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Abstract

Vehicle Delay Tolerant Networks (VDTNs) is one type of Delay Tolerant Networks (DTNs),

where vehicles equipped with transmission capabilities are interconnected to form Vehicle NETworks

(VNETs). Some applications and services on the top of VDTNs have raised a lot of attention,

especially by providing information about weather conditions, road safety, traffic jams, speed limit,

and even video streamings without the need of infrastructures. However, due to features such as

high vehicle mobility, dynamic scenarios, sparsity of vehicles, short contact durations, disruption

and intermittent connectivity and strict requirements for latency, many VDTNs do not present

satisfactory performance, because no path exists between a source and its target. To solve this

problem, in this dissertation, we propose three routing methods as follows.

Our first VDTN system focuses on the multi-copy routing in VDTNs. Multi-copy routing

can balance the network congestion caused by broadcasting and the efficiency limitation in single-

copy routing. However, the different copies of each packet search the destination node independently

in current multi-copy routing algorithms, which leads to a low utilization of copies since they may

search through the same path repeatedly without cooperation. To solve this problem, we propose

a fractal Social community based efficient multi-coPy routing in VDTNs, namely SPread. First,

we measure social network features in VNETs. Then, by taking advantage of weak ties and fractal

structure feature of the community in VNETs, SPread carefully scatters different copies of each

packet to different communities that are close to the destination community, thus ensuring that

different copies search the destination community through different weak ties. For the routing of each

copy, current routing algorithms either fail to exploit reachability information of nodes to different

nodes (centrality based methods) or only use single-hop reachability information (community based

methods), e.g., similarity and probability. Here, the reachability of node i to a destination j (a

community or a node) means the possibility that a packet can reach j through i. In order to overcome
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above drawbacks, inspired by the personalized PageRank algorithm, we design new algorithms for

calculating multi-hop reachability of vehicles to different communities and vehicles dynamically.

Therefore, the routing efficiency of each copy can be enhanced.

However, in SPread, we only consider the VNETs as complex networks and fail to use

the unique location information to improve the routing performance. We believe that the complex

network knowledge should be combined with special features of various networks themselves in

order to better benefit real applications. Therefore, we further explore the possibility to improve

the performance of VDTN system by taking advantage of the special features of VNETs. We first

analyze vehicle network traces and observe that i) each vehicle has only a few active sub-areas that

it frequently visits, and ii) two frequently encountered vehicles usually encounter each other in their

active sub-areas. We then propose Active Area based Routing method (AAR) which consists of two

steps based on the two observations correspondingly. AAR first distributes a packet copy to each

active sub-area of the target vehicle using a traffic-considered shortest path spreading algorithm,

and then in each sub-area, each packet carrier tries to forward the packet to a vehicle that has high

encounter frequency with the target vehicle. Furthermore, we propose a Distributed AAR (DAAR)

to improve the performance of AAR.

Finally, we try to combine different routing algorithms together and propose a DIstributed

Adaptive-Learning routing method for VDTNs, namely DIAL, by taking advantages of the human

beings communication feature that most interactions are generated by pairs of people who interacted

often previously. DIAL consists of two components: the information fusion based routing method

and the adaptive-learning framework. The information fusion based routing method enables DIAL

to improve the routing performance by sharing and fusing multiple information without centralized

infrastructures. Furthermore, based on the information shared by information fusion based routing

method, the adaptive-learning framework enables DIAL to design personalized routing strategies for

different vehicle pairs without centralized infrastructures. Therefore, DIAL can not only share and

fuse multiple information of each vehicle without centralized infrastructures, but also design each

vehicle pair with personalized routing strategy.

Extensive trace-driven simulation demonstrates the high efficiency of SPread in comparison

with state-of-the-art routing algorithms in DTNs. Furthermore, AAR produces higher success rates

and shorter delay in comparison with the state-of-the-art routing algorithms and SPread. Also,

DAAR has a higher success rate and a lower average delay compared with AAR since information
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of dynamic active sub-areas tends to be updated from time to time, while the information of static

active sub-areas may be outdated due to the change of vehicles’ behaviors. Finally, DIAL has

better routing success rate, shorter average delays and the load balance function in comparison with

state-of-the-art routing methods which include SPread and AAR.

In the future, we will explore the possibility of routing in VDTNs with the help of road side

units. Without a centralized infrastructure, the routing performance cannot be guaranteed. Thus,

we will also try to explore the possibility to build a hybrid network among vehicles incorporating an

infrastructure, which can improve the performance and at the same time decrease the cost by only

using a centralized infrastructure.
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Chapter 1

Introduction

1.1 Problem Statement

Vehicle Delay Tolerant Networks (VDTNs) is one type of Delay Tolerant Networks (DTNs),

where vehicles equipped with transmission capabilities are interconnected to form Vehicle NETworks

(VNETs). Some applications and services on the top of VDTNs have raised a lot of attention,

especially by providing information about weather conditions, road safety, traffic jams, speed limit,

and even video streamings without the need of infrastructures. However, due to features such as

high vehicle mobility, dynamic scenarios, sparsity of vehicles, short contact durations, disruption

and intermittent connectivity and strict requirements for latency, many VDTNs do not present

satisfactory performance, because no path exists between a source and its target. The current routing

algorithms include multi-copy algorithms [21, 32, 65, 68] and single-copy routing algorithms [10, 14,

18, 33, 34, 40, 45, 47, 48, 53, 74, 76]. Multi-copy algorithms can balance the network congestion of

broadcasting and single-copy routing efficiency. The current basic single-copy routing algorithms

can be divided to four categories: probabilistic routing [10, 47], centrality based routing [33, 53],

community based routing [18, 34, 45, 76] and location based routing algorithms [14, 40, 48, 74]. The

probabilistic routing algorithms [10,47] forward packages gradually through intermediate nodes with

higher probability to reach the target node. The community based routing algorithms [18,34,45,76]

consider the reachability of nodes to different communities rather than the reachability to nodes. The

centrality based routing algorithms [33, 53] applied different centrality criteria such as degree and

betweenness for improving routing efficiency in which the multi-hop information can be considered.
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Location based routing algorithms [14, 40, 48, 74] predict the future locations of vehicles, find the

shortest path from the source vehicle to the target vehicle, and select the vehicles with trajectories

on the shortest path as relay vehicles. All the aforementioned routing algorithms have their own

problems as described below.

1.1.1 Problems in Multi-copy, Probabilistic, Centrality and Community

based Routings in VDTNs

Multi-copy algorithms try to balance the network congestion of broadcasting and single-copy

routing efficiency. However, the routing efficiency is influenced by those infrequent contacts between

vehicles in VDTNs, called weak ties [27]. Previous study shows that weak ties play an important role

in information spreading [27]. In current multi-copy strategies [21, 32, 65, 68], mobilities of different

copies of a package are independent from each other. Therefore, different copies may be allocated

nearby and search through the same weak ties, which decreases the efficiency of multi-copies.

In the probabilistic routing algorithms, packages are gradually forwarded through interme-

diate nodes with higher probability to reach the target node. However, VDTNs usually consist of

thousands of vehicles (nodes) and sparse topologies, leading to little chance to meet a suitable relay

node. However, the community based routing algorithms try to overcome the drawback of proba-

bilistic routing algorithms by considering the reachability of nodes to different communities rather

than the reachability to nodes. The community based routing algorithms can only consider the one

hop information [45, 76] (such as encounter frequency and similarity) and lacks the capability to

count multi-hop information of the reachability of nodes to different communities. For the centrality

based routing algorithms, previous studies applied different centrality criteria such as degree and

betweenness for improving routing efficiency in which the multi-hop information can be considered.

However, the centrality criteria measure the importance of the nodes, but not the reachability of

nodes to different nodes.

Furthermore, previous routing algorithms more or less take the advantage of the social

features of human mobility, such as important nodes and communities. However, for VNETs, it

is a question that whether the mobility of vehicles, especially the taxies, have the similar features

as human mobility since taxies move randomly which are highly dependent on random customers’

demands.
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1.1.2 Problems in Location based Routings in VDTNs

The main problem of location based routing algorithms [14,40,48,74] is that these algorithms

require highly accurate prediction so that relay vehicles and the packet carrier will be close to each

other in a certain short distance (e.g., less than 100 meters). However, it is difficult to achieve

accurate prediction because vehicles have high mobility and vehicle trajectories are greatly influenced

by many random factors such as the traffic and speed of vehicles. Also, since the shortest path is

determined without considering the traffic, there may be few vehicles on the path. Therefore, if

the selected relay vehicle is missed due to low prediction accuracy, it is difficult to find other relay

candidates, which leads to low routing efficiency.

1.1.3 Combination of Different Routing Algorithms

There are many different kinds of routing algorithms. However, we cannot say one routing

algorithm is totally better than another since in different scenario, the same routing algorithm may

have different performance. For example, if two vehicles are in the same community, community

based routing can be more efficient than centrality and location based routing methods. Therefore,

we hope to adopt different routing algorithms under different scenarios. However, when it comes to

a specific vehicle pair, such correlations can be influenced by many unknown factors, which makes

it difficult to predict the performances of different routing methods.

1.2 Research Approach

We solve the aforementioned problems by proposing three routing algorithms as follows.

1.2.1 SPread: Exploiting Fractal Social Community For Efficient Multi-

copy Routing in VDTNs

To deal with the problems we mentioned in Section 1.1.1, first, we analyze real Vehicle NET-

work (VNET) Roma [49] and SanF [58] traces. We find: (i) there are few very important vehicles

which have high degrees and PageRank values where PageRank is the most popular algorithm for

ranking the importance of pages in World Wide Web; (ii) VNETs consist of communities which are

connected by weak ties; (iii) the communities are with fractal structure.
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Figure 1.2: An example of personalized important nodes

Then, in order to improve the efficiency of current multi-copy strategies, we design the weak

tie based multi-copy strategy by taking the advantage of fractal structure of community. In the weak

tie based multi-copy strategy, the multi-copies of each package are scattered to different communities

which are close to the target community through weak ties. Then, the multi-copies can search the

target node through different weak ties. Therefore, we can improve the multi-copy efficiency since

there is a high probability at least one weak tie is connected to the target community during the

routing time. As shown in Figure 1.1 for example, in previous multi-copy strategy, different copies

of one package are all allocated to community 1 and are all searching path A, while path A is

disconnected to the target at the routing time (which is quite normal in DTNs). In our weak tie

based multi-copy strategy, we scatter the copies to different communities and therefore, multi-copies

can search the target node by different weak ties (A, B, C, D) at the same time and meet a connected

path D, which improves the success rate of the routing.

For the routing of each single-copy, in order to enhance the routing efficiency and overcome

the drawbacks in current sing-copy routing algorithm, we design personalized CommunityRank

and VehicleRank algorithms for calculating multi-hop reachability of vehicles to communities and

vehicles, which are inspired by personalized PageRank algorithm [31]. By taking the advantage of

the community structure of VNETs, we divide the routing to two phases: inter-community and

intra-community. In the inter-community phase, packages are trying to reach the target community

by a table recording the multi-hop reachability of nodes to different communities. In the intra-

community phase, packages are trying to reach the target node by a table recording the multi-hop

reachability of nodes to nodes in the same community. The multi-hop reachability of vehicles can

enhance the single-copy routing efficiency. For example as shown in Figure 1.2, node a has a higher
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Figure 1.4: An example of the traffic-considered shortest
path spreading algorithm.

rank for routing to community A, while node b has a higher rank for routing to communities B and

C. In previous algorithm based on centrality, all the packages will choose node b. While in our

algorithm, the packages with a target node in community A will choose node a instead of node b to

forward packages.

1.2.2 Exploiting Active Sub-areas for Multi-copy Routing in VDTNs

To deal with the problems we mentioned in Section 1.1.2, we first analyze real Vehicle

NETwork (VNET) Roma [49] and SanF [58] traces and gain the following two observations: i) each

vehicle has only a few active sub-areas in the entire VDTN area that it frequently visits, and ii)

two frequently encountered vehicles usually have high probability to encounter each other in their

active sub-areas, while have very low probability to encounter each other in the rest area on the

entire VDTN area. We then propose Active Area based Routing method (AAR) which consists of

two phases based on the two observations correspondingly.

As shown in Figure 1.3, unlike the contact and centrality based routing algorithms that

search the target vehicle in the entire VDTN area, AAR constrains the searching areas to the active

sub-areas of the target vehicle, which greatly improves the routing efficiency. AAR first distributes

a packet copy to each active sub-area of the target vehicle, and then in each sub-area, each packet

carrier tries to forward the packet to a vehicle that has high encounter frequency with the target

vehicle. Specifically, AAR consists of the following two algorithms for these two steps.

Traffic-considered shortest path spreading algorithm. It jointly considers traffic

and path length in order to ensure there are many relay candidates in the identified short paths
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to efficiently distribute multiple packet copies. Figure 1.4 shows an example of the basic idea of

our traffic-considered shortest path spreading algorithm. Current location based routing algorithms

relay the packet from road intersection a to b through the shortest path (i.e., the dotted line) but fail

to consider whether there are enough relay vehicles in the path. If the shortest path only consists

of small roads with less traffic, it leads to a long time for a packet to reach the target sub-area. In

our spreading algorithm, the packet is routed along the circuitous path (i.e., the solid line) which

consists of main roads that are full of traffic. Then, the packet can easily find next hop relay vehicle

and reach b faster in spite of the longer length of the path.

Contact-based scanning algorithm. It restricts each packet copy in its responsible active

sub-area to find relay vehicles with high encounter frequencies with the target vehicle. Specifically,

the packet copy is forwarded to vehicles traveling in different road sections so that it can evenly scan

the sub-area.

By avoiding searching the non-active sub-areas of the target vehicle as in the contact and

centrality based routing algorithms, AAR greatly improve routing efficiency. Instead of pursuing the

target vehicle as in the location based routing algorithms, each packet copy in an active sub-area

of the target vehicle is relayed by vehicles with high encounter frequency with the target vehicle,

thus bypassing the insufficiently accurate location prediction problem in location based routing

algorithms.

1.2.3 DIAL: A Distributed Adaptive-Learning Routing Method in VDTNs

To deal with the problems mentioned in Section 1.1.3, we compare the performances of

different routing methods in the analysis. We find two useful observations as follows: (i) The

performances of different routing methods can be different on different vehicle pairs. (ii) It is true

that there are some correlations between the routing performances of different methods and the

features of vehicle pairs (e.g. geographic distance of the two vehicles and whether two vehicles are

in the same community). Based on the observation (i), we hope to choose the routing method for

each vehicle pair separately so that the routing performances on all the vehicle pairs can be optimal.

However, based on the observation (ii), we find that it’s difficult to choose the routing methods

when it comes to a specific vehicle pair. Even if we can choose the routing methods based on

features of vehicle pairs, centralized infrastructures are needed for sharing the necessary information

among vehicles in order to calculate those features such as geographic distances and whether two
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vehicles are in the same community. Fortunately, the routing of VDTNs is different from the general

DTNs. General DTNs can consist of any kinds of moving objects, but VDTNs consist of vehicles

which are driven by human beings. Hence, the communication on the top of VDTNs is actually

the communication between human beings. Previous studies [51] show that most interactions are

generated by pairs of people who interacted often previously. By taking advantages of this feature,

we design a DIstributed Adaptive-Learning (DIAL) routing method which can not only share the

important routing information of each vehicle without centralized infrastructures, but also design

each vehicle pair with a personalized routing strategy. DIAL consists of two components: the

information fusion based routing method and the adaptive-learning framework.

By taking advantages of the human beings communication feature we mentioned above,

the information fusion based routing method enables DIAL to improve the routing performance

by sharing and fusing multiple information without centralized infrastructures. In the information

fusion based routing method, vehicle A attaches its personal information of frequently visited loca-

tions and frequently contact vehicles to the packet once vehicle A tries to deliver a packet to vehicle

B. Then, based on centrality based method, the packet is delivered one relay vehicle by another

relay vehicle. Lacking of the personal information (e.g. frequently visited locations and frequently

contact vehicles) of target vehicle B, obviously, such kind of routing is inefficient. Once vehicle

B gets all the personal information of vehicle A, vehicle B fuses all the personal information by

setting different thresholds for adopting different routing methods (we introduce the detail of such

a threshold in Section 5.2). Therefore, next time, vehicle B delivers the packet to vehicle A by

choosing more efficient routing method. Since human beings tend to interact with others who they
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interacted with before, the information fusion based routing method avoids the inefficient routing

in the following communication between A and B and therefore, improves the routing performance

without any centralized infrastructures. Figure 1.5 shows the difference between current method

and the information fusion based routing methods.

With the help of the information fusion based routing method, we can share and fuse

information of vehicles without centralized infrastructures. However, based on the observation (ii),

we find that it’s difficult to predict which routing method should be the best option for different

vehicle pairs even though there are some correlations between the routing performances of different

methods and the features of the vehicle pairs. Therefore, in order to design each vehicle pair with

personalized routing strategy, we build an adaptive-learning framework. Instead of determining

the thresholds for different methods statically, in the adaptive-learning framework, we consider

the routing process as a black box and use feedback of success rates to determine the thresholds

dynamically as shown in Figure 1.6. Similar as the information fusion based routing method, by

taking advantages of the human beings communication feature, we can calculate the routing success

rates of different routing methods which use different information. Then based on the feedback of the

success rates, we can analyze the performances of different routing methods and adjust the routing

strategies. For example, vehicle B frequently receives the packets sent from vehicle A. These packets

can be delivered by contact based method, centrality based method or location based method. Once

vehicle B sends packets to vehicle A, vehicle B sends the numbers of packets successfully delivered

by different methods from vehicle A at the same time. Then vehicle A can calculate the success rates

based on the numbers of packets successfully delivered by different methods and adjust thresholds

for different routing methods accordingly to give more preference to the method that can lead to the

highest success rate. The routing strategy can be self-adaptive in the adaptive-learning framework as

shown in Figure 1.6. Therefore, we can design different vehicle pairs with different routing strategies

and at the same time, the routing strategies can be continually improved according to the feedbacks

of the routing performances.

1.3 Contributions

We summarize our contributions of the dissertation as follows:

1. Firstly, we study the complex network community application. We focus on the multi-copy
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routing in Vehicle Delay Tolerant Networks (VDTNs). Multi-copy routing can balance the

network congestion caused by broadcasting and the efficiency limitation in single-copy routing.

However, the different copies of each packet search the destination node independently in

current multi-copy routing algorithms, which leads to a low utilization of copies since they

may search through the same path repeatedly without cooperation. To solve this problem,

we propose a fractal Social community based efficient multi-coPy routing in VDTNs, namely

SPread. First, we measure social network features in Vehicle NETworks (VNETs). Then,

by taking advantage of weak ties and fractal structure feature of the community in VNETs,

SPread carefully scatters different copies of each packet to different communities that are

close to the destination community, thus ensuring that different copies search the destination

community through different weak ties. For the routing of each copy, current routing algorithms

either fail to exploit reachability information of nodes to different nodes (centrality based

methods) or only use single-hop reachability information (community based methods), e.g.,

similarity and probability. Here, the reachability of node i to a destination j (a community or

a node) means the possibility that a packet can reach j through i. In order to overcome above

drawbacks, inspired by the personalized PageRank algorithm, we design new algorithms for

calculating multi-hop reachability of vehicles to different communities and vehicles dynamically.

Therefore, the routing efficiency of each copy can be enhanced. Finally, extensive trace-

driven simulation demonstrates the high efficiency of SPread in comparison with state-of-the-

art routing algorithms in DTNs.

2. Secondly, we find the following two observations: i) each vehicle has only a few active sub-

areas in the entire VDTN area that it frequently visits, and ii) two frequently encountered

vehicles usually have high probability to encounter each other in their active sub-areas, while

have very low probability to encounter each other in the rest area on the entire VDTN area.

We propose a traffic-considered shortest path spreading algorithm to spread different copies

of a packet to different active sub-areas of the target vehicle efficiently. We propose a contact

based scanning algorithm in each active sub-area of the target vehicle to relay the packet to

the target vehicle. Furthermore, we propose an Advanced AAR (AAAR) by exploiting the

spatio-temporal correlation of the visiting times of target vehicles on different road side units.

3. Finally, we further improve the routing efficiency of VDTNs by taking advantages of two fea-
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tures: (i) Most interactions are generated by pairs of people who interacted often previously;

(ii) The performances of different routing methods can be different on different vehicle pairs.

We design the information fusion based routing method. The information fusion based rout-

ing method can distributedly share and fuse the vehicles’ personal information in the routing

process without the help of centralized infrastructures. Therefore, it is more practical and

efficient than previous routing methods which are based on the help of centralized infrastruc-

tures. We design an adaptive-learning framework on the top of the information fusion based

routing method which can design different routing strategies for different vehicle pairs for more

efficient VDTN routing than the basic information fusion based routing method.

1.4 Dissertation Organization

The rest of this dissertation is structured as follows. Chapter 2 presents the related work.

In Chapter 3, we propose SPread which is a multi-copy routing system in Vehicle Delay Tolerant

Networks (VDTNs). In Chapter 4, by taking advantages of the unique features of VNETs, we propose

AAR routing system which can further improve the routing efficiency. In Chapter 5, by taking

advantages of the human beings communication feature that most interactions are generated by pairs

of people who interacted often previously, we propose DIAL to improve the routing performance by

sharing and fusing multiple information which include contact information, centrality information

and location information. Finally, Chapter 6 concludes this dissertation with remarks on our future

work.

10



Chapter 2

Related Work

Current routing algorithms in VDTNs can be classified to four categories: probabilistic

[10,47,67,77], centrality based [33,53], community based routing [18,34] and location based routing

algorithms [14,40,48,74].

In the category of probabilistic routing algorithms, PROPHET [47] simply selects vehicles

with higher encounter frequency with target vehicles for relaying packets. PROPHET is improved

by MaxProp [10] with the consideration of the successful deliveries history. R3 [67] considers not

only the encounter frequency history, but also the history of delays among encounters to decrease

the routing delay performance. Zhu et al. [77] found that two consecutive encounter opportunities

drops exponentially and based on the observation, improved the prediction of encounter opportunity

by Markov chain to design the routing algorithm in vehicle networks.

In the category of centrality based routing algorithms, PeopleRank [53] is inspired by the

PageRank algorithm, which calculates the rank of vehicles and forwards packets to the vehicles with

higher ranks. However, though vehicles with high centrality can encounter more vehicles, they may

not have a high probability of encountering the target vehicle. Also, the main problem in both

contact and centrality based routing algorithm is that packets may hardly encounter suitable relay

vehicle due to the low encounter frequencies among vehicles in a large-scale VDTN.

In the category of community based routing algorithms [18,34], SimBet [18] identifies some

bridge nodes as relay nodes which can better connect the VNETs by centrality characteristics to

relay packets. Instead of directly forwarding packets to target nodes, Bubble [34] clusters the nodes

to different communities based on encounter history and still utilizes the bridge nodes to forward
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packets to the destination community.

In the category of location based routing algorithms, GeOpps [40] directly obtains the future

location of the target vehicle from GPS data and spreads packets to certain geographical locations

for routing opportunities through shortest paths. GeoDTN [48] encodes historical geographical

movement information in a vector to predict the possibility that two vehicles become neighbors.

Wu et al. [74] exploited the correlation between location and time in vehicle mobility when they

used trajectory history to predict the future location of the target vehicle in order to improve

the prediction accuracy. Instead of predicting exact future location, DTN-FLOW [14] divides the

map to different areas and predict the future visiting area of vehicles, which improves the routing

performance since it is much easier to predict the future visiting areas than exact future locations.

However, as indicated previously, the location based algorithms may lead to low routing efficiency

due to insufficiently accurate location prediction due to traffic and vehicle speed variance.

A number of multi-copy routing algorithms also have been proposed. Spyropoulos et al. [65]

introduced a “spray” family of routing schemes that directly replicate a few copies by source vehicle

into the network and forward each copy independently toward the target vehicle. R3 [67] simply

adopts the “spray” routing schemes based on its own single-copy routing. Bian et al. [32] proposed

a scheme for controlling the number of copies per packet by adding an encounter counter for each

packet carrier. If the counter reaches the threshold, then the packet will be discarded by the packet

carrier. Uddin et al. [68] minimized the energy efficiency by studying how to control the number

of copies in a disaster-response applications, where energy is a vital resource. However, in current

multi-copy routing algorithms, different copies of each packet may search the same area on the

entire VDTN area, which decreases routing efficiency. Our proposed AAR spreads different copies

of each packet to different active sub-areas of the target vehicle, which greatly improves the routing

efficiency.

Comparing to the previous methods, our proposed methods are novel for the following

reasons: i) we consider the vehicle networks as complex networks, analyze the features and propose

routing algorithms based on these features; ii) we observe that vehicles tend to be active in its

own small active areas and then limit the routing in those areas; and iii) we propose an adaptive-

learning method which can select different routing algorithms for different pairs of vehicles based on

their unique features. These three algorithms significantly improve the performance of the previous

routing algorithms.
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Chapter 3

SPread: Exploiting Fractal Social

Community For Efficient

Multi-copy Routing in VDTNs

In this chapter, we focus on the multi-copy routing in Vehicle Delay Tolerant Networks

(VDTNs). Multi-copy routing can balance the network congestion caused by broadcasting and

the efficiency limitation in single-copy routing. However, the different copies of each packet search

the destination node independently in current multi-copy routing algorithms, which leads to a low

utilization of copies since they may search through the same path repeatedly without cooperation.

