35 research outputs found

    Contributions to modeling, structural analysis, and routing performance in dynamic networks

    Get PDF
    Cette thèse apporte des contributions à la modélisation, compréhension ainsi qu’à la communication efficace d’information dans les réseaux dynamiques peuplant la périphérie de l’Internet. Par réseaux dynamiques, nous signifions les réseaux pouvant être modélisés par des graphes dynamiques dans lesquels noeuds et liens évoluent temporellement. Dans la première partie de la thèse, nous proposons un nouveau modèle de mobilité - STEPS - qui permet de capturer un large spectre de comportement de mobilité humains. STEPS mets en oeuvre deux principes fondamentaux de la mobilité humaine : l’attachement préférentiel à une zone de prédilection et l’attraction vers une zone de prédilection. Nous proposons une modélisation markovienne de ce modèle de mobilité. Nous montrons que ce simple modèle paramétrique est capable de capturer les caractéristiques statistiques saillantes de la mobilité humaine comme la distribution des temps d’inter-contacts et de contacts. Dans la deuxième partie, en utilisant STEPS, nous analysons les propriétés comportementales et structurelles fondamentales des réseaux opportunistes. Nous redéfinissons dans le contexte des réseaux dynamiques la notion de structure petit monde et montrons comment une telle structure peut émerger. En particulier, nous montrons que les noeuds fortement dynamiques peuvent jouer le rôle de ponts entre les composants déconnectés, aident à réduire significativement la longueur du chemin caractéristique du réseau et contribuent à l’émergence du phénomène petit-monde dans les réseaux dynamiques. Nous proposons une façon de modéliser ce phénomène sous STEPS. À partir d’un réseau dynamique régulier dans lequel les noeuds limitent leur mobilité à leurs zones préférentielles respectives. Nous recablons ce réseau en injectant progressivement des noeuds nomades se déplaçant entre plusieurs zones. Nous montrons que le pourcentage de tels nœuds nomades est de 10%, le réseau possède une structure petit monde avec un fort taux de clusterisation et un faible longueur du chemin caractéristique. La troisième contribution de cette thèse porte sur l’étude de l’impact du désordre et de l’irrégularité des contacts sur la capacité de communication d’un réseau dynamique. Nous analysons le degré de désordre de réseaux opportunistes réels et montrons que si exploité correctement, celui-ci peut améliorer significativement les performances du routage. Nous introduisons ensuite un modèle permettant de capturer le niveau de désordre d’un réseau dynamique. Nous proposons deux algorithmes simples et efficaces qui exploitent la structure temporelle d’un réseau dynamique pour délivrer les messages avec un bon compromis entre l’usage des ressources et les performances. Les résultats de simulations et analytiques montrent que ce type d’algorithme est plus performant que les approches classiques. Nous mettons également en évidence aussi la structure de réseau pour laquelle ce type d’algorithme atteint ses performances optimum. Basé sur ce résultat théorique nous proposons un nouveau protocole de routage efficace pour les réseaux opportunistes centré sur le contenu. Dans ce protocole, les noeuds maintiennent, via leurs contacts opportunistes, une fonction d’utilité qui résume leur proximité spatio-temporelle par rapport aux autres noeuds. En conséquence, router dans un tel contexte se résume à suivre le gradient de plus grande pente conduisant vers le noeud destination. Cette propriété induit un algorithme de routage simple et efficace qui peut être utilisé aussi bien dans un contexte d’adressage IP que de réseau centré sur les contenus. Les résultats de simulation montrent que ce protocole superforme les protocoles de routage classiques déjà définis pour les réseaux opportunistes. La dernière contribution de cette thèse consiste à mettre en évidence une application potentielle des réseaux dynamiques dans le contexte du « mobile cloud computing ». En utilisant les techniques d’optimisation particulaires, nous montrons que la mobilité peut augmenter considérablement la capacité de calcul des réseaux dynamiques. De plus, nous montrons que la structure dynamique du réseau a un fort impact sur sa capacité de calcul. ABSTRACT : This thesis contributes to the modeling, understanding and efficient communication in dynamic networks populating the periphery of the Internet. By dynamic networks, we refer to networks that can be modeled by dynamic graphs in which nodes and links change temporally. In the first part of the thesis, we propose a new mobility model - STEPS - which captures a wide spectrum of human mobility behavior. STEPS implements two fundamental principles of human mobility: preferential attachment and attractor. We show that this simple parametric model is able to capture the salient statistical properties of human mobility such as the distribution of inter-contact/contact time. In the second part, using STEPS, we analyze the fundamental behavioral and structural properties of opportunistic networks. We redefine in the context of dynamic networks the concept of small world structure and show how such a structure can emerge. In particular, we show that highly dynamic nodes can play the role of bridges between disconnected components, helping to significantly reduce the length of network path and contribute to the emergence of small-world phenomenon in dynamic networks. We propose a way to model this phenomenon in STEPS. From a regular dynamic network in which nodes limit their mobility to their respective preferential areas. We rewire this network by gradually injecting highly nomadic nodes moving between different areas. We show that when the ratio of such nomadic nodes is around 10%, the network has small world structure with a high degree of clustering and a low characteristic path length. The third contribution of this thesis is the study of the impact of disorder and contact irregularity on the communication capacity of a dynamic network. We analyze the degree of disorder of real opportunistic networks and show that if used correctly, it can significantly improve routing performances. We then introduce a model to capture the degree of disorder in a dynamic network. We propose two simple and efficient algorithms that exploit the temporal structure of a dynamic network to deliver messages with a good tradeoff between resource usage and performance. The simulation and analytical results show that this type of algorithm is more efficient than conventional approaches. We also highlight also the network structure for which this type of algorithm achieves its optimum performance. Based on this theoretical result, we propose a new efficient routing protocol for content centric opportunistic networks. In this protocol, nodes maintain, through their opportunistic contacts, an utility function that summarizes their spatio-temporal proximity to other nodes. As a result, routing in this context consists in following the steepest slopes of the gradient field leading to the destination node. This property leads to a simple and effective algorithm routing that can be used both in the context of IP networks and content centric networks. The simulation results show that this protocol outperforms traditional routing protocols already defined for opportunistic networks. The last contribution of this thesis is to highlight the potential application of dynamic networks in the context of "mobile cloud computing." Using the particle optimization techniques, we show that mobility can significantly increase the processing capacity of dynamic networks. In addition, we show that the dynamic structure of the network has a strong impact on its processing capacity

