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Résumé

Notre décennie a connu une augmentation spectaculaire du taux d’équipement en ap-
pareils mobiles tels les smartphones, ordinateurs portables, tablettes multimedia ou
consoles de jeux. En ce qui concerne les smartphones, quasi 50% des ménages en sont
actuellement pourvus. Tous ces équipements nous accompagnent dans notre vie de tous
les jours et surtout lors de nos trajets quotidiens. Au delà de l’aspect pratique de ces ap-
pareils, tous ces nouveaux gadgets alliant haute capacité de calcul et mémoire embarquée
grandissante transforment les nomades urbains en de puissants vecteurs d’information.
L’information circule avec nous et peut être diffusée à partir de nous. Afin de profiter de
ces nouveaux vecteurs de diffusions, la communauté scientifique commença à définir de
nouveaux types de réseaux de communications laissant de plus grands degrés de liberté
aux communications. Ainsi les réseaux opportunistes ou réseaux tolérant aux inter-
ruptions (DTN) permettent d’utiliser ces nouveaux vecteurs de transmission car leur
fonctionnement-même tolère une extrême latence dans les communications et bénéficie
de la mobilité des usagers.

Cependant avant de pouvoir profiter de toutes les capacités des DTN, la commu-
nauté scientifique doit tout d’abord se pencher sur la compréhension de ce nouveau
paradigme. De nombreuses études se sont donc attelées à la tâche en essayant de
comprendre les interactions dans les réseaux ainsi que l’évolution de leur structure
topologique. D’autres se sont plutôt focalisées sur la compréhension des phénomènes
de contact et d’intercontact s’y déroulant. De nombreuses propriétés concernant les
réseaux DTN en général sont maintenant reconnues, mais les relations entre un noeud
du réseau et celle de son voisinage proche ne semblent pas encore avoir été passées au
crible. Ainsi, dans la plupart des études que nous avons pu observer, la présence de
noeuds voisins proches mais pas directement liés par le contact est souvent ignorée.
Dans cette thèse, nous tentons de montrer à quel point considérer les noeuds à prox-
imité mais pas forcément en contact peut nous aider à améliorer les performances des
DTN.

En identifiant et analysant le paradoxe binaire dans les DTN, nous montrons que les
caractérisations actuelles basées sur la notion binaire de contact/intercontact ne sont
pas suffisantes pour bénéficier de toutes les possibilités de transmission dans les DTN.
Dans un réseau DTN, deux noeuds peuvent ne pas être en contact direct mais être
tout de même lié par un chemin de longueur 2 ainsi, ils seraient tout de même proche.
Cependant la vision binaire actuelle ne permet pas de garder cette information. Afin
de mieux comprendre cette notion de proximité dans les DTN, nous proposons une
définition formelle du voisinage pour les réseaux opportunistes nommée le “κ-vicinity”.
Nous étudions les caractérisations temporelles du κ-vicinity dans différents jeux de
données et montrons que cette nouvelle caractérisation est liée à la précédente, issue de
la vision binaire de contact/intercontact.
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Ensuite, nous nous sommes concentré sur l’organisation interne du κ-vicinity afin de
comprendre les mouvements de voisinage qui y règnent. Nous avons créé le Vicinity Mo-
tion qui est un analyseur permettant d’obtenir automatiquement un modèle markovien
du κ-vicinity à partir de n’importe quelle trace de contact. Le Vicinity Motion mod-
élise les distances entre les noeuds en tant qu’état et les transitions entre états comme
la probabilité de passer directement d’une distance à une autre lorsque deux noeuds
appartiennent au κ-vicinity. Nous avons pu extraire trois mouvements principaux dans
les κ-vicinity: la naissance, la mort et les mouvements séquentiels. Grâce aux valeurs
obtenues avec le Vicinity Motion, nous avons pu créer un générateur synthétique de
mouvements de proximité nommé TiGeR.

Enfin, nous nous sommes posé la question de la prévisibilité des distances entre
deux noeuds situé dans le κ-vicinity. En utilisant le savoir emmagasiné dans le Vicinity
Motion et ses probabilités de transition, nous avons mis au point une heuristique per-
mettant de prédire les futures distances entre deux noeuds. La particularité de notre
heuristique est qu’elle fournit deux distances possibles pour les prochains intervalles
considérés et que cette méthode peut s’étendre au nime intervalle suivant.

Toutes nos analyses ont pour but de démontrer les améliorations que peut apporter
la notion de voisinage dans la compréhension et l’utilisation des réseaux opportunistes.
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Abstract

The market of mobile devices, such as smartphones, tablets, game stations, or laptops
has exponentially grown over the latest years. In 2013, when considering smartphones
only, the worldwide penetration ratio is already around 50%. These devices have the
necessary CPU and memory capacities to create, send, and forward information on the
go. When people carry such equipments along their daily commuting, they become
mobile information vectors. They are able to carry, send, or receive information when-
ever they meet each other. The networking paradigm using such information vectors is
known as disruption-tolerant networks (DTN) or opportunistic networks.

Before being able to exploit all the capacities of DTN, we need to better under-
stand their fundamental characteristics and potentials. Many inspiring studies focused
on characterizing network structures as well as node specific properties like degree or
betweenness centralities. Other analyses concentrated their efforts toward contact and
intercontact characterization. Even if some properties are quite well known today, the
relationship between a given node and its vicinity has not been thoroughly studied yet.
For instance, the presence of nearby neighbors including nodes without direct contacts
is often neglected in opportunistic approaches. In this thesis, we show how this closeness
notion is a key ingredient to improve opportunistic network forwarding.

We begin by identifying and investigating the binary assertion issue in opportunistic
networks. We notice how most DTNs mainly analyze nodes that are in contact (at a
topological 1-hop distance). This vision implies that all nodes that are not in contact,
are in intercontact. Nevertheless, when two nodes are not in contact, this does not
mean that they are topologically far away from one another. For instance, a 2- or 3-hop
path may link them. Following this chain of thoughts, we propose a formal definition of
vicinities in DTNs called “κ-vicinity” and study the new resulting “contact/intercontact”
temporal characterization. We show how extended temporal distributions differ from
previous binary distributions.

Then, we examine the internal organization of vicinities using the asynchronous
vicinity motion (AVM) framework. Asynchronous vicinity motion models pairwise
vicinity movements as a chain. Each chain state indicates the shortest distance be-
tween nodes. Each state is linked to the others by a transitional probability. We
highlight movement types such as birth, death, and sequential moves. We analyze a
number of their characteristics and extract vicinity usage directions for mobile networks.
Based on the vicinity motion outputs and extracted directions, we build TiGeR (a syn-
thetic TImeline GEneratoR) that simulates how pairs of nodes interact within their
vicinities. Vicinity motion and TiGeR are able to take into account various types of
networks to generate synthetic vicinity behaviors following similar patterns. Both mod-
ules will be available in the Vicinity package that we provide on our dedicated website:
http://vicinity.lip6.fr.
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Finally, we inquire about the possibilities of vicinity distance prediction. We expose
a vicinity motion-based heuristic for pairwise shortest distance forecasting. For this
part, we also define a synchronous vicinity motion model (SVM) which is time-aware
and analyzes datasets every τ seconds instead of following network dynamics like AVM.
We find that our heuristics perform quite well with performances up to 99% for the
synchronous vicinity motion-based scheme and around 40% for the asynchronous one.
We must note that these measures are enhanced by the fact that our heuristic often
predicts infinite pairwise distances (i.e., pure intercontact) and most of the datasets we
observe are mainly disconnected. Still, they are interesting indicators of whether two
nodes are likely to be close in the future.

Keywords: Disruption-tolerant networks, opportunistic networks, vicinity, k-contact,
k-intercontact, contact, intercontact.
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Chapter 1

Introduction

Computer networks have mutated a lot since their first appearance in the 1950’s. In
1969, the Advanced Research Projects Agency Network (ARPANET) displayed the
first characteristics of networks we currently know. ARPANET used packet switching,
the TCP/IP protocol, and wired connections. A natural subsequent next step was to
remove physical wires and replace them using wireless technologies. The most popular
standard in use now being IEEE 802.11 (Wi-Fi). There are other well known standards
such as 2G, 3G, 4G, NFC, ZigBee, or Bluetooth. Nowadays, all these technologies are
often embedded in small portable devices like laptops, tablets, smartphones, or game
stations (Playstation PS Vita, Nintendo 3DS). Most people carry at least one of these
devices everyday along their daily commuting. Such devices enable people to carry,
store and forward data wherever they go, transforming them into potential oblivious
data carriers. The opportunistic network paradigm embraces such original information
vectors and uses them in order to carry data.

This dissertation presents an alternative vision of opportunistic networks using the
notion of vicinity. In this chapter, we first present the original characteristics of mobile
opportunistic networks as well as most challenges they face in Section 1.1. Then in
Section 1.2, we present an example motivating our original approach to opportunistic
network characterization. In Section 1.3, we highlight the problems we tackle in our
work. Finally in Section 1.4, we present our contributions together with the outline of
this dissertation.

1.1 Opportunistic Networks: Characteristics and Chal-
lenges

This all started high in the sky with satellite networks and the idea of an Interplanetary
Internet [1]. To work with such type of networks is clearly different from working with
our common wired or Wi-Fi networks. Compared to most systems, interplanetary
networks do bear unusual features. For instance, topological distance between spatial
nodes is often of thousands of kilometers inducing long delays between the emission
and reception of a signal. These long delays are considered faulty in usual networks.
However in this case, it is a natural part of their functioning.

The opportunistic networking research area gained attention in 2003 when Kevin
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Figure 1.1: DTN/Opportunistic networks substrate of use: urban connectivity.

Fall formalized the characteristics of a “delay-tolerant network architecture” for chal-
lenged networks [2]. By bringing a back-to-earth vision to challenged networks, Fall
sparked a lot of interests in our fellow scientists. By lifting a few technical constraints,
our community could extend wireless networks use to such challenged networks. This
new paradigm could be applicable to urban areas with urban nomads always carrying
connected devices (laptops, smartphones, etc.) When two or more of these devices
are close enough, they have potential connectivity and transmitting powers thanks
to their embedded technologies. Transmitting information hop-by-hop between these
moving devices becomes theoretically possible. Such challenged networks are called
“disruption-tolerant networks” (DTN) or “opportunistic networks”.1 In this thesis, we
focus on urban human-driven networks (networks between user-carried devices in a city
setting, see Fig. 1.1).

Opportunistic networks rely on device’s “short” range connectivity (currently Blue-
tooth, NFC or Wi-Fi Direct) to transmit data. Therefore, nodes can transmit data only
when they are close enough i.e., in contact. Fig. 1.2 presents an example of a 4-node
DTN. At time t1, A and B as well as C and D are connected. Next at t2, they form
a chain and finally at t3, B moves away leaving A, C, and D fully connected. Any
disruption-tolerant protocol should cope with such a connected/disconnected scenario.

1We will alternatively be using these two terms in this dissertation. One may also encounter them
under the names: pocket switched networks (PSN), dynamic networks or intermittently connected
mobile networks (ICMN).
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Figure 1.2: An example of disruption-tolerant/opportunistic network.

In order to reach the destination, nodes use a hop-by-hop “store, carry, and forward”
scheme. Their main functioning differences compared to classic networks are as follows:

• High latency. Between the source and the destination, there may be several store
and forward processes occurring after different nodes collocation. This can take
quite some time between actually sending a message and receiving it. This high
latency would not work with traditional networking paradigms. As an example,
the TCP protocol would have to be completely retuned to fit this high latency.

• Disconnection periods. One of the challenges of DTN is to tolerate complete
disconnection periods in their process. Any previous networking paradigm con-
sidered a disconnection in their session to be an error and had to resume the
process at best or to restart it completely at worst. In DTN, nodes do not need
to have an explicit connection or session from the sender to the receiver. This
not-necessarily-connected property of DTN offers much more freedom in network
utilization than any other existing paradigm.

• Mobility. Previous network paradigms or other research fields deem mobility as
an opponent to good functioning. Here, a very interesting feature of human-driven
opportunistic networks is the mobility of the nodes. Everyday people commute
to work and travel long distances carrying connected devices.2 Whenever they
are close to someone, they can transmit data and during travel times, commuters
encounter many persons that can act as potential data carriers. They may even
encounter some people regularly without realizing it. This regular encounter phe-
nomenon is called “the familiar stranger” and can be use for opportunistic for-
warding [3]. Mobility allows us benefiting from these opportunistic encounters
while previous networks did not. However, mobility is not the same for everyone
nor is it a random process, therefore, its implications are not that obvious.

• Limited longevity. Limited resources. Low data rates. These properties
stem from the devices in use in DTN. Portable devices like smartphones, laptop,

2On average, commuting takes 25 minutes un the US but around 1.7 million Americans are “mega-
commuters” and have commuting duration of 90 minutes or more and of length at least 80 kilometers.
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A

B

C D
E

F
G

nodes in contact
withA

Figure 1.3: A snapshot of a 7-node network at instant t. A is in contact with B and C while nodes
D,E, F, and G are beyond contact. From A’s point of view, most opportunistic approaches only use
the knowledge that B and C are nearby (direct connectivity knowledge). If A wanted to transmit
something to E, who would it send it to? B or C. With this current vision, A cannot easily determine
who to send the message to.

or game stations work on batteries and have a limited daily lifespan. The more
applications we use, the less batteries last. So, finding the accurate power mode for
opportunistic networking is an important issue. Limited resources also come from
the devices capacities, but as technology progresses, we find smartphones almost
as powerful as desktops and the main constraint resides in the embedded wireless
technology. However, if we consider opportunistic networks between vehicles for
example, restrictions over battery life, memory resources, or data rates are weaker.

• Security. For mobile networks, security always remains an issue. As long as a
device stores data to forward it and respects the content’s privacy, a node has no
idea of what it stores. Therefore the security issue here is as hard to deal with as
it is with any other mobile network.

1.2 Motivating Example

Let us observe an example of opportunistic networks. In most opportunistic approaches,
decisions are made depending on what happens around a given node, more precisely
which nodes are in “contact” with it. This notion of contact is fundamental in DTN as
we will see throughout this manuscript.

Fig. 1.3 presents a snapshot of an opportunistic network with 7 nodes. At instant t,
when we observe the situation through node A’s point of view, A has two nodes in
contact with it (namely B and C). All the remaining nodes from D to F are beyond
contact. All opportunistic decisions concerning A are made according to A’s current
states and both B and C information. Still, we observe that A has an end-to-end path
to nodes D and E so their behavior could and should influence A’s forwarding decisions.
For instance, A could easily transfer data to both D and E, or probe their encounters
history to decide whether they are “good” carriers.
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Figure 1.4: The same 7-node network snapshot but with a neighborhood-wise vision for node A. Here,
A would take into account all nodes to whom it has a contemporaneous path instead of only considering
nodes in contact. If A wanted to send a message to E, it would use C as a next hop because C belongs
to the shortest path between C and E at that moment.

Now consider that A wants to send a message to E. A would only know that B and
C are currently in contact and, at most, that D is reachable. A would more likely only
know that it is in contact with B and C. So who should A use as next hop carrier? Using
only contact knowledge, it is hard to tell as B and C seem to have the same properties
to E – not in contact. But if A considered not only contact but the knowledge of all its
nearby nodes and neighbors, A would certainly send to C to minimize the path length
between A and E – 3 hops instead of 4 (see Fig. 1.4). This example shows that the
current approach of considering only nodes in contacts in DTN may hamper a node’s
vision of the situation and prevents it from taking optimal decisions network-wise.

1.3 Problem Statement

In this dissertation, we question the current opportunistic network vision in use. We
address two main issues.

Question 1: Is the current DTN vision enough? As we have shown in the previ-
ous example, considering only contacts in DTN overlooks many closeby opportunities.
So, does ignoring neighbors beyond contacts harm DTN usage? The historical contact
notion in DTN remains important as it settles direct communication possibilities. Nev-
ertheless, this notion does not limit the capabilities of communication to nodes at a
one-hop distance. If there are neighbors in contact, there may be others nodes closeby
at a 2- or 3+-hop distance. In real life, when one is seated on a bus, she may be close
to 3 or 4 other commuters but that does not mean she cannot see other people a little
further away or that she cannot speak to them. All these bus passengers are potential
information carriers and their importance should not be neglected. When they arrive at
their bus stop, they move to different places and this non random human-driven mobil-
ity expands the range of possible hop-by-hop communications. The more we can spread
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a message, the more people we can reach, and the higher the probability of reaching a
given destination in shorter delays.

Question 2: Why not considering a proximity notion in DTN? Noticing the
flaws of the mere contact vision in DTN. We wonder how node proximity has been
treated until now in opportunistic networks. A few intents at using proximity and
resulting end-to-end paths of length strictly greater than 1 hop exists but none of
them actually defined a notion of close vicinity in DTN [4, 5, 6, 7]. To the best of
our knowledge, this is the first time a study formalizes the notion of vicinity in DTN.
With a formalized vision of vicinities, we can start characterizing its behavior and the
possibilities of communications beyond simple contacts and answer questions like: how
marginal are such transmission possibilities? What is the behavior of these vicinities at
a network level? Are there specific links between a node and members of its vicinity?
What are the properties of vicinities in DTN? Replying to these interrogations can help
opportunistic networks understanding on many stages. Plus, understanding vicinity
movements may improve opportunistic knowledge bootstrapping in DTN protocols.

1.4 Contributions of this Thesis

In this dissertation, we answer the previously raised questions through the following
contributions.

Contribution 1: Uncovering the Properties of Intercontacts in DTN. We
first wonder if the DTN vision limited to nodes in contact is enough to benefit from
DTN’s original properties. We begin by showing how sub-optimal such a vision is and
then formalize the concept of vicinity in opportunistic networks. To the best of our
knowledge, our work is the first to ever expose a precise definition for vicinity in DTN
namely κ-vicinity. κ-vicinity is a node-centered definition for vicinities in DTN. A
node’s κ-vicinity is the set of neighbors located within κ-hops from it. Note that we
use connectivity graphs to derive our notion of vicinity. We also defined κ-contact and
κ-intercontact notions to fit the pairwise relationships between two nodes and analyze
their temporal distributions. We also analyze the internal topological properties of κ-
vicinities to understand neighbors disposition. Finally, we observe the improvements of
vicinity annexation in a simple forwarding protocol (Chapter 3).

Our main contributions with this regard are as follows:

• We identify the binary assertion issue in opportunistic networks where most op-
portunistic networks approaches consider only nodes in contact and neglect other
nearby nodes.

• We defined close vicinity in DTN with the “κ-vicinity” and the related connectivity
notions of “κ-contact” and “κ-intercontact”.
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• We show how κ-contact intervals distributions depend on node-centered density
with behavior changing whenever the density is “sparse” or “dense”.

• We assess the tradeoff between additional vicinity knowledge and monitoring costs
and conclude that a κ between 3 and 4 is enough for the type of datasets we
consider.

• By using the 2-vicinity instead of the usual contact vision in opportunistic net-
works, we can improve by 80% a given opportunistic performance metric.

Contribution 2: Digging into the Vicinity Dynamics of Mobile Opportunistic
Networks. We analyze the internal κ-vicinity dynamics of opportunistic networks. We
chose to model the node-centered vicinity behavior with a chain process using exact
pairwise distances values as states. We call this model asynchronous vicinity motion.
We observe the transitional probabilities between any given states to understand vicinity
movements. We identify two different chain types and three main movement patterns
namely birth, death and sequential moves in κ-vicinities. We observe their repartition in
different datasets and how they can be leveraged in opportunistic networks. We analyze
vicinity behaviors using timelines which is the sequence of shortest distances between
pairs of nodes in the network. To ease the analysis of vicinities in various scenarios,
we implemented a Python module to automatically perform all the aforementioned
vicinity dynamics analyses. After extracting vicinity movements characteristics with
asynchronous vicinity motion, we manage to recreate synthetic timelines exhibiting
chosen datasets properties using the TiGeR generator (Chapter 4).

In this part, we make the following contributions:

• We conceive asynchronous vicinity motion, a model for internal dynamics in κ-
vicinities.

• We identify three main vicinity motion patterns “birth, death, and sequential”
movements and some of their properties: death rates remain stable independently
of states, birth patterns are alike independently of the observed datasets and by
considering death and sequential movements, for some states they represent more
than 80% of all outgoing movements.