To solve this problem, we propose a fractal Social community based efficient multi-coPy routing in

VDTNs, namely SPread. First, we measure social network features in Vehicle NETworks (VNETs).

Then, by taking advantage of weak ties and fractal structure feature of the community in VNETs,

SPread carefully scatters different copies of each packet to different communities that are close to

the destination community, thus ensuring that different copies search the destination community

through different weak ties. For the routing of each copy, current routing algorithms either fail

to exploit reachability information of nodes to different nodes (centrality based methods) or only

use single-hop reachability information (community based methods), e.g., similarity and probability.

Here, the reachability of node i to a destination j (a community or a node) means the possibility that

a packet can reach j through i. In order to overcome above drawbacks, inspired by the personalized
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PageRank algorithm, we design new algorithms for calculating multi-hop reachability of vehicles to

different communities and vehicles dynamically. Therefore, the routing efficiency of each copy can

be enhanced. Furthermore, we propose an Advanced SPread (denoted by ASPread) by exploiting

the spatio-contact correlation of the community and considering the different sizes of communities.

The spatio-contact correlation of the community means that the vehicles in the same community

tend to meet each other in a certain small geographical area, which enables ASPread to forward a

packet to vehicles that are more likely to meet the destination vehicle. Further, ASPread sends a

larger number of copies of a packet to a community with a larger number of vehicles and vice versa.

Finally, extensive trace-driven simulation demonstrates the high efficiency of SPread in comparison

with state-of-the-art routing algorithms in DTNs. Also, ASPread generates higher success rate,

lower average delay and average cost than SPread. The main contributions of this chapter are as

follows:

1. We propose two densest subgraph discovering methods derived from the Goldberg’s densets

subgraph discovering algorithm.

2. We first measure the important nodes, community structure and fractal structure feature of

the community in VNETs.

3. We design a weak tie based multi-copy routing algorithm to improve the multi-copy routing

efficiency by taking advantage of the fractal structure feature of the community in VNETs.

4. We design personalized CommunityRank and VehicleRank algorithms to calculate the multi-

hop reachability of vehicles to different communities and vehicles, which are inspired by the

personalized PageRank algorithm. The new algorithms can enhance the single-copy routing

efficiency by considering the multi-hop reachability of vehicles to different communities and

vehicles.

5. We propose an Advanced SPread (ASPread) which improves the performance of the basic

SPread routing algorithm.
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3.1 An Improvement of Goldberg’s Densest Subgraph Dis-

covering Algorithm

In order to measure the features of VNET, we first study the community structure.

3.1.1 Previous Study of Community Discovering Algorithms

The studies of complex networks are developing with the coming observations of patterns

of real-world networks. The psychologist Stanley Milgram conducted a series of experiments that

indicated the average path length of peoples in human society is short [52] which is called small

world phenomenon. Besides the small world phenomenon, evidences suggest that in most real-world

networks, and particular social networks, nodes tend to create tightly knit groups characterized by

a relatively high density of ties; this likelihood tends to be greater than the average probability of a

tie randomly established between two nodes [70]. A community is a cohesive subset of nodes with

denser inner links, relatively to the rest of the network [54]. It is discussed that a high clustering

coefficient is the natural consequence of a community structure [57]. Studies have shown that the

degree distribution of many real-world networks follow a power law [5]. Studies notice not only the

degrees follow a power law, but also there is a scale-free distribution of communities [39, 44]. ER

networks [22] are generated by picking nodes randomly and then connecting them by edges. ER

networks exhibit a small average shortest path length which explained the small world phenomenon.

The BA networks [5] proposed that structure emerges in network topologies as the result of two

processes: Growth and Preferential Attachment. Growth means that there are continuing new nodes

participate in the network; Preferential Attachment means that the probability of connecting to a

node is proportional to the current degree of that node. The BA network is constructed as follows:

starting from m0 nodes, every time step a new node with m edges is added and each edge of the

new node is attached to an existing node i with the probability proportional to the degree of the

ith node. These two mechanisms result in power-law degree distribution with exponent γ = 3.

The simplicity of the mechanism of BA graph make it an excellent model to explain the power

law distribution of real-world graphs. However BA network has the deficiencies include the limited

range of exponent value [19], the relation between node degree and age [37], the unavailable global

information [30, 46] and so on. According to these deficiencies, PLRG model [61] is proposed to

generate a degree power law with exponent in a range of (0,+ ∝). Fitness model [7] is proposed
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that each node has a rank named fitness, and the preferential attachment is influenced by the

rank. The fitness model can solve the deficiency of relation between degree and age of nodes. A

step-by-step random walk network [30] is proposed that the links are created by random walk,

but not preferential attachment to solve the deficiency of the unavailable global information in

realities. The local-world evolving network [46] tried to solve the unavailable global information in

realities by dividing the entire network to local-world evolving subnetworks. In local-world evolving

network, each new coming nodes randomly select M nodes as their local-world, and they obey the

preferential attachment rule in their local-world. Forest fire model [44] was proposed to explain a

densification laws. It is based on having new nodes attach to the network by copying links of the

neighbors of neighbors recursively with probability p. However, the mathematical analysis of this

model is quite complex and unavailable. Also we found in our experiment that the degree does

not follow power law when p is large enough. While ER networks exhibit a small average shortest

path length, they have a small clustering coefficient (A clustering coefficient is a measure of the

community structure defined as follows, “Suppose that a node v has kv neighbors; then at most

kv(kv−1)
2 edges can exist between them (this occurs when every neighbor of v is connected to every

other neighbor of v). Let Cv denote the fraction of these allowable edges that actually exist. Define

C as the average of Cv over all v” [70].). WS network [70] and NW network [55] are designed

to study the generations of small world phenomenon and high clustering coefficient by an unified

mechanism. The PLRG networks [61] try to generate the power law or other degree distribution

of real-world network manually. The connected components [16], average distances [17] and so on

are discussed in CL networks. Hierarchical network [59] is designed by hierarchically copying blocks

to produce a large network based on the observation of hierarchical modularity. The degree of

hierarchical network follows a power law with exponent 2.26. Kronecker network [41] is another

complex network model which is based on the observation of hierarchical modularity. Kronecker

network obeys properties which include densification law, multinormial degree distribution, short

diameter and so on. Kronecker network proposed two interpretations: hierarchical modularity, and

the similarities of nodes. However, the interpretations are too vague from simple rules which is easy

to control. BTER model [63] was designed to generate a complex network with power law degree

distribution, community structure, power law community size distribution by manually locating

nodes to several blocks. Multiscale network [29] is a flexible network which considers the diversities

of real networks. It synthesizes realistic ensembles of networks starting from a known network,
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through a series of mappings that coarsen and later refine the network structure by randomized

editing.

The densest subgraph problem was first formally introduced by Goldberg [26]. He gave

an algorithm that requires O(log n) running time (n is the number of vertexes in the graph) to

find the optimal solution by reducing the problem to a series of min-cut max-flow computations.

Later on, different subproblems of the dense subgraph problem were proposed. Feige et al. [23]

defined and studied the densest k-subgraph problem, which is to find a subgraph with the maximum

density among subgraphs containing k vertices. Asahiro et al. [3] defined and studied the problem

of discovering a k-vertex subgraph of a given graph G that has at least f(k) edges. Saha et al. [62]

defined the densest subgraph problems with a distance restriction or a specific subset restriction,

and provided algorithms for these subproblems. However, this work neglects the connectivity of the

returned graphs.

Various approximate and heuristic algorithms have been proposed to improve the time and

space complexity of the initial algorithms for big data. Charikar [11] presented a simple greedy algo-

rithm that leads to a 2-approximation to the optimum. This algorithm was improved by Bahmani et

al. [4] in a MapReduce framework, which can lead to a 2(1 + ε)-approximation of the optimum. The

most important problem in these previous algorithms [4,11] is that they neglect the connectivity of

the returned densest subgraph. Some heuristic algorithms [12, 24] for discovering dense subgraphs

were also proposed based on different techniques such as shingling and matrix blocking.

The applications of dense subgraph problem are accompanied by theoretical works. Ku-

mar et al. [38] proposed an approach to identify web page communities in the Internet based on

dense subgraphs. Gibson et al. [24] applied the solution for discovering dense subgraphs problem to

detect the link spam in World Wide Web. These works use a threshold to determine the returned

subgraphs. These algorithms also neglect the connectivity problem of the detected subgraphs. Also,

there are no previous works that find all dense subgraphs which do not contain denser subgraphs or

are contained in denser subgraphs, which however are needed in many applications.

In addition to the neglect of the connectivity, there has been no previous works that find

all significant dense subgraphs. Compared to previous works, our study of dense subgraphs is

novel in that i) we define two new subproblems of the dense subgraph problem, which consider the

connectivity of the outputs, and find all significant dense subgraphs, and ii) our algorithms can be

easily applied for handling GB-level natural graphs with no approximations in one PC with high
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time and memory efficiency.

3.1.2 Preliminaries

We first introduce the concepts used in this section. Let G = (V,E) be an undirected graph.

For a subset S ⊆ V , the induced edge set is defined as E(S) = E ∩ S2 and the induced degree of a

node i ∈ S is defined as degS(i) = |{j|(i, j) ∈ E(S)}|. In the remaining parts of this section, we use

vertex subset S to denote graph GS = (S,E(S)) for short sometimes.

Definition 1 (Density of an undirected graph [4]:) Let G = (V,E) be an undirected graph.

Given S ⊆ V , its density ρ(S) is defined as ρ(S) = |E(S)|
|S| . The maximum density ρ∗(S) of the graph

is ρ∗(S) = max
S⊆V
{ρ(S)}.

The densest subgraph is the subgraph that has the maximum density.

Definition 2 (Capacity of an edge [66]:) Let N = (V,E) be a network (directed graph) with s

and t being the source and the sink of N respectively. The capacity of an edge (u, v) is denoted by

c(u, v). It represents the maximum amount of flow that can pass through an edge.

Definition 3 (Capacity of a cut [66]:) A cut C = (V1, V2) is a partition of V , where V1∪V2 = V ,

and V1 ∩ V2 = ∅. The cut-set of C is the set {(u, v) ∈ E|u ∈ V1, v ∈ V2}. The capacity of a cut

C = (V1, V2) is defined by c(V1, V2) =
∑

(u,v)∈V1×V2

c(u, v). It represents the sum of the capacities of

the edges connecting two partitions V1 and V2 (i.e., cut-set).

Definition 4 (Min-cut max-flow (min-cut in short) problem [66]:) This problem is to min-

imize c(V1, V2), that is, to determine V1 and V2 such that the capacity of cut c(V1, V2) is minimal.

When all the capacities of the edges in the graph are nonnegative, the min-cut problem can

be solved in polynomial time [66]. However, if there are negative edges, the min-cut problem is an

NP-hard problem [50]. The min-cut problem with nonnegative capacities was applied to solve the

original densest subgraph problem [26]. In order to solve the LCDS problem in this section, we first

propose a two connected partitions min-cut problem as follows:

Definition 5 (Two connected partitions min-cut problem (TCPM):) This problem is to min-

imize c(V1, V2), that is, to determine V1 and V2 such that the capacity of the cut is minimal, and

meanwhile vertex subsets V1 and V2 are connected, respectively.
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Figure 3.1: Graph construction

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.2: TCPM graph partition

This problem can be solved in polynomial time using a simple min-cut algorithm [66], since

a simple min-cut algorithm just considers the min-cut of the two connected partitions and negative

capacity does not influence the validity of the algorithm.

3.1.3 Discovering the LCDS

In this section, we define the LCDS problem and propose a polynomial-time solution.

Definition 6 (Local connected densest subgraph of a vertex subset L:) Given a connect-

ed graph G = (V,E), and a certain vertex subset L, where L ⊆ V . We call GL = (L+, E(L+))

a local connected densest subgraph (LCDS) of L, if and only if that subgraph GL is connected,

L ⊆ L+, and there are no such connected subgraph GS = (S,E(S)) that satisfies ρ(S) > ρ(L+), and

L ⊆ S.

3.1.3.1 A Polynomial-time Algorithm

According to the interesting relationship between LCDS and TCPM problems shown later,

the LCDS problem can be solved by trial and error in polynomial time. Given an estimated density

of the LCDS of L (denoted by g), we can construct a specific graph (denoted by N). The LCDS can

be reduced from one partition of TCPM of N if the estimation is right. Otherwise, we can judge

whether g is too big or small based on the result whether the capacity of TCPM (denoted by cmin)

is bigger than a certain value. Therefore, we can adjust the lower and upper bounds of the density

of the LCDS of L (denoted by lmin and umin, respectively) and give g a new value based on lmin

and umin. In this way, we apply a binary searching scheme to reach the “just right” g.

We first set lmin = 0 and umin = n where n = |V |. In the step of graph construction, given

19



Algorithm 1: Algorithm for discovering LCDS of L

1: Given: G = (V,E);
2: lmin ← 0, umin ← n;
3: while (lmin − umin) ≥ 1

n(n−1) do

g ← lmin+umin

2 ;
Construct N = (VN , E(VN ));
Find TCPM (V1 ∪ s, V2);
Calculate cmin;
if cmin ≥ a|L| then

umin ← g
end
if cmin < a|L| then

lmin ← g
end

end
4: return subgraph of G induced by V1;

a g, we convert the graph G = (V,E) to graph N = (VN , EN ) as shown in Figure 3.1. We add a

vertex s to the set of vertices of V , allocate each edge of E by a capacity of 1, connect every vertex

i of V \L to vertex s by an edge of capacity (2g− di), and connect every vertex i of L to vertex s by

an edge of capacity (a+ 2g−di), where a is a negative constant smaller than the twice of the sum of

other negative edge capacities in the graph N and di is the degree of vertex i of G. More formally,

VN = V ∪ {s}

EN = {(i, j)|{i, j} ∈ E(V )} ∪ {(i, s)|i ∈ L}

∪{(i, s)|i ∈ V \L}

cij = 1 {i, j} ∈ E(V )

csi = 2g − di i ∈ V \L

cit = a+ 2g − di i ∈ V

Then, we find a TCPM (V1∪s, V2) of N . In Theorem 3.1.1, we find the relationship between

cmin and the density bounds of the LCDS. Therefore, we can adjust g based on cmin. If cmin ≥ a|L|,

we update umin with the current value of g; if cmin < a|L|, we update lminwith the current value of

g. When the stop condition ((lmin − umin) < 1
n(n−1) which is proved in Theorem 3.1.2) is satisfied,

we get the final LCDS of L from V2. Otherwise, we update g by g = (lmin + umin)/2 using the

binary searching scheme, re-construct N based on the updated g, and repeat the above process until
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the stop condition is satisfied.

In the following, we analyze the validity of this algorithm including the determination of

lower and upper bounds of the density of the LCDS of L, the determination of the stop condition,

the connectivity of the discovered LCDS of L and its time complexity.

3.1.3.2 Proving the Validity of the Algorithm

Relationship between capacity and density bounds of the LCDS: In order to con-

tinually narrow the scope of the density of the LCDS, we need a method to determine the lower and

upper bounds based on the constructed TCPM in each loop in Algorithm 1. Therefore, we prove the

relationship between the possible capacity of the constructed TCPM and the bounds of the LCDS

below.

Lemma 3.1.1 Suppose (V1 ∪ {s}, V2) is a TCPM of the above constructed graph N = (VN , EN ),

then vertex subset L ⊂ V2.

Proof 3.1.1 We know that any cut c(V1, V2) where L ⊂ V2 has capacity cL ≤ (a|L| − a
2 ), since a is

a negative constant smaller than the twice of the sum of other negative edge capacities in the graph

N . Suppose there is a cut with capacity cL− which a vertex subset L− where L− ⊂ L and L− ⊂ V1,

then cL− > a|L\L−| + a
2 . Also, we know (a|L\L−| + a

2 ) ≥ (a|L| − a
2 ), since L− 6= ∅. Therefore,

cL− > cL. Hence, vertex subset L ⊂ V2 for TCPM (V1 ∪ {s}, V2).

Theorem 3.1.1 Suppose c(V1 ∪ s, V2) is a TCPM of the graph N = (VN , EN ), which has capacity

cmin and L+ is the LCDS of L, then the g parameter in Algorithm 1 satisfies g ≥ ρ(L+) if and only

if cmin ≥ a|L|, and it satisfies g ≤ ρ(L+) if and only if cmin ≤ a|L|.

Proof 3.1.2 As we can see from Figure 4.2, the capacity of the TCPM equals:

cmin =
∑

i∈V1,j∈V2

cij

=
∑
j∈V2

csj +
∑

i∈V1,j∈V2

cij

We know that vertex s is only connected to vertices in vertex subset L from the definition

of TCPM. Also based on Lemma 3.1.1, we know that L ⊂ V2. Hence,
∑

j∈V1

csj = 0. Therefore, we

have:
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cmin =
∑
i∈L

(a+ 2g − di) +
∑

i∈V2\L

(2g − di) +
∑

i∈V1,j∈V2

1

= a|L|+ 2|V2|(g −

∑
i∈V2

di −
∑

i∈V1,j∈V2

1

2|V2|
)

= a|L|+ 2|V2|(g − ρ(V2))

Since |V2| ≥ |L| and |L| > 0, 2|V2|(g−ρ(V2)) = 0 if and only if g = ρ(V2). Suppose g ≤ ρ(L+), then

we can find a cut c(V1, V2) where ρ(V2) ≥ g. Such a cut can lead to 2|V2|(g − ρ(V2)) ≤ 0. Hence,

capacity cmin ≤ a|L|. Conversely, suppose cmin ≤ a|L|, then, 2|V2|(g− ρ(V2)) ≤ 0. Then g ≤ ρ(V2).

We know ρ(V2) ≤ ρ(L+) from the definition. Therefore, g ≤ ρ(L+).

Suppose g ≥ ρ(L+), then we know ρ(V1) ≤ ρ(L+) from the definition. Hence, 2|V2|(g −

ρ(V2)) ≥ 0. Therefore the TCPM cmin ≥ a|L|. Conversely, suppose the TCPM cmin ≥ a|L|. Then,

2|V2|(g − ρ(V2)) ≥ 0. Then, g 6= ρ(V2). Also ρ(V2) ≤ ρ(L+). Therefore, g ≤ ρ(L+).

Based on the above property, we design the binary searching scheme of the algorithm.

Determining the stop condition of the algorithm:

Lemma 3.1.2 Suppose there is a connected graph N = (VN , EN ), two vertex subsets S1 and S2

where S1, S2 ⊂ VN . Then, |ρ(S1)− ρ(S2)| ≥ 1
n(n−1) , where n = |VN |.

Proof 3.1.3 Suppose the number of the edges in subgraph G1 = (S1, E(S1)) and G2 = (S2, E(S2))

is m1 and m2, respectively. Then, ρ(S1) = m1

|S1| , and ρ(S2) = m2

|S2| . We have:

|ρ(S1)− ρ(S2)| = | m1

|S1|
− m2

|S2|
|

=
|m1|S2| −m2|S1||

|S1||S2|

Since ρ(S1) 6= ρ(S2), we can divide the above equation to three conditions: i) |S1| > |S2|,m1 ≤ m2;

ii) |S1| > |S2|,m1 ≥ m2; and iii) |S1| = |S2|,m1 ≤ m2.

In case i), |S1| · |S2| ≤ 1
n(n−1) and m1|S2| −m2|S1| ≥ m1. Then, we have |ρ(S1)− ρ(S2)| =

m1

n(n−1) . Hence, |ρ(S1) − ρ(S2)| ≥ 1
n(n−1) . Similarly, in case ii), |ρ(S1) − ρ(S2)| ≥ 1

n(n−1) . In case

iii), |S1| < n since ρ(S1) 6= ρ(S2). Therefore, |ρ(S1)− ρ(S2)| ≥ 1
(n−1)2 . In all the three conditions,

|ρ(S1)− ρ(S2)| ≥ 1
n(n−1) .
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Theorem 3.1.2 Suppose |umin − lmin| < 1
n(n−1) , then we can ensure that the graph with density

bigger than lmin is the LCDS solution.

Proof 3.1.4 Based on Lemma 3.1.2, we know we can guarantee that there is only one subgraph with

a density bigger than lmin if |umin − lmin| < 1
n(n−1) . Then, proof completes.

Connectivity guarantee of the LCDS of L:

Theorem 3.1.3 Suppose (V1 ∪ s, V2) is a TCPM of the graph N = (VN , EN ), then vertex subset V2

is connected.

Proof 3.1.5 V2 is one partition of the TCPM. Therefore, we know that V2 is connected from the

definition of the TCPM problem.

Theorem 3.1.3 indicates that the LCDS of L discovered by Algorithm 1 is connected.

Time complexity: Previous studies have proved that TCPM problem can be solved in

polynomial time [66]. In the experiment, we apply a simple min-cut algorithm [36] with time com-

plexityO(|V ||E|+|V |2log|V |). Also, the stop condition can be met inO(log|VN |) times of estimations

(the time complexity of binary search) and each estimation requires one TCPM computation. Then,

the total time complexity of the LCDS discovery algorithm is O(|V ||E|log|V |+ |V |2log2|V |).

3.1.4 Discovering the GSDSs

In this section, we define the GSDS problem, and propose a polynomial-time solution.

Definition 7 (Global significant dense subgraph:) Given a connected graph G = (V,E), and

a connected subgraph GS = (S,E(S)) where S ⊂ V . GS is a GSDS if and only if there are no such

connected subgraph GS+ = (S+, E(S+)) that satisfies ρ(S+) > ρ(S) and S ⊂ S+, and also there are

no such connected subgraph GS− = (S−, E(S−)) that satisfies ρ(S−) > ρ(S) and S− ⊂ S.

3.1.4.1 A Basic Polynomial-time Algorithm

Based on the definition, the idea of this basic algorithm is to find candidates, which do not

contain denser subgraphs, and then check whether they are contained in denser subgraphs to get

the final results. This algorithm checks GSDSs based on the following three rules. First, the densest

subgraph is a GSDS. Second, GSDSs are disjointed from each other. Third, if a candidate subgraph
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is the LCDS of itself and does not contain denser subgraphs, then it is a GSDS. Accordingly, we

reduce the GSDS problem of G to a series of computations of discovering the densest subgraph and

the LCDS problems, which can be solved by the algorithm in [26] and Algorithm 1, respectively.

Algorithm 2 presents the pseudocode of this basic polynomial-time algorithm. In step 1

(block 3 - 4), we find the densest subgraph G1 = (V1, E(V1)) of G, and add G1 to GSDS list

Dlist. In step 2 (block 6), we find the densest subgraph G2 = (V2, E(V2)) from the remaining graph

G\G1. For subgraph G2, there are no denser subgraphs inside G2 based on the definition of the

densest subgraph. However, to check whether there are denser subgraphs containing G2, we find

LCDS G2L = (V2L, E(V2L)) of V2. If ρ(V2) ≥ ρ(V2L), then there are no denser subgraphs contain G2,

which we will prove in Theorem 3.1.6, and add G2 to Dlist. We continue this process in the remaining

graph of G until the remaining of graph G becomes empty. It is obvious that the maximum times

of the process is |V |.

Algorithm 2: Basic algorithm for discovering GSDSs

1: Given: G = (V,E);
2: G0 = (V0, E0)← G;
3: Find densest subgraph G1 = (V1, E(V1)) of G;
4: Add G1 to Dlist;
5: G← G\G1, i← 2;
6: while G 6= ∅ do

Find Gi = (Vi, E(Vi)) of G;
// Gi = (Vi, E(Vi)) is the densest subgraph of G

Find GiL = (ViL, E(ViL));
// GiL = (ViL, E(ViL)) is the LCDS of Vi of G0

G← G\Gi, i+ +;
if ρ(Vi) ≥ ρ(ViL) then

Add Gi to Dlist;
end

end
7: return Dlist;

3.1.4.2 Proving the Validity and Properties of the Algorithm

In this section, we prove the three rules followed in this algorithm by studying the properties

of GSDSs and analyze the time complexity.

Properties of GSDSs:

Theorem 3.1.4 Suppose G1 = (V1, E(V1)) is the densest subgraph of graph G = (V,E), then G1 is

a GSDS.
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Proof 3.1.6 From the definition of the densest subgraph, we know there are no subgraphs of G that

are denser than G1. Then, there are no subgraphs that contain G1 are denser than G1. Also, there

are no subgraphs contained in G1 that are more denser than G1. Therefore, by the definition of the

GSDS, G1 is a GSDS.

Theorem 3.1.4 supports our first rule.

Theorem 3.1.5 Suppose G1 = (V1, E(V1)) and G2 = (V2, E(V2)) are two GSDSs of graph G =

(V,E), then we have V1 ∩ V2 = ∅.