    Application Platforms, Routing Algorithms and Mobility Behavior in Mobile Disruption-Tolerant Networks

    Get PDF
    Mobile disruption-tolerant networks (DTNs), experience frequent and long duration partitions due to the low density of mobile nodes. In these networks, traditional networking models relying on end-to-end communication cease to work. The topological characteristics of mobile DTNs impose unique challenges for the design and validation of routing protocols and applications. We investigate challenges of mobile DTNs from three different viewpoints: the application layer, a routing perspective, and by studying mobility patterns. In the application layer, we have built 7DS (7th Degree of Separation) as a modular platform to develop mobile disruption-tolerant applications. 7DS offers a class of disruption-tolerant applications to exchange data with other mobile users in the mobile DTN or with the global Internet. In the routing layer, we have designed and implemented PEEP as an interest-aware and energy efficient routing protocol which automatically extracts individual interests of mobile users and estimates the global popularity of data items throughout the network. PEEP considers mobile users' interests and global popularity of data items in its routing decisions to route data toward the community of mobile users who are interested in that data content. Mobility of mobile users impacts the conditions in which routing protocols for mobile DTNs must operate and types of applications that could be provided for mobile networks in general. The current synthetic mobility models do not reflect real-world mobile users' behavior. Trace-based mobility models, also, are based on traces that either represent a specific population of mobile users or do not have enough granularities in representing mobility of mobile users for example cell tower traces. We use Sense Networks' GPS traces that are being collected by monitoring a broad spectrum of mobile users. Using these traces, we employ a Markovian approach to extract inherent patterns in human mobility. We design and implement a new routing algorithm for mobile DTNs based on our Markovian analysis of the human mobility. We explore how the knowledge of the mobility improves the performance of our Markov based routing algorithm. We show that that our Markov based routing algorithm increases the rate of data delivery to popular destinations with consuming less energy than legacy algorithms

