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Abstract

The von Neumann architecture has been the backbone of modern computers for several

years. This computational framework is popular because it defines an easy, simple and

cheap design for the processing unit and memory. Unfortunately, this architecture faces

a huge bottleneck going forward since complexity in computations now demands increased

parallelism and this architecture is not efficient at parallel processing. Moreover, the post-

Moore’s law era brings a constant demand for energy-efficient computing with fewer resources

and less area. Hence, researchers are interested in establishing alternatives to the von

Neumann architecture and neuromorphic computing is one of the few aspiring computing

architectures that contributes to this research effectively. Initially, neuromorphic computing

attracted attention because of the parallelism found in the bio-inspired networks and they

were interested in leveraging this advantage on a single chip. Moreover, the need for speed

in real time performance also escalated the popularity of neuromorphic computing and

different research groups started working on hardware implementations of neural networks.

Also, neuroscience is consistently building a better understanding of biological networks

that provides opportunities for bridging the gap between biological neuronal activities and

artificial neural networks. As a consequence, the idea behind neuromorphic computing has

continued to gain in popularity. In this research, a memristive neuromorphic system for

improved power and area efficiency has been presented. This particular implementation

introduces a mixed-signal platform to implement neural networks in a synchronous way. In

addition to mixed-signal design, a nano-scale memristive device has been introduced that

provides power and area efficiency for the overall system. The system design also includes

synchronous digital long term plasticity (DLTP), an online learning methodology that helps

train the neural networks during the operation phase, improving the efficiency in learning
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when considering power consumption and area overhead. This research also proposes a

stochastic neuron design with a sigmoidal firing rate. The design introduces variability

in the membrane capacitance to reach different membrane potential leading to a variable

stochastic firing rate.
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Chapter 1

Introduction

1.1 Motivation

The human brain is a wonderful creation of nature that possesses the ability to complete

numerous amounts of complex calculations within a fraction of a second. All of these complex

computations are the result of transmitting data using electro-chemical signals as these

data are transmitted from one neuron to another. The human brain contains hundreds

of billions of neurons which constitute the computing cores of the brain with each neuron

and interconnected to others via highly efficient interconnection wires referred as synaptic

weights or synaptic connections. The power or strength of any transmitted signal depends

on the synaptic weights of the interconnects. If the synaptic weight is high, the transmitted

signal from one neuron to another would be more powerful as it is propagated through the

synapse. Each neuron receives the weighted signals from multiple synapses and stores the

summed charge of the incoming signals from preceding neurons. Once the stored charge

exceeds the threshold of the neuron the neuron transmits an output signal to the succeeding

neurons. This condition is known as the firing of a neuron.

One of the interesting features of the human brain is its cognitive ability. Since artificial

neural networks are inspired by the human brain, the architecture should preserve cognitive

features such as an ability to acquire knowledge from the surroundings. This knowledge

transfer can be translated as the ability to adapt to different outputs while performing tasks

like image and speech recognition. This adaptation is completed gradually through the
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learning process which is similar to cognitive learning. During learning, the synaptic weights

are updated based on rewards or punishments. That’s how the information is transferred

from one neuron to the other in neural network.

Drawing inspiration from the complex computations and learning processes in biological

neural networks, several computational algorithms have been developed. Artificial Neural

Networks (ANNs) are one of the most interesting network platforms that mimic biological

neural networks. In an ANN, there are artificial neurons which are similar but not the same

as biological neurons. An ANN also contains synapses for transmitting weighted signals

from one neuron to another. Mostly, an ANN is a mathematical model for how biological

neural networks process information. Hence, it is very popular in tasks related to image

classification and speech recognition. These complex tasks mostly depend on the existing

von Neumann architecture. Therefore, ANN computations are less efficient as compared to

biological counterparts. In the human brain the biological neural network mostly functions

like a large parallel machine. On the other hand, ANNs rely on sequential machines where

almost all the information needs to be processed in a queue.

In order to increase computing efficiency, there is a need for parallel processing of the

ANNs. As a result, researchers have been looking for alternative computing options rather

than simply using the conventional von Neumann computing architecture. Moreover, the

research in specialized hardware for ANNs has become an exciting research sector. This

hardware specialized with parallel processing for ANNs can be noted as neuromorphic

circuits. In the literature, there have been interesting works on neuromorphic computing

from the early 50s to recent decades. There are numerous contributions on neuromorphic

computing hardware. Some of these are digital in nature as in [89] while some follow an

analog approach [57, 83, 84]. When these systems are compared against one another, the

digital implementations are found to be more robust, scalable and noise tolerant especially

in terms of network communication. However, digital approaches are more area intensive

[57]. On the other hand, analog implementations are more area and energy efficient with less

silicon area and processing speed. But there are disadvantages of using capacitors to hold

synaptic weights [84] or resistors to represent synaptic connections [36], resulting in poor
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area and energy efficiency. In [68], several existing implementations of neural networks have

been discussed in detail.

According to the literature, Moore’s law has come to a saturated stage and hence

the semiconductor industry has been experiencing a significant slowdown in performance.

Moving toward lower technology nodes might help in reducing area but as of late it is

not contributing immensely in increasing the computing speed. Moreover, other limiting

factors such as power consumption and architectural limitations also have an effect on the

performance of the computing machines. The research presented here aims to contribute

in overcoming these limitations by leveraging alternative computing systems, specifically

neuromorphic computing. In addition, this work utilizes emerging nano-scale devices,

specifically the memristor, to overcome power and size challenges.The proposed system

leverages a Spiking Neural Network (SNN) architecture to build a platform for neuromorphic

computing [60].