Proof 3.1.7 We prove it by contradiction. Suppose V1∩V2 6= ∅, then we have a connected subgraph

G12 = ((V1 ∪ V2), E(V1 ∪ V2)). Then we calculate the density ρ(V1 ∪ V2) as follows:

ρ(V1 ∪ V2) =
E(V1 ∪ V2)

|V1 ∪ V2|

Let Vb = V1 ∩ V2. Then we have:

ρ(V1 ∪ V2) =
ρ(V1)|V1|+ ρ(V2)|V2| − ρ(Vb)|Vb|

|V1|+ |V2| − |Vb|

Since G1 and G2 are GSDSs, we have ρ(V1) > ρ(Vb) and ρ(V2) > ρ(Vb). Suppose ρ(V1) ≥ ρ(V2),

then we have:

ρ(V1 ∪ V2) >
ρ(V2)|V1|+ ρ(V2)|V2| − ρ(V2)|Vb|

|V1|+ |V2| − |Vb|
= ρ(V2)

Therefore, G2 is not a GSDS from the definition. It contradicts with the assumption. Therefore,

we must have V1 ∩ V2 = ∅.

Theorem 3.1.5 supports our second rule, which guarantees that we can find all the GSDSs.

Theorem 3.1.6 Suppose G1
∗ = (V1

∗, E(V1
∗)) is the densest subgraph of part of the graph G, then

G1
∗ is the GSDS of G, if and only if G1

∗ is the LCDS of V1
∗ of G.
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Proof 3.1.8 Firstly, we prove that G1
∗ is the GSDS if G1

∗ is the LCDS of V1
∗ of G. From the

definition of the LCDS, we know there are no subgraph G0
∗ = (V0

∗, E(V0
∗)) where V1

∗ ⊂ V0
∗

and ρ(V0
∗) > ρ(V1

∗) . Also, from the densest subgraph definition, we know there are no subgraph

G0
∗ = (V0

∗, E(V0
∗)) where V0

∗ ⊂ V1
∗ and ρ(V0

∗) > ρ(V1
∗). Therefore, G1

∗ is the LCDS of V1
∗ of

G. Secondly, we prove that G1
∗ is the GSDS only if G1

∗ is the LCDS of V1
∗ in G by contradiction.

Suppose G1
∗ is not LCDS of V1

∗ in G, then there is a subgraph G0
∗ = (V0

∗, E(V0
∗)) where V1

∗ ⊂ V0∗

and ρ(V0
∗) > ρ(V1

∗). Then G1
∗ is not a GSDS by the definition. Therefore, the condition that G1

∗

is the LCDS of V1
∗ of G is the necessary condition for that G1

∗ is a GSDS.

Algorithm 3: Improved algorithm for discovering GSDSs

1: Given: G = (V,E);
2: S ← V , Sp ← ∅, ρmax ← ρ(S);
3: while S 6= Sp do
Sp ← S;
Sc ← {i ∈ S|degS(i) ≤ ρmax};
S ← S\Sc;
if ρ(S) > ρmax then

ρmax ← ρ(S);
end

end
4: G0 = (S0, E(S0))← GS = (S,E(S));
5: Find densest subgraph G1 = (V1, E(V1)) of GS ;
6: Add G1 to Dlist;
7: V1

∗ ← V1 ∪ {j|(i, j) ∈ E(S), i ∈ V1};
8: G1

∗ = (V1
∗, E(V1

∗));
9: GS ← GS\G1

∗, i← 2;
10: while GS 6= ∅ do

Find Gi = (Vi, E(Vi));
// it is the densest subgraph of GS

Find GiL = (ViL, E(ViL));
// it is the LCDS of Vi of G0

Vi
∗ ← Vi ∪ {j|(i, j) ∈ E(S), i ∈ Vi};

Gi
∗ = (Vi

∗, E(Vi
∗));

GS ← GS\Gi
∗, i+ +;

if ρ(Vi) ≥ ρ(ViL) then
Add Gi to Dlist;

end

end
11: return Dlist;

Theorem 3.1.6 supports our third rule. Time complexity: In order to discover the densest sub-

graph, we choose the push-relabel algorithm with dynamic trees [15]. The time complexity of this

algorithm is O(|V ||E|log(|V |2/|E|)). For the TCPM problem, we choose a simple min-cut algorith-
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m [66]. The time complexity of this algorithm is O(|V ||E|+ |V |2log|V |). Therefore, the total time

complexity for computing one LCDS is O(|V ||E|log(|V |2/|E|)+ |V ||E|+ |V |2log|V |). The total time

complexity for computing one GSDS is O(|V |2|E|log(|V |2/|E|)log|V | + |V |2|E| + |V |3log|V |). For

natural graphs, the time complexity is approximately O(|V |2|E|log2|V |), since natural graphs are

usually sparse graphs, which makes |V | ≈ |E|.

Even though the basic GSDS algorithm can solve the problem in polynomial time, a time

complexity of O(|V |2|E|log2|V |) is still too high for large datasets especially in this big data era. To

reduce its time complexity, we propose an improved GSDS algorithm below.

3.1.4.3 An Improved Algorithm for Large Datasets

It is well-known that the natural graphs usually follow a power-law degree distribution [5].

For graphs with such a feature, most of the vertices have low probabilities to be in the GSDSs, since

they have very low degrees. Therefore, the basic idea of this improved algorithm is trying to reduce

the initial size of the dataset by deleting the vertices with very low degrees. The detailed process

is presented in Algorithm 3. For a given G = (V,E), we first delete all the vertices, which have

degrees equal or smaller than the maximum density of remaining graph during the deleting process

(blocks 1-3) streamingly. Then, in addition to the same process as the basic algorithm, we delete

the neighbors of the vertices of each densest subgraph found in the remaining graph (blocks 5-10).

Block 11 returns the results. In the following, we prove the correctness of this algorithm.

Properties used for the improvement:

Lemma 3.1.3 Suppose GS = (VS , E(VS)) is the densest subgraph of graph G, then we have degVS
(i) ≥

ρ(VS) for any vertex i, where i ∈ VS.

Proof 3.1.9 We prove it by contradiction. Suppose there is at least one vertex i, where i ∈ VS, and

degVS
(i) < ρ(VS), then we delete vertex i from GS, and get graph GS− = (VS\{i}, E(VS\i)). The

density of graph GS− is:

ρ(VS\{i}) =
|E(VS\i)|
|VS\{i}|

=
ρ(VS)|VS | − degVS

(i)

|VS | − 1

Since degVS
(i) < ρ(VS), we have:

27



ρ(VS\{i}) >
ρ(VS)(|VS | − 1)

|VS | − 1

> ρ(VS)

This contradicts with the precondition. Therefore, we have degVS
(i) ≥ ρ(VS) for any vertex i, where

i ∈ VS.

Theorem 3.1.7 After we delete all the vertices with degrees less or equal than the maximum density

of the remaining graph of G in block 3 of Algorithm 3 to obtain GS, all the GSDSs of G are in GS.

Proof 3.1.10 We prove it by contradiction. Suppose there is one GSDS Gx = (Vx, E(Vx)), where

Gx 6⊂ GS, then there is a vertex subset I where I ⊂ Vx and I 6⊂ Vs. There is a time in the deleting

process that the first vertex i in I is deleted from the current Vs (denoted by Vs
+). Therefore, we

have:

ρ(Vx) ≤ degVx
(i)

≤ degVs
+(i)

< ρ(Vs
+)

This implies that ρ(Vx) < ρ(Vs
+), and at this moment, we have Vx ⊂ Vs

+. Hence, from the

definition of GSDS, we know that Gx is not a GSDS of G. This contradicts with the assumption.

Therefore, for any GSDS Gx of G, we have Vx ⊂ VS.

Based on Theorem 3.1.7, we design block 3 in Algorithm 3.

Theorem 3.1.8 Suppose G1 = (V1, E(V1)) and G2 = (V2, E(V2)) are two GSDSs of graph G =

(V,E), then there is no such an edge (v1, v2) in graph G, where v1 ∈ V1 and v2 ∈ V2.

Proof 3.1.11 We prove it by contradiction. Suppose there is at least one edge (v1, v2) where v1 ∈ V1

and v2 ∈ V2, then we calculate the density of G0 = (V1 ∪ V2, E(V1 ∪ V2)) as follows:

ρ(V1 ∪ V2) =
|E(V1 ∪ V2)|
|V1 ∪ V2|

≥ ρ(V1)|V1|+ ρ(V2)|V2|+ 1

|V1|+ |V2|
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Suppose ρ(V1) ≥ ρ(V2), then we have:

ρ(V1 ∪ V2) >
ρ(V2)|V1|+ ρ(V2)|V2|

|V1|+ |V2|

=
ρ(V2)(|V1|+ |V2|)
|V1|+ |V2|

= ρ(V2)

Also, we know that V2 ⊂ V1 ∪ V2. Therefore, G2 is not a GSDS. This contradicts with the precon-

dition. Therefore, there is no such an edge (v1, v2) in graph G, where v1 ∈ V1 and v2 ∈ V2.

Based on Theorem 3.1.8, we design block 10 of Algorithm 3.

Theorem 3.1.9 Suppose G∗ = (V ∗, E(V ∗)) is a subgraph of G = (V,E(V )) and G1
∗ = (V1

∗, E(V1
∗))

is the densest subgraph of G∗, then there are no GSDSs of G in G∗, if ρ(V1
∗) < ρ(V ).

Proof 3.1.12 Since V ∗ ⊆ V and V1
∗ ⊆ V ∗, we have V1

∗ ⊆ V . Also, we know ρ(V1
∗) < ρ(V ). Also,

by the definition of the GSDS, G1
∗ is not a GSDS of G. Based on the definition of the densest

subgraph, we know that, for any subgraph Gi
∗ = (Vi

∗, E(Vi
∗)) in G∗, ρ(Vi

∗) < ρ(V1
∗) < ρ(V ). Also,

Vi
∗ ⊆ V . Hence, Gi

∗ is not a GSDS of G. Therefore, there are no GSDSs of G in G∗.

Based on Theorem 3.1.9, we design the stop condition of the loop in block 10 of Algorithm 3.

3.2 Measurement

The social network features in human mobility networks have been widely applied in DTN

routing algorithms [18,33,34,53]. However, it is not clear whether VNETs have these social network

features since vehicles, especially taxies, may follow random customers’ demands to move. Therefore,

we analyze two real world VNET traces gathered by taxi GPS in different cities, referred to as

Roma [49] and SanF [58]. The Roma trace contains mobility trajectories of 320 taxies in the

center of Roma from Feb. 1 to Mar. 2, 2014. The SanF trace contains mobility trajectories of

approximately 500 taxies collected over 30 days in San Francisco Bay Area.

We first transfer the traces to contact graphs based on the contact durations. The nodes

of the graphs are the taxies in the traces, the edges are the contacts between pairs of taxies. We

naturally think that if two vehicles encounter each other more often, they are in a closer relationship
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and only the contacts which have accumulative durations long enough can be considered as edges.

Therefore, in the following measurement, we define an accumulative contact duration threshold

(3000s in Roma and 5000s in SanF ) and the contacts with accumulative durations larger than the

threshold can be considered as edges. In this way, we transform the mobility traces into complex

networks and study the following social network features:

1. Important nodes: In a complex network, a few nodes play an important role in guaranteeing

the connectivity of the network and spreading information [2]. Forwarding packets to such

important nodes can enhance the routing efficiency. Here, we use degree and PageRank to

measure the important vehicles and define important vehicles as vehicles with high degrees

and PageRank values. The degree of each vehicle is calculated by counting the number of the

edges the vehicle has in the contact graph. The PageRank value of each vehicle is calculated

by counting the number and quality of edges to the vehicle.

2. Community structure: A network is said to have the community structure if nodes can be

easily grouped into communities which are densely connected internally [25]. In this section,

we use modularity [56] to measure the community structure. Modularity is the degree to which

the network can be clustered as communities. The higher modularity the network has, the

more obvious the community structure is.

3. Fractal structure feature of the community: The fractal structure feature of the commu-

nity is the pattern that many small, highly connected communities combine in a hierarchical

manner into larger, less cohesive communities recursively in networks [60]. Previous study [6]

indicates that a power law clustering coefficient [71] distribution is the necessary and suffi-

cient condition of the fractal structure feature of the community. Therefore, we measure the

clustering coefficient distributions of the two traces for verifying fractal structure feature of

the community in VNETs. Clustering coefficient of a vehicle is calculated by quantifying how

close its neighbors are to be a clique (complete graph).

3.2.1 Important Nodes

Figure 3.3 shows the degree distributions of the two traces. We find that the degree dis-

tributions approximately follow power laws for both traces. Figure 3.4 shows the PageRank value

distributions of the two traces. We find that the PageRank value distributions of the two traces also
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Figure 3.3: The degree distribution.
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Figure 3.4: The PageRank value distribution.

approximately follow power laws, which are consistent with degree distributions. Figure 3.3 and

Figure 3.4 indicate that there are a few very important vehicles with high degrees and PageRank

values. Therefore, we conclude our first observation (O1) as follows:

O1: There are several very important vehicles with high degrees and PageRank values, which

have high probability to encounter various and a large number of other vehicles.

3.2.2 Community Structure in VNETs

Trace Modularity

Roma 0.74

SanF 0.78

Figure 3.5: Modularity

Then, we measure the modularity [56] of each trace by Graphi [1]

(A complex network analysis software). The results are shown in Figure 3.5.

The modularity values of the two traces are 0.74 and 0.78, respectively. The

social networks with the community structure in the real world usually have

modularity values between 0.4 and 0.7 [56]. Therefore, the high modularity

values of the two traces indicate their obvious community structures.
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Figure 3.6: The topologies of the largest connected subgraphs.
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Figure 3.7: The clustering coefficient value distribution.

In order to show the community structures clearly, we draw network topologies of the

maximal connected components of the two traces in Figure 3.6. As shown in Figure 3.6, there are

clearly dense components which are corresponding to different communities in VNETs. Also, we can

clearly observe the weak ties, which connect different dense components. Therefore, we conclude

our second observation (O2) as follows:

O2: The VNETs have obvious community structures connected by weak ties.

3.2.3 Fractal Structure Feature of the Community in VNETs

Figure 3.7 shows the clustering coefficient distributions of the two traces. The power law

clustering coefficient distributions shown in Figure 3.7 indicate that two traces both have fractal

structure feature of the community. Therefore, we conclude our third observation (O3) as follows:

O3: The communities in VNETs present fractal structure feature.

The above three observations show that, even for the taxi networks in which the mobilities
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are determined by random customers’ demands, there are clear social network features as other

human mobility networks [18,34].

3.3 System Design

Before introducing the detailed design of SPread, we give an overview of the routing process

for a packet as follows:

1. First, we scatter different copies of the packet to communities which are close to the destination

community through weak ties as shown in Figure 1.1, which improves the multi-copy routing

efficiency. Then the routing of each copy is divided into two phases: inter-community and

intra-community.

2. In the inter-community routing, each copy is gradually forwarded to the vehicles with higher

multi-hop reachability to the destination community as shown in Figure 4.8. Once a copy

encounters the destination community, the copy is forwarded or replicated to the destination

community according to different situations.

3. In the intra-community routing, for the copies which have reached the destination commu-

nity, they are gradually forwarded to the vehicles with higher multi-hop reachability to the

destination vehicle as shown in Figure 4.8.

Based on the overview, in this section, we first provide the method to identify the fractal

structure feature of the community in VNETs and build Fractal Community structure Tree (FCT)

by static GPS history data. FCT is used for scattering copies of each packet to different communities.

33



0

0.2

0.4

0.6

0.8

1

T1-2 T2-3 T3-4 T4-5 T5-6

P
e

rc
e

n
ta

g
e

 

Time interval 

Roma

SanF

Figure 3.10: The stability of encounter frequencies.

 

i  

j 

a       b   c      d 
Before After 

Before After 

Figure 3.11: Multi-copy process.

Then, we describe the process of constructing IntEr-community personalized Rank Table (IERT)

and IntrA-community personalized Rank Table (IART) for each vehicle dynamically. IERT is used

for the routing in the inter-community routing phase. IART is used for the routing in the intra-

community routing phase. IERT and IART both consider the multi-hop reachability of vehicles to

different communities and vehicles. Next, we explain the details of our weak tie based multi-copy

routing algorithm. Finally, the pseudocode and routing process descriptions of SPread from the

micro-scope are given as a summary.

3.3.1 Building Fractal Community Structure Tree (FCT)

In order to scatter copies of each packet to communities which are close to the destination

community, there are few questions. How can we identify communities? How can we calculate the

distances among communities? In order to answer the questions, we need to understand the structure

of VNETs. Therefore, we build Fractal Community structure Tree (FCT) by the static GPS history

data for solving these questions. FCT saves the fractal structure feature of the community in a

tree structure. Figure 3.9 shows an FCT for example. In the FCT, lowest level communities a, b,

c and d present fractal structure feature, which combine themselves into higher level communities

recursively. For the routing part, we only need the information of the communities in the lowest

level. For example, as shown in Figure 3.9, we only need the information of communities a, b, c

and d in level 3 for the inter-community and intra-community routing. However, for calculating the

distances among communities and weak tie based multi-copy routing algorithm, we need to consider

the tree information, which will be further explained in subsection 3.3.3.
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3.3.1.1 Stability

VNETs are usually sparse distributed and building FCT is more complicated than identi-

fying communities only. Therefore, it is preferable to build FCT by static GPS history data which

can be easily obtained. However, the FCT is mainly determined by encounter frequencies among

vehicles. Whether the encounter frequencies stay stable from time to time significantly influences

the accuracy of FCT built by static GPS history data. Therefore, we first analyze the stability

of vehicle encounter frequencies. We divide each of the two traces to 6 time intervals with equal

length and count the top 5 frequently encountered vehicles of all the vehicles at the end of each

time interval. Then we calculate the percentage of changes from one time interval to the next time

interval and draw Figure 4.1. The Ti− j on the x axis in Figure 4.1 means the changes from time

interval i to time interval j. The y axis is the percentage of the changes from one time interval to

the next time interval. As shown in Figure 4.1, the encounter frequencies among vehicles tend to be

stable, which means that we can apply the recent GPS history data to construct the FCT for future

system design.

3.3.1.2 BGLL algorithm

BGLL algorithm is an algorithm for fast discovering fractal communities [8] and has been

widely applied to different applications. There are various community detecting algorithms. How-

ever, we need to not only detect the communities, but also find the fractal structure feature of the

community easily. At the same time, we hope the algorithm is fast and precise. Therefore, BGLL

algorithm is the most suitable algorithm. However, BGLL algorithm does not save the FCT by

itself. Therefore, we introduce an improved BGLL algorithm for building the FCT as follows.

1. First, we consider each vehicle as a community and calculate the increased modularity ∆Q for

adding any vehicle i to its neighbor j and add node i to its neighbor’s community which has

the positive maximum increased modularity ∆Q by

∆Q =

[∑
in +ki,in

2m
−
(∑

tot +ki
2m

)2
]

−

[∑
in

2m
−
(∑

tot

2m

)2

−
(
ki
2m

)2
]

where
∑

in is the sum of the weights (contact durations) of the edges inside the community that
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j belongs to.
∑

tot is the sum of the weights of the edges incident to nodes in the community

that j belongs to, ki is the sum of the weights of the edges incident to node i, ki,in is the sum

of the weights of the edges from i to nodes in C and m is the sum of the weights of all the

edges in the network. If all the ∆Q are negative, vehicle i stays in its initial community. This

process is applied repeatedly for all nodes until the modularity cannot be further increased.

2. Then, we consider each community as a new node and reconstruct the network where the edge

weight of any two communities is the sum of edge weight connecting two communities. If the

number of nodes is more than 1, we go to step 1.

3. We construct the final FCT by traversing the community level by level until the community

sizes reach a suitable size and record the lowest level community set as S.

3.3.2 Building IntEr-community Personalized Rank Table (IERT)

In the inter-community routing phase, in order to forward each copy to vehicles which

are close to the destination community, we need to define a criterion for selecting relay vehicles.

Probability, community and centrality based utilities all have their own drawbacks as mentioned in

Chapter 2. Therefore, inspired by the personalized PageRank algorithm, we design the personalized

CommunityRank algorithm and build IntEr-community personalized Rank Table (IERT) for each

vehicle dynamically. IERT records the multi-hop reachability of a vehicle to different communities

(called CommunityRank). The CommunityRank can count the multi-hop reachability to different

communities, which enhance the inter-community routing efficiency.

3.3.2.1 Calculating one hop encounter frequencies to different communities

Building IERT needs the information of encounter frequencies of vehicles with different

communities. Therefore, each vehicle is responsible for maintaining the encounter frequencies with

different communities in the IEter-community Frequency Table (IEFT) by Formula (3.1):

 FCt
ia = fctia t = 0,

FCt
ia = αFCt−1

ia + (1− α)fctia else
(3.1)

where FCt
ia denote the encounter frequencies between vehicle i and community a at time t. fctia

denotes the encounter frequencies during the interval [t − 1, t) (the number of times that vehicle i
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encounters the vehicles in community a). α is a damping factor where the higher value of α is, the

more FCt
ia count the recent encounters.

3.3.2.2 CommunityRank algorithm

The personalized CommunityRank value is given by Formula (3.2):
CRt

ij = FCt
ij t = 0,

CRt
ia = (1− β) + β

∑
k∈Et

i

FCt
kiCRt

ka∑
l∈C

FCt
kl

else
(3.2)

where CRt
ij denotes the CommunityRank from vehicle i to vehicle j at time t; Et

i denotes the vehicle

set that vehicle i encountered during time interval [t−1, t) which belong to the same community with

vehicle i; C denotes the community which vehicle i belongs to and β is the damping factor. Whenever

two vehicles encounter each other, they exchange their current IERT and IEFT tables. Then, the

two vehicles update their CommunityRank values using Formula (3.2). Implicitly, CommunityRank

algorithm exploits the mobility and contact behavior of vehicles since the CommunityRank values

are updated every time when vehicles encounter each other.

3.3.3 Building IntrA-community Personalized Rank Table (IART)

In the intra-community routing phase, in order to forward each copy to the vehicles which

are close to the destination vehicles, we need to define another criterion for selecting relay vehicles.

Similar as the personalized CommunityRank algorithm, we design the personalized VehicleRank

algorithm and build IntrA-community personalized Rank Table (IART) for each vehicle dynamically.

IART records the reachability of a vehicle to different vehicles (called VehicleRank) in the same

community. The VehicleRank can count the multi-hop reachability to different vehicles, which

enhances the intra-community routing efficiency.

3.3.3.1 Calculating one hop encounter frequencies to vehicles in the same community

Building IART needs the information of encounter frequencies of vehicles with other vehicles

in the same community. Therefore, each vehicle is also responsible for maintaining the encounter

frequencies with other vehicles in the same community in the IntrA-community Frequency Table
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(IAFT) by Formula (3.3):  FV t
ij = fvtij t = 0,

FV t
ij = γFV t−1

ij + (1− γ)fvtij else
(3.3)

where FV t
ij denotes the encounter frequencies between vehicle i and j at time t; fvtij denotes the

encounter frequencies during time interval [t − 1, t) (the number of times that vehicle i encounters

vehicle j). γ is a damping factor where the higher value γ is, the more FV t
ij counts the recent

encounters. The IAFT table will be applied for the VehicleRank algorithm later. Since the commu-

nities are divided based on the encounter frequencies, vehicles in different communities usually have

very low encounter frequencies with each other. Therefore, we just discard the encounter frequencies

among vehicles in different communities for saving memory.

3.3.3.2 VehicleRank algorithm

As shown in Figure 3.3, Figure 3.4 and Figure 3.6, VNETs are dominated by some important

vehicles which can guarantee the connectivity of the network. Therefore, we hope the relay vehicles

have not only high probability to reach destination vehicles, but also high probability to reach the

other important vehicles which can reach destination vehicles with high probability. Centrality based

routing algorithms [33,53] lack the capability to measure the vehicle reachability to different vehicles.

Therefore, we design a personalized VehicleRank algorithm which is inspired by the personalized

PageRank algorithm [31] to calculate the multi-hop reachability of vehicles to different vehicles in

the same community dynamically. Consequently, the personalized VehicleRank value is given by

Formula (3.4): 
V Rt

ij = FV t
ij t = 0,

V Rt
ij = (1− d) + d

∑
k∈Et

i

FV t
kiV Rt

kj∑
l∈C

FV t
kl

else
(3.4)

where V Rt
ij denotes the VehicleRank from vehicle i to vehicle j at time t and d is the damping

factor. Whenever two vehicles encounter each other, first they check whether they belong to the

same community. If they belong to the same community, they exchange their current IART and

IAFT tables. Then, the two vehicles update their VehicleRank values using Formula (3.4). Im-

plicitly, VehicleRank algorithm also exploits the mobility and contact behavior of vehicles since the

VehicleRank values are updated every time that vehicles encounter each other.
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3.3.4 Weak Tie based Multi-copy Routing Algorithm

In Chapter 1, we have introduced the concept of weak ties and its important role in infor-

mation spreading. Recall that we define the infrequent contacts in VDTNs as weak ties. To be more

specific, we further define the contact between vehicles from two different communities as a weak tie

(which is usually with a low encounter frequency) and design our weak tie based multi-copy routing

algorithm. In the weak tie based multi-copy routing algorithm, the different copies of each packet

are first scattered to different communities in a VNET through weak ties. Then different copies can

search the destination vehicle through different weak ties. Therefore, we can improve the multi-copy

routing efficiency since there is a high probability that at least one weak tie is connected during the

routing time. For example, as shown in Figure 1.1, we scatter copies of a packet to communities

which are close to the destination community. Then, different copies search the destination commu-

nity through different weak ties (A, B, C, D) simultaneously. Finally, one of the copy encounters a

connected weak tie D to destination community, which improves the multi-copy routing efficiency.

