172 research outputs found

    Hardware neuromorphic learning systems utilizing memristive devices

    Get PDF
    As the efficiency of neuromorphic systems improves, biologically-inspired learning techniques are becoming more and more appealing for various computing applications, ranging from pattern and character recognition to general purpose reconfigurable logic. Due to their functional similarities to synapses in the brain, memristors are becoming a key element in the hardware realization of perceptron-based learning systems. By pairing memristive devices with a perceptron-based neuron model, previous work has shown that an efficient and low area neural logic block (NLB) can be developed. However, the use of a simple threshold activation function has limited the set of learnable functions for a single block, resulting in the need for multiple layers to implement certain functions. This complicates the training process, decreases the scalability of the system, and increases the overall energy and delay of large networks. In this work, three novel NLB designs are presented that overcome the limitations of previous hardware NLBs. First, an Adaptive Neural Logic Block (ANLB) and Robust Adaptive Neural Logic Block (RANLB) are proposed. By integrating an adaptive activation function into a perceptron model, these designs are capable of rapidly learning any function in a single layer. Next, a Multi Threshold Neural Logic Block (MTNLB) is proposed in which a static activation function is used to obtain the same functionality with minimal overhead. Using a Verilog-AMS model of a physical memristor, the proposed NLBs are applied to implement both reconfigurable logic and an Optical Character Recognition (OCR) system. When considering the MTNLB as a building block for ISCAS-85 benchmark circuits, it provides EDP improvements of over 90 percent over a standard LUT implementation on all benchmark circuits and up to a 99 percent improvement over a threshold NLB implementation. As a compromise, the ANLB and RANLB provide less of an EDP improvement in a static system, but achieve faster training convergence times for all functions. To show how the proposed design can simplify an OCR application, a simple 8x8 digit recognition system is developed. Using only four 16-input NLBs for each digit, the system is able to develop a model of each digit in only 90 us and correctly classify the majority of test images

    Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective

    Get PDF
    On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However, interdisciplinary approaches anchored in machine learning theory suggest that multifactor plasticity rules matching neural and synaptic dynamics to the device capabilities can take better advantage of memristor dynamics and its stochasticity. Furthermore, such plasticity rules generally show much higher performance than that of classical Spike Time Dependent Plasticity (STDP) rules. This chapter reviews the recent development in learning with spiking neural network models and their possible implementation with memristor-based hardware

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Design of a CMOS-Memristive Mixed-Signal Neuromorphic System with Energy and Area Efficiency in System Level Applications

    Get PDF
    The von Neumann architecture has been the backbone of modern computers for several years. This computational framework is popular because it defines an easy, simple and cheap design for the processing unit and memory. Unfortunately, this architecture faces a huge bottleneck going forward since complexity in computations now demands increased parallelism and this architecture is not efficient at parallel processing. Moreover, the post-Moore\u27s law era brings a constant demand for energy-efficient computing with fewer resources and less area. Hence, researchers are interested in establishing alternatives to the von Neumann architecture and neuromorphic computing is one of the few aspiring computing architectures that contributes to this research effectively. Initially, neuromorphic computing attracted attention because of the parallelism found in the bio-inspired networks and they were interested in leveraging this advantage on a single chip. Moreover, the need for speed in real time performance also escalated the popularity of neuromorphic computing and different research groups started working on hardware implementations of neural networks. Also, neuroscience is consistently building a better understanding of biological networks that provides opportunities for bridging the gap between biological neuronal activities and artificial neural networks. As a consequence, the idea behind neuromorphic computing has continued to gain in popularity. In this research, a memristive neuromorphic system for improved power and area efficiency has been presented. This particular implementation introduces a mixed-signal platform to implement neural networks in a synchronous way. In addition to mixed-signal design, a nano-scale memristive device has been introduced that provides power and area efficiency for the overall system. The system design also includes synchronous digital long term plasticity (DLTP), an online learning methodology that helps train the neural networks during the operation phase, improving the efficiency in learning when considering power consumption and area overhead. This research also proposes a stochastic neuron design with a sigmoidal firing rate. The design introduces variability in the membrane capacitance to reach different membrane potential leading to a variable stochastic firing rate

    Fabrication and Application of a Polymer Neuromorphic Circuitry Based on Polymer Memristive Devices and Polymer Transistors

    Get PDF
    Neuromorphic engineering is a discipline that aims to address the shortcomings of today\u27s serial computers, namely large power consumption, susceptibility to physical damage, as well as the need for explicit programming, by applying biologically-inspired principles to develop neural systems with applications such as machine learning and perception, autonomous robotics and generic artificial intelligence. This doctoral dissertation presents work performed fabricating a previously developed type of polymer neuromorphic architecture, termed Polymer Neuromorphic Circuitry (PNC), inspired by the McCulloch-Pitts model of an artificial neuron. The major contribution of this dissertation is a development of processing techniques necessary to realize the Polymer Neuromorphic Circuitry, which required a development of individual polymer electronics elements, as well as customization of fabrication processes necessary for the realization of the circuitry on separate substrates as well as on a single substrate. This is the first demonstration of a fabrication of an entire neuron, and more importantly, a network of such neurons, that includes both the weighting functionality of a synapse and the somatic summing, all realized with polymer electronics technology. Polymer electronics is a new branch of electronics that is based on conductive and semi-conductive polymers. These new elements hold a great advantage over the conventional, inorganic electronics in the form of physical flexibility, low cost and ease of fabrication, manufacturing compatibility with many substrate materials, as well as greater biological compatibility. These advantages were the primary motivation for the choice to fabricate all of the electrical components required to realize the PNC, namely polymer transistors, polymer memristive devices, and polymer resistors, with polymer electronics components. The efficacy of this design is validated by demonstrating that the activation function of a single neuron approximates the sigmoidal function commonly employed by artificial neural networks. The utility of the neuromorphic circuitry is further corroborated by illustrating that a network of such neurons, and even a single neuron, are capable of performing linear classification for a real-life problem
    corecore