• We propose a pairwise vicinity behavior generator and its open access implemen-
tation included in the Vicinity package we provide.3

Contribution 3: Predicting Vicinity Dynamics. In our latest contribution, we in-
vestigate how predictability applies in the κ-vicinity and how accurately vicinity motion

3More information in the Vicinity package here: http://vicinity.lip6.fr.
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captures the network operation. We create a heuristic based on transitional probabilities
of vicinity motion to predict a pair of preferential pairwise distances between nodes for
the future steps. In asynchronous vicinity motion, steps have various durations. Since
our heuristic predicts pairwise distances for future steps, having constant duration steps
may bring a more powerful forecasting. Therefore, we present the synchronous vicinity
motion, a time-aware variant of vicinity motion. Synchronous vicinity motion samples
its surroundings every τ seconds. A step is now of constant duration τ seconds here.
We analyze the performances of asynchronous and synchronous vicinity motion (AVM
and SVM) heuristics and show their prediction power in terms of pairwise distances not
only for the next considered interval but also intervals further away in time (Chapter 5).

Our main findings are:

• The definition of a time-aware vicinity motion called synchronous vicinity motion.

• The possibility of inferring future κ-vicinity distances using Markov chains tran-
sient state analysis with our heuristic that can predict pairwise distances up to a
99% accuracy with the SVM model and 40% with AVM.

• A comparison of full duration and partial knowledge forecasting performance
showing how vicinity motion is able to sensibly capture network behavior even
with shorter sensing durations.

As a final note, it is important to underline that the observations we make depend of
the datasets we use. We believe that similar observations can be made in other settings
where mobility is influenced by human behavior. To enable such verification, we provide
an implementation of our main analyses in the Python Vicinity package available at the
following address: http://vicinity.lip6.fr.
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2.1 Related Work

As the notion of vicinity is quite new for opportunistic networks, we position our work
according to different points of view.

2.1.1 Contact and intercontact vision

Since MANET and wired networks, our community used contacts between nodes to un-
derstand any transmission possibilities. Hence, understanding DTN based on network
contacts is the most instinctive characterization. In DTN, we consider that a contact
occurs when two nodes are within each other’s wireless communication range. In our
work, we consider that links are bidirectional. Vahdat and Becker studied the impact
of wireless ranges on message delivery [8]. Chaintreau et al. used contact history to
derive efficient transmission possibilities [9]. Yoneki et al. focused on the significance of
meeting times in contact neworks and exposed how important network contact struc-
tures are [10]. Hui et al. investigated contact patterns to infer people’s affinities and
likeliness of meeting [11, 12]. Hossmann et al. analyzed contacts considering contact
graphs abstraction with both aggregated durations and contact frequency [13]. Contact



10 Chapter 2. Related Work and Datasets

is important in DTN as it allows direct transmission between nodes. But the orig-
inal parameter in DTN is the intercontact notion. In MANET and wired networks,
a connectivity disruption used to be a fault, now; it is part of the regular network
functioning.

The intercontact notion indicates the state between two consecutive contacts. There
are two main definitions for intercontact. The inter-any-contact notion meaning the
time between two subsequent contacts independently of the identities of the neighbors.
The second definition – the pairwise intercontact time – treats a specific pair of nodes.
It describes the time between two sequential contacts for a given pair of nodes. Under-
standing intercontact distributions help us see when nodes will next be able to transmit
data to other devices. Leguay et al. performed a thorough pairwise intercontact distri-
butions analysis for three experimental datasets. They found that distributions fitted
either log-normal or exponential laws [14]. Chaintreau et al. showed that pairwise
intercontact times followed power law distributions over a specific time range [15]. In
another study, Karagiannis et al. found that pairwise intercontacts fit diptych distribu-
tions – power law followed by exponential decay [16]. Passarella et al. exposed several
intercontact properties of opportunistic networks and they assessed that aggregate in-
tercontact times were not the same as pairwise intercontact times [17, 18]. So far, we are
only aware of one initiative concerning an implementation of a connectivity generator
handling contact intervals properties [19].

Contact and intercontact understanding is crucial in DTN and has been well inves-
tigated. However, we must note that the way we sample the network greatly influences
the quality of intercontact observations we observe [20]. These probing issues are very
important since they may change what we sense in a network. Anyway, none of these
visions considered nodes beyond simple contact. This binary notion may not be enough
to really benefit from the DTN paradigm.

2.1.2 DTN characterization and end-to-end connectivity usage

Beyond contact and intercontact, we observed different attempts to characterize DTN
behavior on the whole. We have seen inspiring intents on linking DTN behavior with
network density. Borel et al. produced a theoretical classification for wireless and mo-
bile networks based on their behavior and composition [21]. Similarly, Whitbeck et al.
connected the previous classification to nodes mobility and density considerations [22].
In his latest work, Heimlicher proved the importance of connected components in mo-
bile wireless networks [23]. A temporal vision can also be applied to understand DTN.
Chaintreau et al provided the first evidence of the small world phenomenon in oppor-
tunistic networks [9]. Scellato et al. also managed to exhibit different DTN temporal
properties using time series [24]. Other researchers like Casteigts et al. or Whitbeck et
al. decided to pursue DTN connectivity understanding using time-varying and tempo-
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ral reachability graphs. These graphs are very helpful in order to recognize temporal
patterns [25, 26]. Panisson et al. confronted both temporal and topological opportunis-
tic network characterization and showed the importance of both properties in DTN
understanding [27].

In DTN, researchers have found various ways to leverage a node’s neighborhood.
Some techniques choose to use the social behavior of the participants. As in a city
people tend to cluster into communities around different points of interests, Ött et al
presented a protocol leveraging end-to-end and multi-hop DTN paths [28]. End-to-end
paths occur among connected components whereas DTN ones happen between these
temporary components. Sarafijanovic-Djukic et al. made a similar observation in the
VANET environment [4]. Later, Heimlicher and Salamatian laid their study over the
groundwork that mobile wireless networks tend to have connected crowds [6, 23]. The
main punch line for all these studies is: for each node, there are immediate neighbor-
hood structures to use. Other analyses preferred another point of view towards the
vicinity in DTN. Instead of considering a node’s instantaneous vicinity, they considered
a node’s “reachable” vicinity in terms of nodes we can reach during a given time window.
Chaintreau et al. analyzed spatio-temporal clusters diameter in a network [9]. Tang
et al. focused on the nature of these spatio-temporal paths to better understand how
to use them [29]. Whitbeck et al. proposed an interesting way to capture a node’s
reachable vicinity through a new graph type [26]. Similar principles have also been
considered even in other contexts, such as wireless mesh networks [30].

The closest work to ours concerning end-to-end connectivity utilization has been
done by Gao et al. [7, 31]. Their notion of transient contacts reckons the κ-contact
notion developed in Chapter 3, Definition 2. However, their transient contact notion
occurs over a certain period of time while κ-contact is an immediate notion translating
the actual instantaneous end-to-end connectivity possibilities.

2.1.3 Routing techniques

To benefit from opportunistic network resulting properties, researchers designed several
approaches relying on various parameters. The most naive approaches used opportunis-
tic flooding to achieve highest delivery ratio but to the cost of redundant messaging [8].
This technique was closely followed by attempts of using localized and copy-aware
routing approaches. Spray-and-wait and its sister protocols maintain a fixed number of
copies to be sent around the network [32, 33]. They localize their flooding by spraying
their copies to contacts having a high likeliness of meeting the copy destination.

In order to use upcoming contacts between nodes, Lindgren et al. bet on a proba-
bilistic likeliness-of-meeting measure based on nodes contact history in the PROPHET
forwarding protocol [34]. Instead of randomly distributing their content to any nodes
coming in contact, nodes compute transitive probabilities of meeting the destination
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and only forward it to nodes with high destination meeting values. Nelson et al. also
showed that monitoring contact is really helpful in predicting future encounters and
achieving interesting delivery rates [35]. The intuition of using nodes encounter history
is also present in routing protocols based on social measures.

Human-driven opportunistic networks do not have random spatial movements or
meeting patterns. Therefore, using social measures to characterize nodes behavior in
a dataset to influence forwarding decision looks promising. In BUBBLE Rap, Hui et
al. analyzed networks contact properties and extracted different existing communities.
Based on detected communities, BUBBLE Rap computes centrality measures to deter-
mine the next-hop to forward to [11]. Bigwood et al. analyzed the use of two types of
social networks “self-reported” and “detected” to determine that they do not impact the
delivery ratio of resulting DTN protocol [36]. The PeopleRank approach by Mtibaa et
al. ranked network nodes using weighted social measures to forward data and exhibited
good performances [37]. In their work, Gaito et al. exposed how short contacts deemed
unworthy of interest at the beginning are, in fact, social indicators and enable effective
routing opportunities [38, 39]. Li et al. considered participants social unwillingness to
cooperate into forwarding with the SSAR protocol [40]. Zhu et al. recapitulate most
approaches in their latest survey concerning social-based routing in DTN [41].

Yet, none of the aforementioned opportunistic strategies really leverage a node’s cur-
rent vicinity to specifically direct their transmissions. In an interesting work, Vojnovic
and Proutiere showed how a simple and lazy hop-limited flooding protocol achieves
almost optimal performances [42]. In their latest paper, Diana et al. applied a similar
vicinity notion to satellite communications [43]. By leveraging neighboring stations,
their proposal allowed valuable routing performance gains. This encourages the utiliza-
tion of κ-vicinity knowledge (our hop-based vicinity definition) in opportunistic routing
protocols. Another interesting approach is to mix different network paradigm in order
to get the best of different worlds like wireless sensor networks and challenged satellite
networks [44].

2.1.4 Mobility models

In order to understand and characterize mobile opportunistic networks, our community
relied on contact traces collected during real-life measurements. However, due to the
lack of extensive realistic traces, researchers started creating synthetic mobility models
and generated the corresponding contact traces. By creating different mobility models,
they emulated human behaviors to test protocols they designed in specific settings [45,
46, 47, 48, 49]. Other studies moved towards accurate connectivity rebuilding based
on real-life contact traces [50]. All these analyses removed the correlation between
nodes behavior and their surrounding. With the vicinity motion patterns, we try to
bridge the gap between these points. Now, more than understanding the whole network
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movements, we can see the patterns followed in a node’s vicinity.
There is also an intuitive discrimination for DTN characterization between day and

night time behaviors. DTN we consider in our studies are reflection of human social
behaviors. The aforementioned distributions are different according to the time of the
week or the day one may consider. Gaito et al. showed that patterns during working
time is different from night time behaviors [38]. Ekman et al. produced a specific
mobility model exhibiting these specific differences [51]. Considering vehicular mobility
models and the corresponding contact traces would also be very interesting in our case,
yet it is beyond the scope of this thesis [52].

An effort has already been made to directly generate contact traces based on contact
and intercontact analyses [19]. Yet, it lacked the vicinity notion we bring with the
vicinity motion patterns. With TiGeR, our pairwise vicinity behavior generator, we
provide a mean to obtain realistic vicinity behavior for pairs of nodes through timelines.
Timelines indicate time intervals with the actual shortest distance (up to distance κ)
between two nodes. Timelines include contact periods (at a 1-hop distance), therefore
we can extract contact intervals for pairs of nodes.

2.1.5 Prediction in DTNs

The prediction aspect in opportunistic networks is one of the most promising research
direction. Apart from contact and intercontact patterns, if we are able to foretell when
two nodes will next be close to each other, we can schedule our next transmission and
tune our opportunistic decisions accordingly.

The social underlay of human-driven opportunistic network is key in predicting fu-
ture behavior. Many studies analyzed this social nature in order to understand how
nodes come to meet each other [53, 54, 55, 56]. Following the human nature and their
tendency to have regular moving patterns [3], Boc et al. managed to deduce repetitive
behavior on a weekly basis [57]. Scellato et al. managed to use location informa-
tion to predict link apparition between nodes [58]. The prediction of link appearance
is an interesting issue in networking. Liben-Nowell and Kleinberg laid an inspiring
study concerning link-prediction in social networks [59]. They tried out various ways
of predicting future links using metrics based on node’s neighborhood, paths and other
“meta-approaches” on quite static datasets. However, their best predictor only achieves
16% correctness on its predictions. This shows how hard and demanding the predic-
tion issue can be even for not highly dynamic datasets. Wang et al. also studied the
link-prediction problem but on a mobile phone calls dataset [60]. They achieve inter-
esting performances but their dataset is also quite stable and runs over a long period of
time. Predicting in DTNs often occurs with a shorter time span and using sparse node-
centered knowledge. Zayani et al. used a tensor-based prediction model to forecast
future encounters based on social metrics reflecting localized network stability [61, 62].
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They obtained inspiring results in both centralized and distributed deployment.
Song et al. proved the high predictability of human mobility with a 93% potential

predictability using another mobile phone call dataset [63]. Lu et al. even achieved a
95% predictability value of user mobility in a similar dataset and exposed practical pos-
sibilities of achieving such a high degree of performance with a real algorithm [64]. Pre-
dictions in DTNs seem to be an open and appealing subject. Still, most link-prediction
studies use quite stable and static datasets that are different from most scenario we
observe in DTN. Some studies even question the possibility of really foretelling events
in opportunistic networks. Hossmann et al. highlighted the difficulty of using complex
network analysis and resulting social measures into DTN analysis [65]. Using the RE-
CAST classifier to screen out nodes with random relationships and keep nodes with real
social ties could improve results on this topic [66]. Given the highly dynamic nature
of DTN, finding accurate sampling and aggregation methods as well as fitting network
metrics is a real issue. Nikolopoulos et al. even question the accuracy of usual social
metrics when they are applied on opportunistic networks [67].

Concerning DTN in general, there has been and there currently is a constant effort
from our community. We reviewed some very interesting DTN analyses in the previous
sections. However, most of these approaches maintain a very simplistic vision of oppor-
tunistic networks by neglecting nodes beyond one-hop distance that renders a biased
DTN vision that is not totally able to benefit from DTN features.

2.2 Datasets

For this dissertation we confront our analyses to several datasets, both synthetic and
real-life based. We provide both the main related study and the downloading links
when available for each of the datasets.

2.2.1 Connectivity assumptions

In our datasets, we assumed bidirectional links meaning that when a link is present in
synthetic datasets between two nodes, both of them can send data to one another. Most
of real-world datasets used devices like the iMote (see Fig. 2.1) to gather experimental
data. iMotes embed Bluetooth chipsets that are able to alternatively send or receive
presence beacons. In real-world measurements, we deemed that if a node is able to
detect another, the reciprocal property is true.

The symmetric vision of links in DTN is questionable due to the reality of transmis-
sion technologies yet this assumption is necessary in our work since it renders contact
graphs symmetric.
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Figure 2.1: iMotes: these devices were used in most of the real-life based measurements. They embed
a Bluetooth chip alternatively collecting and sending probes in their vicinity. When an iMote detects
a probe, it collects the sender’s ID.

2.2.2 Real-world datasets

• Infocom05 measurement was held during a 5-day conference in 2005 [15, 68]. 41
attendees carried iMotes collecting information about other iMotes nearby within
a 10 m wireless range. We study a 12-hour interval bearing the highest network-
ing activity. Each iMote probes its environment every 120 seconds. Infocom05
represents a professional meeting framework.

• Sigcomm09/Sig09 counted 76 attendees with dedicated smartphones probing
their surroundings during 5 days [69, 70]. Smartphones sensed their surround-
ings using Bluetooth every 120 seconds. Sigcomm09 is another example of a
professional meeting scene. In our work, we also use the sole first day of the
Sigcomm09 dataset and name it Sigcomm09-d1 or Sig09-d1.

• Rollernet had 61 participants measuring their mutual connectivity with iMotes
while they where riding a dominical rollerblading tour during 3 hours in
Paris [71, 72]. Researchers set devices to send beacons every 15 seconds. These
measurements show a specific sport gathering scenario.

• Unimi is a dataset captured by students, faculty members, and staff from the
University of Milano in 2008 [73, 74]. They involved 48 persons with special
devices probing their neighborhood every second. Unimi provides a scholar and
working environment scenario.

• Shopping used 25 dedicated devices in a shopping mall over 6 days [75, 76].
Galati and Greenhalgh gave 25 devices to shop owners and planted 8 others at
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Table 2.1: Datasets characteristics.

Dataset # Length Probing Range Type
Infocom05 41 12h 120s 10m Conference

Sigcomm09/Sig09 76 4 days 120s 10m Conference
Rollernet 61 1h30 15s 10m Sport
Shopping 25 6 days 120s 10m Mall

Unimi 50 19 days 1s 10m Scholar
Stanford 200 1h 20s 3m Scholar
RT (S) 20 9h 1s 10m Work

Community (S) 50 9h 1s 10m City

various locations in the mall. Devices performed neighborhood discovery every
120 seconds. Shopping reflects the working day routine of shop owners as well as
some of their customers.

• Stanford has 789 persons in an American high school carrying TelosB motes
– detecting contacts up to a 3 m range [77, 78]. Salathé et al. gave Motes
to students, teachers and staff members for around two weeks. We focus on a
subset of 200 participants. TelosB motes send beacons every 20 seconds. Stanford
expresses a settings with a majority of teenagers who have a tendency to dwell in
groups of interests.

2.2.3 Synthetic datasets

• RT uses the Random Trip mobility model which corrects flaws from the Random
Waypoint model [79, 45, 80]. We sampled the behavior of 20 nodes following this
model on a surface of 50 x 60 m2 with speed between 0 and 7 m/s and a 10 m
range.

• Community is a social-based mobility model [47, 81]. It tends to colocate
socially-related nodes in specific locations at the same time like groups of friends
would do. We simulated 50 nodes with a 10 m wireless range on a 1,500 x 2,500 m2

plane during 9 hours.

We recapitulate the main datasets characteristics in Table 2.1. # indicates the
number of nodes in the datasets, Length indicates its duration, Probing presents the
probing intervals, Range provides the probing devices wireless range, and Type presents
the scenario type. In the following, we use some of the presented datasets to introduce
and illustrate our vicinity concepts.
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As a descendent of historical networks where the notion of contacts and direct
connectivity is prominent, the first characterization of opportunistic networks focused
on contacts between nodes and their resulting intercontact periods. The notion of
contact has been well investigated years before [8, 10, 11]. However, the intercontact
notion is quite unexplored. The first sensible approach was to consider intercontact
as the complementary of contact. This assumption was maintained in the context
of a number of interesting studies but it may be too shallow to correctly reflect the
underlying network topology.
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Figure 3.1: Motivating example. From node A’s point of view, we see that nodes in “group 1” are in
contact. Using the usual binary vision, we conclude that all other nodes are in intercontact (i.e., in
“group 2”). However, nodes in “group 2.a” are essentially different from nodes in “group 2.b”. A has
end-to-end paths toward the first and no paths at all to the latter.

In Fig. 3.1, we represent a network snapshot illustrating our concerns. This figure
represents a network where nodes in “group 1” are in contact with A (i.e., they are
within A’s direct communication range). In the usual binary vision, all remaining
nodes (group 2) are, by definition, in intercontact. Still, we notice that there is a
fundamental difference among nodes in “group 2”. None of the nodes in “group 2.a”
are in contact with A; nevertheless, they do have a contemporaneous path to A. On
the other hand, nodes in “group 2.b” do not have any path to A. In opportunistic
networking where we need to gather as much knowledge as possible to achieve efficient
communication standards, deeming both cases of intercontact under the same definition
results in a waste of information. Suppose A needs to send a message to one of the
nodes in group 2.a. In such a situation, most DTN approaches infer the impossibility
of exchanging messages via multi-hop paths and often calls for a “wait” period until it
meets the destination or find someone else that knows the destination better (based on
some other criterion). With the binary vision, A does not know that the destination is
nearby, and may miss an opportunity to communicate if, for example, the destination
moves after some time to group 2.b. By denying the inherent ad hoc network part in
DTN, we cannot pull the best of both worlds. Noticing that contemporaneous paths
may exist between nodes is important. Neglecting such closeby possibilities is a waste
of connectivity assets in DTN.

In the next sections, we highlight the “binary assertion issue”, which is the base of
our questioning. We propose a formal definition of vicinity for DTN with the κ-vicinity
and the related notions of κ-contact and κ-intercontact in opportunistic networks and
analyze their distributions using datasets described in Chapter 2. Then, we study the
κ-vicinity itself by analyzing its composition. Finally, we expose the advantages of
vicinity utilization in a simple opportunistic protocol.
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Figure 3.2: Example of time-distance distribution from the RT dataset. In Fig. 3.2(a), nodes spend
10% the time in contact (1-hop). With the binary vision, we then consider that nodes spend around
90% of their time in intercontact. Fig. 3.2(b) shows that in reality, they dwell at a distance 2 for around
10%, at a distance 3 for 16%. Real intercontact deprived of multi-hop path represents only 50% of the
time (∞).

