6,031 research outputs found

    A Review in Fault Diagnosis and Health Assessment for Railway Traction Drives

    Get PDF
    During the last decade, due to the increasing importance of reliability and availability, railway industry is making greater use of fault diagnosis approaches for early fault detection, as well as Condition-based maintenance frameworks. Due to the influence of traction drive in the railway system availability, several research works have been focused on Fault Diagnosis for Railway traction drives. Fault diagnosis approaches have been applied to electric machines, sensors and power electronics. Furthermore, Condition-based maintenance framework seems to reduce corrective and Time-based maintenance works in Railway Systems. However, there is not any publication that summarizes all the research works carried out in Fault diagnosis and Condition-based Maintenance frameworks for Railway Traction Drives. Thus, this review presents the development of Health Assessment and Fault Diagnosis in Railway Traction Drives during the last decade

    Advances in fault diagnosis for high-speed railway: A review

    Get PDF
    The high speed railway (HSR) is a complex system with many subsystems and components. The reliability of its core subsystems is a key consideration in ensuring the safety and operation efficiency of the whole system. As the service time increases, the degradation of these subsystems and components may lead to a range of faults and deteriorate the whole system performance. To ensure the operation safety and to develop reasonable maintenance strategies, fault detection and isolation is an indispensable functionality in high speed railway systems. In this paper, the traction power supply system, bogie system, civil infrastructure system, and control and signaling system of HSR are briefly summarized, and then different fault diagnosis methods for these subsystems are comprehensively reviewed. Finally, some future research topics are discussed

    A review on artificial intelligence in high-speed rail

    No full text
    High-speed rail (HSR) has brought a number of social and economic benefits, such as shorter trip times for journeys of between one and five hours; safety, security, comfort and on-time commuting for passengers; energy saving and environmental protection; job creation; and encouraging sustainable use of renewable energy and land. The recent development in HSR has seen the pervasive applications of artificial intelligence (AI). This paper first briefly reviews the related disciplines in HSR where AI may play an important role, such as civil engineering, mechanical engineering, electrical engineering and signalling and control. Then, an overview of current AI techniques is presented in the context of smart planning, intelligent control and intelligent maintenance of HSR systems. Finally, a framework of future HSR systems where AI is expected to play a key role is provided

    Research on the System Safety Management in Urban Railway

    Get PDF
    Nowadays, rail transport has become one of the most widely utilised forms of transport thanks to its high safety level, large capacity, and cost-effectiveness. With the railway network's continuous development, including urban rail transit, one of the major areas of increasing attention and demand is ensuring safety or risk management in operation long-term remains for the whole life cycle by scientific tools, management of railway operation (Martani 2017), specifically in developed and developing countries like Vietnam. The situation in Vietnam demonstrates that the national mainline railway network has been built and operated entirely in a single narrow gauge (1000mm) since the previous century, with very few updates of manual operating technology. This significantly highlights that up to now, the conventional technique for managing the safety operation in general, and collision in particular, of the current Vietnamese railway system, including its subsystems, is only accident statistics which is not a scientific-based tool as the others like risk identify and analyse methods, risk mitigation…, that are already available in many countries. Accident management of Vietnam Railways is limited and responsible for accident statistics analysis to avoid and minimise the harm caused by phenomena that occur only after an accident. Statistical analysis of train accident case studies in Vietnam railway demonstrates that, because hazards and failures that could result in serious system occurrences (accidents and incidents) have not been identified, recorded, and evaluated to conduct safety-driven risk analysis using a well-suited assessment methodology, risk prevention and control cannot be achieved. Not only is it hard to forecast and avoid events, but it may also raise the chance and amount of danger, as well as the severity of the later effects. As a result, Vietnam's railway system has a high number of accidents and failure rates. For example, Vietnam Rail-ways' mainline network accounted for approximately 200 railway accidents in 2018, a 3% increase over the previous year, including 163 collisions between trains and road vehicles/persons, resulting in more than 100 fatalities and more than 150 casualties; 16 accidents, including almost derailments, the signal passed at danger… without fatality or casual-ty, but significant damage to rolling stock and track infrastructure (VR 2021). Focusing and developing a new standardised framework for safety management and availability of railway operation in Vietnam is required in view of the rapid development of rail urban transport in the country in recent years (VmoT 2016; VmoT 2018). UMRT Line HN2A in southwest Hanoi is the country's first elevated light rail transit line, which was completed and officially put into revenue service in November 2021. This greatly highlights that up to the current date, the UMRT Line HN2A is the first and only railway line in Vietnam with operational safety assessment launched for the first time and long-term remains for the whole life cycle. The fact that the UMRT Hanoi has a large capacity, more complicated rolling stock and infrastructure equipment, as well as a modern communica-tion-based train control (CBTC) signalling system and automatic train driving without the need for operator intervention (Lindqvist 2006), are all advantages. Developing a compatible and integrated safety management system (SMS) for adaption to the safety operating requirements of this UMRT is an important major point of concern, and this should be proven. In actuality, the system acceptance and safety certification phase for Metro Line HN2A prolonged up to 2.5 years owing to the identification of difficulties with noncompliance to safety requirements resulting from inadequate SMS documents and risk assessment. These faults and hazards have developed during the manufacturing and execution of the project; it is impossible to go back in time to correct them, and it is also impossible to ignore the project without assuming responsibility for its management. At the time of completion, the HN2A metro line will have required an expenditure of up to $868 million, thus it is vital to create measures to prevent system failure and assure passenger safety. This dissertation has reviewed the methods to solve the aforementioned challenges and presented a solution blueprint to attain the European standard level of system safety in three-phase as in the following: • Phase 1: applicable for lines that are currently in operation, such as Metro Line HN2A. Focused on operational and maintenance procedures, as well as a training plan for railway personnel, in order to enhance human performance. Complete and update the risk assessment framework for Metro Line HN2A. The dissertation's findings are described in these applications. • Phase 2: applicable for lines that are currently in construction and manufacturing, such as Metro Line HN3, Line HN2, HCMC Line 1 and Line 2. Continue refining and enhancing engineering management methods introduced during Phase 1. On the basis of the risk assessment by manufacturers (Line HN3, HCMC Line 2 with European manufacturers) and the risk assessment framework described in Chapter 4, a risk management plan for each line will be developed. Building Accident database for risk assessment research and development. • Phase 3: applicable for lines that are currently in planning. Enhance safety requirements and life-cycle management. Building a proactive Safety Culture step by step for the railway industry. This material is implemented gradually throughout all three phases, beginning with the creation of the concept and concluding with an improvement in the attitude of railway personnel on the HN2A line. In addition to this overview, Chapters 4 through Chapter 9 of the dissertation include particular solutions for Risk assessment, Vehicle and Infrastructure Maintenance methods, Inci-dent Management procedures, and Safety Culture installation. This document focuses on constructing a system safety concept for railway personnel, providing stringent and scientific management practises to assure proper engineering conditions, to manage effectively the metro line system, and ensuring passenger safety in Hanoi's metro operatio