Besides the problem of the low utilization of different copies of each packet mentioned

in Chapter 1, the multi-copy routing algorithms which rely on source nodes for replicating are

overdependent on the capability of source nodes themselves, though the capabilities of source nodes

themselves are various as shown in Figure 3.3. The source node may barely encounter any suitable

nodes for replicating. Therefore, besides the basic weak tie multi-copy routing idea mentioned

above, we hope to improve the efficiency of scattering copies by replicating copies from different

relay vehicles simultaneously. However, there are challenges to control the number of copies per

packet, since the frequent communications among vehicles are too expensive. How can we control

the number of copies? How can we properly replicate copies of each packet to different communities?

In order to handle the challenges, we use the FCT and develop the following detailed algorithm.

3.3.4.1 Basic concepts

Before we describe the detailed multi-copy routing algorithm, we first introduce three con-

cepts: multi-copy community scope, multi-copy capability and multi-copy community scope split-

ting. Multi-copy community scope is used to identify the communities where different relay vehicles

can scatter copies. Multi-copy capability is used as a criterion for selecting vehicles with stronger

capability for scattering copies in the same community. Multi-copy community scope splitting is
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used to separate and distribute the multi-copy community scope to vehicles in different communities

in order to accelerate the scattering. The details are as follows.

Multi-copy community scope identifies the communities that a vehicle can replicate copies

to, which is stored in the FCT. As shown in Figure 3.9 for example, the tree like FCT saves the

communities the vehicle i can replicate copies to in gray hierarchically. The striped community

presents the community that i belongs to.

Multi-copy capability presents the capability of a vehicle to replicate copies to a specific

multi-copy community scope, which is calculated by Formula (3.5):

MCC(i, S) =
∑
a∈S

CRt
ia (3.5)

where MCC(i, S) is the multi-copy capability of vehicle i to multi-copy community scope S.

Multi-copy community scope splitting is that given a multi-copy community scope S and

two vehicles i and j, we split the multi-copy community scope according to the distances of each

community in the multi-copy community scope and the communities vehicle i and j belong to by

Formula (3.6):  Si = {∀a ∈ S|level(i, a) > level(j, a)}

Sj=S\Si

(3.6)

where Si is the split multi-copy community scope for vehicle i; level(i, a) are the levels of the lowest

level community which contains the community a and the community that vehicle i belongs to. For

example, as shown in Figure 3.5, level(a, b) = 2 and level(a, c) = 1.

3.3.4.2 Detailed multi-copy routing process

Based on these concepts, we introduce our weak tie based multi-copy routing algorithm.

Initially, when the packet is produced by source vehicle s, s is authorized with the multi-copy

community scope of all the communities. Then the weak tie multi-copy routing algorithm works as

follows:

1. Once a relay vehicle i encounters another vehicle j without the same packet, we check whether

vehicle i and j belong to the same community. If yes, go to step 2). Otherwise, go to step 3);

2. we calculate the multi-copy capabilities of i and j to the multi-copy community scope S stored

in vehicle i by Formula (3.5). If MCC(j, S) > MCC(i, S), vehicle i forwards its packet with

its multi-copy community scope to j. Therefore, the packet and its multi-copy community
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scope will be forwarded to the vehicles with higher multi-hop reachability to the corresponding

multi-copy community scope;

3. vehicle i checks whether vehicle j’s community belongs to vehicle i’s multi-copy community

scope. If yes, vehicle i splits the multi-copy community scope by Formula (3.6), replicates

a copy with multi-copy community scope Sj to vehicle j and updates its own multi-copy

community scope by Si. Therefore, the multi-copy community scope is carefully split and

allocated to the communities which are closer to the multi-copy community scope.

A simple example of multi-copy community scope splitting process is shown in Figure 3.11. When

the relay vehicle i encounters another vehicle j, the multi-copy community scope is split according to

the distances between communities that i and j belong to and the multi-copy community scope. In

Figure 3.11, the black nodes present the multi-copy community scope and the striped nodes present

communities that i and j belong to.

3.3.4.3 Manage the number of copies

Algorithm 4: Detailed Process of SPread
1: ∀k, V Rik0

← FVik0
;

2: while S 6= Sp do
Sp ← S;
Sc ← {i ∈ S|degS(i) ≤ ρmax};
S ← S\Sc;
if ρ(S) > ρmax then

ρmax ← ρ(S);
end

end
3: G0 = (S0, E(S0))← GS = (S,E(S));
4: G1 = (V1, E(V1)) of GS ;
5: G1 to Dlist;
6: V1

∗ ← V1 ∪ {j|(i, j) ∈ E(S), i ∈ V1};

A large number of copies may lead to a congestion in the network and meanwhile, the copies

located in the communities which are far from the destination community have little chance to reach

the destination community. Therefore, instead of initializing the multi-copy community scope to all

the communities, we only initialize the multi-copy community scope to the communities which are

close to the destination community. To be more specific, we define the initial multi-copy community

scope Sinit by Formula (4.1):

Sinit = {∀a ∈ S|level(t, a) > r} (3.7)
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where S is the set of the communities at the lowest level and r is a threshold for managing the

number of copies of a packet.

3.3.5 Detailed Process of SPread

Based on the above descriptions, the detailed process of SPread is shown in Algorith-

m 4, where packet(k) is the kth packet in vehicle i, c(packet(k)) is the destination community

of packet(k), c(i) is the community that vehicle i belongs to, MCC(i, Si) is the multi-copy capa-

bility of i on multi-copy community scope Si, t(packet(k)) is the destination vehicle of packet(k)

and V R(j, t(packet(k))) is the VehicleRank of j to t(packet(k)). At the beginning of the routing,

packet(k) is produced by the source vehicle and the multi-copy community scope is calculated by a

threshold r for controlling the number of copies. Suppose a relay vehicle i of packet(k) encounters

another vehicle j, then we have:

1. If c(j) 6= c(packet(k)) and c(j) ∈ Si, packet(k) is replicated from i to j and the multi-copy

community scope for i is split and distributed to j by Formula (3.6);

2. If c(j) 6= c(packet(k)), c(i) = c(j) and MCC(j, Si) > MCC(i, Si), packet(k) is forwarded to j

with its multi-copy community scope Si;

3. If c(j) = c(packet(k)), c(i) 6= c(j) and Si = ∅, packet(k) is forwarded to j with its multi-copy

community scope Si;

4. If c(j) = c(packet(k)), c(i) 6= c(j) and Si 6= ∅, packet(k) is replicated from i to j and the

multi-copy community scope for i is split and distributed to j by Formula (3.6);

5. If c(i) = c(j) = c(packet(k)) and V R(j, t(packet(k))) is larger than V R(i, t(packet(k))),

packet(k) is forwarded to j with its multi-copy community scope Si.

3.4 Advanced SPread

In SPread, we translate the vehicles to a contact graph by their contact information, and

then classify the contact graph to hierarchical communities by a general community identification

algorithm. However, such a strategy may cause some problems. First, as the previous contact based
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Figure 3.12: An example of the community identified by a general community discovery method.

routing algorithms, the packet delivery in SPread is still based on passively waiting for the next suit-

able relay vehicle instead of actively searching the target vehicle, which influences the performance

of SPread since the trajectories of vehicles are not predictable. Second, the general community

identification algorithm fails to consider some useful information (e.g., the relationship between con-

tact locations and contact frequencies) that can help decrease the success rate and average delay

of the routing. Finally, SPread evenly distributes one copy to each community. However, it may

lead to a imbalance of utilization of copies since communities discovered by the general communi-

ty identification algorithms are with different sizes. Therefore, in this section, we further exploit

the spatio-contact correlation of the community to improve the efficiency of the basic SPread and

propose an Advanced SPread (ASPread). The spatio-contact correlation means that the vehicles in

the same community tend to meet each other in a certain small geographical area comparing to the

whole VNET map.

The general community discovery method classifies each vehicle to a community. However,

in reality, not all the vehicles are very related even though they are in the same community. For

example as shown in Figure 3.12, vehicle i belongs to the community a only because vehicle i is a

little more close to community a than all the other communities. But in fact, if vehicle i is selected

as a relay vehicle for community a, the routing performance will be decreased since there is only one

link from vehicle i to the rest vehicles in community a. Therefore, if a vehicle that is not very related

to its own community is selected, the routing performance may be adversely influenced. We define

core vehicles as the vehicles that frequently visit the locations that the majority of the vehicles in

a community visit frequently, such as the black nodes in Figure 3.12. By taking advantage of the

relationship between communities and geographic locations, we improve the routing performance by
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Figure 3.13: The trajectory of a vehicle in the entire VDTN map.

identifying the core vehicles in the communities and try to deliver the packets to the core vehicles

in the communities.

3.4.1 Measuring Spatio-contact Correlation of the Community

In order to verify the spatio-community correlation of vehicles, firstly, we define the concepts

of the road section and the active road section. A road section is the road part that does not contain

any intersections and it is denoted by the two IDs of intersections on its two ends in the entire

VDTN map. Then, we define the active road sections of vehicle v as road sections where vehicle v

visits frequently. To be more specific, we define the set of active road sections of vehicle j (denoted

by Sj) by:

Sj = {∀s ∈ S|f(s, j) > rv} (3.8)

where Sj is the set of active road sections of vehicle j, f(s, j) is the frequency that vehicle j visits

road section s; and rv is a visit frequency threshold. A smaller threshold rv leads to more road

sections in the Sj and vice versa.

We set r to 4 and find the active road sections of each vehicle in the Roma and SanF

traces. Figure 3.13 shows the distributions of the average distances of the active road sections

between vehicles and all the other vehicles in the same community in the Roma and SanF traces.

As shown in Figure 3.13, the active road sections of most vehicles in the same community have

average distances less than 2km. Since previous community is defined based on contact but not

location, it is possible that the contact location of the vehicles in the community is on the whole

map. Comparing to the diameters of the whole maps which are approximately 100km, 2km is a very
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small distance and hence, we can restrain the searching of copies of packets to a small geographic

area. Therefore, this phenomenon verifies that most vehicles in the same community tend to have

close active road sections, and there are high correlation between the location and the community.

While at the same time, as shown in the red circles, there exist some vehicles whose active road

sections far away from most vehicles in the same community. Therefore, we conclude our third

observation (O3) and fourth observation (O4) as follows:

O3: Most vehicles in the same community tend to be active in the same location.

O4: There exist some vehicles whose active road sections far away from most vehicles in

the same community.

Based on this observation, we further enhance the routing efficiency of SPread. We present

the enhanced routing algorithm in the following.

3.4.2 Mapping Communities to Geographic Locations

Based on O3 that vehicles in the same community tend to be active in the same location,

we try to map different communities to different geographic locations so that it becomes easier to

find the target vehicle’s community.

Based on the definition of active road sections of vehicles, we define the set of active road

sections of community a (denoted by Sa) by:

Sa = {∀s ∈ S|
∑
i∈V

f(s, i) > rc} (3.9)

where Sa is the set of active road sections of community a, V is the set of vehicles in community

a and rc is a visit frequency threshold for communities. A smaller threshold rc leads to more road

sections in the Sa and vice versa.

However, it is not possible to calculate Sa in a distributed manner since it is unlike for a

vehicle to collect f(s, i) for each i ∈ V . Therefore, we let each vehicle i calculate the set of active

road sections of community a (denoted by Sai
) distributedly. We use f(s, Sai

) to denote the visiting

frequency on road section s in Sai at current time collected by vehicle i in the distributed manner.

It is calculated by:

f(s, Sai) =


0 if initialize

max(f(s, Sai) + f(s, j), f(s, Saj )) if meet j

(3.10)
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Figure 3.14: The community size distribution.

When vehicle i meets vehicle j which belongs to community a, vehicle i updates f(s, Sai). f(s, Sai)+

f(s, j) means that the visiting frequency of road section s in Sai
is incremented by the visiting

frequency of vehicle j on road section s. Vehicle j also maintains f(s, Saj
). Then, vehicle i chooses

the higher visiting frequency value as its updated f(s, Sai). Vehicle i determines the active road

sections of community a by:

Sai
= {∀s ∈ S|f(s, Sai

) > rc} (3.11)

Based on Formula (3.11), each vehicle i distributedly calculates the set of active road sections

of each community. When vehicle i meets vehicle j, if vehicle j belongs to the community of the

destination (say community a) and its active road sections, Sj (calculated by Formula (3.8)), belongs

to Sai , then vehicle j is a core vehicle of community a. In this case, vehicle i forwards its packet to

vehicle j, which has a high probability of meeting the target vehicle.

3.4.3 Adaptive Determination of the Number of Copies based on Com-

munity Size

Another problem of SPread is that copies are evenly distributed to each community in

SPread. However, previous studies [25] show that the community size follows a power law distribu-

tion. In order to verify it in VNET, we draw Figure 3.14 which shows the distribution of numbers

of communities with different sizes. As shown in Figure 3.14, the community size also follows a

power law distribution in VNET, which is consistent with previous studies. However, in SPread,

we equally distribute one copy to each community. This strategy can lead to an imbalance of the

utilization of copies which means that some of the copies are responsible for searching among many
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Road section ID Frequency 
1 0 
2 0 
3 2 
… … 

 
Figure 3.15: An example of the active road section table.

vehicles, while some other copies are responsible for searching among only a few vehicles. Therefore,

in this section, we calculate the number of copies of community a by:

Na =
N · |Va|
|V |

(3.12)

where Na is the number of copies which can be sent to community a, N is the total number of copies

of a packet that can be sent, Va is the set of vehicles in community a and V is the set of all the

vehicles in the entire network.

In this way, we can make sure that the communities with larger sizes are allocated with

more copies and the communities with smaller sizes are allocated with fewer copies. Therefore, we

can avoid the situation in which some copies search among too many vehicles, while some other

copies search among only a few vehicles. As a result, the tradeoff between the routing overhead and

routing efficiency can be better achieved.

3.4.4 Routing Algorithm of Advanced SPread

In ASPread, a packet copy arrives at an active sub-area of the target vehicle by the same

method used in SPread. Then, ASPread forwards the packet copy to the core vehicles in the com-

munity that are more likely to meet the destination node. For this purpose, each node additionally

maintains two tables: active road section table and community-location mapping table. A vehicle’s

active road section table records its visiting frequencies on its active road sections as shown in Fig-

ure 4.16, where 1, 2, 3,... denote road IDs. The active road section table is updated by recording

the vehicle’s visited road sections and its visiting frequency (i.e., the number of visits in a certain

time period T ). Then, based on Formula (3.8), each vehicle determines its active road sections and

updates its active road section table periodically. To be more specific, for a vehicle i, it updates its

active road section table as follows:

1. Vehicle i initializes all the road sections with frequency 0;
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Community ID Active road 

sections 
a Sai 
b Sbi 
c Sci 
… … 

Road section ID Frequency 
4 1 
5 10 
6 4 
… … 

Figure 3.16: An example of the community-location mapping table.

2. Once vehicle i reaches a road section, it increases the visiting frequency of the road section by

1 and go to Step 3);

3. If the frequency of the road section is larger than the frequency threshold rv, add the road

section to vehicle i’s active road section table (Formula (3.8)).

Each vehicle also stores a community-location mapping table as shown in Figure 3.16. In

the table, a, b and c denote community IDs, and Sai , Sbi and Sci denote the set of active road

sections of community a, b and c, respectively, calculated by Formula (3.11). The arrow means that

Sai
includes active road sections 4, 5 and 6 and their visiting frequencies. These frequencies are

used to find the active road sections of a community based on Formula (3.11).

For vehicle i, it updates its community-location mapping table as follows:

1. Vehicle i initializes its own community-location mapping table by setting the active road section

sets of all communities to empty sets;

2. Once vehicle i meets another vehicle j, vehicle i gets the active road section table of vehicle j

and the community-location mapping table of vehicle j;

3. Based on the active road section table of vehicle j, vehicle i recalculates the visiting frequency

of road section s in community c(j) (denoted by f(s, Sc(j)i)) by Formula (3.10);

4. If the frequency of a road section is larger than the frequency threshold rc, vehicle i adds the

road section to community c(j)’s active road section set in the community-location mapping

table by Formula (3.11).
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Algorithm 5: Detailed Process of ASPread

1: ∀k, V Rik0 ← FVik0 ;
2: if vehicle i meets vehicle j then

if j ∈ Sc(j)i
then

Call Algorithm 4;
end
if vehicle i is the first relay vehicle in c(i) then

while CopyNum(i) > 0 and c(i) == c(j) do
copy packet(k) to j;
CopyNum(i)−−;

end

end

end
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Figure 3.17: The success rate vs. different number of copies.
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Figure 3.18: The average delay vs. different number of copies.
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Figure 3.19: The average cost vs. different number of copies.

When a relay vehicle i meets another vehicle, say vehicle j, if the destination community

is in vehicle j’s multi-copy community scope, vehicle i further checks if vehicle j is a core vehicle

in the destination community. To do this, vehicle i refers to its own community-location mapping

table, Sai , and vehicle j’s active road section table Sj . If Sj ∈ Sai , vehicle j is a core vehicle in the

destination community and vehicle i forwards the packet to vehicle j.

Based on the above description, the detailed process of ASPread is shown in Algorithm 5.

In the algorithm pseudocode, packet(k) is the kth packet in vehicle i, c(i) is the community that

vehicle i belongs to and CopyNum(i) is the number of copies vehicle i can create in community

c(i). At the beginning of the routing, packet(k) is produced by the source vehicle and the multi-

copy community scope is calculated by a threshold r and the number of copies of each community

is calculated by Formula (3.12). Different from SPread, ASPread distributes multiple copies to a

community and the number of copies is determined by the community size. Also, we only select core

vehicles in the destination communities as relay vehicles in ASPread instead of any vehicles in the

destination communities. Suppose a relay vehicle i of packet(k) encounters another vehicle j, then

the following steps are executed in the routing algorithm based on SPread:

1. If vehicle j belongs to the destination community of packet(k), go to Step 2);

2. Vehicle i checks whether vehicle j is the core of its own community. If yes, vehicle i follows the

same steps of SPread; otherwise, vehicle i ignores vehicle j directly without taking any action;

3. In order to allocate different numbers of copies based on different sizes of communities as we

mentioned above, if relay vehicle i is the first relay vehicle in its own community, vehicle i is
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responsible for distributing the specified number of copies in its own community calculated by

Formula (3.12) and go to Step 4);

4. Every time when the relay vehicle i meets another core vehicle in its community, it replicates

a copy to the vehicle and decreases the remaining number of copies by 1 until the remaining

number of copies equals to 0.

Based on this process, we can guarantee that the packet can be efficiently relayed by consid-

ering not only the contact distances between different communities, but also the geographic distances

between the relay vehicles and target communities. Also, the community with a larger size is allo-

cated with more copies to make sure that the target vehicle can be more efficiently searched.

3.5 Performance Evaluation

3.5.1 Performance Evaluation and Analysis of Massive Natural Graphs

Recall that the precise algorithm [62] (denoted by LocPreAlg) that finds the densest sub-

graph containing a specific vertex subset and the approximate algorithms [4,11] (denoted by GloAp-

pxAlg1 and GloAppxAlg2 ) that find the densest subgraph neglect the connectivity of the returned

subgraphs. Although the previous precise algorithm [26] (denoted by GloPreAlg) can guarantee the

connectivity of the returned subgraph, it is at the cost of high time and memory complexity. Also,

no previous work can find GSDSs. In this section, we conduct experiments to show the effectiveness

and efficiency of our proposed LSDS (Algorithm 1) and GSDS (Algorithm 3) algorithms in solving

these problems in comparison with these previous algorithms. We also show the enhanced efficiency

of our improved GSDS algorithm (Algorithm 3). We use two groups of massive datasets in Ta-

ble 3.1 and Table 3.2 from different domains in our experiments. We use big datasets in Table 3.2

to test the capacity of manipulating big data of Algorithm 3. The algorithms are implemented by

C language. The testing platform is one PC with 2.1GHz Intel core i3 processor with 2 cores, and

a 4GB memory. The Operating System is Ubuntu 10.0. In all the following figures, we use the

results of our algorithms as a baseline and shows the ratios of the results of other algorithms to

our algorithms. Further, we use Algorithm 3 to extract the GSDSs of the massive natural graphs

from social networks, technology, chemistry, and biology and conduct simple analysis to reveal the

physical significance of GSDSs in natural graphs from different domains.
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Table 3.1: Description of the datasets from different domains

ID Description Domain
Dataset 1 [43] Collaboration network Social network
Dataset 2 [42] Facebook Social network
Dataset 3 [72] Power Grid Technology
Dataset 4 [35] Protein interaction Chemistry
Dataset 5 [28] E-mail interchanges Information
Dataset 6 [20] Metabolic network Biology

Table 3.2: Description of the big datasets

ID Description Domain
Dataset 7 [75] LiveJournal Social network
Dataset 8 [75] Orkut Social network

3.5.1.1 Performance Evaluation of the LSDS Algorithm

We randomly select a specific vertex subset from each dataset, and then use Algorithm 1 and

LocPreAlg to find the LCDS of the selected vertex subset. Since both algorithms are not suitable

for large datasets, we conduct experiments on datasets in Table 3.1. We repeated the experiment on

each dataset for 100 times and calculated the percentage of connected subgraphs in the 100 returned

subgraphs.

Figure 3.20(a) shows ratio of the percentage of connected subgraphs in LocPreAlg compared

to Algorithm 1. For the previous algorithm, only 13% (for average) of the outcomes are connected,

while for Algorithm 1, 100% of the outcomes are connected. We further analyze the 13% of the

connected outcomes of the previous algorithm. We find that it is connected just because the specific

vertex subset only contains one vertex, which is contained in the densest subgraph of the initial graph.

For other outcomes of LocPreAlg, they are disconnected in order to increase the density. This results

show that Algorithm 1 can guarantee the connectivity of the returned graphs for the LCDS problem.

Since Algorithm 1 and LocPreAlg both require to store all the data into the memory, the

memory usages for both algorithms are same. Figure 3.20(b) shows the ratio of the time used by

LocPreAlg compared to Algorithm 1. We see that LocPreAlg is far more efficient than Algorithm 1.

The reason is because that we apply a simple min-cut algorithm [66] for solving the TCPM problem

with time complexity O(|V ||E| + |V |2log|V |), while LocPreAlg applied a push relabeled algorith-

m [15] for solving the min-cut max-flow problem with time complexity O(|V ||E|log(|V |2/|E|)). This

is the cost to guarantee the connectivity of the returned subgraphs. We will improve the efficiency

of Algorithm 1 in our future work.
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Figure 3.20: The performances of the LCDS algorithm compared to previous algorithms
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Figure 3.21: The performance of the improved GSDS algorithm compared to the basic GSDS algorithm
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Table 3.3: Comparison of datasets before and after reduction

Datasets
# of vertices # of edges size (KB)
Before After Before After Before After

Dataset 1 5,242 244 28,980 7,238 344 50
Dataset 2 9,877 599 25,998 8,264 644 59
Dataset 3 4,941 3,353 13,188 5,006 107 80
Dataset 4 1,846 624 4,406 1,121 34 15
Dataset 5 1,133 349 10,902 2,681 79 37
Dataset 6 453 66 2,066 301 14 4
Dataset 7 3,997,962 4,136 34,681,189 650,724 489,799 8,818
Dataset 8 3,072,44120,723117,185,0832,087,9321,728,293100,352

3.5.1.2 Comparison of Basic and Improved GSDS Algorithms

We then show the effectiveness of Algorithm 3 compared to Algorithm 2. Recall that

Algorithm 3 removes unnecessary edges and vertices. Table 3.3 shows the comparisons of the number

of vertices, the number of edges, and the memory size of the datasets before and after the reduction.

In order to show the reduction performances clearly, we draw Figures 3.21(a), (b) and (c) that show

the ratio of the number of vertices, the number of edges and the memory in Algorithm 3 compared

to Algorithm 2. From the table and figures, we see that the reduction in Algorithm 3 is significant.

Especially for the big dataset 7 and big dataset 8 which have a GB level data size, the number of

vertices and edges, and memory occupation are reduced to about 2% (for average) of the initial size,

which makes it possible to run the polynomial algorithm on one PC.

Figure 3.21(d) shows the percentage of running time of Algorithm 2 compared to Algorith-

m 3. Unsurprisingly, the running time of Algorithm 3 is much faster than Algorithm 2 since the

data sizes after reduction are much smaller than the initial sizes due to the significant size reduction

in Algorithm 3. Since dataset 7 and dataset 8 are too large to be computed by Algorithm 2, we

only estimate the results based on the theoretical time complexity. We see the actual running time

of Algorithm 3 are only 0.01% of the estimated running time of Algorithm 2.