3.1 The Binary Assertion Issue

Considering the notion of intercontact as the mere binary complementary vision of
contact is understandable. The leading property of historical networks has always been
the “contact” between nodes. But in challenged networks such as DTNs, we have to
get the most of every situation and surrounding assets. In Fig. 3.1, we observed that
there were unused pairwise connectivity between nodes. The traditional contact vision
misuses end-to-end “not-in-contact” connectivity. The binary assertion issue, where we
ignore end-to-end connectivity beyond one hop, brings an interesting interrogation:

how pervasive are these hidden communication possibilities?

To understand the problem, let us show an example for a given pair of nodes using
the RT dataset. We compare the amount of time they spend in contact and in intercon-
tact and plot the results in Fig. 3.2. In Fig. 3.2(a), we observe that nodes spend around
10% of their time in contact and around 90% in binary intercontact. If we consider the
extended vision (see Fig. 3.2(b)), for the same pair of node, we realize that they spend
around 10% of their time at a 2-hop distance, 18% at 3-hops, 5% at a 4-hop distance,
etc. The true time they spend without any path to one another is only around 50% of
the experiment duration. The binary assertion hides 40% of the time where these two
nodes have a path connecting them.

By simplifying our network vision, the binary assertion reduces the information we
get from our surroundings. More than just limiting our vision, it prevents us from
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i

(a) 1-vicinity

i

(b) 2-vicinity

Figure 3.3: κ-vicinity illustration. Node i’s {1, 2}-vicinity at a given time t.

leveraging our environments and performing simple yet efficient closeby end-to-end
transmissions. To be able to use and characterize the closeby topological paths, we
first define the notion of vicinity in DTN.

3.2 The Notion of Vicinity

To the best of our knowledge, this is the first time the notion of vicinity has ever been
formalized in DTN. To understand the extended transmission possibilities in oppor-
tunistic networks, the first issue is to provide a formal definition of what the notion of
“nearness” means in DTNs.

3.2.1 Vicinity definition for opportunistic networks

To formalize the vicinity notion in DTN, we choose to use a node-centered point of
view. The κ-vicinity notion brings an ego definition to DTNs and also adds a hop-based
discrimination [82, 83, 84]. This differentiation helps us limit our vision according to
our needs as well as identifying neighbor properties. We discriminate a node i’s vicinity
according to the number of hops between i and its surrounding neighbors. We use the
instantaneous connectivity graph between nodes to compute pairwise shortest paths.
This connectivity graph illustrates the current network state and what is immediately
useable.

Definition 1 κ-vicinity. The κ-vicinity V i
κ of node i is the set of all nodes with

shortest paths of length at most κ hops from i.
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i

j

j

j leaves i’s κ-vicinity
(κ-intercontact starts)

κ-vicinity (for κ = 2) j returns to i’s κ-vicinity
(end of κ-intercontact time)

i

Figure 3.4: Node i’s κ-vicinity and the κ-intercontact phenomenon. For the sake of clarity, we only
display i’s connectivity links within the κ-vicinity.

Clearly, V i
κ−1 ⊂ V i

κ. In Fig. 3.3, we illustrate the node i’s 1-vicinity and 2-vicinity
at instant t. This is an interesting point of view for opportunistic networks because it
extends a node’s knowledge to immediately useable communication opportunities. The
κ-vicinity empowers a node’s reach in the network [85].

Vicinity knowledge may come from different techniques. For instance, we can use
link state protocols to gather information about a node’s connected component. There
are many ways to do so, but they all are costlier than getting information from contacts
only. The tradeoff between getting vicinity information and its additional costs may
be a reason not to use κ-vicinity. However, we provide a solution to this tradeoff in
Sections 3.4 and 3.5 by suggesting that monitoring the {3, 4}-vicinity is enough to get
most events in a node’s surroundings for the datasets we consider in our analyses.

The κ-vicinity defines a node’s neighborhood, i.e. its new zone in the network.
To characterize this zone’s relationships to node i like the contact and intercontact
notions previously, we must define some temporal measures relating to time neighbors
spend in the zone and time outside the zone, namely “κ-contact” and “κ-intercontact”.
We maintain a pairwise definition for these measures and assume that connectivity is
bidirectional.

Definition 2 κ-contact. Two nodes are in κ-contact when they dwell within each
other’s κ-vicinity, with κ ∈ N∗. More formally, two nodes i and j are in κ-contact when
{i ∈ Vj

κ} = {j ∈ V i
κ}. In other words, a contemporaneous path of length at most κ hops

i and j.

We also need to grasp the intercontact observations for our vicinity viewpoint. The
literature definition of mere intercontact is when two nodes are not in contact. There-
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fore, we consider κ-intercontact when two nodes are not in κ-contact. These are com-
plementary notions. Another way to see it is as follows: if node i maintains knowledge
about its κ-vicinity, it is in κ-intercontact with any node beyond its κ-vicinity. In
Fig. 3.4, node j leaves i’s κ-vicinity and then gets back some time later, characterizing
a κ-intercontact interval.

Definition 3 κ-intercontact. Two nodes are in κ-intercontact while they do not
belong to each other’s κ-vicinity. Formally speaking, two nodes i and j are in κ-
intercontact when {i �∈ Vj

κ} or {j �∈ V i
κ} or there is no path of length κ or less linking i

and j.

Note that 1-contact matches the contact notion and 1-intercontact corresponds to
usual binary intercontact. Our zone point of view integrates previous binary network
vision and extends it via nearby nodes. For dense networks, maintaining the binary
vision may result in a great loss of closeby transmission possibilities.

3.2.2 Missed transmission possibilities with binary assertion

To quantify how many end-to-end transmission opportunities the binary assertion
misses, we present what we call aggregated network sociostructures in Fig. 3.5 [84].
For each real life-based dataset, we plotted (in layered mode) the number of connected
pairs for each shortest distance. The bottom layer symbolizes the amount of pair of
nodes in contact. Layer 2 shows the amount of pairs connected via a 2-hop path, layer 3
represents connection via a 3-hop path, and so on. Each sociostructure layer of value
≥ 2 represents pair of nodes linked by end-to-end paths longer than 1 hop. Recall that
the binary assertion does not recognize such relations.

In Fig. 3.5(a), for Infocom05, we observe several density peaks of connected pairs.
Being a conference-based measurement, these peaks indicate morning arrivals, lunch,
the afternoon break, and end of sessions. During high density peaks, an unexpected ob-
servation is how pairs connected by 2 hops overcome contact opportunities. Places
with high density ignite transmission possibilities beyond mere contact. For Sig-
comm09 ’s sociostructure, we focus in the first density peak of this conference dataset
(see Fig. 3.5(b)). The number of pairs in contact remains non null during the observa-
tion. At some point, see 10,000 seconds, pairs linked by two or more (2+) hops represent
more than four times the number of pairs currently in contact. As a result, in such a
scenario, 2+-hop transmissions should be more helpful than mere contact transmissions
or pure DTN techniques.

In Fig. 3.5(c), we witness Rollernet ’s accordion phenomenon, i.e., the stretching
and shrinking of the crowd due to urban obstacles preventing the crowd from moving
forward [71]. Rollernet has a dynamic setting with a compulsory path. Nodes do not



3.2. The Notion of Vicinity 23

0

100

200

300

400

500

75000 85000 95000 105000 115000

N
u
m
b
er

of
co
n
n
ec
te
d
p
ai
rs

ov
er

16
40

Time t (seconds)

4+
3
2

contact

(a) Infocom05

0

100

200

300

400

500

600

0 5000 10000 15000 20000

N
u
m
b
er

of
co
n
n
ec
te
d
p
ai
rs

ov
er

57
00

Time t (seconds)

6+
5
4
3
2

contact

(b) Sigcomm09

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000

N
u
m
b
er

of
co
n
n
ec
te
d
p
ai
rs

ov
er

36
60

Time t (seconds)

4+
3
2

contact

(c) Rollernet

0

50

100

150

200

35000 45000 55000 65000 75000

N
u
m
b
er

of
co
n
n
ec
te
d
p
ai
rs

ov
er

60
0

Time t (seconds)

6+
5
4
3
2

contact

(d) Shopping

0

50

100

150

200

250

300

350

400

30000 40000 50000 60000 70000

N
u
m
b
er

of
co
n
n
ec
te
d
p
ai
rs

ov
er

23
52

Time t (seconds)

6+
5
4
3
2

contact

(e) Unimi

0

50

100

150

200

250

300

350

400

600 800 1000 1200 1400 1600 1800 2000

N
u
m
b
er

of
co
n
n
ec
te
d
p
ai
rs

ov
er

39
80
0

Time t (seconds)

5+
4
3
2

contact

(f) Stanford

Figure 3.5: Datasets sociostructures presenting the amount of pairs connected by contacts, 2-hop
paths, 3-hop and so on in a layered mode according to time. We notice the omnipresence of pairs
connected by 2+ hops. They often overcome the possibilities offered by contact only (bottom layer).
As a result, contact opportunities only represent a minor part of all end-to-end opportunities between
two nodes. The binary assertion overlooks these possibilities by blending all nodes in intercontact
under a unique concept.
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have as much movement liberty as they have in other datasets. Contacts are prominent
in Rollernet, still, we observe many pairs of nodes connected by 2+-hops.

For Shopping and Unimi (Fig. 3.5(d) and Fig. 3.5(e)), we present their first day
sociostructure as this pattern repeats itself every other day. Once more, we notice
the omnipresence of pairs connected at a 2-hop distance and how they may overcome
contact opportunities. In the Unimi dataset, we notice even more pairs connected by
3+-hops. They all display a social density igniting linking nodes beyond simple contact.

The Stanford sociostructure from Fig. 3.5(f) occurs during a school day and shows
the different groups found in high school. The majority of students stay close enough
to be connected via contacts, still, we can observe the omnipresence of non marginal
2+-hop links between pairs.

The presented sociostructures illustrate the illusion provided by the binary assertion.
If we maintain contact-only knowledge in DTN, we miss the omnipresent power of nodes
at 2+ hops. For all datasets, there are almost always non-null 2+ layers. These 2+ layers
represent powerful transmission opportunities as they only involve few relays that could
reduce significantly end-to-end delays. These layers vary in importance but are almost
always present. Considering only contacts provides a minor vision of what happens in
the network. Observing a node’s vicinity at a 2-hop distance may more than double
the transmission opportunities as seen in the Infocom05 dataset at 90,000 seconds. The
binary assertion weakness highlights the importance of observing nodes beyond simple
contact. In social settings, there may be a concentration of people around us (when
commuting or at work), yet we limit our vision to contacts only while there is so much
more at hand.

3.2.3 Pairwise behavior variability

We observe that a large portion of nodes display a significant fraction of time with end-
to-end transmission capacities endorsed by contact and κ-contact. Nodes bearing end-
to-end transmissions beyond contact for more than 10 minutes are as follows: 78.3% for
Infocom05, 99.4% for Rollernet, 57.1% for Sigcomm09, 57.0% for Unimi, 100% for RT,
and 73.7% for Shopping. If we increase the threshold to 20 minutes, the proportion of
pair of nodes with extended end-to-end properties do not really change for the following
datasets: 78.3% for Infocom05, 98.2% for Rollernet, 53.4% for Unimi, and 100% for RT.
The values for Sigcomm09 and Shopping decrease to respectively 44.8% and 57.7% but
still remain quite high.

In Fig. 3.6, for all pairs of nodes, we plot on the x-axis the fraction of time they
spend in contact and on the y-axis the fraction of time they spend in 2+-contact. We
visualize a wide variety of meeting patterns with many pairs having long 2+-contacts.
Previous studies used contact observations to derive DTN strategies. This involves a
first granularity for pairwise behavior characterization. Beyond contact, nodes embed
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Figure 3.6: Pairwise behavior according to the fraction of contacts and 2+-contacts. Each dot represents
a pair of nodes. On the x-axis, we have the fraction of time they dwell in contact. On the y-axis, the
fraction of time they observe κ-contacts. Note that, for the same density of contact, we can obtain a
wide difference in 2+-contact percentage.

significant ad hoc properties and they are not alike. DTN characterization needs a finer
granularity for its intercontact patterns; otherwise it misses promising ad hoc properties.

3.3 Temporal κ-vicinity Characterization

3.3.1 κ-intercontact distributions

Quantifying intercontact durations distributions helps us understand how long a node
will have to wait before its next encounter. In Fig. 3.7, we present the aggregated average
complementary cumulative density function (CCDF) κ-intercontact durations for every
pair of nodes (κ ∈ N∗). These CCDFs indicate the probability of a κ-intercontact
lasting longer than t seconds. For the sake of clarity, we do not display Stanford and
Shopping ’s CCDFs. They display similar behaviors unless specified.

Binary intercontact. The binary intercontact is the 1-intercontact, meaning the dual
of the usual contact notion. Karagiannis et al. observed that for most of the datasets
they analyzed, aggregate intercontact bear distributions with a power law up to a knee
point followed by an exponential decay [16]. We also find that for all our datasets, their
binary intercontact CCDFs, denoted “Interc.” in Fig. 3.7, follow a straight line up to a
knee point when both x-axis and y-axis are on logarithmic scale. This implies power laws
for each binary intercontact distribution until the observed knee point also known as the
characteristic time. The phenomenon is particularly clear for Unimi. We observe a knee
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Figure 3.7: κ-intercontact distributions. Except for Community, nodes display a lower probability of
obtaining κ-intercontact intervals lasting longer than t seconds for high κ. On average, κ-vicinity re-
duces κ-intercontact times. Distributions follow power laws up to a characteristic time and then display
exponential decay. All κ-intercontact distributions knee point concord. Community has inconsistent
κ-vicinity patterns for κ ≥ 3. Interc. stands for Binary intercontact (logscale on both axes).
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Figure 3.8: The Unimi κ-intercontact distributions with a linear x-axis.

point for binary intercontact at around 50,000 seconds. After plotting distributions with
a linear scale on the x-axis and maintaining the log scale on the y-axis, we also observe
that distributions can be approximated by a straight line beyond the knee point (see
Fig. 3.8). This hints exponential decays for distribution tails. Observations on binary
intercontact match results of previous studies.

κ-intercontact distributions. Concerning κ distributions for κ ≥ 2, we find their
general appearance to be quite similar to their respective binary intercontact distribu-
tions except for Community. All κ-intercontacts’ lines have a partial shift after a given
point with a sharper slope for each curve. For larger values of κ, we notice a bigger
bottom left shift for each distribution. κ-vicinity logically reduces κ-intercontact times.
The wider the node’s vicinity knowledge, the later this node detects a node’s departure
from its vicinity and the quicker it detects its comeback. This results in shorter κ-
intercontact durations. We see that, for κ ≥ 6, CCDFs aggregate. For Sigcomm09 this
phenomenon even occurs for κ ≥ 4.

An interesting remark is how κ-intercontact distributions exhibit the same properties
as simple intercontact. κ-intercontact curves follow power laws until a specific point
(the characteristic time) and then carry exponential decay. In Fig. 3.7(d), beyond
50,000 seconds, Unimi ’s 2-intercontact curve is a vertical shift of the binary intercontact
CCDF. The same occurs for further κ-intercontacts. However, an important information
is that the knee point found for binary intercontact corresponds to changing points for
κ-intercontact distributions. In Unimi, κ-intercontact curves (κ ≥ 2) quickly decrease
after the characteristic time found at 50,000 seconds.

Table 3.1 displays average intercontact durations and Table 3.2 the number of inter-
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Table 3.1: κ-intercontact average duration in seconds.

κ
Dataset 1 2 3 4 5 6+

Infocom05 4,931 1,752 1,111 917 850 823
Sigcomm09 19,780 8,340 6,608 5,981 5,689 5,552
Rollernet 738 555 412 328 274 242
Unimi 66,435 28,688 19,529 16,585 15,535 15,110
RT 1,874 772 416 291 238 213

Stanford 1,359 1,145 1,093 1,081 1,076 1,074
Shopping 2,608 1,205 885 828 824 824

Community 525 232 193 262 317 296

Table 3.2: κ-intercontact number of intervals (× 1,000).

κ
Dataset 1 2 3 4 5 6+

Infocom05 3.7 11.0 15.4 16.8 17.2 17.1
Sigcomm09 45.8 107.7 135.0 148.7 156.1 159.9
Rollernet 2.5 7.5 12.4 15.8 17.6 18.4
Unimi 21.7 57.1 86.0 102.5 109.4 112.3
RT 2.3 5.0 8.3 10.5 11.9 12.6

Stanford 31.5 37.4 39.1 39.6 39.8 39.8
Shopping 52.6 109.1 145.0 153.6 154.1 154.0

Community 3.6 11.6 8.0 4.5 3.7 3.5

contact intervals for each dataset. Except for Community, the larger the κ, the lower
the average κ-intercontact length. This enforces our rational expectations of κ-vicinity
reducing κ-intercontact duration with longer κ. We notice decreasing cumulated κ-
intercontact times for each κ. We also observe a logarithmic growth in the number of
κ-intercontact intervals.

Remarks. The Community dataset stands out because of its non-monotonic average
κ-intercontact duration and evolution of the number of intervals. When the average
length grows, the number of κ-intercontact intervals decreases. This still results in a
decreasing cumulated κ-intercontact duration for each κ. It enforces our first thoughts
in the benefits of κ-vicinity for κ-intercontact times. Under the assumption that nodes
in the vicinity dwell within low delay reach, κ-intercontact duration decreases with
larger κ, strengthening our belief that κ-vicinity is beneficial to DTN protocols. The
fact that characteristic time in all intercontact distributions corresponds is also an
important finding. It could help protocols like WAIT also know as Direct Transmis-
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sion [86], PROPHET [34], or Spray-and-wait [32] maintain their actual intercontact-
based approach and extend them to their vicinity to benefit from shorter κ-intercontact
times.

3.3.2 κ-contact distributions

Contact opportunities are the main feature for opportunistic mobile networks. Analyz-
ing its distribution gives us insights on how protocols can benefit from these contact
opportunities. Instead of considering contact between neighbors at a 1-hop distance
only, we analyzed the potential of transmission to nearby nodes within the κ-vicinity.
These paths enable low delay transmissions and a better neighborhood reach for a
network node.

κ-contact distributions. In Fig. 3.9, we display aggregated CCDFs of contact along-
side κ-contact duration for every pair of nodes in each experiment. These CCDFs
indicate the probability of a κ-contact lasting longer than t seconds.

For Infocom05 and Rollernet, in Fig. 3.9(a) and 3.9(c), their CCDFs maintain com-
parable aspects. We observe a small upper right shift for larger values of κ. As the
κ-contact notion increases the node’s vicinity scope, any nearby node may stay within
the considered node’s coverage longer than with a shorter vision. The longer the κ, the
higher the probability of having longer κ-contact durations. Besides scanning granu-
larity, smaller values of κ results in curves with a sharper slope than curves of longer
κ-contacts.

Like Infocom05 and Rollernet, for κ ≥ 3, Community ’s κ-contact CCDFs, in
Fig. 3.9(f), bear the same overall outlook with a sharper slope for smaller κ. For
1- and 2-contact CCDFs, we hint an interesting phenomenon. We find two junctions
around 400 seconds and another at 1,050 seconds. Opposed to our previous expecta-
tions, we have a better chance of getting contact of duration D ∈ [400; 1, 050] seconds
than 2-contact slots of the same duration.