    Reliability, Availability and Maintainability Study of a Light Rail Transit System

    Get PDF
    The TFG title mentioned consists on a RAM Study of a Light Rail Transit (LRT) System. Its aim lies in achieving a defined level of service in a given time, by demonstrating quantitatively and qualitatively the availability of the system. The Quality of the Service has to be guaranteed by the application of engineering concepts, methods, techniques and tools, such as ITEM Toolkit.    This study is a first approach to the Preliminary Engineering Analysis of a Light Rail Transit (LRT) System. The study is divided into four interrelated parts. The first one consists on a presentation of the RAM Discipline, by a development of its theoretical foundations and the four Key Performance Indicators used through all the study. The methodology employed during the analysis and actual methods used for RAM analysis are also described in this section. Then, it has been developed a Failure Mode and Effects Criticality Analysis (FMECA) with a subsequent Sensitive Analysis to ensure that the results are binary in terms of probability. With that, a consequent Fault Tree Analysis (FTA) has been carried out. After that, the third part of the study provides the LRT RAM Requirements Apportionment and last, but not least, Preventive/Corrective Actions have been proposed

    Factors that affect the reliability of traction substations in the South African railway environment

    Get PDF
    Abstract: This study was initiated with the primary purpose of determining factors that affect the reliability of traction substations at the South African Railways. The South African Railways is one of the operating divisions of the South African Transport Services. The South African Transport Services annual results revealed that the South African Railways has been struggling to achieve its volume targets. The top risks that are in the South African Transport Services annual results are volume growth, human resources, operational, productivity, and efficiency. The identification of these risks triggered the evaluation of traction substations performance to determine their contribution towards the identified risks. All traction substations are under the control of Rail Network which is one of the South African Railways subdivisions which focuses on optimizing maintenance, infrastructure development through capitalized projects. The weekly substation availability report showed that some of these traction substations are failing. ..M.Phil. (Engineering Management

    Research Into Options for Reducing Energy Consumption Across the Luas Network

    Get PDF
    The aim of this research has been to identify the energy consumption requirements of the Luas network, and present practical, cost effective solutions to reducing this energy consumption. To satisfy this, Luas energy consumption data was gathered from a number of sources including the manipulation of existing Luas systems such as PS Scada, the installation of new systems including Powersoft and the specific testing of Luas rolling stock and infrastructure components. Evaluation of this data and the establishment of the Luas energy load allowed for the identification of areas where excessive energy was being consumed. New technologies, industry best practices and efficient operational procedures throughout the European light rail industry were researched and investigated to determine their feasibility for implementation on the Luas light rail network. The energy reduction solutions identified as part of this research include modifications to existing systems such as the Luas passenger saloon heating and ventilation system which has the capacity to save over 1,400,000 kWh of energy and the installation of efficient lighting technologies such as LED’s and Induction lighting which would result in a saving of over 429,667 kWh of energy per year. Specific testing also took place to establish and develop optimal driving styles for Luas vehicles which has the potential to reduce total traction power by 5%. Efficient operational processes including a depot energy management process were devised and implemented during this research and have resulted in energy reductions at both Luas depots of 60%. Long term sustainability solutions such as renewable energy generation and energy storage systems were also consulted and evaluated to determine their suitability for Luas. In total the energy reduction solutions identified as a result of this research have the potential to reduce Luas energy consumption by 3,200,000 kWh, representing a 15% reduction of total Luas energy. The research results and related recommendations have been made to the research partners through this thesis

    Infrastructure Design, Signalling and Security in Railway

    Get PDF
    Railway transportation has become one of the main technological advances of our society. Since the first railway used to carry coal from a mine in Shropshire (England, 1600), a lot of efforts have been made to improve this transportation concept. One of its milestones was the invention and development of the steam locomotive, but commercial rail travels became practical two hundred years later. From these first attempts, railway infrastructures, signalling and security have evolved and become more complex than those performed in its earlier stages. This book will provide readers a comprehensive technical guide, covering these topics and presenting a brief overview of selected railway systems in the world. The objective of the book is to serve as a valuable reference for students, educators, scientists, faculty members, researchers, and engineers
    • …
    corecore