3.5.1.3 Performance Evaluation of the Improved GSDS Algorithm

In this section, we compare the performance of discovering GSDSs between Algorithm 3

and GloPreAlg, GloAppxAlg1 and GloAppxAlg2. First, we use Algorithm 3 to discover all the GS-

DSs. Then, we use GloPreAlg, GloAppxAlg1 and GloAppxAlg2 to find the same number of densest

subgraphs by recursively running these algorithms in the remaining graph. Then, we check whether
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Figure 3.22: The performance of the improved GSDS algorithm compared to previous algorithms

these dense subgraphs are connected or significant. We repeat 100 experiments on each dataset in

Table 3.1.

Figure 3.22(a) shows the percentage of connected subgraphs of GloAppxAlg1, GloAppxAlg2

and GloPreAlg compared to Algorithm 3. We find that for GloAppxAlg1 and GloAppxAlg2, there

are a lot of disconnected subgraphs in the results, while for Algorithm 3, all the output subgraphs are

connected. Also, we find GloAppxAlg1 performs a little better than GloAppxAlg2 since GloAppxAlg1

greedily searches the densest subgraph by deleting the vertices one by one, while GloAppxAlg2

greedily searches the densest subgraph by deleting the vertices batch by batch. GloPreAlg does not

have the connectivity problem since it is a precise algorithm. The results confirm that GloAppxAlg1

and GloAppxAlg2 neglect the connectivity problem and Algorithm 3 can solve it.

Figure 3.22(b) shows the percentage of significant subgraphs in GloAppxAlg1, GloAppxAlg2

and GloPreAlg compared to Algorithm 3. We find that for GloAppxAlg1, GloAppxAlg2 and Glo-
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PreAlg, there are a lot of insignificant subgraphs in the results, while for Algorithm 3, all the output

subgraphs are significant. Also, similar as the connectivity comparison results, we find GloAppxAlg1

performs a little better than GloAppxAlg2. Although GloPreAlg is a precise algorithm and does not

have the connectivity problem, it still cannot guarantee that its discovered subgraphs are significan-

t. The results confirm that GloAppxAlg1, GloAppxAlg2 and GloPreAlg cannot guarantee that the

discovered subgraphs are significant and Algorithm 3 can solve it.

Figure 3.22(c) shows the ratios of memory sizes of GloAppxAlg1, GloAppxAlg2 and Glo-

PreAlg compared to Algorithm 3. We see that Algorithm 3 needs much smaller memory size than

GloPreAlg and GloAppxAlg1 since it significantly reduces the data size. GloAppxAlg2 almost does

not need any memory since it is a streaming algorithm. Figure 3.22(d) shows the ratio of run-

ning time of GloAppxAlg1, GloAppxAlg2 and GloPreAlg compared to Algorithm 3. Algorithm 3

is much faster than GloPreAlg, while GloAppxAlg1 and GloAppxAlg2 are much faster than Algo-

rithm 3. This is because Algorithm 3 is precise algorithm but GloAppxAlg1 and GloAppxAlg2 are

approximate algorithms applying a greedy strategy. Although GloAppxAlg1 is more time efficient

and GloAppxAlg2 is both more time and memory efficient than Algorithm 3, both the algorithms

cannot guarantee that the returned subgraphs are connected and significant as shown previously.

Algorithm 3 can handle these problems with the capability of handling big data.

3.5.1.4 Analysis on the Natural Graphs

When it comes to the physical significances, the physical significance of the LCDS is clear

and been discussed [62]. Instead, we focus on revealing the physical significance of the GSDSs based

on our limited information about the datasets.

Table 3.4 shows the actual number of GSDSs discovered by our algorithm. Datasets 1 and

2 are paper collaboration networks from the categories of gr-qc and hep-th in ArXiv, respectively.

For the papers in each category, they have sub-categories. Table 3.5 shows the top-10 most frequent

sub-categories of 1000 randomly selected papers in each of the categories gr-qc and hep-th, which

correspond to datasets 1 and 2, respectively. We find that the number of GSDSs in datasets 1 and 2

can precisely reflect the number of the most frequent sub-categories (emphasized with bold type) of

their corresponding categories. Dataset 3 is the power grid network of western states. Interestingly,

there are just 31 major metropolitan areas in western states [9], which is very close to the number

of GSDSs (28) in dataset 3. The protein network in dataset 4 has 13 GSDSs, while there should
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Table 3.4: # of GSDSs

ID # of GSDS (Actual) ID # of GSDS
Dataset 1 3 Dataset 5 1
Dataset 2 4 Dataset 6 1
Dataset 3 28 Dataset 7 2
Dataset 4 13 Dataset 8 4

Table 3.5: Top-10 sub-categories in Dataset 1 and 2

Dataset 1 Dataset 2
Sub-category Frequency Sub-category Frequency

hep-th 327 hep-ph 184
astro-ph 304 gr-qc 167
math-ph 175 math-ph 91
quant-ph 31 astro-ph 85
cond-mat 28 hep-lat 39

physics.atom-ph 27 math.DG 35
stat-mech 11 nlin.SI 21

nucl-th 7 nucl-th 19

be hundreds of functional modules in the network [13]. The massive functional modules are highly

clustered into several GSDSs separately. We are interested in the reasons behind such a clustering

of functional modules to different GSDSs. The email network (dataset 5) from University Rovira

i Virgili and metabolic network (dataset 6) from C.elegans both only have 1 GSDS, while there

are 13 and 10 modularities [20] in each of the datasets, respectively. which means they are highly

centralized to single important circle (e.g. a university or a simple organism). For the big datasets

7 and 8, we lack the information to reveal the physical significance of GSDSs.

Massively further information and more comprehensive analysis are needed for deeper un-

derstanding of the physical significance of GSDSs in different domains. However, from the simple

analysis above, we find that the GSDS problem is different from traditional community detecting in

that GSDS problem naturally ignore the unimportant parts and focus on the important parts of the

graph (while the concepts of important parts may depend on the specific knowledge from the corre-

sponding domains). On the contrary, the traditional community detecting methods [26,55,69] (e.g.

modularity) return all the subgraphs and lack the capacity to purify the significant parts. Therefore,

GSDS can be treated as a good complement in real applications when there is a desire to focus on

the core parts of the graph. For example, we can apply GSDS to detect important academic circles

in a research field, major metropolitan areas of a country, important functional module groups in a

protein interaction network and so on.

To sum up, in this section, we revealed two problems existing in previous studies, which are
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Figure 3.23: The success rate vs. different memory size.

important in various applications in different domains. One problem is the neglect of the connec-

tivity of returned subgraphs in previous approximate and precise algorithms for finding the densest

subgraph without and with the restriction of containing a vertex subset, respectively. The other

problem is the lack of an algorithm for finding multiple connected and significant dense subgraphs.

To handle these problems, we defined two subproblems of discovering dense subgraphs: the LCDS

and GSDS problems, and proposed algorithms to solve the problems in polynomial time. Also,

based on the feature of natural graphs, we provided an improved algorithm to reduce the time and

space complexity of the basic GSDS algorithm, which can easily handle data with GB-level size in

one PC. In the experiments, we applied our algorithms on massive natural graphs, evaluated the

efficiencies of our algorithms in comparison with previous algorithms, and analyzed the structure of

these natural graphs. The experimental results showed the high effectiveness and efficiency of our

algorithms in solving the problems. In the future, we will focus on improving the time complexity

of the algorithms. Also, we will find more evidences to reveal the physical significance of GSDSs in

natural graphs from different domains.

3.5.2 Trace-driven Experiment Setup

In order to evaluate the performance of SPread, we conduct the trace-driven experiments on

both the Roma and SanF traces in comparison with SimBet, PeopleRank [53] and PROPHET [47]

algorithms. SimBet represents community based routing algorithms. PeopleRank represents central-

ity based routing algorithms. PROPHET represents probabilistic routing algorithms. The details

of the algorithms are introduced in Chapter 2. We measure the following metrics:
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Figure 3.24: The average delay vs. different memory size.

1. Success rate: The percentage of packets that successfully arrive at their destination vehicles.

2. Average delay: The average time per packet for successfully delivered packets to reach their

destination vehicles.

3. Average cost: The average number of hops per packet for successfully delivered packets to

reach their destination vehicles. The more hops per packet are needed for successfully delivered

packets, the more energy will be cost.

3.5.3 Performance with Different Number of Copies

Since our algorithm is designed for multi-copy routing, we compare SPread with the other

three algorithms with multiple copies of each packet replicated by the spray and wait multi-copy

routing algorithm [65] for fair comparisons. In order to compare the performance of ASPread with

SPread, firstly, we set the multi-copy scope and total number of copies as the same as SPread. Then,

we reallocate the number of copies to the communities in the multi-copy community scope based on

Formula (3.12).

Figure 3.17 show the success rates with different numbers of copies per packet, respectively.

Generally, the performances follow SPread>SimBet>PeopleRank>PROPHET. The performance of

SimBet is a litter better than PeopleRank, since SimBet considers not only the centrality of vehicles,

but also the one-hop reachability of vehicles to different communities. SPread performs better than

SimBet since it carefully allocates the copies and consider the multi-hop reachability of vehicles

to different communities at the same time. PROPHET performs the worst, since it is difficult to
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Figure 3.25: The average cost vs. different memory size.

encounter a vehicle that has a high probability to encounter the destination vehicles in the VDTNs.

Figure 3.18 show the average delays with different numbers of copies per packet. Generally,

the average delays follow PROPHET>PeopleRank>SimBet>SPread. The delay of PROPHET is

the largest, since the relay vehicles need to wait a long time to encounter a vehicle that has a high

probability to encounter the destination vehicles in the VDTNs. The delay of SPread is the smallest,

since we limit the searching scope of each copy to its own community and search through different

weak ties simultaneously.

Figure 3.19 show the average costs with different numbers of copies per packet. Generally,

the average costs follow PeopleRank>SimBet>SPread>PROPHET. The cost of PeopleRank is the

largest, since the packets are forwarded only by the PeopleRank value without any reachability

information to different vehicles. The cost of PROPHET is the smallest, since the packets are directly

forwarded to the vehicles with high probability to encounter the destination vehicles. However,

PROPHET has very low success rate due to the same reason. SPread performs better than SimBet

and PeopleRank.

Then, we analyze the influence of the number of copies per packet to different algorithms. As

shown in Figure 3.23, Figure 3.24 and Figure 3.25, when there is only 1 copy, the performance (include

success rate, average delay and average cost) of SPread is a little worse than PeopleRank and SimBet,

since SPread is designed for multi-copy only and each copy can search in its community only before

it encounters the destination community. However, when the number of copies is slightly increased,

the performance of SPread is improved significantly and exceeds the other three algorithms. This is

because our weak tie multi-copy based routing algorithm carefully allocates the different copies and
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Figure 3.26: The success rate vs. different number of copies.

fully utilizes each of the copies.

3.5.4 Performance with Different Memory Sizes

Besides the number of copies per packet, the memory size of each vehicle also influences the

performance. Therefore, we analyze the influence of memory size to different algorithms. Figure 3.23,

Figure 3.24 and Figure 3.25 show the success rates, average delays, and average costs with different

memory sizes, where we suppose that 1 unit memory (horizontal axis) can save 1 packet. Generally,

the sensitivities of different algorithms to the memory sizes follow PeopleRank>SimBet>SPread>

PROPHET. The performance of PeopleRank is very sensitive to the memory size, since all the

packets tend to be forwarded to few vehicles with very high PeopleRank values and the limited

memory size can significantly influence the routing process negatively. PROPHET is insensitive to

the memory size, since the packets only tend to find those specific vehicles with high probability to

encounter the destination vehicles, which guarantees load balance. However, PROPHET generates

low success rate due to the same reason. Also, as shown in Figure 3.24, the average delay of

PROPHET is not stable, since the success rate is very low and the average delay is randomly

influenced by very few success routings. The sensitivities of SPread and SimBet are similar which

are between PeopleRank and PROPHET.

To sum up, SPread has the highest success rate, lowest average delay and medium average

cost. Also, SPread is sensitive to the number of copies per packet when the number of copies is

very small, and insensitive to the memory size. SimBet and PeopleRank have the medium success

rate, average delay and average cost. PeopleRank is very sensitive to the memory size. PROPHET
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Figure 3.27: The average delay vs. different number of copies.
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Figure 3.28: The average cost vs. different number of copies.

has the lowest average cost due to its very specific requirement for forwarding packets. However,

PROPHET has very low success rate and high average delay.

3.5.5 Performance of ASPread Compared with basic SPread

In this section, we compare SPread, ASPread without the method of adaptive determination

of the number of copies based on community size (denoted by ASPread*) and ASPread with different

number of copies per packet and different memory sizes of each vehicle. We measure the performance

of ASPread* in order to show the individual effectiveness of the method of adaptive determination

of the number of copies based on community size and the method of forwarding to core vehicles in

ASPread. Figure 3.26, Figure 3.27 and Figure 3.28 show the success rates, average delays and costs

with different number of copies per packet. Figure 3.29, Figure 3.30 and Figure 3.31 show the success

rates, average delays and costs with different memory sizes of each vehicle. Generally, the success
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Figure 3.29: The success rate vs. different memory size.
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Figure 3.30: The average delay vs. different memory size.

rate follows ASPread≈ASPread*>SPread, the average delay follows ASPread<ASPread*<SPread

and the cost follows ASPread<ASPread*<SPread. The improvement of success rate of ASPread

and ASPread* over SPread is significant at the beginning when the number of copies is limited since

ASPread and ASPread* can more precisely deliver the copies to the core vehicles which are not only

in the target vehicle’ community but also are more likely to meet the target vehicle, especially when

the number of copies is limited. SPread only delivers the copies to the relay vehicles in the target

vehicle’s community, which may not be likely to meet the target vehicle. When the number of copies

is sufficient, the improvement becomes less significant since the chance to deliver to the core vehicles

in the communities in SPread is increased as the number of copies is increased.

Because of the same reasons, SPread generates relatively high average delay and much higher

cost due to the possibility of selecting relay vehicles which are far away from other vehicles in the

same communities. Furthermore, it may take a copy a longer time to find the target vehicle if the
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Figure 3.31: The average cost vs. different memory size.

community size is larger. In ASPread and ASPread*, since the packet is directly forwarded to the

core vehicles in communities which are more likely to meet other vehicles in the same communities,

the number of relays is reduced and hence the performance on average delay and cost is significantly

improved. Comparing ASPread and ASPread*, we see that they have similar success rates since

both of them select core vehicles in the communities. However, ASPread has lower average delay

and cost than ASPread* since ASPread sends more copies to communities with larger sizes and

therefore it can find the target vehicles more quickly.

We also see that the average delay and average cost of ASPread are lower than ASPread*.

Since ASPread distributes different number of copies to different communities based on the commu-

nity size, it takes approximately same time for each copy to find the target vehicle. As a result, the

average delay and average cost of ASPread are lower than ASPread* since ASPread balances the

number of vehicles each copy needs to search and therefore avoids the situation that some copies

search in communities with too many vehicles, which may cause delay and high cost.

To sum up, ASPread has a higher success rate and a lower average delay and cost compared

with SPread since it considers the spatio-contact correlation of the community and distributes dif-

ferent number of copies to different communities based on the community size.
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Chapter 4

Exploiting Active Sub-areas for

Multi-copy Routing in VDTNs

In this chapter, we aim to improve the routing performance in VDTNs. We first analyze

vehicle network traces and observe that i) each vehicle has only a few active sub-areas that it

frequently visits, and ii) two frequently encountered vehicles usually encounter each other in their

active sub-areas. We then propose Active Area based Routing method (AAR) which consists of two

steps based on the two observations correspondingly. AAR first distributes a packet copy to each

active sub-area of the target vehicle using a traffic-considered shortest path spreading algorithm,

and then in each sub-area, each packet carrier tries to forward the packet to a vehicle that has

high encounter frequency with the target vehicle. In addition to the basic AAR, we further propose

an Advanced AAR (AAAR). In the AAAR, we improve the routing efficiency in each sub-area by

exploiting spatio-temporal correlation and developing three strategies for calculating spatio-temporal

correlation. Extensive trace-driven simulation demonstrates that AAR produces higher success rates

and shorter delay in comparison with the state-of-the-art routing algorithms in VDTNs. Also, the

simulation shows that our advanced AAAR has better performances than our AAR. The main

contributions of this chapter are as follows:

1. We measure two real VNET Roma and SanF traces, which serves as the foundation for our

proposed routing algorithm for VNETs.

2. We propose a traffic-considered shortest path spreading algorithm to spread different copies of
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Figure 4.2: Active sub-area identification.

a packet to different active sub-areas of the target vehicle efficiently.

3. We propose a contact based scanning algorithm in each active sub-area of the target vehicle

to relay the packet to the target vehicle.

4. We propose an Advanced AAR (AAAR) by exploiting the spatio-temporal correlation of the

visiting times of target vehicles on different road side units.

4.1 Identification of Each Vehicle’s Active Sub-areas

Current routing algorithms search the target vehicle in the entire VDTN map, which leads

to low routing efficiency since some routing paths may be outside of the active sub-areas of the

target vehicle. Using multi-copies to search in different active sub-areas of the target vehicle can

improve routing efficiency. Because our trace measurement uses the concept of each vehicle’s active

sub-areas, we first introduce our method of identification of each vehicle’s active sub-areas in this

section before we introduce our trace measurement.

4.1.1 Stability

Nodes in a VNET are usually sparsely distributed. Therefore, it is preferable to identify

active sub-areas by static GPS history data which can be easily obtained. However, whether the

active sub-areas of vehicles stay stable from time to time significantly influences the efficiency of

routing in the system design. Therefore, we first analyze the stability of the active sub-areas of

vehicles. We divide each of the two traces to 6 time intervals with equal length and count the top 5

frequently visited road sections of all the vehicles at the end of each time interval. Then, we calculate
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the percentage of changes from one time interval to the next time interval and draw Figure 4.1. The

Ti − j on the x axis in Figure 4.1 means the changes from time interval i to time interval j. The

y axis is the percentage of the changes from one time interval to the next time interval. As shown

in Figure 4.1, the active sub-areas of vehicles tend to be stable, which means that we can apply the

recent GPS history data to identify active sub-areas for future system design.

4.1.2 Active Sub-Area Identification

In the entire VDTN map, a road section is the road part that does not contain any intersec-

tions and it is denoted by the two IDs of intersections on its two ends such as ab in Figure 1.4. Then,

instead of searching target vehicle v on the entire VDTN map, we only direct packets to search in

the road sections where the target vehicle v visits frequently. We call these road sections the active

road sections of vehicle v. To be more specific, we define the set of active road sections of vehicle v

(denoted by Sv) by:

Sv = {∀s ∈ S|f(s, v) > r} (4.1)

where S is the set of all road sections, f(s, v) is the frequency that vehicle v visits road section s;

and r is a visit frequency threshold. A smaller threshold r leads to more road sections in the Sv and

a larger routing area and vice versa. In this chapter, we set r = 7 and r = 5 in Roma and SanF

traces, respectively.

Sending a packet copy to each active road section of the target vehicle generates many packet

copies and high overhead. Actually, sending a packet copy to a set of connected active road sections

is sufficient because the copy can be forwarded to vehicles travelling along all these road sections

to search the target vehicle. We define an active sub-area of a vehicle as a set of connected active

road sections of the vehicle. We propose a method to create the active sub-areas of each vehicle by

following rules.

(1) Each sub-area of a vehicle consists of connected road sections of the vehicle so that a packet

copy can scan the entire sub-area for the target vehicle without the need of traveling on the

inactive road sections.

(2) Each sub-area of a vehicle should have similar number of road sections so that the load balance

on the size of scanning sub-areas of multiple copies can be guaranteed.
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Specifically, our active sub-area identification algorithm works as follows:

(1) First, we transform the entire VDTN map to a graph. We consider each road section as a

node and connect two nodes if the corresponding two active road sections share the same

road intersection. Also, we tag each node with weight 1. Then, the areas division problem is

translated to a graph partition problem.

(2) Next, as shown in Figure 4.2, we continually select a directly connected nodes with the smallest

sum of weights, remove the edges between these two nodes, merge them to one node, and set

its weight to the sum. If all pairs of directly connected nodes have equal sum of weights, we

randomly select a node pair to merge.

(3) We repeat step (2) until the number of nodes equals the number of active sub-areas required.

Then, the corresponding road sections in one node constitute an active sub-area.

In the above process, two disconnected nodes cannot be merged, which guarantees that the road

sections in each active sub-area are connected. Also, since the weight of a node represents the

number of road sections corresponding to the node, merging two nodes with the smallest sum of

weights can constrain the difference between the number of road sections in different active sub-

areas. As a result, the above two rules are followed, which facilitates the execution of our proposed

routing algorithm. The active sub-areas of each vehicle and the entire VDTN map are stored in

each vehicle in VDTN. When a vehicle joins in the VDTN, it receives this information.

4.2 Trace Measurement

In order to design a new routing algorithm to improve the performance of current routing

algorithms, we first need to better understand the pattern of vehicles’ trajectories and the relation-

ship between vehicle contact and location. Therefore, we analyze the real-world VNET Roma and

SanF traces gathered by taxi GPS in different cities, referred to as Roma [49] and SanF [58]. The

Roma trace contains mobility trajectories of 320 taxies in the center of Roma from Feb. 1 to Mar.

2, 2014. The SanF trace contains mobility trajectories of approximately 500 taxies collected over

30 days in San Francisco Bay Area. Our analysis focuses on following two aspects:

1. Vehicle mobility pattern. We expect to find out whether the movement of each vehicle exhibits

a certain pattern. If each vehicle frequently visits a few sub-areas in the entire VDTN area,
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Figure 4.3: Deviation of visiting time of vehicles.
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Figure 4.4: Percentage of time spent on active sub-areas.

then our routing algorithm only needs to search these sub-areas of a target vehicle in order to

improve routing efficiency.

2. Relationship between contact and location. Contact and centrality based routing algorithms

search vehicles that have high encounter frequency with the target vehicle in the entire VDTN

area. If we can identify the locations that the vehicles frequently meet the target vehicle, we

can reduce the relay search area to improve the routing efficiency. Therefore, we expect to find

out if such locations can be identified.
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Figure 4.5: The trajectory of a vehicle in the entire VDTN map.

4.2.1 Vehicle Mobility Pattern

In order to measure the pattern of vehicles’ mobility on the entire VDTN area, we normalize

the total driving time of each vehicle to 100 hours and normalize its real visiting time on each road

section by:

t(si, vi) =
100× t(si, vi)

tvi
(4.2)

where si denotes road section si, vi denotes vehicle i, t(si, vi) is the normalized visiting time of

vehicle vi on road section si, tvi is the real total driving time of vehicle vi and t(si, vi) is the real

visiting time of vehicle vi on road section si. We then calculate the deviation of visiting time of

vehicle vi (Dvi) by:

Dvi =
1

|S|
∑
i∈S

(t(si, vi)− tvi)
2

(4.3)

where S is the set of all the road sections in the entire VDTN map and tvi is the average visiting

time of vehicle vi per road section. Since the total visiting time of each vehicle is normalized to 100

hours and S is fixed, tvi is a fixed value 100
|S| for any vehicle vi. Figure 4.3 shows the distributions of

the deviation of visiting time of vehicles in the Roma and SanF traces. The high deviations of most

vehicles indicate that these vehicles’ trajectories are unevenly distributed among road sections, and

they frequently visit a few road sections.

Figure 4.5 shows two random vehicles’ trajectories in the entire VDTN area in the Roma

and SanF traces, respectively. The blue points are the vehicles’ trajectories and the red points are

the road intersections on the entire VDTN areas. We can find that the vehicles’ trajectories are

concentrated in small sub-areas in the entire VDTN areas, which confirm the results in Figure 4.3.
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Figure 4.6: Percentage of size of the entire map.

Next, we measure the percentage of time of vehicles spent on their active sub-areas. Fig-

ure 4.4 shows the distribution of the percentage of time of vehicles spent on active area. As we

can see, most vehicles spent more than 90% of time on their active sub-areas. Also, as shown in

Figure 4.6, Our measurement shows that usually the total size of active sub-areas of each vehicle

is smaller than 10% of the size of the entire VDTN area. As shown in Figures 4.3, 4.5 and 4.4, we

conclude our first observation (O1) as follows:

O1: Each vehicle has its own active sub-areas which are usually very small comparing to

the entire VDTN map.

Based on this observation, we can constrain the areas of searching the target vehicle to its

active sub-areas. Then, routing of packets on inactive areas of the target vehicle can be avoided and

the routing efficiency can be improved.

4.2.2 Relationship between Contact and Location

First, we define a pair of vehicles as frequently encountered pair of vehicles if they encounter

more than 10 times. Then, for any frequently encountered pair of vehicles vi and vj that frequently

meet each other, we calculate the average distance d(vi, vj) by:

d(vi, vj) =

n∑
i=1

di(vi, vj)

|n|
(4.4)
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Figure 4.7: Distance from encounter locations to active sub-areas.

where di(vi, vj) is the shortest distance between the ith encounter location and the shared active sub-

areas of vehicles vi and vj , and n is the number of encounters happened between these two vehicles.