For Unimi, RT, and Sigcomm09, in Fig. 3.9(d), 3.9(e), and 3.9(b), their 1-contacts
bear different behaviors than κ-contacts when κ ≥ 2. As hinted in the Community
dataset, for some values of κ, the probability of obtaining contacts longer than t seconds
is higher than the probability for the same duration in other datasets. In Fig. 3.9(d),
this phenomenon clearly appears for Unimi. In RT, t = [0; 500]∪[1, 050; 10, 000] seconds.
In Unimi, the assertion is valid for the whole distribution. For κ ≥ 3, CCDFs aggregate
into an unique one. 2-contact distribution is a mixed behavior between 1-contact and
larger values of κ.
Node-centered density dictates behavior. Due to the social nature of Commu-
nity ’s functioning, specific nodes tend to remain together and bring a high density
around popular nodes. Rollernet is a dense sport setting and Infocom05 has selective
meeting points in the conference. They all exhibit an important node-centered den-



30 Chapter 3. Uncovering Vicinity Properties of Intercontacts in DTNs

0.001

0.01

0.1

1

1 10 100 1000 10000

P
[
κ
-c
on

ta
ct

>
t
]

Time t (seconds)

Contact

Contact

2-contact

2-contact

3-contact

4-contact

5+-contact

(a) Infocom05

0.001

0.01

0.1

1

1 10 100 1000

P
[
κ
-c
on

ta
ct

>
t
]

Time t (seconds)

Contact

2-contact

3-contact

4-contact

5+-contact

(b) Sigcomm09

0.001

0.01

0.1

1

1 10 100 1000

P
[
κ
-c
on

ta
ct

>
t
]

Time t (seconds)

Contact

2-contact

3-contact

4-contact

5-contact

6-contact

7+-contact

(c) Rollernet

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

P
[
κ
-c
on

ta
ct

>
t
]

Time t (seconds)

Contact

2-contact

3-contact

4+-contact

(d) Unimi

0.001

0.01

0.1

1

1 10 100 1000 10000

P
[
κ
-c
on

ta
ct

>
t
]

Time t (seconds)

Contact

3-contact

2-contact

2-contact

4+-contact

(e) RT

0.001

0.01

0.1

1

1 10 100 1000 10000

P
[
κ
-c
on

ta
ct

>
t
]

Time t (seconds)

Contact

2-contact

3-contact

4-contact

5-contact

6+-contact

(f) Community

Figure 3.9: κ-contact distributions. There are two major patterns: (i) dense distributions where
CCDFs having larger κ suffer a top right shift and a smoother slope than smaller κ, and (ii) sparse
distributions, where all κ-contact distributions for κ ≥ 4 aggregate and present a slight bottom left
shift compared to the contact distribution (logscale on both axes).
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(a) Dense (b) Sparse

Figure 3.10: Density related behavior for κ-contact. Density modifies the coverage zone of a node’s
κ-vicinity. For dense settings, we have a long continuous κ-contact interval. For sparse situations, we
obtain two smaller κ-contacts for the same walk.

sity, whereas other datasets bear sparser density around each node. The ego density
parameter may explain the difference between the κ-contact behaviors.

Fig. 3.10 illustrates a situation detailing the unexpected behavior of κ-contact distri-
butions in sparse settings. Sparser densities limits geographical κ-vicinity coverage and
induces smaller κ-contact intervals. Dense settings ignite distributions like Infocom05,
Rollernet, Shopping, Stanford, Sigcomm09, and Community and will be henceforth men-
tioned as dense distributions. Low density settings like RT and Unimi enable the second
type of distributions mentioned as sparse distributions.

κ-contact durations & number of intervals. In Table 3.3, we displayed the average
duration of κ-contact intervals and in Table 3.4 the number of κ-contact slots for each
of our five experiments. Two main behaviors arise. On the one hand, for Infocom05,
Rollernet, and Community, we find an impressive continuous growth of average slots
duration for every κ. On the other hand, all other dataset show the opposite evolution
concerning average κ-contact duration. An increase in κ brings increased average κ-
contact lengths.

For most datasets, we also find a logarithmic growth of the number of κ-contact
intervals. Consequently, the number of intervals balances their length shortening. This
testifies the growth in cumulated κ-contact durations in all datasets. Despite results
observed in the previous section for Sigcomm09, Unimi, RT, and Community, we find
that larger values of κ increase the overall κ-contact duration and modify its distribu-
tion. The main difference lies in the fact that Infocom05, Rollernet, and Community
experience longer κ-contacts for large κ than other datasets, which have more shorter
κ-contacts. In any case, both types have longer cumulated κ-contact times and it grows
with κ.

Remarks. We have seen how κ-contact distributions predominantly exhibit two behav-
iors: sparse or dense distributions. Dense distributions follow our logical expectations.
These distributions have sharper slope for lower κ and therefore a stronger demarcation
among them than the next variety. Sparse distributions show κ-contact distributions
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Table 3.3: κ-contact average duration in seconds.

κ
Dataset 1 2 3 4 5 6+

Infocom05 371 406 492 561 597 630
Sigcomm09 153 115 88 75 70 67
Rollernet 47 73 98 126 156 184
Unimi 1,325 901 821 797 791 801
RT 202 200 185 182 182 182

Community 96 139 359 752 1,001 1,123
Stanford 6 4 4 4 4 4
Shopping 101 88 74 67 65 65

Table 3.4: κ-contact number of intervals (× 1,000).

κ
Dataset 1 2 3 4 5 6+

Infocom05 3.7 11.1 15.4 16.9 17.3 17.2
Sigcomm09 43.0 137.2 247.2 323.1 366.1 388.4
Rollernet 5.2 15.4 25.2 32.7 36.3 38.1
Unimi 10.9 28.6 43.0 51.3 54.7 56.2
RT 2.3 5.1 8.4 10.6 12.0 12.8

Community 3.7 11.6 8.1 4.6 3.8 3.6
Stanford 11.6 23.1 28.9 30.8 31.3 31.5
Shopping 52.3 125.7 191.5 227.6 238.1 240.1

with comparable behaviors and no major demarcations. They quickly aggregate into
a unique distribution above κ ≥ 4. For these distributions, contrary to our primary
beliefs, the probability of getting κ-contacts longer than t seconds is higher for shorter
values of κ and contact durations.

However, for all measurements, the number of κ-contact intervals increases with
every κ and springs a longer cumulated κ-contact time. Dense distributions obtain
longer κ-contact intervals whereas sparse distribution has more short κ-contact intervals.
Knowing which distribution fits, either sparse or dense, to a given situation modifies
the way a protocol should consider its κ-vicinity. Adapting a routing technique to dense
or sparse κ-contact distributions accordingly may help nodes leverage their κ-vicinity
more efficiently than what is currently done.
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Figure 3.11: The presence of connected component (CC) of size higher than 2 according to time. As
long as nodes find themselves in their “working” environment, they display numerous simultaneous
CC. The conference datasets Infocom05 and Sigcomm09 due to their specific nature bear the highest
number of concurrent CC (up to 38). The same pattern applies to other datasets but with a lower
number of CC values. Still, they are most of time higher than 10. Community displays a peculiar
number of CC evolution. Note the logscale on the x-axis.

3.4 Inner Topological Characterization

After analyzing the temporal properties of κ-vicinities in DTNs, we now focus on their
inner topological characterization. To uncover these topological properties, we begin
by observing all networks’ connected components. Connected components embody
κ-vicinities groundwork as, where there are connected components, there are potential
κ-vicinities. Then we proceed with an investigation of ego densities. Finally, we provide
a rule of thumb to derive the number of neighbors in the κ-vicinity based on the number
of concurrent contacts.

3.4.1 The seat of κ-vicinities: connected components

Network connected components are the locus of κ-vicinity. Studying a network’s con-
nected components and their presence is a good indicator of the κ-vicinity potential in
DTNs. Each node is its own connected component. Note that we use the connected
components definition as used by Cormen et al. [87]. Since interesting κ-vicinity need at
least contacts to be effective, we will be studying connected components of size higher
than 2.

Presence. In Fig. 3.11, we represent the number of connected components (CC) of
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Table 3.5: Average size, diameter, and gravity G of dataset’s largest connected component.

Dataset Size (s) Diameter (d) Gravity (G = s/d)
Infocom05 20.2 5.0 4.0
Sigcomm09 16.3 4.5 3.6
Rollernet 12.9 6.0 2.1
Shopping 11.0 4.0 2.7

Unimi 9.1 4.1 2.2
Stanford 6.7 3.2 2.1

RT 12.4 5.9 2.1
Community 13.8 3.6 3.8

size longer than 2 for each of our datasets. We first observe a wide range in terms
of number of connected components for all our datasets. For each scenario, there is
a clear evolution through time. The number of CC may be close to zero at night
when people are at home or outside the measurement environment. On the opposite,
when people find themselves at work, school or at their conference venue, they bring a
minimum density. This density ignites coexisting percolation phenomenon and results
in the presence of numerous CC. During these periods, we often observe more than 10
simultaneous different CC [23].

For both conference datasets (Infocom05 and Sigcomm09 ), we get the largest num-
ber of simultaneous CC. The conference setting where many people stay in different
rooms to listen to talks may explain this large value. People stay together at different
places, therefore, we have many small groups instead of a big one. For the sake of clar-
ity, we did not display the Rollernet dataset here, though Rollernet displays between
5 and 35 concurrent CC during its course. Shopping and Unimi have a conference-like
behavior, but at a lower level, they have periods of large number of CC but are still
inferior to the one observed in conference datasets. The Stanford dataset has smaller
concurrent CC values, but this stems from the nature of the logging devices used in the
experiment. Community has a quasi constant number of CC which may be due to the
synthetic nature of the dataset. The Community mobility model generates group-based
meeting patterns.

There are many simultaneous CC in the observed datasets. Their numbers show
how widespread the potential κ-vicinities are. But, since we observed the number of
CC of size ≥ 2, we should study the size of these CC.

Size and diameter. In opportunistic networks, there are no connectivity graph diam-
eters as such. The diameter notion only applies on a highly connected graph. However,
the notion of diameter is still meaningful for each network connected component. In
Table 3.5 , we present the average size of the largest CC, its average diameter for each
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dataset, and their corresponding “gravity”, given by:

G =
CC+

size

CC+
diameter

, (3.1)

where CC+
size represents the largest connected component average size and CC+

diameter is
the largest connected component average diameter. We define gravity G to be a simple
indicator of how concentrated the largest CC is. The larger its value, the more the CC
size tends to be bigger than its diameter, indicating a strong concentration in these CC.
On the opposite, low gravity values show a weaker concentration of the components.
Datasets with gravity values ≥ 3, like Infocom05, Sigcomm09, and Community display
largest CCs that are more condensed than in all the other datasets. The distribution of
nodes within these CC is tighter than in other situations. Therefore, their proximity in
terms of connectivity seems stronger. They form components with stronger connectivity
and allow resulting κ-vicinities to be more redundant link wise. Remaining datasets still
bear a gravity ≥ 2, allowing numerous yet more loosely connected κ-vicinities. CC’s
gravity represent the link quality of anchored κ-vicinities.

3.4.2 κ-vicinity ego density Di
κ

As shown in Section 3.3, using a node’s vicinity helps reduce κ-intercontacts and increase
κ-contact times. With the κ-vicinity, we can measure the potential of such nearby com-
panions in terms of opportunistic communications. Yet, obtaining information about a
node’s vicinity comes with a cost. To reduce the tradeoff between additional vicinity
information and gathering costs, we can wonder how far a node must probe its vicinity
to obtain the maximum information with the lowest probing cost. We may ponder this
cost by limiting the scope of κ-vicinity to a given κ. To maximize the κ-vicinity utiliza-
tion, we need to capture the nearest nodes and events as possible. The more neighbors
and events we observe, the better we can use them to perform opportunistic operations.

To gather more neighbors, we must increase κ. The first aspect to analyze is each
κ-vicinity ego density. Let Di

κ be the density of nodes around i, obtained as

Di
κ =

card(V i
κ)

τt
, (3.2)

where card(V i
κ) is the number of nodes in i’s κ-vicinity and τt is the sum of all moments

where card(V i
κ) was not null. κ-vicinity internal composition influences a node’s κ-

vicinity behavior. For a given probability p of having nodes at κ + 1 distance when
there is a node at κ hops from i, the more κ-contacts a node has, the more chances it
has of getting {κ+1}-contacts. In Table 3.6, we present the average Dκ according to κ.
For all datasets except RT and Rollernet, above a certain threshold κt = {3, 4}, their
Dκ does not increase anymore and is limited by the network diameter. More dynamic
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Table 3.6: Average number of neighbors Dκ in a node’s κ-vicinity.

κ
Dataset 1 2 3 4 5 6 7 8+

Infocom05 2.4 6.7 9.5 10.7 11.1 11.3 11.4 11.4
Sigcomm09 1.0 2.6 3.7 4.2 4.4 4.4 4.5 4.5
Rollernet 1.2 2.4 3.4 4.0 4.3 4.5 4.6 4.7
Shopping 1.6 3.3 4.3 4.6 4.7 4.7 4.7 4.7

Unimi 0.6 1.3 1.8 2.1 2.3 2.3 2.3 2.3
Stanford 0.5 0.7 0.8 0.8 0.8 0.8 0.8 0.8

RT 2.2 4.3 6.3 7.6 8.4 8.8 9.0 9.0
Community 2.0 4.1 4.7 4.8 4.8 4.8 4.8 4.8

or inconsistent patterns – RT and Rollernet – display logarithmic increase in Di
κ. For

all cases, we verify card(V i
κ) growth with κ indicating the presence of nearby nodes

useable as relays for κ-contact.
For any datasets, observing only contacts shows limited Dκ. For instance, the aver-

age D1 for Infocom05 and Sigcomm09 is respectively 2.4 and 1.0 neighbors. Whereas
observing the κ-vicinity up to a few hops – κ = {3, 4} – increases Dκ by at least doubling
it. Infocom05 and Rollernet ’s average D4 is 10.7 and 4.2. By observing their 4-vicinity,
we increased their number of number by a 4+ factor. For κ > 4, the increase rate is
less striking or even null. Nevertheless, longer κ-contacts in terms of path length may
not be interesting because of potential path inconsistency due to all relays movements.
Monitoring κ-vicinity up to a κ = {3, 4} threshold brings most of the ego density a
node can use.

Not-in-contact neighbors. An interesting situation occurs when pairs of nodes do
not come into contact but belong to each other’s κ-vicinity. Usual protocols miss this
knowledge by overlooking the potential of nearby nodes. To analyze the impact of such
situations, we studied the closest distance between nodes for all pair of nodes.

For Unimi, Infocom05, and Sigcomm09 we find that respectively 92%, 91%, and
80% of pair of nodes do come in contact. This can be explained by the nature of the
datasets where people are coworkers and have to meet to exchange ideas. However, we
find that even there, some nodes do not find themselves closer than two hops distance
respectively for 6%, 7%, and 12% of them. Other datasets deprived of the specific aim
of meeting each other like Rollernet, Community, and Shopping show that contact only
represent 31%, 42%, and 61% of the shortest distances. There, respectively more than
51%, 46%, and 35% of nodes stay at the closest between 2 and 4-hop distances. In the
Stanford dataset, around 70 % of pair of nodes come into contact, but the remaining
30% of other nodes come at most at a 2-hop distance, most of them getting between
two and three hops. In RT, all pairs of nodes come into contact.
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By observing the {3, 4}-vicinity, we manage to monitor additional situations of non-
contact between nodes. As a result, we catch most pairwise κ-contacts occurring in a
node’s vicinity with only a threshold κ = {3, 4}.

3.4.3 A rule of thumb for card(V i
κ)

The strength of κ-vicinity lays in its size and extent. For a given node i, the most
straightforward information relies on its current number of contacts (Ci). To facilitate
the deployment of our proposal without the costly neighborhood probing, we propose
an heuristic based on Ci to derive node i’s current κ-vicinity size – card(V i

κ). We want
to investigate the relationship between the number of nodes in contact and the current
card(V i

κ). To ease data understanding and their representation, we group the number
of nodes in contacts by bins of 5 consecutive values. Fig. 3.12 presents this bin-based
vision of the size of κ-vicinities. The x-axis indicates the considered κ. The y-axis
represents card(V i

κ). We observe for each 5-bins the distributions of κ-vicinity sizes.
For its corresponding bin, each candlestick displays from bottom to top: the smallest
vicinity size, the first quartile, the median size, the third quartile, and the longest value.

In the Infocom05 figure, we observe that when nodes have between [1:5] nodes in
contact, they have a median 3-vicinity size of 8 nodes. The minimum size observed was
1 and the highest 3-vicinity size was 33. The first and third quartiles are respectively
3 and 17. This means that for a node having 1 to 5 nodes in contact, 50% of the
corresponding 3-vicinities have sizes between 3 and 17. Considering the second bin
value of [6:10] contacts, the interquartile difference becomes more interesting. If a node
has between 6 and 10 nodes in contact, its median 3-vicinity size is 24, the first and
third quartile are 21 and 27. As a result, when a node has 6 to 10 nodes in contact,
it can quite safely bet to have at least a 27 nodes in its 3-vicinity and all the more
neighbors to use. For κ-vicinities with κ ≥ 3, for the second bin [6:10], the vicinity size
the interquartile value is restricted the interval 25±3. The same observation for bin
[6:10] holds for Sigcomm09.

The following datasets bear a “low” gravity (see Section 3.4.1). Their loosely con-
nected vicinities may explain the small values we observed here. Shopping is the only
dataset to have nodes with more than 10 simultaneous contacts and, therefore, 3 dif-
ferent contact bins. We notice a logarithmic growth of its median card(V i

κ). As RT,
Unimi, and Rollernet have only [1:5] concurrent contacts, we displayed them in a single
figure. Their average size grows logarithmically with κ. Low gravity values indicate
that the most secure connection occurs in contacts, therefore most of the neighbors are
located near the considered node.

The Community dataset displays a different behavior. Its synthetic nature provides
κ-vicinities for κ > 2 of constant size whatever the number of current nodes in contact.

As a rule of thumb, for dataset with high gravity like Infocom05 and Sigcomm09,
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Figure 3.12: Contact-based card(Vκ) according to κ for each bin [n:m] (bin size = 5). The x-axis
represents the considered κ value for the κ-vicinity. The y-axis indicates the κ-vicinity size. For each
bin, the candlebar displays from bottom to top, the lowest vicinity size, the first quartile, the median
size, the third quartile, and the highest size value.
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their card(V i
κ) for κ ≥ 3 is on average at least the double of their ceiling bin value

(especially for bin [6:10]). For low gravity datasets, most events occur in contacts, so
their card(V i

κ) for κ ≥ 3 is at least Ci or the ceiling bin value.

3.5 The Strength of Vicinity Annexation

In this section, we observe an example on how using a node’s vicinity can improve
opportunistic forwarding performances. Vicinity monitoring is an expensive process in
disruption-tolerant networks. To lower its costs, we investigate the optimal κ threshold.
First, we research the optimal κ for our datasets, then we observe the performances of
a simple opportunistic forwarding approach with and without vicinity usage and finally
we quantify the overhead implications of monitoring vicinity.

3.5.1 Threshold optimization

For each node, we analyze the average number of neighbors in their κ-vicinity. In
the previous section, Table 3.6 shows this value for the whole dataset duration. We
understand that above a certain threshold κt, a node’s κ-vicinity does not expend much
(except for the RT dataset, which has a random movement pattern and a high density).
In Community, Sigcomm09, Shopping, Stanford, Community or Infocom05, a node’s κ-
vicinity does not grow significantly anymore above κt = 4. The same phenomenon
appears with Unimi but with lower figures. The Unimi dataset is longer (two weeks)
than other datasets. As we chose to analyze the average number of neighbors for the
whole experiment duration, Unimi ’s length lowered the expected average node number.

In Table 3.7, we focused on instants where nodes had at least one close neighbor. For
each dataset, we analyzed all nodes’ inner κ-vicinity distribution. Whenever a node had
at least one neighbor, we observed the average number of neighbors located at a κ-hop
distance. In Infocom05, we see that in average within a non void κ-vicinity, a node could
find 3.0 nodes in contact, 4.4 at 2 hops, 3.0 at 3 hops, 1.4 at 4 hops etc. For Community,
Stanford, and Unimi, the number of nodes at κ > 2 falls below 1. For RT, Rollernet,
Sigcomm09, and Infocom05, the fall occurs after κ = 4. Above the threshold κt = 4,
there will rarely be nodes at higher distances. Moreover, these distributions are linked
to each datasets average diameter. All datasets average distributions are concentrated
on shorter distance with κ ≤ 4. For instance, Community does not have components
larger than 4-hop distance. Unimi has components of at most 6-hop length. But within
Unimi ’s components, most neighbors appear in contact or at a 2-hop distance. The
κt represents a high enough threshold so as to capture most of a node’s surroundings.
As a result, one would conclude that setting up a 4-vicinity monitoring for each node
is optimal.
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Table 3.7: Neighbors κ-distribution in a node’s κ-vicinity.

κ

Dataset 1 2 3 4 5 6 7+

Infocom05 3.0 4.4 3.0 1.4 0.7 0.2 0.1
Sigcomm09-d1 3.5 5.7 3.7 1.7 0.7 0.3 0.1

Rollernet 2.0 2.5 2.1 1.5 0.9 0.6 0.3
Shopping 3.3 3.7 2.1 0.8 0.2 0.0 0.0

Unimi 1.5 1.0 0.7 0.4 0.2 0.1 0.0
Stanford 1.4 0.6 0.2 0.0 0.0 0.0 0.0

RT 2.3 2.3 2.0 1.4 0.8 0.4 0.2
Community 2.4 2.3 0.7 0.1 0.0 0.0 0.0

3.5.2 Loss and delays

To observe the performances of an opportunistic forwarding protocol, we chose to ob-
serve how vicinity annexation fares in a simple opportunistic protocol called the WAIT
protocol also known as Direct Transmission [86]. In the WAIT protocol, the source
stores the message until it meets the destination. The main criticism on this approach,
although its minimal communication cost, is that the source may wait for a quite long
time before being able to deliver the message or, worst, to completely fail delivering it.
As we will see next, we observe reduction of delivery delays of up to 80% in average by
extending of only one hop the vicinity knowledge; in some cases, delays can be reduced
by several hours. This means that a simple variation of the WAIT protocol can be
now applied in contexts that could not be considered previously. As the performance
indicator, we observe the time a node has to wait before finding the destination with
and without vicinity annexation.

