all possible stacking area states, we just need to prove

that when it marks a state I ′ as visited, then the cost k is the value of an optimal solution

for this instance.

Theorem 5.2.2 Let I ′ be a state with N ′ blocks and stacking area sizes S and H. If the

algorithm marks abs(I ′) as visited with cost k, then k is the optimal number of relocations

to clear state I ′.

Proof. Notice that the algorithm inserts the blocks in the stacking area in inverse order,

from block bN ′ to b1. Let ` be the number of blocks inserted so far in the stacking area in

a given iteration of the algorithm. We prove by induction on ` that all states containing

the �rst ` blocks in the stacking area, i.e., blocks bN ′ , bN ′−1, . . ., bN ′−`+1, are visited in

ascending order by their cost, so that the �rst time the algorithm visits a state I ′ it has

the smallest possible cost.

For the base case consider ` = 1. The algorithm generates states containing just bN ′

with cost 0, which is the minimum possible.

Now consider a state I∗ with ` = N ′ blocks in the stacking area. For this state

I∗, consider an optimal sequence of movements (m1,m2, . . . ,mf ) that clears I
∗, and let

(m′1,m
′
2, . . . ,m

′
f ) be the inverse of this optimal sequence. Let (m′1,m

′
2, . . . ,m

′
j) be the

movements of this inverse sequence with movements just before block b1 is inserted in

the stacking area, i.e., m′j+1 is a relocation of b1 from stack s0 to some stack sx, and

movements m′j+2, . . . ,m
′
f are relocations of blocks from the stacking area to the target

stack sx.

Assume for the purpose of induction that the state I1, corresponding to the application

of (m′1,m
′
2, . . . ,m

′
j), has optimal cost and is inserted in the queue before other states con-

taining blocks bN ′ , . . . , b2 and higher cost. The state I2 corresponding to the application

of (m′1,m
′
2, . . . ,m

′
j,m

′
j+1) has the same cost of I1, since it derives from I1 and a relocation

from s0 to sx does not change the cost of this new state. When state I2 is evaluated by

the algorithm it generates all new states corresponding to relocations of blocks from other

stacks to the target stack sx, and one of these corresponds to (m′1,m
′
2, . . . ,m

′
j+2) which

is inserted in the queue with the cost increased by one. It is not hard to see that the

algorithm will generate state I∗ after I2 applying relocations m′j+2, . . . ,m
′
f and this state

will have optimal cost, since I2 has optimal cost and the inverse of m′j+2, . . . ,m
′
f corre-

sponds to relocations of the optimal solution to clear I∗. So every state I∗ with N ′ blocks

is visited in increasing order of cost, so that the �rst time I∗ is visited it has optimal cost.

ut
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Depending on the values of N ′, S, and H, the previous algorithm generates a database

with very large size. To reduce the database size we performed some improvements over it.

Our �rst enhancement was to take advantage of the abstract states of the BRP domain,

that is, we sorted the stacks in order to keep only one representative for each set of similar

stacking areas. Our second enhancement was to compactly represent a state with only two

numbers of 64 bits. The �rst number represents the heights of the N ′ blocks b1, b2, . . . , b
′
N

in the stacking area: the ith digit (from left to right) of this number represents the height

of the block bi minus 1. For example, if the blocks are b1, b2, . . . , b10 and their heights

are 1, 2, 3, 1, 1, 1, 2, 3, 4, 2 respectively, then the �rst number is 0120001231 (we discard

leading zeros, therefore this number is only 120001231). The second number represents

the stack in which each block is stacked and it is kept in a similar manner as the number

representing heights. Our third enhancement was to delete from the database all states

for which the total number of relocations is 0. Our fourth and last enhancement was to

delete instances of the PDB in the following way. For two instances, A and B, if after

consecutive retrievals on A we arrive at B, then we delete A from the PDB because the

two instances are equivalent in cost. So before consulting an instance in the PDB, we �rst

retrieve all possible blocks from it that can be retrieved without relocations. In Table 5.1

we present the sizes of the generated PDB with N ′ = 10 blocks, for given values of S and

H, after each enhancement.