    Contributions to modeling, structural analysis, and routing performance in dynamic networks

    Get PDF
    This thesis contributes to the modeling, understanding and efficient communication in dynamic networks populating the periphery of the Internet. By dynamic networks, we refer to networks that can be modeled by dynamic graphs in which nodes and links change temporally. In the first part of the thesis, we propose a new mobility model - STEPS - which captures a wide spectrum of human mobility behavior. STEPS implements two fundamental principles of human mobility: preferential attachment and attractor. We show that this simple parametric model is able to capture the salient statistical properties of human mobility such as the distribution of inter-contact/contact time. In the second part, using STEPS, we analyze the fundamental behavioral and structural properties of opportunistic networks. We redefine in the context of dynamic networks the concept of small world structure and show how such a structure can emerge. In particular, we show that highly dynamic nodes can play the role of bridges between disconnected components, helping to significantly reduce the length of network path and contribute to the emergence of small-world phenomenon in dynamic networks. We propose a way to model this phenomenon in STEPS. From a regular dynamic network in which nodes limit their mobility to their respective preferential areas. We rewire this network by gradually injecting highly nomadic nodes moving between different areas. We show that when the ratio of such nomadic nodes is around 10%, the network has small world structure with a high degree of clustering and a low characteristic path length. The third contribution of this thesis is the study of the impact of disorder and contact irregularity on the communication capacity of a dynamic network. We analyze the degree of disorder of real opportunistic networks and show that if used correctly, it can significantly improve routing performances. We then introduce a model to capture the degree of disorder in a dynamic network. We propose two simple and efficient algorithms that exploit the temporal structure of a dynamic network to deliver messages with a good tradeoff between resource usage and performance. The simulation and analytical results show that this type of algorithm is more efficient than conventional approaches. We also highlight also the network structure for which this type of algorithm achieves its optimum performance. Based on this theoretical result, we propose a new efficient routing protocol for content centric opportunistic networks. In this protocol, nodes maintain, through their opportunistic contacts, an utility function that summarizes their spatio-temporal proximity to other nodes. As a result, routing in this context consists in following the steepest slopes of the gradient field leading to the destination node. This property leads to a simple and effective algorithm routing that can be used both in the context of IP networks and content centric networks. The simulation results show that this protocol outperforms traditional routing protocols already defined for opportunistic networks. The last contribution of this thesis is to highlight the potential application of dynamic networks in the context of "mobile cloud computing." Using the particle optimization techniques, we show that mobility can significantly increase the processing capacity of dynamic networks. In addition, we show that the dynamic structure of the network has a strong impact on its processing capacity

    Modeling Human Mobility Entropy as a Function of Spatial and Temporal Quantizations

    Get PDF
    The knowledge of human mobility is an integral component of several different branches of research and planning, including delay tolerant network routing, cellular network planning, disease prevention, and urban planning. The uncertainty associated with a person's movement plays a central role in movement predictability studies. The uncertainty can be quantified in a succinct manner using entropy rate, which is based on the information theoretic entropy. The entropy rate is usually calculated from past mobility traces. While the uncertainty, and therefore, the entropy rate depend on the human behavior, the entropy rate is not invariant to spatial resolution and sampling interval employed to collect mobility traces. The entropy rate of a person is a manifestation of the observable features in the person's mobility traces. Like entropy rate, these features are also dependent on spatio-temporal quantization. Different mobility studies are carried out using different spatio-temporal quantization, which can obscure the behavioral differences of the study populations. But these behavioral differences are important for population-specific planning. The goal of dissertation is to develop a theoretical model that will address this shortcoming of mobility studies by separating parameters pertaining to human behavior from the spatial and temporal parameters