Figure 4.7 shows the distribution of the average distances of pairs of vehicles that encountered

frequently in the Roma and SanF traces. We find that for most pairs of vehicles, their encounter

locations are near by their active sub-areas. Actually, most encounters are happened in their active

sub-areas (i.e., encounter locations with average distance 0). Therefore, we conclude our second

observation (O2) as follows:

O2: The frequently encountered vehicles usually encounter each other in their active sub-

areas.

Based on this observation, we can use contact based routing in each active sub-area of the

target vehicle rather than the entire VDTN map, which will greatly improve the routing efficiency.

4.3 Active Area Based Routing Method

Before introducing the detailed design of AAR, we first give an overview of the routing

process for a packet in AAR.

1. In the traffic-considered shortest path spreading algorithm, the source vehicle spreads different

copies of the packet to the target vehicles’ active sub-areas through paths with short distance

and more traffic, as shown in the left part of Figure 4.8. Different from current location based

routing algorithms, we identify the spreading paths with the consideration of not only the

72



physical distance of the paths but also the traffic condition in order to have enough relay

vehicle candidates in spreading, which improves the spreading efficiency.

2. In the contact-based scanning algorithm, a packet copy in an active sub-area continually scans

the sub-area until it encounters the target vehicle or a vehicle that can encounter the target

vehicle more frequently as a relay vehicle, as shown in the right part of Figure 4.8. Since the

scanning focuses on the active sub-areas of the target vehicle that it visits frequently and also

encounters its frequently encountered vehicles, the routing efficiency is improved.

 
 

Target 

Source 

Contact based Scanning 

Traffic-considered 

shortest path 

spreading 

Our spreading path 
Current spreading path 

 
 

 
 

Active sub-areas 

Figure 4.8: An example of the routing process.

In the following, we introduce these two al-

gorithms. As the work in [64], we assume that each

road intersection is installed with a road side unit.

The road side unit can send information to and re-

ceive information from nearby vehicles and store in-

formation. The road side units help to calculate

traffic, receive and forward packets.

4.3.1 Traffic-Considered Shortest Path

Spreading

To spread the copies of a packet to different active sub-areas of the target vehicle, as we

indicated previously, if we directly calculate the shortest path only based on the distance, the

identified path may have few vehicles to function as relays, which leads to low routing efficiency.

Therefore, our traffic-considered shortest path spreading algorithm jointly considers distance and

traffic in selecting a spreading path. To spread the multiple packet copies, the source vehicle can

send a copy to each sub-area individually, which however generates high overhead. To handle this

problem, our spreading algorithm builds the spreading path tree that combines common paths of

different copies in copy spreading. For example, Figure 4.10 shows an example of such a spreading

path tree to spread packet copies to active sub-areas as shown in Figure 4.10, where letters a − i

represents the road side units. Then, the copies of a packet are relayed to their responsible active

sub-areas one road side unit by one road side unit through vehicles. Each source vehicle needs the

traffic information in determining the spreading path. Below, we first introduce how the traffic is

calculated and dynamically updated in each vehicle in Section 4.3.1.1. We then introduce the details
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of our spreading algorithm in Section 4.3.2.

4.3.1.1 Road Traffic Measurement

Road traffic varies from time to time. Therefore, it is necessary to measure the road traffic

dynamically. Each the road side unit in each intersection measures the traffic of each road section

as follows:

(1) When a vehicle v passes intersection a, vehicle v sends ID of the previous road side unit it

passed to road side unit in intersection a (denoted by ua).

(2) Road side unit ua periodically updates the traffic in road section ab by:

T t
ba = αT t−1

ba + (1− α)N t
ba (4.5)

where T t
ba is the traffic from intersection b to a at time t and N t

ba is the number of vehicles that

have pass through intersection b to a during the time period. T t
ba is determined by current

traffic and recent traffic in the past time and α is a damping factor where the lower value α

is, the more T t
ba counts the current traffic.

Also, each vehicle updates its road traffic information via two ways as follows:

1. When a vehicle va passes road side unit ua, road side unit ua sends its stored traffic information

to vehicle v.

2. When vehicles va and vb encounter each other, they exchange their stored traffic informa-

tion. Then, the vehicles compare and update the traffic information of each road section with

updated information.

4.3.1.2 Building Traffic-considered Shortest Path Tree

Based on the traffic information, we introduce our algorithm for each vehicle to build the

traffic-considered shortest path tree to spread packet copies to different active sub-areas.

(1) First, we introduce a metric called traffic-considered distance that jointly considers the distance

and traffic of a road section:

Dba =
dba
Tba

(4.6)
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Figure 4.9: The shortest path to different sub-areas.
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Figure 4.10: An example of spreading path tree.

where Tba is the updated traffic from intersection b to a, dba is the physical distance length

between b and a and Dba is traffic-considered distance from b to a. It is not necessary that

Dba = Dab. Using this metric in selecting spreading path, we can find path with shorter dis-

tance and higher traffic (i.e., more relay candidates), which can improve the routing efficiency.

(2) Recall that an active sub-area of a target vehicle consists of several connected road sections.

In order to successfully sends a packet copy to a sub-area, a source vehicle must send the copy

to an intersection of one road section in the sub-area. To find the path with minimum traffic-

considered distance for a sub-area, the source vehicle first builds a graph, in which the nodes

are the intersection it will pass and all the intersections of the road sections in the sub-area,

two nodes are connected if their corresponding intersections are connected by a road section,

and the weight of each edge equals the traffic-considered distance. It then finds the shortest

path to each road intersection using the Dijkstra algorithm. Among these paths, it further

picks up the shortest path as the shortest path to the sub-area.

(3) After the source vehicle calculates the shortest paths to all the active sub-areas of the target

vehicle, it combines the common paths in these shortest paths to build the spreading path

tree. For example, paths a → b → d → c, a → b → d → e, a → b → d → g → h,

a → b → d → g → f and a → b → d → e → i are combined to a tree by merging the same

road intersections on different paths (as shown in Figure 4.9 and Figure 4.10), so that copies

can be spread efficiently.

When the source vehicle arrives at the next road side unit, i.e., ua, it drops the packet to

ua. When a vehicle travelling to road side unit ub passes ua, ua sends a packet copy to the vehicle,
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Figure 4.11: An example of the scanning history table.
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Figure 4.12: An example of the scanning road section se-
lection.

which will drop the packet to ub. ub will send a copy to ud through a vehicle travelling to ud. Then,

ud sends packet copies to three vehicles travelling to ue, ug and uc respectively. This process repeats

until all road side units in the spreading path tree receive a packet copy.

4.3.2 Contact-based Scanning in Each Active Sub-area

After a packet copy arrives at an active sub-area of the target vehicle, the packet carriers (i.e.,

road side units and vehicles) use the contact-based scanning algorithm in the sub-area to forward

the packet to the target vehicle. As in current contact based routing algorithms, each vehicle records

its contact frequency to others and exchange such information upon entering. Therefore, a packet

carrier can judge if its encountered vehicle is a better packet carrier, i.e., has a higher encounter

frequency with the target vehicle. In our contact-based scanning algorithm, the packet is being

forwarded to vehicles travelling in different road sections in order to evenly scan the sub-area to

meet the target vehicle. During the scanning process, if the packet carrier meets a vehicle which is a

better packet carrier or can lead to more even scanning, it forwards the packet to this entered vehicle.

Once a packet carrier is about to leave the active sub-area, it drops the copy to the boundary road

side unit of the sub-area, which will forward the packet to the vehicle whose traveling direction is

the road section that should be scanned.

4.3.2.1 Maintaining Scanning History Table

In order to ensure that the entire active sub-area can be scanned by a packet, each packet

maintains a scanning history table. The scanning history table records the scanning history of the
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packet. For example, as shown in Figure 4.11, each road section in the sub-area has a time stamp

which is its last scanning time. A road side unit chooses the road section that has the oldest time

stamp among the reachable road sections as the next scanning road section. For example, as shown

in Figure 4.12, from intersection c, the road sections that can be scanned are road sections ac, cd

and cf , while road section ef cannot be scanned. Since road section cd has the oldest time stamp,

it is the next scanning road section. Once a packet finishes scanning a road section, the time stamp

of this road section in its scanning history table is updated with the current time.

4.3.2.2 Routing Algorithm in a Sub-area

We adopt the method in [47] to measure the encounter frequency of each pair of vehicles.

Specifically, the contact utility is calculated every time when once two vehicles encounter by:

C(vi, vj) = Cold(vi, vj) + (1− Cold(vi, vj))× Cinit(vi, vj) (4.7)

where C(vi, vj) is the updated encounter frequency utility; Cold(vi, vj) is the old encounter frequency

utility and Cinit(vi, vj) is the initial value of contact utility of all the pairs of vehicles, which is set

to a value selected from (0, 1). This definition ensures that the two vehicles with a high encounter

frequency have a larger encounter frequency utility.

Below, we explain the contact-based scanning algorithm. Recall that the traffic-considered

shortest path algorithm sends a packet copy to a road side unit in an active sub-area of the target

vehicle. Then, the contact-based scanning algorithm is executed. First, the road side unit determines

the road section that the packet should scan, which is the road section that has the oldest scan time

stamp among the reachable road sections, as explained previously. Then, the road side unit will

forward the packet to the passing vehicle, say vi, with the direction to the selected road section.

When vi travels along the road section, for each of its encountered vehicle vj , if vj has a higher

contact utility to the target vehicle or vj ’s direction has a smaller time stamp then vi’s direction in

the scanning history table of the packet among all the reached road sections, vi forwards the packet

to vj . After a vehicle finishes scanning a road section, it drops the packet to the road side unit on

the intersection in the end of this road section. If a vehicle is leaving the active sub-area, it also

drops the packet to the boundary road side unit. Then, the road side unit decides the next scanning

road section and the process repeats until the packet meets the target vehicle.
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Figure 4.13: Deviation of visiting times of vehicles in the same day.

As shown in Section 5.1, the target vehicle spends most of traveling time in its active

sub-areas and also it meets its frequently encountered vehicles its active sub-areas. Therefore, by

scanning the target vehicle’s active sub-areas and relying on vehicles with high contact utilities with

the target vehicle in routing can greatly improve routing efficiency and success rate.

4.4 Advanced Active Area Based Routing Method

In AAR, we adopt a simple scanning strategy in each active sub-area when a packet copy

does not encounter any relay vehicles with high contact utility with target vehicles. However, the

scanning strategy may cause some problems. First, the scanning can lead to frequent packet relays

among different vehicles since each vehicle usually can scan only a few road sections and then needs

to drop the packet copy frequently. Such frequently relays will waste a lot of energy. Second, the

scanning strategy fails to consider some useful information (e.g., the spatio-temporal correlation of

vehicles) that can help decrease the success rate and average delay of the routing. Therefore, in

this section, we further exploit the spatio-temporal correlation of the target vehicles to improve the

efficiency of the basic AAR and propose the Advanced AAR (AAAR).

4.4.1 Measuring the Spatio-Temporal Correlation of Vehicles

For easy analysis, first, we use different road side units in the active sub-areas to denote

different locations in the active sub-areas and translate the standard time to minutes in a day. For

example, time 13:12 is translated to time 792 (13× 60 + 12 = 792). Then, we normalize the average
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Figure 4.14: Deviation of visiting times of vehicles in different days.

visiting time of each vehicle in a day on each road side unit by:

t̄(ri, vi) =

∑
ti∈T (ri,vi)

ti(ri, vi)

|T (ri, vi)|
(4.8)

where ri denotes road side unit i, vi denotes vehicle i, t̄(ri, vi) is the average visiting time of vehicle

vi on road side unit ri, ti(ri, vi) is the ith visiting time of vehicle vi on road side unit ri and T (ri, vi)

is the set of visits of vehicle vi on road side unit ri during a certain time period. Then, we calculate

the deviation of visiting time of vehicle vi on road side unit ri by:

D(ri, vi) =
1

|T (ri, vi)|
∑

ti∈T (ri,vi)

(t̄(ri, vi)− ti(ri, vi))2 (4.9)

D(ri, vi) denotes the deviation of visiting time of vehicle vi on road side unit ri. If we consider the

time period as one day, the deviation can reflect the differences between the visiting times during

a day. A high deviation indicates the visiting times of vehicle vi on road side unit ri differ largely

from each other, while a low deviation indicates vehicle vi tends to visit road side unit ri in the

same time periods in a day.

The spatio-temporal correlation can be measured by the unit of each pair of road side unit

and vehicle that visited the road side unit. Based on the above definition of deviation, first we

calculate D(ri, vi) of visiting times for each pair of road side unit and vehicle for each day in the

trace. That is, T (ri, vi) is the set of ti(ri, vi) for a given pair of (ri, vi) during a day.

Figure 4.13 shows the distributions of the deviation of visiting times of different road side

unit and vehicle pairs in the same day in the Roma and SanF traces. The figure shows that most
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road side unit and vehicle pairs have deviations in a range from 0 to 1000. If we assume each visiting

time has an equal difference with the average visiting time, then the difference is less than about 30

minutes (30× 30 = 900 ≈ 1000), which indicates that the visiting times in the same day have high

correlation with each other for a pair of road side unit and vehicle. The low deviations of most road

side unit and vehicle pairs indicate that vehicles tend to visit the same road side unit at the close

times in the same day, and there exists high correlation between vehicles’ location and the time.

Then, we define the representative visiting time of a pair of road side unit and vehicle in

one day (ti(ri, vi) in Equation (4.8)) as the average visiting time in that day and the average visiting

time of a pair of road side unit and vehicle in the whole time period in the traces (t̄i(ri, vi) in

Equation (4.8)) as the average of the representative visiting times in different days in the whole time

period. Using the representative visiting time in each day and average visiting time in different days

in the whole time period, we calculated the D(ri, vi) for in the whole time period of each trace and

plotted Figure 4.14. Figure 4.14 shows the distributions of the deviation of visiting times of different

road side unit and vehicle pairs in different days in the whole time period in the Roma and SanF

traces. As shown in the figure, most road side unit and vehicle pairs have deviations in a range from

4000 to 5000. If we assume each visiting time has an equal difference with the average visiting time,

then the difference is less than about 70 minutes (70 × 70 = 4900 ≈ 5000) which is still relatively

small. The low deviations of most road side unit and vehicle pairs indicate that vehicles tend to

visit the same road side unit at the close time in each day, and there are high correlation between

vehicles’ location and the time. Therefore, we conclude our third observation (O3) as follows:

O3: In the active sub-areas, most vehicles’ locations have a high correlation with their

visiting times.

Based on this observation, we can improve the routing strategy in active sub-areas, which

will further enhance the routing efficiency of AAR.

4.4.2 Spatio-Temporal Information based Location Visiting Time Predic-

tion

The challenge and the key to improve the routing efficiency is to let a packet forwarder know

the location of the target when the forwarder receives the packet. Based on the spatio-temporal infor-

mation, we can estimate the location of the target according to the current time. In the following, we
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… … 

Vehicle ID Time period 

1 14 (13:00-14:00) 

2 2   (01:00-02:00) 

3 13 (12:00-13:00) 

4 12 (11:00-12:00) 

5 1   (00:00-01:00) 

… … 

Vehicle 
ID 

Time 
period 

Vehicle 
ID 

Time 
period 

1 1 7 14 
2 12 8 3 

3 0 9 9 

4 2 10 6 

5 13 11 5 

6 16 … … 

Figure 4.15: An example of an active vehicle visiting time
table stored on road side units.
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e 14 (13:00-14:00) 

… … 

Vehicle ID Time period 

1 14 (13:00-14:00) 

2 2   (01:00-02:00) 
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Vehicle 
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1 1 7 14 
2 12 8 3 

3 0 9 9 

4 2 10 6 

5 13 11 5 

6 16 … … 

Figure 4.16: An example of an active road side unit visiting
time table stored on packet copies.

propose three different strategies to predict the future visiting time dynamically. In the first strategy,

we consider the most recent visiting time during a day at a road side unit as its future visiting time at

other days at this road side unit. In the second strategy, we consider the average time of historical vis-

iting times in the past as the future visiting time. In the third strategy, we consider the most frequent-

ly appeared visiting time in the historical data as the future visiting time. For example, in the histor-

ical visiting times at a road side unit, visiting time 2:00 appears most frequently. Then, we consider

2:00 as the future visiting time. We separate each day to 24 time periods as shown in Figure 4.17.
 

0:00 1:00 2:00 

1 2 24 

23:00 24:00 

…

… 

Time period 

Real time of a day 

Figure 4.17: The partition of a time period.

For example, time 23:21 in a day is in the 24 time pe-

riod. As shown in Figure 4.15, each road side unit in

active sub-areas maintains an active vehicle visiting

time table, where it records the vehicles that visit

this road side unit and their visiting time periods.

We do not consider the vehicles that are not active

in the corresponding active sub-area since they bare-

ly visit any road side units in the sub-area. Using

one of the three strategies, each road side unit up-

dates the estimated future visiting time of each vehicle in its active vehicle visiting time table. Each

packet’s carrier collects the information from the active vehicle visiting time tables from road side

units and maintains its active road side unit visiting time table as shown in Figure 4.16. Below, we

introduce each of the three strategies for estimating the visiting time of a vehicle at a road side unit.
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4.4.2.1 Most recent time based location visiting time prediction

In our first strategy, we suppose that the most recent visiting time of a vehicle on a road

side unit can reflect its future visiting time on this road side unit at other days. Then, each road side

unit updates the visiting time in its active vehicle visiting time tables by the most recent visiting

time. We present the table maintenance process below. Each road side unit r stores an active vehicle

visiting time table. The table records the IDs of vehicles which are active in at least one road section

that consists of road side unit r. When a vehicle v passes road side unit r, road side unit r checks

whether the ID of vehicle v is recorded in its active vehicle visiting time table. If yes, road side unit

r updates the visiting time in its active vehicle visiting time table by:

tnew(r, v) = tcurrent(r, v), (4.10)

where tnew(r, v) is the updated visiting time of vehicle v on road side unit r in the table and

tcurrent(r, v) is the current visiting time.

4.4.2.2 Average time based location visiting time prediction

In the above strategy of maintaining the spatio-temporal information, we dynamically

update the active vehicle visiting time table by the most recent visiting time. However, without

considering the historical visiting times, the accuracy of the prediction of the future visiting time

may be influenced. For example, if a vehicle passes a road side unit at 6:00 though it always passes

this road side unit as 2:00 in the past, and then the predicted future visiting time of 6:00 based

on the first strategy is not accurate. Therefore, we propose our second strategy for predicting the

future visiting time by the average time. Specifically, the predicted visiting time of vehicle v on road

side unit r is calculated every time when vehicle v visits road side unit r by:

tnew(r, v) =

∑
t(r,v)∈Trecent(r,v)

t(r, v)

|Trecent(r, v)|
(4.11)

where tnew(r, v) is the updated visiting time of vehicle v on road side unit r, Trecent(r, v) is the

visiting time set of vehicle v on road side unit r during a time period and t(r, v) is an element in set

Trecent(r, v).
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4.4.2.3 Frequent appeared time based location visiting time prediction

Our third strategy finds a tradeoff between the most recent visiting times and the history

of visiting times. To be more specific, suppose there are visiting time set D(v, r) = t1, t2, ..., tn of

vehicle v on road side unit r, then the predicted visiting time is calculated by:

tnew(r, v) = max sup(ti) (4.12)

where sup(ti) is the number of times of time period ti appeared in visiting time set D(v, r). For

example, suppose D(v, r) = {1, 1, 1, 2, 2, 4}, then sup(1) = 3, sup(2) = 2 and sup(4) = 1, and

tnew(r, v) = 1.

In Section 4.5.3.1, we will evaluate and compare the performance of the above three strate-

gies.

4.4.3 Routing Algorithm in AAAR

In AAAR, a packet copy arrives at an active sub-area of the target vehicle by the same

method used in AAR. At the same time, each packet copy maintains an active road side unit visiting

time table which records the visiting times of target vehicle on road side units in the corresponding

active sub-area of the packet copy as shown in Figure 4.16. In the active road side unit visiting time

table, the visiting times of target vehicle on road side units are all initialized as not available (NA).

Then, the active road side unit visiting time table is updated by checking the vehicle visiting time

tables stored on the road side units every time when the packet copy reaches a road side unit in

its corresponding active sub-area. The active road side unit visiting time tables help improve the

routing efficiency. When a packet copy arrives a road side unit, if the current time is the same as

the visiting time of the target vehicle at this road side unit, the packet copy can stay on the road

side unit to meet the target. Also, the packet carrier can forward the packet to the road side unit

where the target is visiting at the current time.

Based on the active road side unit visiting time table, after a packet copy arrives at an active

sub-area of the target vehicle, it searches the target vehicle in the active sub-area by the following

process.

1. First, the packet copy checks its active road side unit visiting time table of its target vehicle
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on road side units in the corresponding active sub-area. If there is one road side unit that has

the same time period as the current time, then go to Step 2; otherwise, go to Step 3.

2. The packet carrier uses the traffic-considered shortest path spreading method introduced in

Section 4.3.1 to spread the packet copy to the road side unit with the same time period as the

current time. Then, go to Step 4.

3. The packet carrier uses the contact-based scanning method introduced in Section 4.3.2 to

forward the packet to the next road side unit. Then, go to Step 1;

4. Once the packet copy arrives at the road side unit with the same time period as the current

time, it stays on the road side unit until it encounters the target vehicle, a vehicle with a

high contact utility (introduced in Section 5.2) or the time period has elapsed. Once the time

period has elapsed, go to Step 1; Once the packet copy meets a vehicle with a high contact

utility with the target vehicle, go to Step 5.

5. The vehicle is selected as relay vehicle and the packet begins to scan road sections until the

vehicle leaves the active sub-area or encounters another vehicle with a higher contact utility.

Once the vehicle leaves the active sub-area, the copy is relayed to the boundary road side unit

and go to Step 1. Once the vehicle encounters another vehicle with a higher contact utility,

go to Step 5 again.

Based on this process, we can guarantee that the packet can be efficiently relayed by consid-

ering not only the target’s frequently encountered vehicles and its frequently encountered road side

units at different times, but also the predicted visiting times on different road side units. AAAR

can decrease the frequent deliveries of the packet copy between different vehicles and save energy.

4.5 Performance Evaluation

In order to evaluate the performance of AAR, we conduct the trace-driven experiments

on both the Roma and SanF traces in comparison with DTN-FLOW [14], PeopleRank [53] and

PROPHET [47] algorithms. DTN-FLOW represents location based routing algorithms, PeopleRank

represents centrality based routing algorithms, and PROPHET represents contact based routing

algorithms. The details of the algorithms are introduced in Chapter 2. We measure the following

metrics:
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Figure 4.18: The success rate vs. different number of copies.
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Figure 4.19: The average delay vs. different number of copies.
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Figure 4.20: The average cost vs. different number of copies.
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1. Success rate: The percentage of packets that successfully arrive at their destination vehicles.

2. Average delay: The average time per packet for successfully delivered packets to reach their

destination vehicles.

3. Average cost: The average number of hops per packet for successfully delivered packets to

reach their destination vehicles. The more hops per packet are needed for successfully delivered

packets, the more energy will be cost.

In our experiments, the number of active sub-areas of the target vehicle depends on the

number of multiple copies of the packet. To be more specific, we spread one copy of a packet to each

active sub-area and therefore, the number of active sub-areas equals the number of multiple copies.

4.5.1 Performance with Different Number of Copies

Since our algorithm is designed for multi-copy routing, we compare AAR with the other

three algorithms with multiple copies of each packet replicated by the spray and wait multi-copy

routing algorithm [65] for fair comparisons. Figure 4.18 show the success rates with different num-

bers of copies per packet in the Roma and SanF traces , respectively. Generally, the success rate

follows AAR>DTN-FLOW>PeopleRank>PROPHET. The performance of DTN-FLOW is better

than PeopleRank since DTN-FLOW divides the very large area to sub-areas and avoid to search the

target vehicles on a very large area. AAR performs better than DTN-FLOW since AAR considers

the encounter history. PROPHET performs the worst, since it is difficult to encounter a vehicle that

encounters the target vehicle frequently in the very large area.

Figure 4.19 show the average delays with different numbers of copies per packet. Generally,

the average delays follow PROPHET>PeopleRank>DTNFLOW>AAR. The delay of PROPHET is

the largest, since the copies of a packet waste most time outside of active sub-areas where target

vehicle barely visits brought by relay vehicles, as shown in the left part of Figure 1.3. The delay

of DTN-FLOW is smaller than PROPHET since DTN-FLOW limits the routing paths in certain

sub-areas. The delay of AAR is the smallest, since AAR not only spreads each copy to its responsible

active sub-area efficiently by traffic-considered paths, but also scans different active sub-areas with

the help of vehicles that encounter target vehicles frequently simultaneously.