5.3 Using the PDB to compute a lower bound

In this section we show how to use the PDB to �nd a new lower bound to the BRP. We

denote this new lower bound by LB-PDB. Let I be an instance with N blocks and S

stacks with height limit H. Let g1, g2, . . . , gdN/N ′e be a partition of the N blocks in groups

of N ′ blocks in order, where for each j = 1, . . . , dN/N ′e, gj = {b(j−1)N ′+1, . . . , bjN ′}. Let
Gj be the union of the �rst j parts, i.e., Gj = g1 ∪ . . . ∪ gj and let Ij = abState(I,Gj).

We de�ne OPT(I) as the minimum number of relocations needed to retrieve all blocks

of any given instance I and REL(I) as an optimal sequence of relocations and retrievals

for I. We denote by PDB a function that consults the pattern database and returns the

number of relocations to solve some instance I, if abs(I) is present in the database. Note

that PDB(abState(I, gj)) = OPT(abState(I, gj)).

Recall LB2, the lower bound proposed by Zhu et al. [19] and explained in Chapter 4.

We have LB2(b) = 0 if b is not a blocking block, LB2(b) = 1 if b is a blocking block but

it is not a blocking block after relocation, and LB2(b) = 2 otherwise. We de�ne

LB2(gj) =
∑
b∈gj

LB2(b).

At last for each j = 1, . . . , dN/N ′e de�ne

LB-PDB(Ij) =

j∑
i=1

max{LB2(gi),PDB(abState(I, gi))},
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Table 5.1: Enhancement of the PDB for instances with 10 blocks.

S H First Second Third Fourth

6 3 182 MB 92 MB 77 MB 41 MB
6 4 698 MB 353 MB 296 MB 177 MB
6 5 1400 MB 683 MB 573 MB 365 MB
6 6 1900 MB 954 MB 800 MB 526 MB
6 7 2300 MB 1200 MB 961 MB 645 MB
7 3 184 MB 93 MB 77 MB 42 MB
7 4 701 MB 355 MB 296 MB 177 MB
7 5 1400 MB 685 MB 573 MB 365 MB
7 6 1900 MB 955 MB 800 MB 527 MB
7 7 2300 MB 1200 MB 961 MB 646 MB
8 3 185 MB 93 MB 77 MB 42 MB
8 4 701 MB 355 MB 296 MB 177 MB
8 5 1400 MB 685 MB 573 MB 365 MB
8 6 1900 MB 955 MB 800 MB 527 MB
8 7 2300 MB 1200 MB 961 MB 646 MB
9 3 185 MB 93 MB 77 MB 42 MB
9 4 701 MB 355 MB 296 MB 177 MB
9 5 1400 MB 685 MB 573 MB 365 MB
9 6 1900 MB 955 MB 800 MB 527 MB
9 7 2300 MB 1200 MB 961 MB 646 MB
10 3 185 MB 93 MB 77 MB 42 MB
10 4 701 MB 355 MB 296 MB 177 MB
10 5 1400 MB 685 MB 573 MB 365 MB
10 6 1900 MB 955 MB 800 MB 527 MB
10 7 2300 MB 1200 MB 961 MB 646 MB
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and

LB-PDB(I) = LB-PDB(IdN/N ′e).

We show that this is a valid lower bound for OPT(I) in Theorem 5.3.1. First, we need

some intermediary results. We can write OPT(Ij), the optimal solution value to retrieve

blocks of the �rst j parts Gj = g1 ∪ . . . ∪ gj, as

OPT(Ij) = |R0(Gj−1)|+ |R1(gj)|+ |R2(gj)|,

where R0(Gj−1) ⊆ REL(Ij) is the sequence of relocations that are performed over blocks

in Gj−1 to retrieve all blocks in Gj−1, R1(gj) ⊆ REL(Ij) is the sequence of relocations that

are performed over blocks in gj when retrieving all blocks in Gj−1, and R2(gj) ⊆ REL(Ij)

is the sequence of relocations that are performed over blocks in gj to retrieve these blocks

of gj, after the blocks in Gj−1 were retrieved.