For each mobility trace and each pair of nodes, we randomly generated 10 messages
at different time instants. We chose a 10 message value as it is sparse enough to
reflect the impact of neighborhood monitoring on waiting delays and there are still
enough messages to make non marginal observations concerning waiting times. The
most symptomatic situation arises when a pair of nodes never come into contact, but
once and a while they belong to the same connected component. In this situation,
the WAIT protocol drops the message whereas the neighborhood-aware variant can
manage to forward it correctly. As scarce as this situation may sound, it happens for
10% of pair of nodes in Infocom05, 12% of Unimi nodes, 27.3% of Shopping nodes,
33.4% of Sigcomm09, 53% in Community, and around 55% of Rollernet nodes. If these
nodes try to send a message using the WAIT protocol, they will simply fail. These
fractions of nodes have infinite waiting delays when WAIT is in use. Otherwise, with the
neighborhood-friendly version, they manage to deliver messages with bounded waiting
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Figure 3.13: Averaged waiting times according to the threshold κ. For all traces, there is a clear
improvement between the first and second bar (contact only vs. 2-vicinity). Being aware of a node’s
κ-vicinity can lead to divide waiting times by 4 like in Community. The higher the κ, the better the
waiting delays, yet, above κ > 4, gains become negligible. Note that, for the Sigcomm09*, Shopping*,
and Unimi* datasets we focused on its top values. For Unimi, the average waiting time in contact is
18,232 seconds while in the 2-vicinity, it is 17,792 seconds. These high values come from the dataset
length (two weeks).

times.
For these nodes with bounded waiting delays, we analyze to which extent neighbor-

hood knowledge helps lower their waiting times. In Fig. 3.13, we show the averaged
pairwise waiting times for each dataset. Each bar represents the average waiting delay
we obtain with κ-vicinity probing. For every dataset, between the first and second bars,
we notice significant reduction in the waiting times: 16% for Sigcomm09, 40% in Info-
com05 and Rollernet, 48% for Shopping, 57% in RT, and around 80% in Community.
The Unimi dataset stands out because of its time scale. The experiment lasting two
weeks, the random message generation process may choose values during weekends or
nights. Even though, the relative difference between the first and second bar is more
limited, the time reduction is still present between the first two bars.

For all datasets we observe that, although we keep reducing the waiting delays, the
gains for κ > 4 are much smaller. This corroborates our first feeling that localized
knowledge should be enough and suggests that we can, in practice, keep κ small.

3.5.3 Overheads

Supporting vicinity knowledge monitoring does not come for free. Any node needs to
probe its vicinity and create a flow of messages around.

Impact of neighborhood knowledge overhead. There are many strategies for
connected component gathering, from link state-like solutions to flooding techniques.
For our study, we chose to compare two strategies:
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Figure 3.14: Neighborhood Knowledge Overhead (No) in terms of message sent by the discovery
technique Reg for a node in the Infocom05 dataset. On average, probing κ-vicinity with κ > 4 costs
as much as probing the 4-vicinity. This version of neighborhood probing is very expensive. Note the
logscale on the y-axis.

• Nodes keep monitoring their κ-vicinity at regular time intervals (called Reg here-
after).

• Nodes monitor their κ-vicinity when they have a message to send and stop when
it expires (called OnD for “On Demand”).

With Reg probing every 30 seconds, we quantified the volume of generated messages
for different values of κ. Monitoring only contacts induces fewer overheads than any
deeper neighborhood monitoring. For κ = {2, 3}, we have larger volumes of No. Beyond
κ = 4, there are no noticeable differences for No. Overall behaviors are quite alike and
depend on the surrounding density.

In Fig. 3.15, we plot No of the same source node as before. This time, we use the OnD
method for neighborhood analysis. The reason we have noticeable jumps in all curves
is, when the destination comes into the source’s κ-vicinity, this latter stops monitoring
its surroundings. Contact monitoring drops all but one message and is only plotted for
the reader’s information. As a result, the OnD technique appears more efficient than
the naive Reg. In Fig. 3.15, we see how No evolves with time. With a simple probing
technique OnD, we manage to constrain message overheads and deliver more messages
than with the WAIT protocol. Also, an interesting result is how, for the same number
of delivered messages (7), probing the 3-vicinity and beyond gives better results than
probing only the 2-vicinity in terms of No. The faster the source finds the destination,
the shorter the waiting delay and the lower the No.
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Figure 3.15: Neighborhood Knowledge Overhead (No) using OnD for a pair of node in Infocom05.
Contact monitoring drops 9/10th of messages and keeps monitoring its contacts without being able to
deliver any messages. For 7 delivered messages, sensing 3-vicinity (or beyond) ends up cheaper than
observing 2-vicinity. κ ≥ 3 leads to shorter waiting delays and shorter probing periods than with
2-vicinity. Note the logscale on the y-axis.

Impact of data overhead. No seems to be the most expensive in terms of messages
sent; yet, we also have to consider Do (i.e., the number of messages over an end-to-end
path). Do adds an insignificant number of messages to No. It is important to underline
that having a large Do (i.e., a long path between the sender and the destination) can
lead to undelivered messages. This is why one would prefer smaller κ.

3.6 Recommandations

Opportunistic Protocols. Until now, most opportunistic techniques used the obvious
contacts – binary intercontact patterns. This straightforward vision may be sufficient
for some approaches but it ignores nearby transmission opportunities by denying the ex-
istence of nodes beyond contacts. True opportunistic networking lives via human-driven
movements, these patterns are not random and generate opportunistic encounters as
well as topological connectivity. We need to leverage a city’s popular places and hubs on
the connectivity plane. By gathering surrounding information, the κ-vicinity knowledge
can help us do so. Using a node’s κ-vicinity improves both contact opportunities and
intercontact durations. Moreover, in Section 3.4, we explain how observing a node’s
κ-vicinity with κ = {3, 4} is enough to be aware of most pairwise activity in the vicinity
beyond contacts and to benefit from ego densities. We also provide a rule of thumb to
derive the number of nodes in a κ-vicinity depending on the current number of contacts.
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Mobility Models. Musolesi et al. based their mobility model on social network the-
ory [47]. Their model takes into account colocating patterns by mean of social attrac-
tiveness. Their intent, with HCMM proposed by Boldrini et al [88], is one of the most
sensible we have seen in terms of binding synthetic models and social patterns. Still,
they limit their approach to contact patterns which results in unexpected κ-contact and
κ-intercontact distributions (see Fig. 3.7 and 3.9). In Fig. 3.11, Community ’s number of
connected components does not evolve, it remains constant through time. In Fig. 3.12,
the Community dataset displays a very specific κ-vicinity size repartition. Due to the
lack of available extensive realistic mobility traces, researchers must rely on synthetic
mobility models. Musolesi et al. managed to create an interesting social mobility model,
however, while this model respect most social patterns, incidental parameters like κ-
vicinity behaviors and sizes as well as connected components characteristics may be
offbeat.

3.7 Conclusion

In this chapter, we highlighted the “binary assertion” issue in opportunistic networks.
The binary assertion issue consists in considering that all nodes that are not in con-
tact are in pure intercontact. This binary contact-intercontact vision hampers our
network vision. In Section 3.2, we solve the binary assertion problem by defining the
notion of vicinity for disruption-tolerant networks (with κ-vicinity, κ-contact, and κ-
intercontact). We start by acknowledging the hidden communication possibilities of
intercontacts using sociostructures and we observe how variable are nodes behavior.
Then in Section 3.3, we studied the temporal characterization of vicinities by observing
κ-contact and κ-intercontact distributions. The resulting κ-contact and κ-intercontact
distributions possess almost similar behavior as previous contact and intercontact dis-
tributions. Next, we focused on the composition of vicinities in Section 3.4 and provided
a rule of thumb to derive κ-vicinity cardinality and gave hints on the κ value to optimize
the give and take between additional surrounding knowledge and monitoring costs. Fi-
nally, we described the advantages of using vicinities in the WAIT protocol where we
can reduce waiting delays up to 80% by considering the 2-vicinity instead of contacts
only in Section 3.5. In the following chapter, we investigate the existing movements
within the κ-vicinity. Can we find specific patterns? And if so, are we able to predict
or mimic them?
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The utilization of opportunistic networks imposes many challenges. For the network-
ing community, DTN had interesting, never seen before, features. As a consequence,
many studies focused on characterizing network structures as well as node specific prop-
erties like degree or betweenness centralities [14, 89, 17]. Even if some properties have
been unveiled by now, the relationship between a given node and its vicinity (closeby
neighbors, including nodes without direct contacts) has not yet been thoroughly stud-
ied. This vicinity notion may be a key ingredient in optimizing opportunistic network
forwarding. Why should protocol designer only consider contacts when we have other
available vectors at hand?
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Figure 4.1: An example of asynchronous vicinity motion knowledge. At t = 0, node j is outside i’s
vicinity but coming closer. At t = 1, j pops into i’s vicinity at a 3-hop distance. At t = 2, j moved
closer to i at a 2-hop distance and even arrives in contact at t = 3.

4.1 Why Vicinity Dynamics?

As shown in Chapter 3, in real setups, nodes in direct contact represent only a small part
of all opportunistic communications in DTN [84]. To leverage such unused connectivity,
we propose to understand how neighbors move within a node’s vicinity. In Fig. 4.1, we
illustrate the evolution of a small network. At t = 0, nodes i and j have no path to each
another – they are in intercontact. At time t = 1, nodes i and j are not in contact (1-hop
distance) but are linked via a 3-hop path. At t = 2, i and j are at a 2-hop path and they
finally come in contact at t = 3. The usual contact/intercontact vision would consider
the time steps t = {0, 1, 2} as the same, i.e., that i and j are in intercontact. Instead,
when using the vicinity notion, such an “extended” view of communication opportunities
is taken into account. Opportunistic networks can benefit from contacts that were not
used before. To the best of our knowledge, no previous work has investigated how the
vicinity structure of a node evolves through time in disruption-tolerant networks.

In this chapter, we introduce our Vicinity package for vicinity behavior analysis and
generation in DTN. The Vicinity package takes as input a specific connectivity trace
and extracts its vicinity behavior characteristics with the asynchronous vicinity motion
framework. These vicinity characteristics can be used to train and evaluate the efficiency
of protocols for opportunistic networks. We also use these vicinity characteristics as
a model to regenerate different asynchronous vicinity motion with the same statistical
properties as in the original one with the TiGeR generator. Asynchronous vicinity
motion analyzes movements in a node’s vicinity and TiGeR is in charge of the vicinity
behavior generation process. In this chapter, we make the following contributions:

• The asynchronous vicinity motion framework to analyze and under-
stand vicinity behavior. We provide a generating workflow to obtain mean-
ingful vicinity analyses and manage to capture the statistical evolution of the
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distance between nodes. Note that the synchronous vicinity motion will be de-
fined in Chapter 5.

• We identify two main network behaviors and three movement types
with their application in opportunistic networks. The first network type
displays extended chains which represent a rich neighborhood with long instanta-
neous paths between nodes within the κ-vicinity. Whereas the other network type
exhibits short chains with paths constrained to few hops. For extended chains,
we noticed how three types of movements dominate all motions. Birth, death and
sequential moves may represent 87% of all observed moves for a given dataset. We
also explain how birth, death, and sequential movements evolution can be used
in mobile networking.

• Asynchronous vicinity motion take-away. Following our results, we issue
several directions concerning the use of vicinity in opportunistic network. These
directions can help any opportunistic protocol designer leverage node’s vicinity
without the required monitoring cost.

• We build TiGeR, a generic pairwise vicinity behavior generator for op-
portunistic networks. Using the identified vicinity patterns – Birth, death and
sequential – and the corresponding vicinity transitions probabilities, we created a
process to generate representative pairwise timelines with two options. TiGeR al-
lows pairwise vicinity behavior generation for various timescales. These timelines
may bootstrap vicinity knowledge in other opportunistic protocols.

4.2 Vicinity Package Introduction

The Vicinity package contains most of our contributions in this dissertation. Two
of its main parts are: the asynchronous vicinity motion framework who allows vicinity
patterns analyses and TiGeR the pairwise vicinity behavior (timeline) generator. These
two entities have been designed to function together as the asynchronous vicinity motion
framework provides information such as state transitional probabilities and κ-contact
durations distributions that are required by the TiGeR module. However, one can also
use asynchronous vicinity motion and TiGeR on their own as long as one provides the
required inputs. We next provide a few implementation details for both modules.

• Asynchronous vicinity motion. In this module, we need to recreate the pro-
vided network connectivity and compute all shortest distances for all pairs of
nodes. To this end, we simulate network connectivity with the Python library
NetworkX [90] and make the required arrangements using Python ≥ 2.7.

-Requires: contact trace, number of nodes in the dataset.
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Figure 4.2: Vicinity motion generation workflow. We begin by reading Network Dynamics under the
form of contact traces describing network connectivity through time. We process them using (1) the
timeline generation module. This stage produces timelines. Step (2) aka Vicinity Analysis examines
these sequences to compute transitional probabilities and corresponding vicinity motion chains.

-Provides: vicinity transitional probabilities, interval durations distribution.

• TiGeR. The timeline generator module processes extracted dataset character-
istics (vicinity transitional probabilities and interval durations distribution) into
synthetic vicinity behaviors. We use Python ≥ 2.7.

-Requires: transitional probabilities, interval durations distribution, timeline re-
quired durations.

-Provides: synthetic timelines.

The Vicinity package contains other tools useful for DTN trace processing as well
as material developed in the next chapter. Details will be available on the dedicated
webpage: http://vicinity.lip6.fr.

4.3 The Asynchronous Vicinity Motion Framework

The asynchronous vicinity motion (AVM) framework analyses node-centered vicinities
(the κ-vicinity) for a given network. We want to answer the following question:

when the distance n between nodes i and j change,
what is the probability that their distance becomes m, with m �= n?

In the remaining of our work, n is both the mutual shortest distance for a pair
of nodes and the vicinity chain state while κ is the max hop distance in a κ-vicinity
(n ∈ ({1, ..., κ} ∪ {∞})). We name the period between two changes in a pair’s shortest
distance a step. Note that AVM’s step duration depends on the network dynamics,
therefore, steps do not have a constant duration. AVM analyzes all changes in an asyn-
chronous way. In opposition, we will study synchronous vicinity motion in Chapter 5.
To answer the aforementioned question, we follow a two-stage methodology:
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Figure 4.3: A pairwise timeline from the Unimi dataset. From 50,000 seconds to 50,500 seconds, the
two nodes did not have a path to one another. Then, they briefly were at a 5-hop distance before
coming closer at a 4-hop and then a 3-hop distance and so on.

1. Timeline generation. Knowing the shortest distances at different steps, we
extract a vicinity timeline, which is the progression of shortest distance between
any two nodes through time (see Fig. 4.3 for an example). By using these timelines
we are able to perform probabilistic analyses.

2. Vicinity analysis. Timelines provide the necessary information to characterize
the transition probabilities between given distances.

We recapitulate the whole workflow in Fig. 4.2.

4.3.1 Timeline generation

Our method takes contact traces as inputs. We first organize the trace as a chronological
sequence of instantaneous events. Events can either be a link appearing or vanishing
between a pair of nodes (i, j) at time t. We symbolize this type of event as e =<
t, i, j, UP/DOWN >. UP indicates the appearance of a link between i and j and DOWN its
disappearance.

For a given pair of nodes (i, j), a timeline consists in the sequence of their mutual
shortest distance through to time (see Fig. 4.3). Formally speaking, we represent time-
lines as a sequence of tuples < n, i, j, tbegin, tend >. This means that between tbegin and
tend, nodes i and j are at a n-hop distance.

The algorithm to generate timelines is detailed in Algorithm 1. It requires as input
the contact trace (C in the algorithm) and the number of nodes in the network (N in
the algorithm). All timelines are initialized with a starting tuple < ∞, 0 > indicating
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Figure 4.4: Infocom05 average asynchronous vicinity motion for a pair (i, j) and κ = 4. For the sake
of clarity, we display only a few transitions. The probability of a node appearing in contact {∞ → 1}
is 10% or when nodes are at a 3-hop distance, the probability for them to be next at distance 2 is 30%.

that they are in κ-intercontact ‘∞’ at time 0. Following tuples indicate a change in this
state and the time at which it occurs. As long as there are events in the trace, we read
them and update the adjacency matrix before computing pairwise shortest distances.
Then, we update the corresponding pairwise timelines accordingly. Finally, we format
and print gathered data into timelines.

4.3.2 Vicinity analysis

To illustrate AVM, we use a chain process for each pair of nodes. For a given node i, let
Xs

i,j describe the distance between nodes i and j at step s. The vicinity analysis step
(2) takes timelines as input and provides the corresponding transitional probabilities for
vicinity chains. We describe the two main component type of our chain process here:
States. The chain states depends on the κ we choose, i.e., the size of the vicinity we
wish to monitor. The number of states is κ+1; the first state, denoted ‘∞’, corresponds
to the case where the two nodes are in κ-intercontact. The state {1} represents a contact
and the remaining states {2, . . . , κ} correspond to a situation of κ-contact where the
exact distance between the nodes is the corresponding state.

Remember that we consider each pairwise movement as a step unit. In this chapter,
we do not consider specific time frame durations to avoid dataset dependence and focus
on effective network movement.
Transitional probabilities. To understand asynchronous vicinity motion, we concen-
trate on the chain conditional probabilities between states, i.e., the probability of two
nodes being at a distance of m at step s knowing that they were at a distance n in the
previous step s − 1: P(Xs

i,j = m | Xs−1
i,j = n), m �= n. This informs us exactly on the

movements within the vicinity.
As an example, we show in Fig. 4.4 the average transitional probabilities of asyn-

chronous vicinity motion for Infocom05. For the sake of clarity, we omit certain tran-
sitions. As we can see, when nodes i and j are in κ-intercontact ‘∞’, the probability
that they meet directly is 10% while it is 35% for a 3-hop distance. This appearance
behavior varies from one dataset to another and highlights the utility of the Vicinity
package to easily gather such data.
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Algorithm 1: Timeline (TL) generation.
Requires: C, N// contact trace, number of nodes
Ensure: N × (N − 1) timelines (TL)
Local: {adj} // adjacency matrix of size N 2

initialization; // all timelines initialized with the tuple <∞, 0>
while size of C �= 0 do

tcur, i, j, event = pop first tuple of C;
if event = UP then

adji,j = 1;
adjj,i = 1;

end
if event = DOWN then adji,j = 0;
adjj,i = 0; for i ← 1 to N do

for j ← 1 to N do
if i �= j then

dcur = shortest path(i, j);
if length of TL(i,j) = 1 then

append (dcur, tcur) to TL(i,j);
end
else

(dlast, tlast) = get last tuple of TL(i,j);
if dlast �= dcur then

append (dcur, tcur) to TL(i,j);
end

end
end

end
end

end
for i ← 1 to N do

for j ← 1 to N do
if i �= j then

format and print TL(i,j);
end

end
end
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4.4 Asynchronous Vicinity Motion: Analyses and Patterns

4.4.1 Short and extended chains

From our analysis, we observe two types of vicinity chains. Extended ones that can
travel up far to states like 10 or 12 or shorter ones with movements up to 1 or 2 hops.
Short chains. In short chains we retrieve the previous assumption that nodes are
either in contact or in κ-intercontact; the difference here is that they can drift to a
2-hop distance. We noticed such setting for two of our datasets: Sassy and Stanford.
The observed chain consists in states {∞, 1, 2}. As a result, such settings bear no or
very low κ-contact advantages. Most of the times, when one detects a node, its next
move will almost always be to vanish from the vicinity. Opportunistic protocols must
also take these patterns into account when necessary.
Extended chains. Datasets like Infocom05, RT, Rollernet, and Unimi display ex-
tended vicinity chains (see Fig. 4.4 for an example). Extended chains bear more poten-
tial traveling states. Some even going to 12 and longer distances. Extended chains have
the characteristic to allow high states and, therefore, the possibility of wider end-to-end
transmissions via recurrent κ-contacts. Extended chains may also exhibit a wide range
of intra chain movements. We will next see how three types of movements dominate
tendencies. With only a few movement patterns, we will show it is possible to oversee
most of a node’s upcoming movements.