Figure 4.20 show the average costs with different numbers of copies per packet. Generally,

the average number of hops follow PeopleRank > AAR> DTNFLOW > PROPHET. The number
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Figure 4.21: The success rate vs. different memory size.

of hops of PeopleRank is the largest, since the packets are forwarded only by the PeopleRank value

without any reachability information to different vehicles. The number of hops of PROPHET is the

smallest, since the packets are directly forwarded to the vehicles with high probability to encounter

the target vehicles. However, PROPHET has very low success rate due to the same reason. The

number of hops of DTNFLOW is also very small since the packets are waiting on the landmarks in

the most time. AAR performs better than PeopleRank.

Then, we analyze the influence of the number of copies per packet to different algorithms.

As shown in Figure 4.18, Figure 4.19 and Figure 4.20, when there is only 1 copy, the performance

(include success rate, average delay and average cost) of AAR is a little worse than PeopleRank and

SimBet, since AAR is designed for multi-copy only and each copy can search in its community only

before it encounters the destination community. However, when the number of copies is slightly

increased, the performance of AAR is improved significantly and exceeds the other three algorithms.

This is because our weak tie multi-copy based routing algorithm carefully allocates the different

copies and fully utilizes each of the copies.

4.5.2 Performance with Different Memory Sizes

Besides the number of copies per packet, the memory size of each vehicle also influences the

performance. Therefore, we analyze the influence of memory size to different algorithms. Figure 4.21,

Figure 4.22 and Figure 4.23 shows the success rates, average delays and average costs with different

memory sizes, where we suppose that 1 unit memory (horizontal axis) can save 1 packet. Generally,

the sensitivities of different algorithms to the memory sizes follow PeopleRank>AAR>DTNFLOW>

87



20 40 60 80 100
6

7

8

9

10

11
x 10

5

Memory size

A
ve

ra
ge

 d
el

ay
 (

s)

 

 AAR

DTNFLOW

PeopleRank

PROPHET

(a) Roma

10 20 30 40 50
5

6

7

8

9x 10
5

Memory size

A
ve

ra
ge

 d
el

ay
 (s

)

 

 

AAR
DTNFLOW
PeopleRank
PROPHET

(b) SanF

Figure 4.22: The average delay vs. different memory size.
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Figure 4.23: The average cost vs. different memory size.

PROPHET. The performance of PeopleRank is very sensitive to the memory size, since all the

packets tend to be forwarded to few vehicles with very high PeopleRank values and the limited

memory size can significantly influence the routing process negatively. PROPHET is insensitive to

the memory size, since the packets only tend to find those specific vehicles with high probability to

encounter the target vehicles, which guarantees load balance. However, PROPHET generates low

success rate and long delay due to the reasons we mentioned in Section 4.5.1. DTNFLOW is also

not sensitive to the memory size since each packet is relayed in limited times from one landmark

to another landmark. The performance success rate and average delay of AAR is slightly improved

with the increasing memory size since a larger memory size allows packets to scan sub-areas more

frequently.

To sum up, AAR has the highest success rate and the lowest average delay. However, AAR

is a little sensitive to the number of copies and the memory size. DTNFLOW and PeopleRank have
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Figure 4.24: The success rate vs. different number of copies.
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Figure 4.25: The average delay vs. different number of copies.

the medium success rate and average delay. However, PeopleRank is very sensitive to the number of

copies and the memory size. DTNFLOW and PROPHET is not sensitive to the number of copies

and the memory size. However, PROPHET has very low success rate and high average delay. To

sum up, considering memory size and limited number of copies are not a main concern in VDTN

routing, AAR performs best in the four routing algorithms.

4.5.3 Performance of Advanced AAR (AAAR)

In this section, we evaluate the performance of advanced AAR and compare it with the

basic AAR.
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Figure 4.26: The average cost vs. different number of copies.
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Figure 4.27: The success rate vs. different number of copies.

4.5.3.1 Performance of different strategies in location visiting time prediction

In Section 4.4.2, we designed three strategies for predicting the visiting time of each vehicle

on each road side unit. In this section, we evaluate the performance of the three different strategies

in packet routing. Here, we denote the strategy introduced in Section 4.4.2.1 as MostRecent, the

strategy introduced in Section 4.4.2.2 as Average and the strategy introduced in Section 4.4.2.3 as

MostFreq.

Figure 4.24 show the success rates with different memory sizes on each road side unit in

the Roma and SanF traces, respectively, where we suppose that 1 unit memory (horizontal axis)

can save 1 visiting time for each vehicle on the active vehicle visiting time table stored in road side

units. Generally, the success rate follows MostFreq>MostRecent>Average, which indicates that the
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Figure 4.28: The average delay vs. different number of copies.
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Figure 4.29: The average cost vs. different number of copies.
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Figure 4.30: The success rate vs. different memory size.
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Figure 4.31: The average delay vs. different memory size.

average visiting time is not a good choice for predicting the future visiting time and the frequent

appeared visiting time in the history tends to appear in the future. Also, when the memory size

equals 1, MostFreq can only use the most recent visiting time to update the table and then MostFreq

equals MostRecent. Therefore, as the memory size increases, the performance of MostFreq increases

since there are more historical visiting times for predicting the future visiting time.

Figure 4.25 show the average delays with different memory sizes on each road side unit in the

Roma and SanF traces, respectively. Generally, the average delay follows Average>MostRecent>

MostFreq, which is consistent with the performance of success rate in Figure 4.24 due to the same

reasons. The results confirm that MostFreq is the best choice for predicting the future visit time

among the three strategies.

Figure 4.26 show the costs with different memory size on each road side unit in the Roma and

SanF traces, respectively. Generally, the costs follows Average>MostRecent>MostRecent, which is

consistent with the performance of success rate in Figure 4.24 and the average delays in Figure 4.25

since the inefficient routing leads to low success rate, long delay and more times of deliveries for

routing.

From Figure 4.24, Figure 4.25 and Figure 4.26, we can conclude that strategy MostFreq has

the highest success rate, shortest average delay and lowest cost, and both MostFreq and MostRecent

have much higher success rate, lower average delays and costs than Average, which indicates that

Average is the worst strategy for the prediction. The better routing performances can reflect better

prediction of the strategies on future visiting time. Therefore, we can claim that MostFreq has the

best prediction performance among the three strategies. Therefore, we adopt strategy MostFreq in
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Figure 4.32: The average cost vs. different memory size.

the following analysis.

4.5.3.2 Performance of AAAR comparing with basic AAR

In this section, we compare AAR and AAAR with different number of copies per packet

and different memory sizes of each vehicle.

Figure 4.27, Figure 4.28 and Figure 4.29 show the success rates, average delays and costs with

different number of copies per packet. Generally, the success rate follows AAAR>AAR, the average

delay follows AAR>AAAR and the cost follows AAAR<<AAR. The improvement of performance

success rate is not so significant since AAR already has a very good performance on success rate

comparing to other algorithms. However, AAR generates relatively high average delay and much

higher cost due to the frequent relays in scanning. In AAAR, since the packet copy stays on the

road side unit which are most likely to be visited by the target vehicles at current time for the most

time during the routing period or the copy is directly forwarded to the road side unit which is the

predicted target’s location, the number of relays in scanning is reduce and hence the performance

on average delay and cost is significantly improved.

Figure 4.30, Figure 4.31 and Figure 4.32 show the success rates, average delays and costs

with different memory sizes of each vehicle, where we suppose that 1 unit memory (horizontal

axis) can save 1 packet. Generally, the sensitivities of different algorithms to the memory sizes

follow AAR>AAAR. The performances success rate and average delay of both AAR and AAAR

are improved with the increasing memory size since a larger memory size allows packets to scan

sub-areas more frequently. The costs of both AAR and AAAR increase with the increasing memory
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size since a larger memory size can lead to more times of relays.

To sum up, AAAR has a higher success rate and a lower average delay compared with AAR

since we improved the uniformly scanning strategy by predicting the future visiting time on road

side units of the target in routing. Also, AAAR has a much lower cost since once the packet copy

arrives a road side unit that is predicted to be visited by the target vehicle at the current time

period, the packet copy stays on the road side unit or the packet is directly forwarded to the road

side unit which is the predicted target’s location, which significantly decreases the relay cost.
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Chapter 5

DIAL: A Distributed

Adaptive-Learning Routing

Method in VDTNs

5.1 Rationale

There are many works comparing the overall performances of different routing methods.

However, there lacks a comprehensive analysis when it comes to the performances of different vehicle

pairs with different features. Therefore, in this section, we measure the success rates of different

routing methods on vehicle pairs with different features in Roma and SanF traces. For the routing

methods, as introduced in Chapter 2, we choose AAR [73], Prophet [47] and PeopleRank [53] which

represent location, contact and centrality based routing methods, respectively. For the features of

vehicle pairs, we measure the contact distance, the geographic distance and the centrality of a vehicle

pair which are defined as follows:

1. Contact distance of a vehicle pair: We first transfer the traces to contact graphs based

on the contact durations. The nodes of the graphs are the taxies in the traces, the edges

are the contacts between pairs of taxies. We naturally think that if two vehicles encounter
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each other more often, they are in a closer relationship and only the contacts which have

accumulative durations long enough can be considered as edges. To be more specific, we

define an accumulative contact duration threshold (3000s in Roma and 5000s in SanF ) and

the contacts with accumulative durations larger than the threshold can be considered as edges.

In the contact graphs, we calculate the contact distance of two vehicles as the shortest path

between the two vehicles.

2. Geographic distance of a vehicle pair: AAR defines each vehicle with an active area. The

vehicle frequently visits its corresponding active area. Here, we define the geographic distance

of a vehicle pair as the shortest distance between the two vehicles’ active areas.

3. Centrality of a vehicle pair: We define the centrality of a vehicle as the PageRank value

of the vehicle. The centrality of a vehicle pair is the sum of the two vehicles’ centralities.

5.1.1 Measurement

After we have determined the routing methods and features for the analysis. We run contact,

centrality and location based methods on the traces simultaneously. Firstly, we randomly pick 1000

vehicle pairs (500 pairs in Roma and 500 apirs in SanF ) and use contact, centrality and location based

routing methods to deliver a packet between each vehicle pair simultaneously. Then we analyze the

performance of different routing methods on different vehicle pairs. Figure 5.1 shows the percentage

of vehicle pairs that each routing method performs the best. Generally, the performances of the

success rate follow location > centrality > contact. However, when it comes to individual vehicle

pairs, AAR performs best on 47% of the vehicle pairs. PeopleRank performs best on 42% of the

vehicle pairs and Prophet performs best on 11% of the vehicle pairs. Therefore, we cannot conclude

that one routing method is better than another routing method for every vehicle pair although the

overall success rates are comparable. Actually, although location routing method which has the

highest success rate can perform best on a lot of vehicle pairs, contact routing method which has

lowest success rate can still perform better on some vehicle pairs.

Next, we try to figure out the reason why different routing methods have different routing

performances on different vehicle pairs. Firstly, in order to find the reason why location based routing

method performs better than centrality and contact based routing methods, we select top 50 vehicle

pairs with the shortest delays when using contact routing method. Then, we compare their contact
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Figure 5.1: The diversity of different routing methods
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Figure 5.2: The top 50 vehicle pairs with the shortest de-
lays of contact routing method

distances with geographic distances and centralities. Since contact distances, geographic distances

and centralities cannot be compared directly, we transfer the values of different metrics to the ranks

in all the vehicle pairs in the analysis. For example, for the contact distance, if the contact distance is

0.25, it means that the contact distance is longer than 25% of all the vehicle pairs; for the geographic

distance, if the geographic distance is 0.25, it means that the geographic distance is longer than 25%

of all the vehicle pairs; for the centrality, if the centrality is 0.25, it means that the centrality is

smaller than 25% of all the vehicle pairs. Then, Figure 5.2 compares the contact distances with

geographic distances and centralities of vehicle pairs. As shown in Figure 5.2, those vehicle pairs

tend to have a relatively closer contact distances in all the vehicle pairs and at the same time have

relative longer geographic distances and smaller centralities in all the vehicle pairs. This observation

is reasonable obviously. For example as shown in Figure 5.5, suppose two vehicles A and B are in a

same community named ECE community. However, the vehicles in ECE community are distributed

in two different locations: ICAR of Greenville and Clemson. Vehicle A is in Greenville and vehicle

B is in Clemson. In this scenario, we should put a particular emphasis on the contact based method

if A wants to send B a packet. Suppose A has a location utility of 50 miles (the vehicle’s frequently

visited location is 50 miles away from Clemson), a centrality utility of 100 (the vehicle can meet 100

cars a day) and a contact utility of 0.09 (the vehicle meet B with probability 0.09). now vehicle A

meets three vehicles: a vehicle with much higher location utility 10 miles (the vehicle’s frequently

visit location is 10 miles away from Clemson), a vehicle with a much higher centrality utility 1000

(the vehicle can meet 1000 cars a day) and a vehicle with a little higher contact utility 0.1 (the

vehicle meet B with probability 0.1). If A chooses location method and the vehicle with Greenville
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Figure 5.3: The top 50 vehicle pairs with the shortest de-
lays of location routing method
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Figure 5.4: The top 50 vehicle pairs with the shortest de-
lays of centrality routing method

with a location utility 10 mile, we may approach Greenville faster by current relay vehicle. However,

it cannot be guaranteed that the packet can still easily find the next vehicle which is going to ICAR

in Greenville since most of the vehicles in Greenville are not going to ICAR. Therefore, the location

based method may cause a failure although we think we select a suitable vehicle with a little high

location utility at one of the hops. Also, if A chooses vehicle which is very active as the relay

vehicle, the relay vehicle may visit a lot of places but it is very likely that the relay vehicle won’t

visit Clemson at all since the map is very large. Therefore, the centrality based method may also

cause a failure. On the contrary, A may just choose a vehicle with a little higher contact utility than

itself. But since A and B are in the same community, it is guaranteed that there must be better

choices one after another and it is with high probability that contact based method can successfully

deliver the packet at last. Therefore, in this scenario, maybe it’s a better choice to choose the contact

method and a relay vehicle with a little higher contact utility than location and centrality methods

and the relay vehicles with much higher location and centrality utilities.

Similarly, we select top 50 vehicle pairs with the shortest delays when using location routing

method. Then, we compare their geographic distances with contact distances and centralities.

Figure 5.3 compares the contact distances with geographic distances and centralities of vehicle pairs.

As shown in Figure 5.3, those vehicle pairs tend to have a relatively closer geographic distances in all

the vehicle pairs and at the same time have relative longer contact distances and smaller centralities

in all the vehicle pairs. From Figure 5.2 and Figure 5.3, we can also see that vehicle pairs which have

relative high contact(geographic) distances tend to have relative high geographic(contact) distances

too. The reason may be that vehicles which have closer frequently visited locations tend to meet
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Figure 5.5: An example which shows the correlation between routing performances of different methods and the
features of the vehicle pairs

each other with higher possibilities. However, as shown in Figure 5.2 and Figure 5.3, a relative high

contact(geographic) distances cannot guarantee relative high geographic(contact) distances since

there are many other factors which influence vehicles’ contact distances. Finally, we select top

50 vehicle pairs with the shortest delays of centrality routing method. Then, we compare their

geographic distances with contact distances and centralities in Figure 5.4. As shown in Figure 5.4,

those vehicle pairs tend to have relatively higher centralities in all the vehicle pairs and at the same

time have relative longer contact and geographic distances in all the vehicle pairs.

5.1.2 Analysis

Based on the above analysis, we find that there are some correlations between the features

(contact distance, geographic distance and centrality) of vehicle pairs with the performances of

different routing methods on them. However, as we can see from Figure 5.2, Figure 5.3 and Figure 5.4,

such correlations are not always very clear. For example as shown in Figure 5.3, there are still many

vehicle pairs in which location routing method performs well but at the same time, with relatively

long geographic distances. We further analyze the reason and find that geographic distance is not

the only factor that influences the performance of location based routing method. For example as

shown in Figure 5.6, suppose that two vehicles A and B are in two communities which named GSP
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airport and ALT airport, respectively. Also, vehicles A and B are with a long geographic distance

of 100 miles. In this scenario, we should put a particular emphasis on the location based method if

A wants to send B a packet even though A and B are with a long geographic distance. Suppose A

has a location utility of 100 miles (the vehicle A’s frequently visited location is 100 miles away from

vehicle B’s frequently visited location), a centrality utility of 100 (the vehicle can meet 100 cars

a day) and a contact utility of 0.1 (the vehicle meets B with probability 0.1). Suppose vehicle A

meets three vehicles: a vehicle with a little higher location utility 50 miles (the vehicle A’s frequently

visited location is 50 miles away from vehicle B’s frequently visited location), a vehicle with a much

higher centrality utility 1000 (the vehicle can meet 1000 cars a day) and a vehicle with a much

higher contact utility 0.5 (the vehicle meet B with probability 0.5). If A chooses contact method

and the vehicle with much higher contact utility 0.5, we may approach B on the contact graph faster

by current relay vehicle. However, it cannot be guaranteed that the packet can still easily find the

next vehicle with higher contact utility since we cannot make sure that the packet can reach B’s

community. Therefore, the contact based method may cause a failure although we think we select

a suitable vehicle with a little high contact utility in one of the hops. Also, if A chooses vehicle

which is very active as the relay vehicle, the relay vehicle may visit a lot of places but it is very

likely that the relay vehicle won’t visit Clemson at all since the map is very large. Therefore, the

centrality based method may also cause a failure. On the contrary, A may just choose a vehicle

with a little higher location utility (50 miles) than itself even if 50 miles seems still far away from

B. However, we can see from Figure 5.5 that both of their frequently visited locations are on the

road 85 although two locations are far from each other. Road 85 is with heavy traffic and unlimited

relay vehicles. Therefore, we can make sure there will be more suitable location based relay vehicle

in the next hops. Therefore, we would like to choose location based method and a vehicle with only

a little higher location utility.

5.1.3 Challenge and Solution

Based on the above analysis, we find that vehicle pairs usually have their unique situation

which may be very complex and it is necessary to design a unique routing method for each vehicle

pair in VDTNs in order to take advantages of different routing methods simultaneously. However,

when it comes to real implementation, it is challenging to find the best routing method for each

vehicle pair for the following reason:
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Figure 5.6: An example which shows some random factors in the routing

1. There are many factors which can influence the performances of different routing methods.

It’s impossible for us to design corresponding strategy for each of them. Furthermore, even

if we can list as many as factors and design corresponding strategy for each of them, it still

will not be the best way since the situation for each vehicle pair is a combination of different

factors.

In order to solve the problem, first of all, we give a threshold to the corresponding utility

of each routing method. In addition to continually sending packets to relay vehicles with higher the

same kind of utility, the first relay vehicle (so as the following relay vehicles) must have a utility larger

than the corresponding threshold. A higher threshold means the corresponding routing method is

less suitable for the vehicle pair and we won’t choose it unless the current encountered vehicle has

a relatively high routing utility (i.e., has very high chance to deliver the packet). A lower threshold

means the corresponding routing method is more suitable for the vehicle pair. Therefore, although

the current encountered vehicle may not have very high chance to deliver the packet, there must be

more chances in the future.

Then, we ignore the detailed factors in the micro-scope and only focus on the routing success

rates of different routing methods. We believe that a higher success rate can reflect the underestimate

of the corresponding method in the system and therefore, we can decrease the threshold of the
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method. On the contrary, we can also increase the threshold of the method. In order to calculate,

we let the target vehicle records the numbers of successful delivered copies delivered by different

routing methods and let the source vehicle records the numbers of copies delivered by different

routing methods. Once the target vehicle receives the copies, it sent a packet to the source vehicle

with the information of successful delivered copies delivered by different routing methods.

In this way, we can jump over the difficulty of analyzing different factors from a micro-scope

and at the same time, each vehicle pair can learn its own optimized thresholds continually.

5.2 System Design Overview

Before introducing the detailed design of DIAL, firstly, we give an overview of DIAL. DIAL

consists of two components: the information fusion based routing method and the adaptive learning

framework. As we introduced in Chapter 2, in order to improve the routing performance, current

routing methods take advantages of the information shared by centralized infrastructures, which is

deviated from the initial goal of building DTNs. By taking advantages of the human beings commu-

nication feature we mentioned above, the information fusion based routing method enables DIAL

to improve the routing performance by sharing and fusing multiple information without centralized

infrastructures. Firstly, two vehicles adopt centrality based method to achieve the first communica-

tion. In the first communication, two vehicles store the frequently visited locations and frequently

encountered vehicles of each other. Then, once two vehicles need to communicate again, instead of

adopting centrality information alone again, they communicate with each other based on the more

detailed information of target vehicle which includes the frequently visited locations and frequent-

ly encountered vehicle. At the same time, the information of the frequently visited locations and

frequently encountered vehicles of target vehicle is updated from time to time during the communi-

cation. Therefore, the information fusion based routing method can share multiple information of

vehicles in the network and choose different routing method to deliver packets based on the different

information. At the same time, in order to balance the numbers of copies of a packet sent by different

routing methods and optimize the routing performance, we set each routing method with a threshold

of utility based on the overall routing efficiency of the method. In each routing method, the relay

vehicles not only need to have a higher utility of the corresponding method than the previous relay

vehicles, but also need to have a higher utility than the corresponding threshold of the method.
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In information fusion based routing method, the thresholds for different methods are static.

However, from observation (i), the performances of different methods can be different on different

vehicle pairs. Therefore, we design an adaptive-learning framework which further enables DIAL to

design personalized routing strategies for different vehicle pairs without centralized infrastructures.

Similar as the information fusion based routing method, by taking advantages of the human beings

communication feature, we can calculate the routing success rates of different routing methods

which use different information. Then based on the feedback of the success rates, we can analyze

the performances of different routing methods and adjust the routing strategies. For example, vehicle

B frequently receives the packets sent from Vehicle A. These packets can be delivered by contact

based method, centrality based method or location based method. Once vehicle B sends packets to

vehicle A, vehicle B sends the numbers of packets successfully delivered by different methods from

vehicle A last time at the same time. Then vehicle A can calculate the success rates based on the

numbers of packets successfully delivered by different methods and adjust thresholds for different

routing methods accordingly to give more preference to the method that can lead to the highest

success rate. The routing strategy can be self-adaptive in the adaptive-learning framework as shown

in Figure 1.6. Therefore, we can provide different vehicle pairs with different routing strategies and

at the same time, the routing strategies can be continually improved according to the feedbacks of

the routing performances.

In the following part of this section, we introduce the detailed information fusion based

routing method and adaptive-learning framework, respectively.

5.3 Information Fusion based Routing Method

In the information fusion based routing method, we first introduce the initial routing method

of delivering a packet from vehicle A to vehicle B when vehicle A and vehicle B never communicated

before. Then, we introduce a data structure on vehicle B named address book which stores the

frequently visited locations and frequently encountered vehicles of vehicles which send packets to

vehicle B frequently. Finally, we describe the process of routing process from B to A based on the

personalized information of vehicle A stored in the address book of B.
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5.3.1 Initial Routing Method

We adopt PeopleRank, which is a centrality based routing method, as the initial routing

method of DIAL since PeopleRank can be implemented without centralized infrastructures. Al-

though there are many advanced routing methods beyond PeopleRank, PeopleRank is our ideal

option since most advanced routing methods adopt centralized information in order to improve the

routing performance. The basic routing process of PeopleRank is as follows.

1. Firstly, we consider vehicles are socially related to each other. Such social relationships can be

based on explicit friendships on personal communication. Then, we adopt PageRank algorithm

for calculating the centrality of different vehicles. However, in [53], the PageRank value is called

PeopleRank value.

2. Consequently, the PeopleRank value is given by

PeR(Ni) = (1− d) + d
∑

Nj∈F (Ni)

PeR(Nj)

|F (Nj)|
(5.1)

where N1, N2,...,Nn are vehicles, F (Ni) is the set of neighbors that links to Ni, and d is

damping factor which is defined as the probability, at any encounter, that the social relation

between the nodes helps to improve the rank of these nodes. This means that, the higher

the value of d, the more the algorithm accounts for social relation between the vehicles. As a

result, the damping factor is a very useful in controlling the weight given to the social relations

for the forwarding decision.

3. The PeopleRank value is updated every time when two vehicles encounters.

4. PeopleRank routing is a routing by continually selecting vehicles with higher PeopleRank

values.

5.3.2 Building the Address Book

After we have chosen the initial routing method, in order to distributedly share the person-

alized information of vehicles, in DIAL system, each vehicle maintains an address book by itself.

For example as shown in Figure 5.7, the address book stores Location Tables (LTables) and Contact

Tables (CTables) of vehicles with ID 1, 2, 3, 4 and so on. A LTable records the frequently visited
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Vehicle ID Location Contact 
1 LTable ① CTable ① 
2 LTable ② CTable ② 
3 LTable ③ CTable ③ 
4 LTable ④ CTable ④ 

…… 
 

Vehicle ID Encounter 
frequency 

7 0.1 
8 0.3 
9 0.2 

10 0.4 
…… 

 

Location Visited frequency 
Road a 1 
Road b 1 

      Road c 2 
Road d 1 

…… 
 

Figure 5.7: An example of address book

road ID and visited frequency of each road of the corresponding vehicle. A CTable records the

frequently encountered vehicles and the encounter frequency of the vehicles of the corresponding

vehicle. All these information can be used in improving the initial routing method introduced above

in the information fusion based routing method. The calculation methods of visited frequency in

LTable and encounter frequency in CTable are introduced as follows:

1. The encounter frequency of vehicles is measured by the method in [47]. Specifically, the contact

utility is calculated every time when once two vehicles encounter by:

C(vi, vj) = Cold(vi, vj) + (1− Cold(vi, vj))× Cinit(vi, vj) (5.2)

where C(vi, vj) is the updated encounter frequency utility; Cold(vi, vj) is the old encounter

frequency utility and Cinit(vi, vj) is the initial value of contact utility of all the vehicle pairs,

which is set to a value selected from (0, 1). This definition ensures that the two vehicles with

a high encounter frequency have a larger encounter frequency utility.