The following three claims are direct results from the de�nitions above.

Claim 1 The sequence of relocations R0(Gj−1) is a solution for Ij−1, so

OPT(Ij−1) ≤ |R0(Gj−1)|.

Claim 2 The sequence of relocations R1(gj) and R2(gj) together are a solution for abState(I, gj),

so

PDB(abState(I, gj)) ≤ |R1(gj)|+ |R2(gj)|.

Claim 3 The sequence of relocations R1(gj) and R2(gj) are applied to the whole instance

Gj to remove items in Gj−1 and gj, so

LB2(gj) ≤ |R1(gj)|+ |R2(gj)|.

Theorem 5.3.1 For any j such that 1 ≤ j ≤ dN/N ′e we have LB-PDB(Ij) ≤ OPT(Ij).

Proof. The proof is by induction on j. In the base case consider j = 1. Since G1 = g1,

and this set contains the smallest blocks, they can only block each other, so by de�nition

we must have LB2(g1) ≤ OPT(I1). Since the PDB saves optimal solutions to abstract

states we have PDB(abState(I, g1)) = OPT(I1). So we conclude that

LB-PDB(I1) = max{LB2(g1),PDB(abState(I, g1))} ≤ OPT(I1).

Now consider j ≥ 2. We have

LB-PDB(Ij) = LB-PDB(Ij−1) + max{LB2(gj),PDB(abState(I, gj))}
≤ OPT(Ij−1) + max{LB2(gj),PDB(abState(I, gj))}
≤ OPT(Ij−1) + |R1(gj)|+ |R2(gj)|
≤ |R0(Gj−1)|+ |R1(gj)|+ |R2(gj)|
= OPT(Ij) ,
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where the �rst inequality follows from the inductive hypothesis, the second one from

Claims 2 and 3, and the third inequality follows from Claim 1. ut

5.4 Improving the Exact Algorithm

In this section we show how to use the PDB and abstractions states to speed up the B&B

algorithm. We avoid the exploration of state nodes whose solutions are precomputed

in the PDB and we use a hash table to save solutions of abstract states corresponding

to nodes that were completely explored during the B&B search. These ideas were used

before by Ku and Arthanari [14].

The observation that stacks can be rearranged and represent a same state suggests

that in the B&B algorithm we may visit equivalent states many times. Therefore, we can

avoid the exploration of parts of the search space if we keep track of equivalent states.

Algorithm 4 shows the pseudocode for the improvement that is described next. Every

time we completely explore a subtree of the search space, with a root representing a state

with k′ relocations done previously, we can save the abstract state of this root node and

the optimal solution for it (lines 31 to 33). During the exploration of another part of

the search space, if we explore another node representing the same abstract state, we can

stop the exploration of this subtree (lines 7 and 8), since we already know its optimal

value. In this approach, we save all abstract states where at most k′ relocations were

done previously in a hash table.

Another improvement is to use the PDB, where we precompute optimal solutions with

up to N ′ blocks. When exploring a new node in the B&B, where it represents a state

with N ′ blocks, we check if the abstract state of this node was already saved in the PDB

(lines 4 to 6) and use its precomputed optimal solution.
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Algorithm 4 Pseudocode for the branch and bound algorithm using the information
of the PDB and abstraction states. It receives a stacking area state S, the target cost
costcur of the solution to be found, the number reloc of relocations already performed,
and constants k′ and N ′. It returns the minimum of all lower bounds found, and the best
upper bound found.

1: function B&B(S, costcur, reloc, k′, N ′)
2: costnew ←∞
3: UBnew ←∞
4: if S has N ′ blocks then
5: UBnew ← reloc + PDB(abs(S))
6: return costnew,UBnew

7: if reloc ≤ k′ and abs(S) ∈ hashTable then
8: return hashTable(abs(S))
9: if t is at the top of a stack then

10: Retrieve t from S
11: return B&B(S, costcur, reloc, k

′, N ′)

12: Let sx be the stack of block t
13: Let y be the height of block t
14: h← height(sx)
15: LB← Lower bound for S + reloc
16: if LB > costcur then
17: costnew ← LB
18: return costnew,UBnew