4.4.2 Max-min distance division

Before diving into vicinity chains properties as such, we need to understand more general
characteristics of the network in order to adopt an appropriate κ value in our analyses.
Here, we do not attempt to tune a specific value for each dataset, but only to estimate
a reasonable generic value that will allow us deriving unbiased conclusions. In practice,
in order to optimize the traditional vicinity monitoring costs and find a good balance
between overhead and vicinity knowledge, a network designer might want to compute
a specific κ that fits well the scenario.

To better understand how pairs of nodes evolve, we first perform an exhaustive
analysis in which we select a value for κ that is large enough to cover the nodes’
connected components. For each pair of nodes, we compute the max-min distance in
the dataset, which is their maximum shortest distance value while still belonging to the
κ-vicinity. Fig. 4.5 shows the repartition of nodes according to their respective max-
min distance in five of the datasets. Results are shown in aggregated form – the bar for
“d ={1,2,3}” means that the maximum shortest distance for a pair of nodes is between 1
and 3, and so on. For Infocom05, we observe that the largest proportion of pairs (around
78%) have at most a 7 to 9-hop distance between them, while only 16% of them have at
most a 4 to 6-hop distance, 8% of them have at most 10 to 12 hop distance, and almost
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Figure 4.5: Repartition of pair of nodes with max-min distance d. d represents the maximum shortest
distance observed for a pair of nodes in their corresponding experiments. For the sake of clarity, we
summed proportions in sets of three consecutive distances.

none of them have at most a path of 1 to 3-hop distance. Unimi and Sigcomm09 present
the highest proportion of nodes with maximum distance 7- to 9-hop paths. RT and
Rollernet have most of their max-min between 10- and 12-hop paths.

We confirm here, that even considering high level pairwise asynchronous vicinity
motion, discriminating behavior is a must. For the remainder of our paper, we will
focus on vicinity chains up to state {7, 8, 9} as they represent the most part of situations
observed.

4.4.3 Vicinity chains distributions

Average time spent in each state. Table 4.1 presents the average duration in
seconds spent in state κ for each state. For Sigcomm09, RT and Unimi, we observe a
gradual decrease of durations. On the other hand, Rollernet has an increasing tendency
while Infocom05 has a mixed behavior. The specific status of Rollernet as a dynamic
sport event may explain the increasing values. Short distances have a very low life
span because of the fickle and dynamic connectivity in the setting. The crowd absorbs
longer distances (note that we do not discriminate path changes if they are of the same
length).
Stationary distributions. In Table 4.2, we show the stationary distributions for the
different datasets when κ = 7. In Infocom05, when we come across the setting, there is
a 25.3% chance that the node we are looking for does not belong to our κ-vicinity, 5.5%
chance of the node being in contact, 15.4% at a 2-hop distance, 20% at a 3-hop, and
so on. Note that by observing its 4-vicinity, when we sum the birth probability from
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Table 4.1: Average time spent in each state in seconds.

State
Dataset ∞ 1 2 3 4 5 6 7

Infocom05 2,029 399 296 224 175 131 154 212
Sig09-d1 2,149 149 83 42 26 18 14 11
Rollernet 167 51 74 86 102 117 127 184

Sassy 157k 2,315 53,871 1 ∅ ∅ ∅ ∅
Stanford 2,972 1 1 0 ∅ ∅ ∅ ∅
Unimi 28,621 520 161 83 57 44 35 28
RT 172 202 88 60 41 30 24 17

Table 4.2: Stationary distributions in percentage.

State
Dataset ∞ 1 2 3 4 5 6 7

Infocom05 25.3 5.5 15.4 20.0 16.0 9.7 5.1 2.2
Sig09-d1 26.2 4.8 14.9 21.4 16.6 9.8 4.4 1.9
Rollernet 28.2 2.3 7.7 11.5 12.5 11.5 9.5 7.3

Sassy 49.2 34.8 15.5 0.5 0.0 0.0 0.0 0.0
Stanford 45.0 48.0 6.9 0.3 0.0 0.0 0.0 0.0
Unimi 35.0 9.0 14.0 15.0 12.0 8.0 4.0 2.0
RT 29.1 5.0 10.6 14.1 14.3 11.5 7.7 4.5

states 1 to 4 and normalize the result by the probability of effectively having nodes, we
have a 77% chance of spotting a node we are actually looking for. Such a posteriori
knowledge is useful to evaluate the probability of finding a node quickly upon arrival
or even to quantify the probing frontier in order to keep low maintenance costs.

4.4.4 Vicinity patterns

Datasets bearing extended chains offer more possibilities of next hop transitions. In the
analyzed datasets, we observe three main types of transitions, namely birth, death, and
sequential movements.

4.4.4.1 Birth in the κ-vicinity

We qualify of birth the phenomenon of appearance in the κ-vicinity after a period of κ-
intercontact. The main interest of such knowledge is for a node or a protocol to know at
which distance another node may appear. Imagine in the Infocom05 dataset that node
i wants to send a message to node j, which is currently outside i’s κ-vicinity, without
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Figure 4.6: Birth rates.

relying on fully opportunistic forwarding. Given the computed stationary values from
Table 4.2, we now know that j will appear with a probability of 20% at a 3-hop distance.

In Fig 4.6, we present the values concerning the birth motion for our datasets. On
the x-axis, we represented the actual incoming state (the distance at which a node
appears). On the y-axis, we present the actual birth transitional probability for each
distance. For all datasets, the highest birth probability belongs to the set {1, 2, 3, 4}.
The cumulated transitional probabilities up to 4 represent from 50% to 70% depending
on the dataset. For a random dataset, if we had chosen to extend these probing limits
only to a state 4, we would detect from 50% to 70% of nodes vicinity appearance.
Hence, probing the 4-vicinity is enough to get most of the arrivals patterns in a node’s
surrounding. This is a strong confirmation for our previous finding on the optimal limit
of κ-vicinity probing [85].

4.4.4.2 Death in the κ-vicinity

In opposition to the notion of birth for arrival patterns, we call death the phenomenon
of nodes vanishing from the κ-vicinity. We analyze the datasets in two different as-
pects: the proportion of deaths with regard to the full chain (absolute) and compared
to natural movements only. We define as natural movements, all movements except
transitions between non-consecutive states except toward ∞. By analyzing the part of
death transitions in natural moves, we try to understand how representative is their
part in all easily predictable transitions.

In Fig. 4.7(a), we show the evolution of death probabilities for the different states
of the chain. Most datasets have steady absolute death rates, their maximum variation
being 12%. However, Sigcomm09 death rate evolves with higher states. The absolute
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Figure 4.7: Death (absolute and relative to natural movements) rates.

death rate steadily grows with observed states. In Fig. 4.7(b), we show the results
in the case of natural movements. We observe an interesting phenomenon: almost all
datasets bear the same relative death rate evolution. Relatively to natural movements,
the proportion of death moves has a similar overall pattern (soft decrease followed by a
soft increase), the main difference being the starting values on the ordinate axis for each
dataset. Being able to foresee death movements, i.e., a node being in κ-intercontact can
indicate when to begin a fully opportunistic routing technique. As long as nodes are
in the vicinity, we can use end-to-end paths towards them. However, when we suspect
that nodes will next be out of the κ-vicinity, it may be time to trigger a different routing
approach.

Birth and death events represent a big share of the movements alongside sequential
movements as presented next.

4.4.4.3 Sequential movements

We define as sequential movements for two nodes the process of drifting closer or further
from each other using adjacent states of the chain: when nodes (i, j) are at a 4-hop
distance, they sequentially move closer if they are at a 3-hop distance during their
next step, they sequentially drift away if they are next at a 5-hop distance. Sequential
movements are part of natural movements in general. Natural movements include death
and sequential moves.
Absolute sequential probabilities. Our first observation is that a non-negligible
part of vicinity movements stems from sequential behaviors. For Unimi and Infocom05,
as long as nodes stay in the κ-vicinity, sequential movements represent between 50%
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Figure 4.8: Sequential (absolute and relative to nature movements) rates.

and 80% of movements. We call erratic or random movements, all movements that are
not birth nor death nor sequential moves. They represent a minor share of asynchronous
vicinity motions and can be overlooked as predicting their destination is tougher and
brings only marginal knowledge gains. Sequential movements still rule. In Fig. 4.9,
we display the proportion of death, sequential, and erratic movements (from bottom to
top) among all vicinity moves for our long chained datasets. Infocom05 is representative
of other datasets. In Fig. 4.9(a), erratic movements grow with the distance between
the nodes, while death processes remain stationary around 30%. Sequential movements
are strong within the 4-vicinity. The effect of sequential patterns is less influential at
further distance because of the environment perturbation.

The further two nodes are, the higher the proportion of erratic movements. Wider
vicinity bears fickler connectivity at the borders and more random hopping. Also, the
presence of erratic movements may also be related to datasets beaconing frequency (see
Section 2.2). For the same dataset, the longer the beaconing intervals, the more we
may miss movements in the dataset. This may result in a higher percentage of erratic
movements.

Relative sequential probabilities. We go deeper in the analysis of sequential move-
ments and divide the notion into two sub-notions: incremental (inc) and decremental
(dec) movements. While inc movements consist in movements where the distance in-
creases to the immediately higher state, dec are the opposite where distance decreases
to the immediately lower one. Similarly to death rates, we investigate inc and dec
moves using different scales: absolute, relative to natural movements, and relatively
to the overall proportion of sequential moves. Concerning dec moves, datasets show-
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Figure 4.9: The asynchronous vicinity motion movements repartition (death, sequential and erratic)
for all datasets for each distance. Death and sequential movements represent the greater part of all
possible outgoing movements. Erratic movements represent a marginal part of the observed behavior.
However the erratic movements presence seem to slowly grow with higher distances.
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Figure 4.10: Average sequential dec movements in details. Dec movements are the opposite tendency,
nodes incrementally moving closer to each other. On the x-axis, we present the current state nodes are
in. On the y-axis, we represent the percentage of vicinity moves they represent.

ing extended chains (Infocom05, Rollernet, Unimi, and RT ) display a slow increase
until distance 2, followed by a smooth and soft decrease (see Fig. 4.8(a)). The Sig-
comm09 dataset displays the same pattern but drifted to state 3. Sigcomm09 decreases
at state 2 before increasing at state 3 and then slowly decays. The anomaly concerning
Sigcomm09 is present for all dec moves. The proportion of sequential moves is easy
to predict. The same deduction can be made concerning the proportion of sequential
movements with regard to natural movements in general (see Fig. 4.8(b)).

Observing a finer granularity for sequential movements helps us understand which
patterns are more prominent: do nodes have a higher probability of drifting away (inc)
or moving closer (dec)? In Fig. 4.11, we present dec and inc proportions. Concerning
dec and inc absolute values (Fig. 4.10(a) and 4.11(a)), we observe that the moving
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Figure 4.11: Average sequential inc movements in details. Inc movements indicates movements incre-
mentally moving further. On the x-axis, we present the current state nodes are in. On the y-axis, we
display the percentage of vicinity moves they represent.

closer pattern has a stationary distribution for all observed datasets. Dec does not
vary much around their initial value, whereas the drifting away pattern (inc) quickly
decreases with higher states. This can be explained by the fickle connectivity at longer
distances. Movements result in death rather than drifting away moves.

With regard to natural and sequential movements, the proportion of dec and inc
moves among natural movements is different in terms of values but bears quite the same
evolution as previous absolute observations. Dec maintains quite stationary values while
inc display quick decrease in Fig. 4.10(b) and 4.11(b). A closer analysis of inc and dec
moves, in Fig. 4.10(c) and 4.11(c), compared to sequential movements shows clearer
patterns. For all of our datasets, the proportion of dec almost linearly increase while
the inc part linearly decrease. As inc and dec represent a full partition of sequential
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movements, the observation seems logical. The increase of decseq moves stems from
the decline of inc in the natural case, rendering up a higher proportion of dec in the
sequential case.

4.4.5 Asynchronous vicinity motion take-aways

From our observations, we summarize some best practices for opportunistic protocol
designer to use concerning vicinity movements in mobile networks.

Birth. The phenomenon of appearance in vicinity is interesting to notice. Birth indi-
cates when pairwise end-to-end connectivity becomes useable. So to the question, how
far one should monitor its surrounding to detect these births? The empirical answer
based on our observations would be 3 or 4 hops away. In Fig. 4.6, we notice that the cu-
mulated birth probability up to state 4 ranges from 0.46 to 0.72. For the Unimi dataset,
we get a 78% chance of detecting an early arrival in the vicinity. In Unimi, the cumu-
lated probability from states 2 to 4 is 60%. So we increase the arrival detection by a
factor 3 compared with when monitoring contacts only. For the Sigcomm09, this in-
crease factor is 12.4 compared with contacts only. As extended vicinity vision increases
monitoring costs, we wish to maintain a quite low distance monitoring.

Death. We notice that their rate remains quite steady with a slight growth for higher
states (see Fig. 4.7(a)). This means that we only need to probe death rates from contacts
to get a hint on what occurs further hops away. When there is low network stability,
death rates tend to be quite high (for instance with Rollernet). In these cases, one must
expect the next vicinity movement to break the end-to-end connectivity.

Sequential. The notion of sequential movements includes moves from a given state to
the immediately higher or lower state. These movements increase from state 1 to {2, 3}
and tend to slowly decrease further away (Fig. 4.8(a)). In more details, we considered
inc movements (those going from a given state to the immediately higher one) and dec
moves (those going to the immediately lower state). inc movements quickly decrease
with higher states for all the observed datasets (Fig. 4.11(a)). When a pairwise shortest
distance is greater than 3, there are very little chances for a node to drift away. They
are more likely to “die” or come closer. On the opposite, dec movements increase for
states between 1 and 3 and remain quite steady for states higher than 3. This shows
there is a tendency to attraction between nodes. But for higher states, death process
and erratic movements often break this tendency.

These observations apply to the datasets we analyzed. Nevertheless, with the asyn-
chronous vicinity motion framework tool we implemented, any researcher can get these
analyses on a pairwise or network-wide scale as long as he provides network connectivity.
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4.5 TiGeR: Synthetic Timeline Generator

The direct application of asynchronous vicinity motion analyses is the possibility
of generating synthetic timelines. Timelines embody the pairwise vicinity behavior.
TiGeR (TImeline GEneratoR) relies on the asynchronous vicinity motion module out-
puts (extracted timelines and transitional probabilities).

4.5.1 Motivation

The use of timelines to bootstrap nodes’ vicinity knowledge into opportunistic networks
is original. Before, protocols like BUBBLE Rap used history of nodes contact periods
in order to predict future encounters [11]. Now, instead of focusing on contacts only, we
extend this knowledge to the node’s κ-vicinity. Vicinity provides more network knowl-
edge and therefore multiplying the possibilities of encountering another node [85]. We
can extract pairwise contact patterns from the generated timelines. The timeline gen-
eration can also be useful to test opportunistic protocols because it generates timelines
that can be used to predict the next distance appearance for a given node, for instance.

4.5.2 Generation processes

To generate pairwise vicinity behavior, TiGeR relies on transitional probabilities, a
given κ value and κ-contact durations distributions. Based on the asynchronous vicinity
motion transitional probabilities, we generate a sequence of pairwise shortest distance
matching the AVM probabilities. The first step is always to generate a distance sequence
matching the given AVM transitional probabilities. The challenge is then to match these
timelines distances into correct interval durations as well as plausible distance intervals
number. For each of the max distance observed, we perform the following steps:

4.5.2.1 Hop sequence generation

This step generates an AVM transition compliant hop sequence (a list of distances whose
AVM transition will be similar to the provided transitions). We take a max distance D
and process the provided AVM transitions as follows:

• Beginning state. We need to bootstrap the generated timeline with a first
starting distance (a starting state for the provided AVM). We choose to get a
random starting distance denoted d0 among all the existing states {∞, 1, ..., D}.
For example, let us begin with d0 = ‘∞’.

• Run the AVM chain. We run the corresponding AVM chain from the starting
state d0 = ‘∞’. We choose the highest outgoing probability from ∞ and decrement
the taken transitional rates by a certain value ∆. In TiGeR, we set ∆ to be the
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Figure 4.12: TiGeR’s hop sequence generation example. From the given asynchronous vicinity motion
transitional probabilities, TiGeR produces a possible hop sequence s. s has transitional probabilities
similar to the initial asynchronous vicinity motion transitional probabilities.

greatest common factor among all transitional rates. When we find ourselves to
be in a sink node (all output transitional rates are null), we randomly choose
another output state. We stop the distance generation when all the transitional
rates are depleted.

We then repeat the processes for all the max distance values in [1:D]. Considering
the max distance distribution, we can generate several synthetic timelines. The only
precaution to take is to normalize the corresponding AVM transitional probabilities
before running the chain.

We detail an example from Fig. 4.12. For a max-min distance equals to 4, me assume
the following transitional rates: { (∞ → 1 = 1.0), (1 → 2 = 1.0), (2 → 3 = 0.5),
(2 → 4 = 0.5), (3 → 4 = 1.0), (4 → ∞ = 1.0) } all other transitional probabilities
are considered null here. We start with d0 = ‘∞’. We determine ∆ = 0.5 (because
it is the highest common factor among {1.0, 0.5}). From the AVM in Fig. 4.12, we
take the transition ‘∞ → 1’. The resulting AVM is the same as before except that the
‘∞ → 1’ transition value is now 1.0-0.5 = 0.5. We normalize this value by the total
outgoing probabilities and ‘∞ → 1’ becomes 1.0. We are now in state 1 and can decide
to go either to state 2 or 3 because they have the same outgoing probability 0.5. We
randomly choose state 2 and decrease the ‘1 → 2’ to 0.0 and normalizing ‘1 → 3’ to 1.0.
Then from state 2 we got to 3 and so on, until all transitional probabilities are ≤ 0.0.
In our case, the matching hop sequence s would be s ={∞, 1, 2, 3, 4, ∞, 1, 3, 4}.
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Now that we have s, we need to match these states/distances sequence with accurate
intervals durations.

4.5.2.2 Time matching

Using hop sequence s, we match each of its distances with a plausible interval duration.
Depending on the user need, TiGeR provides two modes. First Mode (I) mimics time-
lines with life-like interval durations while the second Mode (II) outputs timelines with
more AVM compliant transitions. This step requires the user to give L the timeline
length he wants to get. We call the timelines generated with Mode I, MI-timelines, and
those by Mode II, MII-timelines. We next detail both functioning.

• Mode I reflects plausible intervals duration. The first available option
means to reflect the κ-interval durations. For each distance from s, we use the
κ-contact duration distributions from the AVM module. Let us say that s = n,
then we use a Gaussian distribution based on the n-contact duration distribution
(average duration, first and third quartile) to extract a plausible interval value.
Then, we record and sum the obtained durations until the total intervals duration
exceeds L. MI-timelines may lack some step from s but they respect the required
duration L and plausible interval durations.

• Mode II focuses on transitional probabilities. In the second available op-
tion, we focus on respecting AVM transitional probabilities. We keep the same
process as in Mode I without limiting the time matching to the L duration. We
keep on generating the κ-intervals durations to plausible ones for the entire se-
quence step s. Then, by the end of the sequence we use a fitting factor F . L is
s’s sequence total duration and F the required length

F = L
L .

If F < 1, we find that the generated sequence duration is higher than the required
duration and we multiply all the generated sequence by F . Else if F > 1, it means
that the required duration is higher than the sequence matched duration then we
need to either repeat step sequence or stretch the durations by multiplying them
by a factor F .

We present a recap of the Time Matching stage in Fig. 4.13.
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Figure 4.13: TiGeR’s time matching process.
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4.5.3 Evaluation

To evaluate the correctness of our approach, we compare M(I,II)-timelines to the orig-
inal timelines characteristics. We analyze the accuracy of the transitional rates of the
M(I,II)-timelines and the precision of κ-intervals durations.

4.5.3.1 Methodology

Pairs of nodes have specific behaviors and their max-min distance varies from one pair
to another. For each of these max-min distances and each of the datasets, we generated
corresponding M(I,II)-timelines. Then, we obtain timelines for max-min distances 1 to
7. For instance, MI-7-timeline replicates the pairwise vicinity behavior of a 7 max-min
distance in Mode I. We generated MI- MII-timelines of around 50,000 seconds.

We compare pairs of nodes with max-min distance D behavior to MI-D-timelines
and MII-D-timelines. For each timelines, we analyze the average κ-contact durations
and compare them to chosen original timelines. We also compare synthetic M(I,II)-
timelines AVM transitions to original timeline transitions. We perform these analyses
with averaged datasets values and specific pairwise timelines.