    Characterization and Applications of Temporal Random Walks on Opportunistic Networks

    Get PDF
    Opportunistic networks are a special case of DTN that exploit systematically the mobility of nodes. When nodes contacts occur, routing protocols can exploit them to forward messages. In the absence of stable end-to-end paths, spatio-temporal paths are created spontaneously. Opportunistic networks are suitable for communications in pervasive environments that are saturated by other devices. The ability to self-organize using the local interactions among nodes, added to mobility, leads to a shift from legacy packet-based communications towards a message-based communication paradigm. Usually, routing is done by means of message replication in order to increase the probability of message delivery. Instead, we study the useof Temporal Random Walks (TRW) on opportunistic networks as a simple method to deliver messages. TRW can adapt itself to the self-organizing evolution of opportunistic networks. A TRW can be seen as the passing of a token among nodes on the spatio-temporal paths. Since the token passing is an atomic operation, we can see it as forwarding one simple message among nodes. We study the drop ratio for message forwarding considering finite buffers. We then explore the idea of token-sharing as a routing mechanism. Instead of using contacts as mere opportunities to transfer messages, we use them to forward the token over time. The evolution of the token is ruled by the TRW process. Finally, we use the TRW to monitor opportunistic networks. We present the limits and convergence of monitoring the interact time between participating nodes

    Towards efficacy and efficiency in sparse delay tolerant networks

    Get PDF
    The ubiquitous adoption of portable smart devices has enabled a new way of communication via Delay Tolerant Networks (DTNs), whereby messages are routed by the personal devices carried by ever-moving people. Although a DTN is a type of Mobile Ad Hoc Network (MANET), traditional MANET solutions are ill-equipped to accommodate message delivery in DTNs due to the dynamic and unpredictable nature of people\u27s movements and their spatio-temporal sparsity. More so, such DTNs are susceptible to catastrophic congestion and are inherently chaotic and arduous. This manuscript proposes approaches to handle message delivery in notably sparse DTNs. First, the ChitChat system [69] employs the social interests of individuals participating in a DTN to accurately model multi-hop relationships and to make opportunistic routing decisions for interest-annotated messages. Second, the ChitChat system is hybridized [70] to consider both social context and geographic information for learning the social semantics of locations so as to identify worthwhile routing opportunities to destinations and areas of interest. Network density analyses of five real-world datasets is conducted to identify sparse datasets on which to conduct simulations, finding that commonly-used datasets in past DTN research are notably dense and well connected, and suggests two rarely used datasets are appropriate for research into sparse DTNs. Finally, the Catora system is proposed to address congestive-driven degradation of service in DTNs by accomplishing two simultaneous tasks: (i) expedite the delivery of higher quality messages by uniquely ordering messages for transfer and delivery, and (ii) avoid congestion through strategic buffer management and message removal. Through dataset-driven simulations, these systems are found to outperform the state-of-the-art, with ChitChat facilitating delivery in sparse DTNs and Catora unencumbered by congestive conditions --Abstract, page iv