19: for x′ ∈ {1, . . . , S} and sx′ 6= sx do
20: if height(sx′) < H and Bx,h < tx′ then
21: S ′ ← New state by relocating block Bx,h to stack sx′

22: costx′ ,UBx′ ← B&B(S ′, costcur, reloc + 1, k′, N ′)
23: costnew ← min{costnew, costx′}
24: UBnew ← min{UBnew,UBx′}
25: for x′ ∈ {1, . . . , S} and sx′ 6= sx do
26: if height(sx′) < H and Bx,h > tx′ then
27: S ′ ← New state by relocating block Bx,h to stack sx′

28: costx′ ,UBx′ ← B&B(S ′, costcur, reloc + 1, k′, N ′)
29: costnew ← min{costnew, costx′}
30: UBnew ← min{UBnew,UBx′}
31: if reloc ≤ k′ and abs(S) /∈ hashTable then
32: hashTable(abs(S)) = costnew,UBnew

33: return costnew,UBnew
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Chapter 6

Computational Results

In this chapter we present the experimental analysis of the algorithms to the BRP. First

we show the set of instances used in the experiments (Section 6.1), then we present some

results regarding the construction of the PDB (Section 6.2), and then in Section 6.3 we

evaluate the algorithms using the di�erent lower bounds. In Section 6.4 we present the

results of the improved exact algorithm using the PDB to stop the exploration of the

search space earlier, as well as the use of a hash table to save solutions already computed

of abstract states until a pre-de�ned depth of the search tree.

6.1 Instance Set

For the computational experiments, we downloaded and used the dataset of instances

of Zhu et al. [19]. These are the instances used in other experiments such as the ones

performed by Tanaka and Takki [17]. According to Zhu et al. [19], the dataset is generated

in the following manner. For �xed values of N (number of blocks), S (number of stacks),

and H (height limit), it is generated a random permutation of the �rst N integers. The

blocks are inserted in stacks in the order given by this permutation. For each block in the

permutation, it is selected a random stack and the block is assigned to it if the stack has

fewer than H blocks. If the stack already has H blocks, then the instance is discarded and

the process is restarted. An instance is generated after each element of the permutation

is assigned to a stack.

The instances were generated with the following values: for S = 6 and each H ∈
{3, 4, 5, 6, 7} it was generated 300 instances, with a total of 1500 instances for S = 6;

for S = 7 and for each H ∈ {3, 4, 5, 6, 7} it was generated 400 instances, with a total of

2000 instances for S = 7; for S = 8 and for each H ∈ {3, 4, 5, 6, 7} it was generated 500

instances, with a total of 2500 instances; for S = 9 and for each H ∈ {3, 4, 5, 6, 7} it was
generated 600 instances, with a total of 3000 instances for S = 9; and for S = 10 and

for each H ∈ {3, 4, 5, 6, 7} it was generated 700 instances, with a total of 3500 instances

for S = 10. Therefore, a total of 12500 instances were generated. For each �xed pair of

S and H values, if it was generated X instances, then there are X/(H − 1) instances for

each value of N , where N is between H(S − 1) and HS − 1.

The algorithms were implemented in C++ programming language and we used a



40

computer with Intel Xeon E3-1230 CPU (3.30 GHz) and 32GB of memory to execute

Algorithm 1 over all instances, just varying the lower bound it uses. The source code of

the implementation is available at �URL� (available after publication).

6.2 Generating the PDB

In Table 6.1 we present information about the generation of the PDBs for di�erent values

of N ′, i.e., di�erent number of blocks in the abstract instance. We generated PDBs with

N ′ ∈ {5, 8, 10}. We tried to generate a PDB with N ′ = 11 but that resulted in the

process being killed by the operating system, since the system became out of memory.

For N ′ = 10 it took almost 7 hours to generate the PDB.

Our instance set contains instances with di�erent values of S and H, so we have

to generate PDBs for these di�erent combinations, with S ∈ {6, 7, 8, 9, 10} and H ∈
{3, 4, 5, 6, 7}. In Table 6.1 we show the number of unique abstract instances generated

and the time to generate them.