2. The visited frequency of locations is measured by our previous method in [73]. The basic idea

is as follows:

(a) Firstly, we divide road map to small road sections which can be denoted by road inter-

sections.

(b) Then each vehicle keeps recording the number of visiting times on each road sections.
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5.3.3 Maintaining the Address Book

After a vehicle A has calculated its own address information, vehicle B build and maintain

the address information of vehicle A as follows:

1. Once vehicle A delivers a packet to vehicle B, vehicle A delivers its address information to

vehicle B with the packet.

2. Once vehicle B receive a packet and address information from vehicle A, vehicle B checks its

address book. If vehicle A is in the address book, go to Step (3); otherwise, go to Step (4).

3. Vehicle B updates the address information of vehicle A by the new address information and

change the corresponding updated time to the current time stamp.

4. Vehicle B deletes the oldest address information from address book and add the address

information of vehicle A and set the corresponding updated time to the current time stamp.

Besides building and maintaining its address book by the information provided by source

vehicles, vehicle B can also maintain its address book by other vehicles as follows:

1. Once vehicle B encounters another vehicle C, vehicle B checks whether there are useful address

information of its frequently contact vehicles. If there is useful address information, go to Step

(2).

2. Vehicle B checks the corresponding updated time of the address information. If it’s later than

the address information stored in the address book, update the address information.

5.3.4 Selecting Relay Nodes based on Address Information

After vehicle A has built the address information of vehicle B in its address book, we choose

contact, centrality and location based routing methods simultaneously to deliver packets from A

to B, which guarantees that the best routing method is considered. However, in a combination of

different routing methods, if we meet several vehicles all with higher contact utility first, then all the

copies of the packet will be delivered by the same method only. Then, if the source vehicle meets

a relay vehicle with very high centrality utility or location utility, the source vehicle will lose the

chance to deliver the packet by those vehicles since each packet can only have limited copies in order

to avoid the congestion. For example as shown in Figure 5.8, a larger size of the circle presents a
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larger opportunity source vehicle meet to successfully deliver the packet. Suppose each packet can

have 5 copies for routing and we continually send the copies to vehicles with any kind of utilities

which are higher than current relay vehicle as shown as the trajectory of the black car in the figure.

Then, all the copies are ran out by relay vehicles with a little higher contact utilities (the relatively

small black circles). Although the vehicle meet other vehicles with much higher location utility and

centrality utility (the relatively big blue and red circles) later, it loses the chance to select them as

relay vehicles. In order to conquer this problem, we set each method with a utility threshold. In

addition to always forward packets to vehicles with higher utilities, the relay vehicles in each routing

method should also have larger corresponding utility than its threshold.

To be more specific, firstly, we set three thresholds: centrality threshold, contact threshold

and location threshold as follows:

1. Contact threshold (Thrcon): We define that the contact utility of the relay vehicle must

be large than Thrcon for source vehicle to deliver a copy of a packet to the relay vehicle for

contact based routing.

2. Location threshold (Thrloc): We define that the frequently visited location between relay

vehicle and target vehicle must be smaller than 1
Thrloc

for source vehicle to deliver a copy of a

packet to the relay vehicle for location based routing.

3. Centrality threshold (Thrcen): We define that the centrality utility of the relay vehicle

must be large than Thrcen for source vehicle to deliver a copy of a packet to the relay vehicle

for centrality based routing.

As shown in Figure 5.8, in DIAL, we set thresholds to different methods which can guarantee

that the copies can be left for those vehicles with very high utilities met later which are denoted as

the bigger blue and red circles as shown as the trajectory of the red car in the figure. Therefore, we

can fuse the different kinds of information and improve the routing efficiency.

Once we set the thresholds for different routing methods, vehicle B can adopt different

routing method to deliver packets to A simultaneously based on the following steps:

1. Once a packet is generated by vehicle B, vehicle B checks its address book. If the target

vehicle A is in the address book, go to Step (3); otherwise, go to Step (2).

2. The current relay vehicle adopts the initial routing method to select next relay vehicle.
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Figure 5.8: Routing with combination of different methods

3. The current relay vehicle adds the location and contact information of vehicle A to the packet

and then selects a vehicle as relay vehicle which has larger centrality utility than centrality

threshold, larger contact utility than contact threshold or larger location utility than location

threshold.

4. If a relay vehicle has more than one utility which is higher than the threshold, we pick the

method which is used with smaller number of times in order to balance the load caused by

different methods.

5.4 Adaptive-learning Framework

In adaptive-learning framework, we first introduce a data structure named routing strategy

table stored on each vehicle. The routing strategy table stores the thresholds of different utilities

which are corresponding to different routing methods to different target vehicles. Then, we introduce

the detailed method for maintaining the thresholds in the routing strategy table. Finally, we describe

the whole DIAL routing process.

5.4.1 Building and Maintaining Routing Strategy Table

In the previous section, we set the centrality threshold, contact threshold and location

threshold to constant values. Obviously, such a strategy is not ideal since optimal thresholds can be

different from one vehicle pair to another vehicle pair. For example as shown in Figure 5.9, vehicle

A is inactive and 0.1 is a high enough contact threshold for delivering packets to vehicle A, while
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Figure 5.9: An example of the routing process

 
Vehicle ID Thresholds 

Contact Centrality Location 
B 0.1 1.7 5 
C 0.4 2.5 7 
D 0.2 1.6 3 

…… 

Vehicle ID Location Contact 
1 LTable ① CTable ① 
2 LTable ② CTable ② 
3 LTable ③ CTable ③ 
4 LTable ④ CTable ④ 

…… 
 

Vehicle ID PersonalizedRank 
7 1 
8 3 
9 2 

10 4 
…… 

 

Location Time Rank 
Road a 8:00-9:00 1 
Road b 18:00-19:00 1 

      Road c 8:00-9:00 2 
Road d 12:00-13:00 1 

…… 
 

Figure 5.10: An example of strategy table of vehicle A

vehicle B is active and maybe 0.2 can be a good enough contact threshold for delivering packets to

vehicle B. Another is that even for the same target vehicle, the optimal threshold can be different

due to the source vehicles are different. Suppose the target vehicle is B. If the source vehicle is A,

then the contact threshold may be small since A is inactive. However, if the source vehicle is B, then

the contact threshold may be bigger since B meets a lot of vehicles and has more chances to meet a

more frequent encountered vehicle. The same thing can happen to centrality threshold and location

threshold. In order to set different thresholds for different vehicle pairs, in the adaptive-learning

framework, a vehicle A maintains a routing strategy table as shown in Figure 5.10. The routing

strategy table stores the thresholds for vehicle A to deliver packets to vehicles with IDs B, C, D

and so on.

However, as we mentioned in Section 5.1, it is difficult to predict the routing performances of

different routing methods on different vehicle pairs. To solve this problem, in the adaptive-learning

framework, instead of applying features of vehicle pairs to predict the performances of different

routing methods on different vehicle pairs, we consider the routing process and all the features of

vehicle pairs as a black box. By taking advantages of the human beings communication feature that

most interactions are generated by pairs of people who interacted often previously, the adaptive-

learning framework tests the routing performances of different routing methods on different vehicle

pairs. Then based on the feedback of the tests, the adaptive-learning framework can adjust the

thresholds of utilities for different routing methods.

To be more specific, the source vehicle A remembers the number of copies sent by different

routing methods to target vehicle B. At the same time, target vehicle B remembers the number

of copies successfully delivered by different routing method from source vehicle A and send it back
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Figure 5.11: An example of strategy table of vehicle A

to source vehicle A with other packets. Then, vehicle A can calculate the success rates of different

routing methods on itself. If the success rate of a routing method is higher than others, it means

that the threshold of that utility is too low and a lot of copies delivered to vehicles with higher utility

than the threshold are wasted. Therefore, we increase the threshold. Otherwise, if the success rate

of a routing method is lower than others, it means that the threshold of that utility is too low.

Therefore, we decrease the threshold. Here, we define the success rate of a specific method as:

CU con/loc/cen =
|Scon/loc/cen|
|SScon/loc/cen|

(5.3)

where CU con/loc/cen is the success rate of contact, location and centrality based routing methods,

respectively; |Scon/loc/cen| is the set of copies sent by a specific method and |SScon/loc/cen| is the

set of copies successfully delivered by a specific method. For example as shown in Figure 5.11,

there are 6 copies which are tried to be delivered, in which 2 of them are tried to be delivered by

contact based routing, 1 of them are tried to be delivered by location based routing and 2 of them

are tried to be delivered by centrality based routing, respectively. Finally, 1 of them is successfully

delivered by contact based routing and 2 of them are successfully delivered by centrality based

routing, respectively. Therefore, we have CU con = 1
2 = 0.5, CU loc = 0

1 = 0 and CU cen = 2
2 = 1.

Based on the calculated success rates, we adjust the thresholds of the three different methods

as follows:

Thrnewcon = Throldcon + (CU con −M)×∆con (5.4)

Thrnewloc = Throldloc + (CU loc −M)×∆loc (5.5)

110



 

 

Source 

 

Target 

 

 

T1 

 

T2 

 

T3 

 

T4 

Send feedback 

Send a packet 

Send new packet 

Record the 

numbers of copies 

successfully 

delivered by 

different methods 

Record the 

numbers of copies 

sent by different 

methods 

Adjust thresholds 

based on 

coefficients of 

utilization of 

different methods 

Figure 5.12: An example of strategy table of vehicle A

Thrnewcen = Throldcen + (CU cen −M)×∆cen (5.6)

where Thrnewcon , Thrnewloc and Thrnewcen are the new thresholds of contact, location and centrality based

routing methods, respectively. Throldcon, Throldloc and Throldcen are the old thresholds of contact, location

and centrality based routing methods, respectively. ∆con, ∆loc and ∆cen are the new increments of

thresholds of contact, location and centrality based methods, respectively. M is the median of the

three thresholds.

To sum up, as shown in Figure 5.12 the routing strategy table is built and maintained by

the following steps:

1. Initially, vehicle A gives the thresholds to all the vehicles as constants.

2. Once vehicle A is sending a packet to vehicle B, vehicle records the number of copies sent out

by different methods, respectively, as shown in time T1 of Figure 5.12.

3. Once vehicle B receives the copies of the packet sent by A, vehicle B records the numbers of

copies successfully delivered to itself by different methods, respectively, as shown in time T2

of Figure 5.12.

4. Once vehicle A receives the feedback sent by vehicle B, vehicle A adjusts the thresholds of

different methods by Formula 5.4, Formula 5.5 and Formula 5.6, respectively, as shown in time

T3 of Figure 5.12.

5.4.2 Detailed DIAL Routing Process

Based on the above description, now we give a detailed DIAL routing process as follows:
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1. Once a packet is generated by vehicle B, vehicle B checks its address book. If the target

vehicle A is in the address book, go to Step (3); otherwise, go to Step (2).

2. The current relay vehicle adopts the initial routing method to select next relay vehicle. Then

go to Step (5).

3. The current relay vehicle checks strategy table. If there is a routing strategy to target vehicle

A, update the thresholds with the values in strategy table; otherwise use the initial values of

the thresholds. Then go to Step (4)

4. The current relay vehicle adds the location and contact information of vehicle A to the packet

and then selects a vehicle as relay vehicle which has larger centrality utility than centrality

threshold, larger contact utility than contact threshold or is going to visit the locations vehicle

A visits more frequent than location threshold.

5. The current relay vehicle checks its address book. If the target vehicle A is in the address

book, go to Step (3); otherwise, go to Step (2).

5.5 Performance Evaluation

In this section, we evaluate the performance of DIAL and compare it with other methods.

We conduct the trace-driven experiments on both the Roma and SanF traces. In order to evaluate

on continually interacting between vehicles on a long term, we recursively set the states of vehicles

to the beginning of the trace data and replay the trace data once the trace data run out since the

durations of the trace data are not long enough. Based on the above experiment environment, we

use the following metrics to evaluate the routing performance:

1. Success rate: The percentage of packets that successfully arrive at their target vehicles.

2. Average delay: The average time per packet for successfully delivered packets to reach their

target vehicles.

Our evaluation is divided to two aspects:

1. From a micro-scope, we measure the routing performance of DIAL with different interaction

frequencies since DIAL is designed based on the fact that most interactions are generated by

pairs of people who interacted often previously.
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(a) Roma (b) SanF

Figure 5.13: The success rate vs. the interaction frequency

2. From a macro-scope, we compare the performance of DIAL with AAR [73], PeopleRank [53]

and PROPHET [47] methods. AAR represents location based routing method. PeopleRank

represents centrality based routing method. PROPHET represents contact based routing

method. The details of the methods are introduced in Chapter 2.

5.5.1 Performance Comparison with Different Parameters

It is obvious that DIAL is influenced by the interaction frequency. Therefore, firstly, we

analyze the influence of interact frequency on the performance of DIAL. In order to test the change

of the routing performance when vehicle pairs continually interact with each other. We randomly

select 100 vehicle pairs and continually generate packets between each of them. Suppose that a

vehicle pair interact with each other one time is one time of the interactions. Figure 5.13 shows

the change of success rates and average delays of DIAL with the increasing of the times of the

interactions between each vehicle pair. As shown in Figure 5.13, the success rate is significantly

improved at the first several interactions. The reason is that, in the first time of interactions, the

successfully delivered packets send the useful information from source vehicles to target vehicles.

Then, the target vehicles send packets back to their source vehicles by taking advantages of the

information came from the first interaction. Therefore, some of the vehicle pairs which initially

cannot be delivered from target vehicle to source vehicle can successfully deliver the packet in the

second time of interactions. Therefore, the success rate is significantly improved in the second

time of interactions. By taking advantages of the information brought by first few interactions, the

routings on most vehicle pairs which the routings are only successful in one side have been improved.
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(a) Roma (b) SanF

Figure 5.14: The average delay vs. the interaction frequency

Therefore, in the next following interactions, the success rate is not changing too much since routings

on those vehicle pairs which the routings are failed in both sides cannot take advantages of DIAL.

On the contrary, the average delay is continually decreasing with the increasing of the times

of the interactions for a long time as shown in Figure 5.14. The reason is that, in the first few times

of interactions, by taking advantages of the location and contact information brought, the success

rate and average delay can be improved obviously. In the new following interactions, although the

routings on the vehicle pairs which the routings were failed in both sides cannot be improved, the

vehicle pairs which are successfully interacted can still optimize their routing strategies based on our

adaptive learning framework. At the same time, for contact, location and centrality based routing

methods, the routing method with higher success rate usually leads to a shorter average delay.

Therefore, the average delay can be continually improved.

5.5.2 Performance Comparison with Other Methods

Then, we compare DIAL with other routing methods. In the evaluation of previous methods,

the packets are randomly generated to evaluate the performance of their methods. However, the

interactions between people follows a special pattern. Therefore, in order to improve the accuracy of

the evaluation, instead of randomly generating the packets, we reproduce a series of packets which

follow the special pattern in [51] and most interactions are generated by vehicle pairs who interacted

often previously.
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Figure 5.15: The success rate vs. different number of copies

5.5.2.1 Performance comparison with different numbers of copies

First, we compare the success rates and average delays with different numbers of copies of

each packet. Figure 5.15 shows the success rates with different numbers of copies per packet on Roma

and SanF traces, respectively. Generally, the performances follow DIAL > AAR > PeopleRank

> PROPHET. The performance of AAR is better than PeopleRank since AAR uses the global

information of each vehicle’s frequently visited locations. DIAL performs slightly better than AAR

since we take advantages of the human beings communication feature and learn the best routing

strategy for each vehicle pair. PROPHET performs the worst, since it is difficult to encounter a

vehicle that has a high probability to encounter the destination vehicles in the VDTNs. Although

DIAL has similar performance as AAR, AAR uses the global information which is not easy to be

implemented in reality. However DIAL achieve the similar success rate in a totally distribute way

which is easy to be implemented in reality.

Figure 5.16 shows the average delays with different numbers of copies per packet on Roma

and SanF traces, respectively. Generally, the average delays follow PROPHET > AAR > PeopleR-

ank > DIAL. The delay of PROPHET is the largest, since the relay vehicles need to wait a long

time to encounter a vehicle that has a high probability to encounter the destination vehicles in the

VDTNs. The delay of DIAL is the smallest, since we continually optimize the routing strategy for

each vehicle pair during the routings. Based on the above evaluation, we find that the success rate

and average delay of DIAL are both improved. Although the improvement of success rate is not sig-

nificant, DIAL method does not rely on global information which makes it easier to be implemented

in reality. Also, the average delay of DIAL is much shorter than other methods.
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Figure 5.16: The average delay vs. different number of copies
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Figure 5.17: The success rate vs. different memory sizes
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Figure 5.18: The average delay vs. different memory sizes
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Figure 5.19: An example of load balance function of DIAL

5.5.2.2 Performance comparison with different memory sizes

Then, we compare the success rates and average delays with different memory sizes of

the vehicles and we suppose 1 unit of memory can store 1 packet. Figure 5.17 and Figure 5.18

shows the success rates and average delays with different memory sizes, respectively. Generally, the

sensitivities of different methods to the memory sizes follow PeopleRank>AAR>DIAL>PROPHET.

The performance of PeopleRank is very sensitive to the memory size, since all the packets tend to

be forwarded to few vehicles with very high PeopleRank values and the limited memory size can

significantly influence the routing process negatively. PROPHET is insensitive to the memory size,

since the packets only tend to find those specific vehicles with high probability to encounter the

target vehicles, which guarantees load balance. However, PROPHET generates low success rate due

to the same reason. AAR delivers a packet relies on many relay vehicles from one road intersection

to another road intersection and if vehicles’ memory is limited, some packets may lose the chance for

delivery. Therefore, AAR is still relatively sensitive. DIAL method is relatively insensitive comparing

with AAR and PeopleRank since we adopt the adaptive-learning framework which will adjust the

routing strategies from time to time. For example as shown in Figure 5.19, At the beginning time,

PeopleRank sends all the packets to the central vehicle A with the biggest PeopleRank value. Since

the memory of the central node is limited, the success rate of PeopleRank is decreased when more

and more packets are coming. While at the same time, The success rate of AAR is not decreased

since a lot of normal vehicles which don’t have large PeopleRank value have enough memories for

delivery. Based on the mechanism of adaptive-learning framework, the centrality threshold will be

increased and location utility will be decreased. Therefore, in the next round, less copies of packets
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will be sent to those busy vehicles with high PeopleRank value and more copies will be sent to those

idle vehicles. As a result, the overall performance will be improved by a load balance function of

adaptive-learning framework.
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Chapter 6

Conclusions and Future Work

In this dissertation, we proposed three routing methods for VDTNs. Firstly, we measured

the social network features of important nodes, community structure and fractal structure feature of

the community of two VNET traces. Then, by fully utilizing the social network features in VNETs,

we proposed SPread, an efficient multi-copy routing algorithm. SPread carefully assigns different

copies of each packet to different communities which are close to the destination community. Then,

each copy can search the destination community through different weak ties, which can enhance the

efficiency of current multi-copy routing algorithms. For the routing of each copy, current routing

algorithms either fail to exploit each node’s reachability information to different nodes (centrality

based methods) or simply use single-hop reachability information, e.g., similary and probability,

(community based methods). In order to overcome the above drawbacks, inspired by personalized

PageRank algorithm, we designed new algorithms for calculating multi-hop reachability of vehicles

to different communities and vehicles dynamically. Therefore, the routing efficiency of each copy

can also be enhanced. The trace-driven simulation demonstrates that SPread can significantly

improve the multi-copy routing efficiency and has a highest success rate and lowest average delay in

comparison with other algorithms.

Further, by taking advantage of the unique features of VNETs, we proposed Active Area

based Routing method (AAR). Instead of pursuing the target vehicle on the entire VDTN area, AAR

spreads copies of a packet to the active sub-areas of the target vehicle where it visits frequently and

restricts each copy in its responsible sub-area to search the target vehicle based on contact frequency.

The trace-driven simulation demonstrates that AAR has a highest success rate and lowest average
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delay in comparison with other algorithms. In our future work, we will discuss the possibility of

routing in VDTNs without the help of road side units.

Finally, by taking advantages of the human beings communication feature that most in-

teractions are generated by pairs of people who interacted often previously, we proposed DIAL,

an efficient VDTNs routing method. DIAL has two components: information fusion based routing

method and adaptive-learning framework. The information fusion based routing method enables

DIAL to improve the routing performance by sharing and fusing multiple information without cen-

tralized infrastructures. Furthermore, based on the information shared by information fusion based

routing method, the adaptive-learning framework enables DIAL to design a personalized routing

strategies for different vehicle pairs without centralized infrastructures. Therefore, DIAL can not

only share and fuse multiple information of each vehicle without centralized infrastructures, but

also dynamically each vehicle pair with personalized routing strategy dynamically. The trace-driven

simulation demonstrates that DIAL can slight improve the VDTNs routing success rate compar-

ing with previous routing method which is based on centralized information. At the same time,

DIAL significantly improve the VDTNs routing average delay and enables the routing system to

dynamically balance the loads among vehicles.

In the future, we will explore the possibility of routing in VDTNs with the help of road side

units. Without a centralized infrastructure, the routing performance cannot be guaranteed. Thus,

we will also try to explore the possibility to build a hybrid network among vehicles incorporating an

infrastructure, which can improve the performance and at the same time decrease the cost by only

using a centralized infrastructure.
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of erdös-réyi graphs. CoRR, abs/1112.3644, 2011.

[64] Chao Song, Ming Liu, Yonggang Wen, Jiannong Cao, and Guihai Chen. Buffer and switch: An
efficient road-to-road routing scheme for vanets. In Proc. of MSN, pages 310–317. IEEE, 2011.

[65] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra. Efficient routing
in intermittently connected mobile networks: the multiple-copy case. IEEE/ACM Trans. Netw.,
16(1):77–90, 2008.

[66] Mechthild Stoer and Frank Wagner. A simple min cut algorithm. ESA, 1994.

[67] Andrew Symington and Niki Trigoni. Encounter based sensor tracking. In Proc. of MobiHoc,
pages 15–24. ACM, 2012.

[68] Md. Yusuf Sarwar Uddin, Hossein Ahmadi, Tarek F. Abdelzaher, and Robin Kravets. A low-
energy, multi-copy inter-contact routing protocol for disaster response networks. In Proc. of
SECON, pages 1–9. IEEE, 2009.

[69] Li Wan, Bin Wu, Nan Du, Qi Ye, and Ping Chen. A new algorithm for enumerating all maximal
cliques in complex network. In ADMA, 2006.

[70] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, (393):440–
442, 1998.

[71] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, pages
440–442, 1998.

[72] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 1998.

[73] Bo Wu, Haiying Shen, and Kang Chen. Exploiting active sub-areas for multi-copy routing in
vdtns. In Proc. of ICCCN, pages 1–10. IEEE, 2015.

124



[74] Yuchen Wu, Yanmin Zhu, and Bo Li 0001. Trajectory improves data delivery in vehicular
networks. In Proc. of Infocom, pages 2183–2191. IEEE, 2011.

[75] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. CoRR, 2012.

[76] Eiko Yoneki, Pan Hui, Shu Yan Chan, and Jon Crowcroft. A socio-aware overlay for publish/-
subscribe communication in delay tolerant networks. In Proc. of MSWiM, pages 225–234. ACM,
2007.

[77] Hongzi Zhu, Shan Chang, Minglu Li, Kshirasagar Naik, and Sherman X. Shen. Exploiting
temporal dependency for opportunistic forwarding in urban vehicular networks. In Proc. of
INFOCOM. IEEE, 2011.

125


	Clemson University
	TigerPrints
	December 2016

	Complex Network Analysis and the Applications in Vehicle Delay-Tolerant Networks
	Bo Wu
	Recommended Citation


	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Approach
	Contributions
	Dissertation Organization

	Related Work
	SPread: Exploiting Fractal Social Community For Efficient Multi-copy Routing in VDTNs
	An Improvement of Goldberg's Densest Subgraph Discovering Algorithm
	Measurement
	System Design
	Advanced SPread
	Performance Evaluation

	Exploiting Active Sub-areas for Multi-copy Routing in VDTNs
	Identification of Each Vehicle's Active Sub-areas
	Trace Measurement
	Active Area Based Routing Method
	Advanced Active Area Based Routing Method
	Performance Evaluation

	DIAL: A Distributed Adaptive-Learning Routing Method in VDTNs
	Rationale
	System Design Overview
	Information Fusion based Routing Method
	Adaptive-learning Framework
	Performance Evaluation

	Conclusions and Future Work
	bibliography