    Propriétés et impact du voisinage dans les réseaux mobiles opportunistes

    Get PDF
    Les réseaux opportunistes (DTN) permettent d'utiliser de nouveaux vecteurs de transmissions. Avant de pouvoir profiter de toutes les capacités des DTN, nous devons nous pencher sur la compréhension de ce nouveau paradigme. De nombreuses propriétés des réseaux DTN sont maintenant reconnues, cependant les relations entre un noeud du réseau et son voisinage proche ne semblent pas encore avoir été passée au crible. Souvent, la présence de noeuds voisins proches mais pas directement lié par le contact est ignorée. Dans cette thèse, nous montrons à quel point considérer les noeuds à proximité nous aide à améliorer les performances DTNs.En identifiant le paradoxe binaire dans les DTN, nous montrons que les caractérisations actuelles ne sont pas suffisantes pour bénéficier de toutes les possibilités de transmission dans les DTN. Nous proposons une définition formelle du voisinage pour les DTNs avec le k-vicinity''. Nous étudions les caractérisations temporelles du k-vicinity avec différentes données. Ensuite, nous nous concentrons sur l'étude de l'organisation interne du k-vicinity. Nous avons crée le Vicinity Motion qui permet d'obtenir un modèle markovien à partir de n'importe quelle trace de contact. Nous en extrayions trois mouvements principaux: la naissance, la mort et les mouvements séquentiels. Grâce aux valeurs du Vicinity Motion, nous avons pu créer un générateur synthétique de mouvements de proximité nommé TiGeR. Enfin, nous posons la question de la prévisibilité des distances entre deux noeuds du k-vicinity. En utilisant le savoir emmagasiné dans le Vicinity Motion, nous mettons au point une heuristique permettant de prédire les futures distances entre deux noeuds.The networking paradigm uses new information vectors consisting of human carried devices is known as disruption-tolerant networks (DTN) or opportunistic networks. We identify the binary assertion issue in DTN. We notice how most DTNs mainly analyze nodes that are in contact. So all nodes that are not in contact are in intercontact. Nevertheless, when two nodes are not in contact, this does not mean that they are topologically far away from one another. We propose a formal definition of vicinities in DTNs and study the new resulting contact/intercontact temporal characterization. Then, we examine the internal organization of vicinities using the Vicinity Motion framework. We highlight movement types such as birth, death, and sequential moves. We analyze a number of their characteristics and extract vicinity usage directions for mobile networks. Based on the vicinity motion outputs and extracted directions, we build the TiGeR that simulates how pairs of nodes interact within their vicinities. Finally, we inquire about the possibilities of vicinity movement prediction in opportunistic networks. We expose a Vicinity Motion-based heuristic for pairwise shortest distance forecasting. We use two Vicinity Motion variants called AVM and SVM to collect vicinity information. We find that both heuristics perform quite well with performances up to 99% for SVM and around 40% for AVM.PARIS-JUSSIEU-Bib.électronique (751059901) / SudocSudocFranceF

    Evaluating contacts in opportunistic networks over more realistic simulation models

    Get PDF
    Opportunistic Networks (ONs) are mobile networks that support intermittent links and long delays. ON nodes exchange data in brief moments called contacts, when another node is within radio range. Contacts are ephemeral and unpredictable, thus they must be implemented as efficiently as possible. However, most previous work rely on simplistic assumptions such as unlimited bandwidth and contentionfree transmissions. This paper presents a more realistic evaluation of ON contacts. Simulations show that, on opposition to the consensus in the literature, routing protocols that forward more copies and those that determine a subset of nodes to receive the Bundles using a certain criteria outperform flooding-based protocols, because the latter generates too much medium contention. Finally, buffer management and forwarding prioritization may influence the performance of the network by up to 30%.Keywords: Opportunistic networks, simulation, Delay-Tolerant Networks