We can see that the number of unique instances, as well as the time to generate the

PDB, increases very fast with N ′. The time to generate a PDB for N ′ = 5 is less than one

second, increases to some seconds for N ′ = 8, and becomes several minutes for N ′ = 10,

being half an hour for several of the combinations of S and H.

Since the largest PDB that we could generate was with N ′ = 10, we used this one in

our experiments. Notice that the larger the value of N ′ in the PDB, the better the search

algorithm tends to be, since in the exploration of the search space, as soon as we have

an abstract state with N ′ blocks, we can stop the search in that subspace as its optimal

solution is saved in the PDB.

Later, in Section 6.4, for completeness we present results of the execution of the exact

algorithm with di�erent values of N ′, showing the impact it has on it.

6.3 Algorithm Evaluation with Di�erent Lower Bounds

In this section we present results of the exact algorithms using di�erent lower bounds.

In the �rst experiment, we used the exact algorithm given in Algorithm 1 to solve all

instances, where the only di�erence was which lower bound was used in the branch and

bound algorithm (Algorithm 2) in order to prune nodes. We compared the use of the lower

bound LB3 [19], LB4 [17], and our two new lower bounds named LB-LIS and LB-PDB.

For each one of the 12500 instances, we set a time limit of 5 minutes for executing the

algorithms.

In Figure 6.1 we show the results of this �rst experiment, where we present in the

y-axis the percentage of instances solved to optimality by each algorithm. Notice that

we split the instances into two categories: easy instances, with S ∈ {6, 7, 8, 9, 10} and
H ∈ {3, 4, 5}, and hard instances, with S ∈ {6, 7, 8, 9, 10} and H ∈ {6, 7}. This split was
done based on the fraction of solutions that could be solved within the time limit.
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Table 6.1: Time to generate the PDB for di�erent values of N ′. We also present the
number of unique instances in the PDB.

Unique instances Time (sec)
S H N ′ = 5 N ′ = 8 N ′ = 10 N ′ = 5 N ′ = 8 N ′ = 10
6 3 153 38058 2141418 0 1 105
6 4 243 109278 9246126 0 4 460
6 5 339 173694 19086798 0 8 970
6 6 339 220734 27569118 0 10 1428
6 7 339 255294 33812958 0 12 1796
7 3 153 38065 2158505 0 1 138
7 4 243 109285 9264725 0 5 460
7 5 339 173701 19105397 0 8 963
7 6 339 220741 27587717 0 10 1435
7 7 339 255301 33831557 0 12 1815
8 3 153 38065 2159161 0 1 138
8 4 243 109285 9265381 0 5 469
8 5 339 173701 19106053 0 8 938
8 6 339 220741 27588373 0 10 1464
8 7 339 255301 33832213 0 13 1846
9 3 153 38065 2159170 0 1 145
9 4 243 109285 9265390 0 5 494
9 5 339 173701 19106062 0 8 1032
9 6 339 220741 27588382 0 10 1533
9 7 339 255301 33832222 0 13 1928
10 3 153 38065 2159170 0 1 148
10 4 243 109285 9265390 0 5 501
10 5 339 173701 19106062 0 8 1044
10 6 339 220741 27588382 0 10 1549
10 7 339 255301 33832222 0 13 1940

We can see that the performance of the algorithm using LB3, LB4, LB-LIS, and LB-

PDB is similar for the easy instances, with around 95% of all easy instances being solved

to optimality. However, for the hard instances, the performance of the algorithm using

LB-LIS is superior than when using the other lower bounds.

In Table 6.2 we show more details about the comparison of using LB3, LB4, LB-

LIS, and LB-PDB in the exact algorithm. In this table, �AVG ALL� is the average

of the number of relocations of all 12500 instances, �Number OPT� is the number of

instances solved to optimality among all 12500 instances, �OPT EASY� is the percentage

of instances solved to optimality among the easy instances category, �OPT HARD� is the

percentage instances solved to optimality among the hard instances category, and �AVG

HARD� is the average of the number of relocations among all the hard instances category.