4.5.3.2 κ-interval duration distributions

For all datasets and each max-min distances in [1:7], we computed the average κ-interval
duration values for MI- and MII-timelines.

In Fig. 4.14, we present the averaged κ-contact duration for the Infocom05 dataset.
First bar displays the value for Infocom05 average AVM, the second one, indicates the
value for MI-timelines and the third one shows the value for MII-timelines. On the
x-axis, we note the “max-min distance value D – the κ distance”. Meaning D is the
required max-min distance (D ∈[1:7]) and κ is the value we consider for κ-duration
(κ ≤ D). In Fig. 4.14(a), we see the average durations for D ∈ [1:4]. In Fig. 4.14(b),
we display the average duration for D ∈ [5:7]. Note that the y-axis is on logscale.

As expected when we designed TiGeR, Mode I focuses on reflecting plausible κ-
contact durations. Therefore, most MI-timelines observed average durations line up
with the average AVM durations compared to MII-timelines. For lesser D ∈ [1:3], we
notice the highest differences between average AVM and generated timelines. This dif-
ference can go up to a factor of 52 for “3-2” (D = 3 and κ = 2). For higher D ∈
[4:7], this difference decreases with on average a 2.7 factor difference. Differences range
between 0.30 and 8.7. The differences for lesser D may be explained by TiGeR’s gen-
erating parameters. With MI-timelines of maximum duration of 50,000 seconds, we
do not get the same duration as with original datasets where some nodes barely see
each other. MI-timelines tend to coincide with the average AVM duration behavior.
MII-timelines also coincide at a lesser degree as it is mainly MI-timelines divided by
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Figure 4.14: κ-interval average durations for the averaged timelines and generated M(I,II)-timelines.
Note the logscale on the y-axis.
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Figure 4.15: AVM transitions for the averaged Infocom05 timelines and the M(I,II)-timelines.

the fitting factor F .

4.5.3.3 Transitional rates

Another aspect we must look after while replicating pairwise vicinity behavior are the
transitional probabilities from one state to another. In Fig. 4.15, we analyze the VM
transitions for the average Infocom05 behavior, MI- and MII-timelines. On the x-
axis, we have the “from-to” states. For instance, 1-2 indicates the transition from a
1-hop distance (contact) to a 2-hop distance. On the y-axis, we display the transition
probability value. In Fig. 4.15(a), the 1-2 transition value is 0.45 for the average AVM
and around 0.63 for MI- and MII-timelines. Transitions generated by Mode I or II
slightly differ from one another. These transitions tend to fit the general overlook
of the average AVM timeline. For states below 4, transitions tend to fit the average
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Figure 4.16: Transition values for the (30,36)-timeline, and M(I,II)-timelines in the Infocom05 dataset.

timelines. For states above 5, TiGeR generated fewer non-null transitions. Nevertheless,
we must understand that the average timeline represents an aggregated behavior and
that movements in the {5,7}-hop vicinity zone are quite reduced in reality.

To envision this phenomenon in the {5,7}-hop vicinity zone and see how M(I,II)-
timelines fit with specific original timelines, we observe nodes (30, 36) of the Info-
com05 dataset. In Fig. 4.16, we represent the AVM transitions for the pair (30,36),
MI-, and MII-timelines. For states below 4 in Fig. 4.16(a), considering both transitions
values and their presence, M(I,II)-timelines and the initial (30,36) timeline have very
similar behavior. In Fig. 4.16(b), for states higher than 5, we notice that the (30,36)-
timeline does not have many transitions in the {5,7}-hop vicinity zone. There are only
7 → ∞, 6 → (∞, 2, 5), and 5 → (∞, 3, 4) movements. For these movements, we no-
tice that MI- and MII-timelines have close values. In this case, we clearly observe how
M(I,II)-timelines do fit the original (30,36)-timeline. This shows how TiGeR generates
realistic timelines.

4.6 Observations

In addition to the aforementioned observations from Section 4.4.5, we issue additional
guidelines concerning vicinity usage in DTNs.

Practical utilization. Our study showed how pairwise moves are most of times divided
into two main patterns: death and sequential. These two types represent up to 90%
of observed movements. When using the vicinity, protocol designers can bet on the
next mutual movement to be either death or ±1 hop from the current state. This
prediction on node behavior can be used to tune opportunistic protocols leveraging
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end-to-end paths as in [6]. This knowledge can indicate when it is more advised to use
pure opportunistic techniques.
κ recommendation. In Section 4.4, we see how node are usually at a 9-hop max-min
distance when in κ-contact. So all vicinity moves occur below these 9 hops. However,
considering the neighborhood probing costs, we imagine how probing further costs more.
In Section 4.4.3, we see that probing the 4-vicinity allows nodes to detect up to 90% of
arrivals. Table 4.2 shows that most movements are confined to states below 4 and only
a marginal part of movements result in states above 4. We also notice how the average
time spent in state above 4 mostly decreases (see Table 4.1) except for Rollernet. This
κ = 4 threshold is an interesting give and take for vicinity probing. As a future work,
applying dynamic κ threshold may be an alternative.

4.7 Conclusion

In this chapter, we introduce part of our Vicinity package for disruption-tolerant and op-
portunistic networks. First, the asynchronous vicinity motion framework allows vicinity
understanding in opportunistic mobile networks via the notion of κ-vicinity, timelines,
and asynchronous vicinity motion chains. Based on the asynchronous vicinity motion
module’s output, we identified three main vicinity movement types: birth, death, and
sequential movements. All of them have their own patterns impacting mobile network-
ing. For instance, we realize that by monitoring a node’s vicinity up to 3 or 4 hops
away, we can improve the vicinity arrival detection by up to 8 times. By observing
sequential movements, we hint an attraction phenomenon when it comes to distances
above 3 hops. For these distances, nodes are more likely to come closer or die instead of
moving further away. Then, TiGeR enables synthetic pairwise vicinity behavior genera-
tion under the form of timelines. Based on the asynchronous vicinity motion framework
outputs like state transitions, κ-contact distributions, we are able to generate timelines
reflecting the behavior of a network node. TiGeR has two generating modes depend-
ing on what is expected: plausible intervals durations (Mode I) or life-like transitions
(Mode II). The use of such synthetic timelines can help bootstrap vicinity knowledge
in opportunistic protocols as well as testing them with synthetic vicinity properties.
By providing mixed inputs (from various datasets type) to TiGeR, we can generate
original vicinity types. When providing this tool, we offer the possibility to researchers
to perform vicinity analysis on any dataset as long as he has dataset connectivity.
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The contact–intercontact knowledge in opportunistic networks indicates past trans-
mission opportunities. A lot of studies showed how a node’s contact history may be
enough to roughly determine future encounters. Beyond this simple knowledge, we ob-
serve how convenient it would be to be able to predict pairwise encounters for DTN.
This would allow a finer tuning of opportunistic protocols and the possibility to dis-
criminate between different protocol types. For instance, in Chapter 3 we mentioned
the power of vicinity annexation. In a similar use, knowing whether two nodes are
likely to be close again in the future could allow opportunistic protocols to either de-
lay or force a transmission. In this chapter, we raise the question of the predictability
of nodes vicinity behavior in the κ-vicinity. By using the inherent information of the
vicinity motion model and its transient stochastic knowledge, we expose an heuristic
to predict pairwise vicinity distances at future steps. In Chapter 4, we presented the
asynchronous vicinity motion who focused on network transitions independently of any
specific time frame. This approach avoided time dependence and had low additional
probing costs. However, when it comes to prediction capacities, we feel it may lack
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a necessary time notion. AVM’s step definition has a non constant duration which
may hamper prediction results. For this chapter, we will also be using a Synchronous
Vicinity Motion (SVM) bearing a stricter time notion and possibly providing better
prediction performances than AVM.

In summary, our contributions are the following:

• A Markovian heuristic for vicinity distance prediction. Using the vicinity
motion model, we provide a heuristic based on vicinity motion transition matrixes.
Our heuristic predicts pairwise distance for future steps based on the current
pairwise distance.

• A new vicinity motion variant integrating the time parameter: syn-
chronous vicinity motion (SVM). The asynchronous vicinity motion works
by using steps (whenever there is a pairwise distance change) as a unit. This
removes the temporal parameter of our observations because a step does not have
a constant duration. With the synchronous vicinity motion, we put the time di-
mension back into the game and consider a “step” to be of a fixed duration. This
fixed duration brings us a stronger prediction scheme.

• An evaluation of our heuristic accuracy. We find that our heuristic allows
the user to guess the correct pairwise distance with a success ratio of up to 99%
using SVM values. This heuristic performs well enough to allow a node to use
either fully opportunistic networking or another alternative networking paradigm.

In the next sections we present our Markovian heuristic based on vicinity motion
and detail the time-aware vicinity motion variant named synchronous vicinity mo-
tion (SVM). Then we observe how our heuristic fares using average vicinity motion
knowledge. We find that SVM-heuristics perform better than AVM-heuristics and even
achieves a prediction accuracy of up to 99%. Nevertheless, SVM needs to periodically
probe its environment and has quite high functioning costs. AVM-heuristic still achieves
up to 40% of correct guesses but needs less information than SVM.

5.1 Problem Statement

In the DTN research field, knowing which nodes belong to our vicinity and which ones
do not is already a helpful point of view. With the κ-vicinity, instead of considering
only nodes in contact, we observe neighbors beyond 1-hop. These “close yet not in
contact” nodes could be message destinations, or information carriers.

Let us imagine a regular scenario of a daily commuting from home to work. Jean
leaves home in the morning takes his favorite commuting mean and heads toward his
workplace. At noon, he takes his meal along his coworkers, then goes back to work. At
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Figure 5.1: An example of a workday routine. Jean leaves his house in the morning and takes any
public transportation mean (1). He heads to work (2) and stays there with his colleagues all day. At
the end of the day, he leaves to get some groceries (3) and (4) and finally heads home for a well deserved
rest (6). During his journey, Jean meets a lot of people and visits some key places like the train station,
his workplace or his home. In these places, he may meet the same person on and off again. They are
part of his vicinity.

the end of the day, he leaves his office, returns home and eventually gets groceries on
his way back. During his whole daily journey, Jean meets a lot of people, whether he
acknowledges them or not.

Everywhere Jean moves, people surround him, at home, in the bus, in the streets, at
work. Currently, opportunistic networks only gather information about nodes directly
around Jean (the 1-hop knowledge). A first way of using Jean’s mobility is to observe
his current vicinity beyond 1-hop contacts, the more people around him, the more there
are potential message carriers. In a previous study, we showed how this simple vicinity
observation can help improve performance [85]. During his daily trip, Jean maintains
certain regularity. This regularity occurs at various levels. Every morning and every
night, he is at home with his family and neighbors. During his commuting, he may travel
with the same people whether he realizes it or not, the familiar stranger phenomenon [3].
Each workday, Jean interacts with his coworkers. This regularity in meeting patterns
can be quite interesting to forward information with smaller costs. Using this potential
regularity, we may be able to predict another node’s future presence into our κ-vicinity.
Without future insights into node’s presence, choosing one technique or another is quite
random. Possessing the presence forecasting ability allows us to get the best of both
the end-to-end and the opportunistic communication world.

In our analyses, we forecast pairwise distances between nodes. By answering this
question, we may provide a clear solution for choosing between delaying or forcing
transmissions for instance.
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5.2 Vicinity Motion-based Markovian Heuristic

We extract knowledge from vicinity motion modeling to insert in our heuristic. However
the asynchronous vicinity motion version previously presented does not include a strict
time dimension. With our heuristic, since we plan on predicting the pairwise distances
for the following steps, we need to have a stricter step duration control. To obtain
stronger predictions, we use SVM – a time-aware version of vicinity motion.

5.2.1 Synchronous vicinity motion (SVM)

Vicinity motion helps us understand the logic of movements within a node’s vicinity.
In this chapter, we will be collecting transition knowledge from AVM (presented in the
previous chapter) and also from the synchronous vicinity motion (SVM) to use in our
heuristic. SVM is defined below:

• Synchronous vicinity motion. SVM probes pairwise shortest distances every
τ time units (a step has now a fixed duration of τ seconds). The synchronicity
of analyzing the network every τ seconds may result in higher probing costs than
AVM who follows network dynamics. The choice of the τ parameter is very
important. On the one hand, choosing a small τ results in few changes as the
vicinity is likely to evolve. On the other hand, the choice of a high τ may skip
important events. A step lasts τ seconds.

Note that for AVM a step consists in a period without change in the considered
pairwise distance. For SVM a step consists in an interval of τ seconds. In the following
paragraphs, we make a short recap on the general vicinity motion functioning.

Vicinity motion quick summary. We model vicinity motion through Markov pro-
cesses for each pair of nodes. For a given node i, let Xs

i,j be the random variable
representing the distance between nodes i and j at step s. Both vicinity motions share
the same Markov states. However, their transitional probabilities differ completely.

• States. The states of the Markov chain depends on the κ we choose, i.e., the
size of the vicinity we wish to monitor. There are κ + 1 states; the first state,
denoted ‘∞’, corresponds to the case where the two nodes are in κ-intercontact,
{1} represents a contact and the remaining states {2, . . . ,M} correspond to a
situation of κ-contact.

We assume that X satisfies the Markov property and Xs
i,j is independent of Xs−1

i,j .

• Transitional probabilities. To understand vicinity motion, we focus on the
markov chain transitional rates between states, i.e., the probability of two nodes
being at a distance of m at step s knowing that they were at a distance n in the
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Figure 5.2: Infocom05 average synchronous vicinity motion for a pair (i, j) and κ = 4, time slot τ =
200 seconds. For the sake of clarity, we only displayed a few existing transitional probabilities.

previous step: P(Xs
i,j = m | Xs−1

i,j = n). AVM has a 0 probability of remaining in
the same state while this probability is usually non null in SVM models.

As an example, we show in Fig. 5.2 the average transitional probabilities of SVM
for Infocom05. For the sake of clarity, we omit certain transitions. As we can see, when
nodes i and j are in κ-intercontact (∞), the probability that they meet directly is 0.6%
while it is 2% for distance 2.

5.2.2 Heuristic

The Markov chain model in itself offers a future state prediction model. When we
have the average transition probabilities from one state to another of the corresponding
SVM, we follow the model evolution to obtain the probability of arriving at any state
in the future slotting step. Using transition matrices T and the initial position vector,
i.e., at what distance the two nodes are at the beginning, we can infer future steps
movement probabilities. Not only can we do it for the future interval/step but also for
several steps later.

The following heuristic allows us to predict the state i.e., the distance, between two
nodes n steps later, based on the current situation. For a given pair of nodes, we apply
the position vector to the transition matrix and deduce the probability of being in any
state at the future step. We remind the reader that for AVM a step consists in a period
without change in the considered pairwise distance. For SVM a step consists in an
interval of τ seconds. This technique provides the probability for the given nodes of
being at state S ∈ {∞, 1, 2, .., κ} at the nth future step. The calculus follows:

−−−→
Pn
Next =

−−→
Vpres × Tn, (5.1)

−−→
Vpres is the presence vector indicating the state where two nodes currently are. For

example, given κ = 5, for the SVM model, the vector [0, 0, 1, 0, 0, 0] indicates that two
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nodes currently are at a 2-hop distance (state 2). The presence vector [1, 0, 0, 0, 0, 0]
shows that the two nodes are in κ-intercontact (state ∞). Tn is the corresponding
SVM transition matrix of size (κ + 1) × (κ + 1) to the power n, n ∈ N∗.

−−−→Pn
Next is the

probability vector of being at each state {∞, 1, 2, 3, 4, 5} in the following nth step.
Using the resulting

−−−→Pn
Next vector, we extract the highest probability state to de-

rive the most plausible state prediction. However, given the nature of opportunistic
networking, the connectivity graph is far from fully connected and most of times for
the datasets we evaluate, a given pair of nodes is in κ-intercontact (∞). To better
detect κ-contact events, we choose to also consider the second highest probability state
as a potential prediction. The proposed heuristic outputs two states: the first highest
probability Sf and the second one Ss.

5.2.3 Implementation

We supply the implementation of our heuristic in the Vicinity package introduced in
the previous chapter. It relies on the transitional probabilities provided by the vicinity
motion module and is implemented using Python ≥ 2.7 and the NumPy library.

5.3 Methodology

To evaluate the performance of our heuristic, we used the vicinity motion transitional
probabilities values and pre-computed the prediction values Sf and Ss for each dataset,
any initial position ≤ κ, and n following steps (n ∈ {1, .., 10} ∪ ∞). This means that
for any pairwise initial distance between 1 and κ, our heuristic predicts two potential
distance (Sf , Ss) for the nth future step. Then for each dataset and all of their pairwise
timelines, we observe the hop sequence. For each hop value, we observe the distance
value of the different nth following step and compare them to the corresponding (Sf ,
Ss) values. In this study, we choose to observe results for the nth future steps with
n ∈ {1, .., 10}. To evaluate the performance of our heuristic we will use two approaches:

• Exact distance (ED). If any of the two values (Sf , Ss) match, we consider the
prediction to be accurate in an “exact” way. This shows how our heuristic is able
to handle an exact distance prediction.

• Upper bound distance (UbD). If the real hop distance is below or equal to any
of the two values (Sf , Ss), we deem the prediction to be accurate in an “upper”
bound distance way. This shows how our heuristic handles vicinity presence pre-
diction. The value max(Sf , Ss) gives an upper bound on the pairwise distance.
Therefore, the prediction is accurate when the real future observed distance is
below max(Sf , Ss) or equal to either Sf or Ss.
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(a) AVM-full Sf prediction distribution.
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(b) AVM-full Ss prediction distribution.

Figure 5.3: AVM-full prediction probability distribution.

In the following sections, we evaluate the percentage of correct predictions in both
ED and UbD modes. We begin by using the vicinity motion transitional rates computed
over the full dataset duration. Then, we divide our datasets in half and use the first
part as a training set and the second as a test set. We compute the averaged vicinity
motion rates on the training set and observe its prediction capabilities on the test set.

5.4 Complete Knowledge Heuristic Evaluation

In this section, we compute vicinity motion transitional probabilities over full datasets.

5.4.1 AVM-full

Prediction values distribution. In Fig. 5.3, we present the prediction probability
distributions for Sf and Ss. On the x-axis, we present the expected distance. On
the y-axis we have the probability of our heuristic predicting each distance for each of
the future step. The AVM-full heuristic predicts mostly Sf values in the {0, 1, 2, 3}
distance set, see Fig. 5.3(a). There is a more important part of distance ∞ prediction as
the datasets we use in this study are often disconnected. The Sf predicted value is the
one with the highest probability and has a clearly limited distance span. In Fig. 5.3(b),
concerning Ss values, we observe a wider range of predicted values: from ∞ to {1,..,7}.
In the case of the second highest probability output, there is a tendency to predict
distance 2 or 3 more likely than any other distance. In both cases, the output is more
likely to be ∞ or low distance values like 2 or 3. Note that the predicted value is hardly
ever 1 indicating contact.
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Figure 5.4: AVM-full heuristic performances.
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(a) SVM-full Sf prediction distribution.
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(b) SVM-full Ss prediction distribution.

Figure 5.5: SVM-full prediction probability distribution.

The ED and UbD visions. In Fig. 5.4, we plot the proportion of accurate heuristic pre-
diction for the following datasets: Infocom05, Sigcomm09, Rollernet, Unimi, RT, and
Shopping. On the x-axis, we present the value of the nth step. The y-axis indicates the
proportion of accurate guesses our heuristic makes. We test our two evaluation param-
eters ED and UbD. For all our datasets, the ED metric gives performances between 24%
and 42% of correct predictions. Most datasets (except Rollernet) have their prediction
accuracy decrease gradually with higher step values n. But the results decreases of at
most 12% between prediction for the next step (n = 1) or the 10th next step (n = 10).
Rollernet has a different progression curve with a lower value for the immediate next
step (n = 1) than for the other steps. However, the sequence of remaining n values have
the same evolution as for the other datasets. For UbD the prediction accuracy follows
the same evolution as ED. The only difference being its higher results. On average it is
5% more efficient than ED prediction but it is less precise in terms of distance prediction.

The exact distance prediction is tougher to get right than the upper distance bound.
This feels natural as guessing a range is probabilistically easier than guessing an exact
value. If we predict a large enough output value for the upper bound distance value,
we may encompass the real observed value.