    Complex Network Analysis and the Applications in Vehicle Delay-Tolerant Networks

    Get PDF
    Vehicle Delay Tolerant Networks (VDTNs) is a particular kind of Delay Tolerant Networks (DTNs), where vehicles equipped with transmission capabilities are interconnected to form Vehicle NETworks (VNETs). Some applications and services on the top of VDTNs have raised a lot of attention, especially by providing information about weather conditions, road safety, traffic jams, speed limit, and even video streamings without the need of infrastructures. However, due to features such as high vehicle mobility, dynamic scenarios, sparsity of vehicles, short contact durations, disruption and intermittent connectivity and strict requirements for latency, many VDTNs do not present satisfactory performance, because no path exists between a source and its target. In this dissertation, we propose three routing methods to solve the problem as follows. Our first VDTN system focuses on the multi-copy routing in Vehicle Delay Tolerant Networks (VDTNs). Multi-copy routing can balance the network congestion caused by broadcasting and the efficiency limitation in single-copy routing. However, the different copies of each packet search the destination node independently in current multi-copy routing algorithms, which leads to a low utilization of copies since they may search through the same path repeatedly without cooperation. To solve this problem, we propose a fractal Social community based efficient multi-coPy routing in VDTNs, namely SPread. First, we measure social network features in Vehicle NETworks (VNETs). Then, by taking advantage of weak ties and fractal structure feature of the community in VNETs, SPread carefully scatters different copies of each packet to different communities that are close to the destination community, thus ensuring that different copies search the destination community through different weak ties. For the routing of each copy, current routing algorithms either fail to exploit reachability information of nodes to different nodes (centrality based methods) or only use single-hop reachability information (community based methods), e.g., similarity and probability. Here, the reachability of node ii to a destination jj (a community or a node) means the possibility that a packet can reach jj through ii. In order to overcome above drawbacks, inspired by the personalized PageRank algorithm, we design new algorithms for calculating multi-hop reachability of vehicles to different communities and vehicles dynamically. Therefore, the routing efficiency of each copy can be enhanced. Finally, extensive trace-driven simulation demonstrates the high efficiency of SPread in comparison with state-of-the-art routing algorithms in DTNs. However, in SPread, we only consider the VNETs as complex networks and fail to use the unique location information to improve the routing performance. We believe that the complex network knowledge should be combined with special features of various networks themselves in order to benefit the real application better. Therefore, we further explore the possibility to improve the performance of VDTN system by taking advantage of the special features of VNETs. We first analyze vehicle network traces and observe that i) each vehicle has only a few active sub-areas that it frequently visits, and ii) two frequently encountered vehicles usually encounter each other in their active sub-areas. We then propose Active Area based Routing method (AAR) which consists of two steps based on the two observations correspondingly. AAR first distributes a packet copy to each active sub-area of the target vehicle using a traffic-considered shortest path spreading algorithm, and then in each sub-area, each packet carrier tries to forward the packet to a vehicle that has high encounter frequency with the target vehicle. Furthermore, we propose a Distributed AAR (DAAR) to improve the performance of AAR. Extensive trace-driven simulation demonstrates that AAR produces higher success rates and shorter delay in comparison with the state-of-the-art routing algorithms in VDTNs. Also, DAAR has a higher success rate and a lower average delay compared with AAR since information of dynamic active sub-areas tends to be updated from time to time, while the information of static active sub-areas may be outdated due to the change of vehicles\u27 behaviors. Finally, we try to combine different routing algorithms together and propose a DIstributed Adaptive-Learning routing method for VDTNs, namely DIAL, by taking advantages of the human beings communication feature that most interactions are generated by pairs of people who interacted often previously. DIAL consists of two components: the information fusion based routing method and the adaptive-learning framework. The information fusion based routing method enables DIAL to improve the routing performance by sharing and fusing multiple information without centralized infrastructures. Furthermore, based on the information shared by information fusion based routing method, the adaptive-learning framework enables DIAL to design personalized routing strategies for different vehicle pairs without centralized infrastructures. Therefore, DIAL can not only share and fuse multiple information of each vehicle without centralized infrastructures, but also design each vehicle pair with personalized routing strategy. Extensive trace-driven simulation demonstrates that DIAL has better routing success rate, shorter average delays and the load balance function in comparison with state-of-the-art routing methods which need the help of centralized infrastructures in VDTNs
    corecore