Note that the use of the lower bound LB-LIS resulted in solving 186 more instances to

optimality than LB3 and solving 942 more instances to optimality than LB-PDB.

It is interesting to note that LB4 from Tanaka and Takki [17] is considered the best

lower bound up to date, however in our experiments the results of the exact algorithm
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Figure 6.1: Results using LB3, LB4, LB-LIS, and LB-PDB.

measures LB3 LB4 LB-LIS LB-PDB
AVG ALL 30.848 31.02 30.627 31.148

Number OPT 9274 8551 9460 8518
%OPT EASY 94.283 91.83 94.116 92.483
%OPT HARD 55.646 46.78 58.661 45.676
AVG HARD 42.368 42.709 41.943 42.944

Table 6.2: Results of the exact algorithm using di�erent lower bounds: LB3, LB4, LB-
LIS, and LB-PDB. �AVG ALL� is the average number of relocations of the best solutions
found by each algorithm considering all instances. �Number OPT� is the number of
optimal solutions found. �%OPT EASY� (resp. �%OPT HARD�) is the percentage of
optimal solutions found for easy (resp. hard) instances. �AVG HARD� is the average
number of relocations considering hard instances.

using it only outperforms the results of LB-PDB. This can be explained by the fact that

although LB4 provides tighter lower bounds, it is expensive to compute, since it is an

exponential time algorithm, while the other lower bounds are polynomial time bounded.

To show this, we computed the values produced by each lower bound for each initial

con�guration of the 12500 instances in our instance set, as well as the times needed for

this computation. The results are presented in Table 6.3. In this table, for each lower

bound, we present: (1) the sum of the lower bounds (SUM LB) computed for all instances,

(2) the average value of the lower bound (AVG LB) considering all instances, (3) the sum

of the times (SUM time) in milliseconds to compute the lower bound for all instances,

and (4) the average time (AVG time) to calculate the lower bound. From this table we

can see that indeed LB4 generates tighter lower bounds with values being approximately

0.3% higher than the ones computed by LB-LIS, however it is much slower, taking ten

times more than LB-LIS.
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measures LB3 LB4 LB-LIS LB-PDB
SUM LB 323321 333273 332072 323321
AVG LB 25.865 26.661 26.565 25.865

SUM time (ms) 32.526 674.417 64.919 125.984
AVG time (ms) 0.002 0.054 0.005 0.010

Table 6.3: Times and values produced by each lower bound for each initial con�guration
of the 12500 instances in our instance set. We present the sum of the values (SUM) and
the average (AVG) among the 12500 instances.

6.4 Improving the Exact Algorithm Using the PDB

Given that the exact algorithm obtained the best result with LB-LIS, we developed two

other variations of the algorithm using the PDB and the concept of abstract states, as

explained in Section 5.4 and detailed in Algorithm 4.

The �rst variation, which we denote by LIS-PDB, uses the PDB to stop earlier the

evaluation of subspaces. During the exploration of the search space, if a node being

explored has N ′ blocks, then the optimal solution for it was already computed and is

saved in the PDB. So we can stop the search at every node S if it has N ′ blocks.

In the second variation, which we denote by LIS-PDB-L, we use the Algorithm 4. In

this case we use the PDB to evaluate nodes with N ′ blocks, as well as a hash table to

save optimal solutions of solved states in which at most k′ relocations were applied.

First we performed an experimental evaluation of the algorithms using di�erent values

of N ′ ∈ {5, 8, 10} and k′ ∈ {5, 8, 10, 12, 15}. For this experiment we used a subset of the

instance set, since running all variations in all algorithms would took a month to complete

the experiments. So, for each combination of S and H, we selected at random 20% of the

instances with these values, which means we have a dataset with 20% of all the 12500

instances of the original instance set. The results are presented in Tables 6.4 and 6.5. For

this experiments we also set a time limite of 5 minutes.