5.4.2 SVM-full

For the SVM-based heuristic, there is a crucial question before starting our analyses:
which τ should we choose? τ being the interval duration between two network sam-
ples [20]. In the literature of opportunistic networks, most analyses using the datasets
we use decided to analyses the network depending on their experimental sampling fre-
quency (see Table 2.1 for more details on the sampling intervals). We decided to use the
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Figure 5.6: SVM-full heuristic performances.
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same approach here.1 For all our datasets except RT and Rollernet, we used τ = 120
seconds. RT and Rollernet have been slotted with a τ = 15 seconds. Since the exper-
iments that gathered this data used this sampling frequencies, there has not been any
network change for durations lower than these. If we had chosen higher τ values, we
might have skipped some interesting events.

Prediction values distribution. Fig. 5.5 shows the prediction probability distribu-
tions for Sf and Ss for the heuristic based on the SVM knowledge. The first observation
is that the range of predicted values is larger for SVM than for AVM. In Fig. 5.5(a), we
see that Sf predicted values go up to distance 7. While more than half of the predicted
values indicate that the nth next step distance will be ∞ independently of step value, we
have a higher chance of predicting 1-contact than with the AVM heuristic. As for the
AVM-based predictions, we find that whatever the n step value, the Ss predicted values
have a very high chance to be 2 (Fig. 5.5(b)). We find that the tendencies observed
with AVM predictions are enforced in SVM ones. This may be a simple effect of the
slotting operation. If a κ-contact or κ-intercontact lasts longer than τ seconds we will
observe two subsequent intervals with the same distance. This artificially increases the
observed values and their incoming transitional probabilities in the SVM. However, we
must not forget that SVM values share an idea of the time spent in each distance (each
step is of length τ seconds) while AVM does not.

The ED and UbD visions. In Fig. 5.6, we present the percentage of correct guesses of
the AVM-based heuristic. Note that the y-axes are represented on the range [0.8:1.0]
instead of [0.0:1.0] else the difference between the metrics ED and UbD would be hard
to notice. For Unimi it is even [0.99:1.0] as both approaches perform very closely.
Concerning the evolution of both approaches, like with the AVM-full heuristic, the
ED approach seem to decrease in efficiency with higher n values. However, the lowest
correct prediction percentage is still of more than 82% of correct guesses. For the UbD

technique, it follows the same trend with a better performance of around 2% on average.
The percentage of correct guesses with the SVM-heuristic is very high. This comes

from the stability induced by the time slotting every τ time units and also stems from the
fact that we often guess a ∞ distance between two nodes because datasets are not very
connected. Considering the vicinity motion knowledge over the full datasets duration
brings quite good performance levels in predicting the future distances between a pair of
nodes. But we must remember that the part of guessing ∞ distance between two nodes
represents an important part of our heuristic correct guesses. Still knowing that two
nodes are not likely to be close by in a future step is very interesting in opportunistic

1However, to obtain a more optimal τ value, it would be useful to apply Latapy et al. approach with
topological measures (e.g. degree centrality, betweenness centrality, Katz index, Adamic-Adar) we find
important in our datasets [91, 92, 93]. For instance, applying Kolmogorov-Smirnov tests to observe
if the two sampled measures originate from the same distribution could be an interesting indicator of
optimal τ values [94].
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(a) AVM-half Sf prediction distribution.
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(b) AVM-half Ss prediction distribution.

Figure 5.7: AVM-half prediction probability distribution.

networks as such intelligence may allow a protocol to decide whether it should force or
delay transmission or even completely switch to another networking paradigm. So far,
we have used the knowledge of the full experiment before testing our heuristic. This
allows our vicinity motion models to deeply capture vicinity behavior over time. In the
next section, we wonder how our heuristic would perform if we used a training set and
a test set.

5.5 Partial Knowledge Heuristic Evaluation

We decided to divide our datasets in two equal parts and use the first half as a training
set for vicinity motion knowledge while the second part would be our test set to observe
heuristic performances.

5.5.1 AVM-half

Prediction values distribution. The non-∞ predicted values here are uniform for
the Sf values (see Fig. 5.7(a)). We still observe a higher tendency to generate infinite
Sf values. Values of Sf > 4 tend to disappear for higher step values and be replaced
by ∞. For Ss, we observe a large portion of ∞ and a few of {2, 3} predicted distances
and other distances up to 7 with a smaller presence.

The ED and UbD visions. In Fig. 5.8, we show the performances of our heuristic when
it relies on the AVM values when computed on the first half of each dataset. We use
the remaining half to test the prediction capacities of our heuristic. We remind the
reader that the AVM model gives more importance to pairwise distance evolution than
to the temporal dimension. Compared to AVM-full based predictions, AVM-half has
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Figure 5.8: AVM-half heuristic performances.
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(b) SVM-half Ss prediction distribution.

Figure 5.9: SVM-half prediction probability distribution.

less powerful performance for almost all datasets. Except for the RT experiment but
this may come from the synthetic nature of RT and its random mobility. A borderline
effect of the random mobility is that there are no exterior events affecting its mobility.
This technique has at worst 11% of correct predictions in Unimi and 47% at best.
For most of our datasets, we see that the larger the n value (the further in time the
prediction), the lower the prediction accuracy. Except for Shopping, who has an up and
down outlook. This can be explained by the experimental setting of Shopping and how
the participants like vendors or shop owners have a very regular schedule when they
stay in their shops but have a high variability during their free time. The UbD approach
follows the same patterns as ED and it still has better performance ranging from 15%
to 70%.

Concerning AVM-half performance, we observe that they are less efficient than
AVM-full analyses. This shows that our division may not be optimal between the
training set for AVM learning and the test set for heuristic testing. Our observations
also show that our heuristic has correct guesses for 20% of the cases in average. This
may look like a low value however other well known studies only achieve a 16% accuracy
on the prediction and their prediction only apply to the next interval [59].

5.5.2 SVM-half

Prediction values distribution. In Fig. 5.9, the predicted values for Sf and Ss

are very similar to SVM-full prediction distributions. By limiting the learning phase
to half of the dataset duration, we obtain a similar knowledge than when we use the
full duration. By slotting the dataset, we induce a distance stability over time which
reduces distance changes (which is emphasized in the AVM model).
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Figure 5.10: SVM-half heuristic performances.
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The ED and UbD visions. In Fig. 5.10, we present the percentage of correct guesses
for the SVM-half scenario. Interestingly, we find that SVM-half performs in average
better than SVM-full for both ED and UbD. Similarly to previous analyses, larger values
of n values bring lower prediction accuracy while UbD still performs better than ED as
expected.

Given the performances of our SVM-based heuristics (SVM-full and SVM-half), we
find that there is a clear potential for SVM-based forecasting in opportunistic networks.
This approach could spark a distance prediction algorithm. Still, we must ponder the
costs of vicinity probing that increases with vicinity probing frequency.

5.6 Conclusion

In this chapter, we raise the question of the predictability of vicinity behavior. We
forecast vicinity pairwise distances using the inner vicinity motion knowledge since
transitional probabilities capture vicinity movements patterns. If we were able to pre-
dict future distances between nodes, we could decide whether we should maintain an
opportunistic routing or rely on other access networks or offloading techniques for in-
stance. We use asynchronous and synchronous vicinity motions to bootstrap knowledge
in our heuristic. AVM is the vicinity motion previously described which focuses on dis-
tance transitions within the κ-vicinity while SVM analyses states and transitions every
τ seconds. SVM adds the temporal dimension lacking in AVM. Using the vicinity mo-
tion generated knowledge, we propose an heuristic predicting two distances for the next
nth future interval (n ∈ N∗). Then, for the chosen datasets, we analyzed the accuracy
of our approach using their vicinity movements. We find that SVM-heuristics performs
better than AVM-based methods with their proportion of correct guesses reaching an
interesting 99%. Yet, we have to mitigate this result by stating that our approach often
predicts the lack of contact (∞) between nodes. Our scenario and most of DTN scenar-
ios often bear poor pairwise connectivity. AVM-heuristics require less data to perform
their predictions than SVM and may reach up to 40% of correct guesses which is one
chance over 3 to obtain right predictions. Therefore, we find there is clear potential for
vicinity motion based prediction in opportunistic networks.



Chapter 6

Conclusion & Perspectives

In our modern society, citizens tend to have more and more connected devices [95].
Through these devices, they require to always be connected to the current trends or
news and they want to be able to communicate with other persons whether they are
commuting, at work, at home, or even on holidays. This need of a “super-connectivity”
shows its limits with the resulting telecommunication companies infrastructure over-
load [96]. On the lookout for alternative means to provide data to users, we find an
attractive solution with the DTN paradigm. It is mostly user-based, does not need
an overall infrastructure, takes advantage of user mobility as a transmission catalyst,
and manages to deliver an interesting amount of information in the network. DTN
has different characteristics from other networks like Wi-Fi, 2G, 3G or wired networks,
therefore, their characteristics need to be thoroughly understood before we are able to
use them. Many studies have shown the clear potential of DTN as a self-dependent
network model. In this dissertation, we propose the utilization of the vicinity in DTN
to improve its characterization, understanding, and functioning.

6.1 Summary of Contributions in this Thesis

Contribution 1: Uncovering Vicinity Properties of Intercontacts in DTNs.
In this chapter, we questioned the binary assertion in opportunistic network. This usual
binary contact – intercontact characterization in disruption-tolerant networks leads to
a sub-optimal utilization of network transmission capacities. To address this issue and
allow a better connectivity resource usage in DTNs, we enunciate a formal vicinity
definition for opportunistic networks, namely the “κ-vicinity”. We also defined the
related concepts of “κ-contact” and “κ-intercontact” and analyze their overall temporal
distributions. We show how their behavior depends on the ego density (sparse or dense).
Getting vicinity knowledge is costly since we have to probe the network to obtain further
connectivity information. Yet doing it 10 hops around us costs more than doing it only
for contacts or at a 2-hop distance. In this contribution, we also analyze the connected
components in the datasets. It showed how a κ value of {3, 4} could be enough to
leverage vicinity connectivity and maintain monitoring costs reasonable. Finally, we
also show an example of vicinity utilization with the WAIT opportunistic protocol.
According to our metric, we could improve performance by up to 80%.
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Contribution 2: Digging into the Vicinity Dynamics of Mobile Oppor-
tunistic Networks. For this contribution, we developed a model capturing inner
κ-vicinity movements called asynchronous vicinity motion. The asynchronous vicinity
motion is a Markov chain using pairwise distance values as state values. Those states
are linked to each other via their transitional probabilities to sequentially move from
one distance to another. In this chapter, we identified three main movements patterns
called birth, death and sequential movements. We show how sometimes by considering
only death and sequential movements, we have more than 80% of vicinity movements.
We also show how most κ-vicinity arrivals aka births occur at distance 3 or 4 and not in
contact. Based on this observations and asynchronous vicinity motion transitional prob-
abilities, we create TiGeR, a pairwise vicinity behavior generator who generate model
vicinity behavior aka timelines. We can use these timelines to understand synthetic
κ-vicinity functioning and test opportunistic protocols relying on κ-contacts. After in-
vestigating inner κ-vicinity behavior, we leverage vicinity motion capacities by using its
transitional probabilities in a prediction scheme.

Contribution 3: Predicting Vicinity Dynamics. In this final chapter, we wonder
how well our vicinity motion model captures vicinity dynamics. In order to observe
this, we developed an heuristic based on vicinity motion transitional probabilities which
predicts two possible output states in which a pair of node will find itself after n steps.
Our heuristic answers the following questions: if two nodes are currently at a 3-hop
distance, what are the two possible distances they will next be? What are the two
distances they will be in n steps from now? Asynchronous vicinity motion lacks the
time dimension in its collecting process, as a result its steps do not have a constant
duration. Since our heuristic predicts pairwise distances for future steps, we feel the
need to have a model with constant step durations for stronger predictions. Therefore,
we propose a time-aware vicinity motion variant called synchronous vicinity motion.
This model probes its surroundings every τ seconds and has steps of constant duration τ
time units. We gather transitional data from asynchronous and synchronous approaches
(AVM and SVM) and test the prediction capacities or our heuristic over our datasets.
We use knowledge from full experimental durations as well as a training set – test set
approach where we used the first part to gather vicinity motion data and the second
part to test our heuristic. AVM-based heuristics provide around 30% of correct guesses,
which is better than most prediction intents observed until now. In any case, we find
that the SVM approach performs better with performance peaks at 99%. Yet we have to
mitigate this result because most of the times, the predicted values in SVM are ∞. Our
dataset being human driven, pairwise distances in SVM are often ∞. While some may
consider this to be useless information, we find that it is quite helpful when it comes
to choose whether you maintain a full opportunistic forwarding or rely on another type
of networking like Wi-Fi or 3G to transmit data. AVM seems to be worse than SVM,
however gathering knowledge for SVM is way costlier than for AVM. Both vicinity
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motion models have their own advantages and drawbacks that have to be acknowledged
in order to put the prediction scheme in action.

Contribution 4: The Vicinity Package implementation. The latest contribution
of this thesis is transient to the three previous ones. We provide an implementation
of our analyses in a Python package called “Vicinity”. It is available at the following
address: http://vicinity.lip6.fr. The Vicinity module has vicinity motion analyses, the
TiGeR generator and an implementation of both AVM- and SVM-heuristics. It takes
as inputs vicinity dynamics in the form of contact traces so it can be applied to any
dataset with such knowledge.

6.2 General Remarks

In this dissertation, we investigated the impact of the vicinity in DTNs and opportunis-
tic networks. In the current DTN vision, we found there was a grey area concerning
end-to-end communication possibilities beyond direct contact. These transmission pos-
sibilities exist but they remain mostly unused in opportunistic networks. By defining
κ-vicinity, we highlight their existence and how omnipresent they are. We know that
probing vicinity is costly yet this notion can bring interesting additional information
in DTN like κ-contact, vicinity movements or extended prediction schemes. All this
information can be used in favor of a better DTN utilization. To reduce the costs of
κ-vicinity probing, we found that κ values of {3,4} may be enough to limit monitoring
costs and obtain most vicinity events. We must underline that the observations we made
in our work apply to the datasets we observed which are of different sizes and are held in
different settings. However, we cannot tell how it would behave in bigger datasets with
different densities and behaviors. We believe our observations would extend there yet;
it still has to be observed whenever such datasets become available to our community.
Applying our analyses should be easy since we implemented the appropriate tools in the
Vicinity package. We hope our contributions as well as the provided implementation
will be useful to our community for κ-vicinity integration in DTN.

6.3 Perspectives on Research Directions

In this section, we point out several research directions we deem interesting for future
investigation concerning opportunistic networks.

Vicinity usage in routing protocols and vehicular networks. After showing the
advantages of using κ-vicinity in the datasets we observed. We really feel that using
the vicinity knowledge in routing protocol could bring sensible gains. This could take
the form of a vicinity based protocol where routing would take into account knowledge
belonging to the κ-vicinity or just an integration of vicinity knowledge in existing routing
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approaches. For instance, Spray-and-wait could benefit from vicinity knowledge for a
better next hop node choice. Vehicular networks embody another part of opportunistic
networks that are also human driven but they display different mobility characteristics.
Applying Vicinity analyses in their case would be interesting to see if our observations
also apply or not for instance.

Opportunistic networks interoperability. DTN on their own have true potential,
still they cannot cope with some delay constraints since it is against their main char-
acteristic. To both keep the advantages of disruption-tolerant approaches and keep up
with delay constraints, we find that the offloading schemes relying on 3G-infrastructure
of Wi-Fi are interesting and more realistically applicable in real life. Applying vicinity
knowledge in offloading scheme could be an interesting indicator on who to forward
messages to.

Predictions in DTNs. Being able to predict future encounters in opportunistic net-
works is clearly a very interesting feature. Whoever knows what will happen next can
finely tune its approach. There have been many attempts at doing so in a lot of different
networks from citation networks, to mobile phone calls networks and even opportunis-
tic networks. Because of opportunistic network high dynamicity, predictions in DTNs
are very hard to perform. An interesting point of view would be to use the regularity
of human schedule (day/night, work days/week ends, commuting periods) to extract
specific prediction. Until now, most available datasets do not bring enough length or
sizes to correctly perform such predictions. But in the future, performing these analyses
would be very interesting and verifying if the heuristic we provide would work at this
scale would be of high attraction.
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Properties and Impact of Vicinity in
Mobile Opportunistic Networks

Abstract: The market of mobile devices like smartphones, tablets, or laptops, has
exponentially grown over the last few years. These devices have the necessary CPU and
memory capacities to create, send, and forward information on the go. When people
carry such equipments along their daily commuting, they become mobile information
vector. They are able to carry, send, or receive information whenever they meet each
other. The networking paradigm using such information vectors is known as disruption-
tolerant networks (DTN) or opportunistic networks.

We begin by identifying and investigating the binary assertion issue in opportunistic
networks. We notice how most DTNs mainly analyze nodes that are in contact. This
vision implies that all nodes that are not in contact are in intercontact. Nevertheless,
when two nodes are not in contact, this does not mean that they are topologically far
away from one another. We propose a formal definition of vicinities in DTNs and study
the new resulting “contact–intercontact” temporal characterization.

Then, we examine the internal organization of vicinities using the Asynchronous
Vicinity Motion (AVM) framework. We highlight movement types such as birth, death,
and sequential moves. We analyze a number of their characteristics and extract vicin-
ity usage directions for mobile networks. Based on the vicinity motion outputs and
extracted directions, we build the TiGeR (a synthetic TImeline GEneratoR) that simu-
lates how pairs of nodes interact within their vicinities. Both module will be available in
the Vicinity package that we provide on our dedicated website: http://vicinity.lip6.fr.

Finally, we inquire about the possibilities of vicinity movement prediction. We
expose a vicinity motion-based heuristic for pairwise shortest distance forecasting. For
this part, we also define a synchronous vicinity motion model (SVM) which is time-
aware and analyzes datasets every τ seconds instead of following network dynamics like
AVM. We find that our heuristics perform quite well with performances up to 99% for
the synchronous vicinity motion-based scheme and around 40% for the asynchronous
one.

Keywords: disruption-tolerant networks, opportunistic networks, DTN, vicinity, k-
contact, k-intercontact, contact, intercontact.





Propriétés et impact du voisinage dans
les réseaux mobiles opportunistes

Résumé: Notre décennie a connu une augmentation spectaculaire du taux
d’équipement en smartphones, ordinateurs portables et tablettes multimedia. En 2013,
quasi 50% des ménages sont pourvus de smartphones. L’information circule avec nous
et peut être diffusée à partir de nous. Afin de profiter de ces nouveaux vecteurs de dif-
fusions, la communauté scientifique définit de nouveaux types de réseaux de communi-
cations laissant de plus grands degrés de libertés aux communications. Ainsi les réseaux
opportunistes ou réseaux tolérants aux interruptions (DTN) permettent d’utiliser ces
nouveaux vecteurs de transmissions. Avant de pouvoir profiter de toutes les capac-
ités des DTN, nous devons d’abord nous pencher sur la compréhension de ce nouveau
paradigme. De nombreuses propriétés des réseaux DTN sont maintenant reconnues,
cependant les relations entre un noeud du réseau et son voisinage proche ne semblent
pas encore avoir été passée au crible. Dans la plupart des études que nous avons pu
observer, la présence de noeuds voisins proches mais pas directement lié par le contact
est souvent ignorée. Dans cette thèse, nous montrons à quel point considérer les noeuds
à proximité nous aide à améliorer les performances des DTNs.

En identifiant et analysant le paradoxe binaire dans les DTN, nous montrons que
les caractérisations actuelles basées sur la notion binaire de contact ou intercontact ne
sont pas suffisantes pour bénéficier de toutes les possibilités de transmission dans les
DTN. Nous proposons une définition formelle du voisinage pour les DTNs nommée le
“κ-vicinity”. Nous étudions les caractérisations temporelles du κ-vicinity dans différents
jeux de données. Ensuite, nous nous sommes concentré sur l’étude de l’organisation in-
terne du κ-vicinity. Nous avons crée le Vicinity Motion qui est un analyseur permettant
d’obtenir automatiquement un modèle markovien du κ-vicinity à partir de n’importe
quelle trace de contact. Nous avons pu extraire trois mouvements principaux dans les
κ-vicinity: la naissance, la mort et les mouvements séquentiels. Grâce aux valeurs du
Vicinity Motion, nous avons pu créer un générateur synthétique de mouvements de prox-
imité nommé TiGeR. Enfin, nous posons la question de la prévisibilité des distances
entre deux noeuds du κ-vicinity. En utilisant le savoir emmagasiné dans le Vicinity
Motion, nous mettons au point une heuristique permettant de prédire les futures dis-
tances entre deux noeuds. La particularité de notre heuristique est qu’elle fournit deux
distances possibles pour les n prochains intervalles considérés.

Mots-clés: Réseaux opportunistes, réseaux tolérant aux interruptions, voisinage, con-
tact, intercontact.
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