From Table 6.4, as expected, we see that the algorithm �nds more optimal solutions

as N ′ increases. In fact, the values of the best solutions found by all variations of the

algorithm are the same, as we can see by the same values of AVG ALL. However, as N ′

increases the algorithm can prove that the solution returned is optimal. That is the reason

why the number of optimal solutions increases as N ′ increases despite the fact that the

solutions values found by all algorithms are the same.

measures N ′ = 5 N ′ = 8 N ′ = 10
AVG ALL 30.700 30.700 30.700

Number OPT 1897 1914 1929
%OPT EASY 94.666 95.166 95.416
%OPT HARD 58.314 59.157 60.076
AVG HARD 42.080 42.080 42.080

Table 6.4: Comparing performances of LB-LIS-PDB with di�erent N ′.

From Table 6.5 we see that the algorithm �nds more optimal solutions as k′ increases.
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We tried to execute the algorithm with k′ = 20 but the process was killed during execution

by the operating system due to a out of memory error.

measures k′ = 5 k′ = 8 k′ = 10 k′ = 12 k′ = 15 k′ = 18
AVG ALL 30.783 30.777 30.771 30.762 30.760 30.741

Number OPT 1829 1835 1831 1840 1849 1869
%OPT EASY 94.083 94.166 94.166 94.333 94.58 95.08
%OPT HARD 53.639 54.022 53.716 54.252 54.712 55.780
AVG HARD 42.239 42.229 42.216 42.200 42.195 42.162

Table 6.5: Comparing performances of LB-LIS-PDB-L with di�erent k′.

Given the previous results we used k′ = 18 and N ′ = 10 in the experiments of the

improved exact algorithm. The results shown in Figure 6.2 are a comparison among LB-

LIS, and the two improved versions LIS-PDB, and LIS-PDB-L. We give more details of

this comparison in Table 6.6. Note that the algorithm using LIS-PDB solved 200 more

instances to optimality than when using LB-LIS, and the same algorithm solved 219 more

instances to optimality than LIS-PBD-L.

Figure 6.2: Results using LB-LIS, LIS-PDB, and LIS-PDB-L.

measures LIS LIS-PDB LIS-PDB-L
AVG ALL 30.627 30.627 30.642

Number OPT 9460 9660 9441
%OPT EASY 94.116 95.216 94.950
%OPT HARD 58.661 60.723 57.600
AVG HARD 41.942 41.942 41.972

Table 6.6: Comparing performances of LB-LIS, LIS-PDB, and LIS-PDB-L.

We thus conclude that LIS-PDB is the best of all the techniques proposed in this

thesis. We note that this algorithm solved approximately 5% more hard instance than

the exact algorithm using the previously best lower bound LB3 found in the literature.
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Chapter 7

Conclusions and Future Works

In this thesis we presented two new lower bounds for the BRP problem. One of them

is denoted by LB-LIS and uses the idea of longest increasing subsequences to calculate

the amount of blocking blocks that will keep the property of being blocking blocks even

after relocation. The other lower bound is denoted by LB-PDB, and takes the maximum

between LB2 (Zhu et al. [19]) and partial solutions saved in a pattern database in series

of steps to calculate a valid lower bound. We used an exact algorithm to solve a set

of 12500 instances, where for each instance it was set a time limit of 5 minutes for the

execution of the exact algorithm. First we run the exact algorithm just varying the lower

bound it uses during the search. The algorithm found more optimal instances when using

LB-LIS, compared to other lower bounds of the literature, such as LB3 [19] and LB4 [17].

As was done by Ku and Arthanari [14], we used the concepts of abstract states and

pattern databases as a way to save solutions during the exploration of the search tree.

We precomputed a PDB containing solutions for instances with N ′ = 10 blocks and used

a hash table to save completely explored nodes during the search with a depth of at most

k′ = 18. The use of the PDB improved the exact algorithm, as it was able to solve more

instances to optimality, however the use of the hash table did not improve the algorithm.

We believe the access cost of the hash table does not compensate its use.

Further work includes establishing if such lower bound, which is applied to the re-

stricted BRP (when the relocations can be performed only in the stack where the target

block is), can also be applied to the unrestricted BRP. Further work also might explore

the creation of new lower bounds using di�erent techniques than the ones showed here or

the improvement of our techniques.
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