1.2 Research Goal and Contribution

1.2.1 Research Goal

Since neuromorphic computing can be defined as one of the fields to help achieve Moore’s

law maintain it’s activity, it is exciting to work in many different fields of neuromorphic

computing. As mentioned earlier, neuromorphic computing is an area of research where

researchers starting from neuroscience and mathematics to circuit design work together but

with very different perspectives. So, our research goal is to try and build a neuromorphic

system for society at large from a high to low-level point of view. Thus, we collaborate

with people from the algorithmic level to build a framework and translate the architecture

to low-level circuit design. This way we can help the community by providing a complete

software-hardware system. In order to do that, we start with [86] where Schuman et. al

introduce a software framework for a spiking neural network architecture which could provide

very sparse networks for a variety of applications. This approach is also capable of online

learning during and run-time. The architecture is interesting from a system level perspective
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because the framework could be helpful in designing energy efficient networks where the

networks generated are themselves sparse. In addition, the online learning mechanism can

be translated into low-level circuit designs which would provide an interesting way to build a

neuromorphic system. Moreover, we had collaborators from device physics level who helped

us in providing some experimental data of memristors that showed promises to be used as a

part of the system to ensure energy and area efficiency.

1.2.2 Research Contribution

Starting with the high-level architecture known as neuroscience-inspired dynamic architec-

tures (NIDA) [85], we took a very detailed look at the components available in the high-level

architecture and re-create them in the implementation of a memristor-based system. So,

we started from analyzing different high-level networks and their functionalism. We got the

details of how NIDA works and how we can optimize the hardware so that it follows NIDA.

Interestingly, we found out that NIDA is asynchronous in nature, whereas we were looking

at mixed-signal design which involves synchronous designs. So, our target was to use similar

encoding of inputs to both the high and low-level system keeping the core functionality

similar. My research contribution to this project is as follows.

• Initially, my research began with the design of a synapse for a neuromorphic system that

uses memristors for the main synaptic component. The design includes two memristors

connected to each other in a back to back manner. This twin memristive synapse is

capable of producing both positive and negative synaptic weights depending on the

incoming current directions. Apart from the memristors, there are some digital blocks

that help establish the online learning mechanism. I analyzed the energy consumption

of each synapse to determine that it was low relative to existing designs. The synapse

design is detailed in chapter three.

• One significant component of my research is the design of an integrate and fire neuron

(IAF). Like other IAF neurons, this neuron also accumulates charges from the incoming

synaptic inputs and then generates a pulse whenever the accumulated charge crosses

a threshold. The interesting part of this design is the output from the neuron is a
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digital pulse. The reason behind mentioning this is because we wanted a system which

can leverage the beauty of analog computation in the core alongside the efficiency and

robustness of digital communication from the outside. Hence, I designed the neuron to

perform all core computation in analog and then transfer the signals from one layer of

neurons to others. To be consistent with the high-level architecture, the neuron is also

designed to assist with the long term potentiation and long tern depression mechanisms

which are elaborately discussed in chapter three. Thus, the overall contribution here is

the design of a mixed-signal neuron which features online learning and efficient analog

computation with robust digital communication.

• Combining the stated synapse and neuron design, I helped in designing a neuromorphic

core that contains a neuron and several synapses. Unlike the crossbar architecture,

this architecture works as a core itself and the computation can be done locally before

being connected to the global system. Since we could translate the networks from

NIDA to a hardware level, we obtained reasonable accuracy and energy estimates for

different application classes, including classification and control. To obtain the total

energy estimate, I analyzed the neuron and synapse models to classify their energy

consumption in energy per spike criteria. Then we can obtain an energy estimate

when provided with the activity factors from high-level simulation results.

• Lastly, I have added a new feature in the neuron design that provides stochasticity. The

stochastic effect is added because noise is an important feature in biological neurons.

Thus, I present a stochastic version of the IAF neuron design using capacitive variance.

The results from this research is included in chapter six. As a proof of concept, we

can see that the neuron has a probabilistic firing rate depending on the number of

input pulses. Results are provided for a shape recognition network using deterministic

and stochastic versions of the neuron. The results present the advantages of stochastic

neurons over deterministic ones in order to analyze noisy images. Also, the energy

consumption was shown to be in a similar range that of deterministic one. Thus, the

stochastic design is also energy-efficient.
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1.3 Overview of Dissertation

This dissertation is spread over seven chapters. Chapter one sets up the motivation

behind the neuromorphic research with particular research goals and contributions. Previous

works on different neuromorphic computing architectures are described in chapter two. In

Chapters three−four, the design of the proposed neuromorphic architecture is detailed with

extensive description, where chapter three describes the memristive synapse and explains

the construction of mixed signal neurons. Chapter four presents the neuromorphic system

integrating the pieces and also shows the software framework used for the system level

design. Results from energy analyses of the whole system for different applications are

discussed in chapter five. Chapter six proposes a novel design of introducing stochasticty

in neurons. Chapter seven concludes the dissertation and provides future work suggestion

where few directions are highlighted for leveraging the proposed design in different interesting

applications.
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Chapter 2

Related Work on Neuromorphic

Computing

2.1 Related Work on Synapse Design

In neuromorphic architecture, the synapse is the connector from one neuron to another. It

stores a synaptic weight and, in relation to axonal delays, it can also store delay information

for the speed of spikes traveling from neuron to neuron. Researchers have developed several

synapse models with several features inspired by biology.

Some synapse designs are more interested in modelling the ion pumps found in nature

[35] while some are more interested in modelling the ion channels [72]. Researchers have

also shown success in implementing the spike time dependent plasticity (STDP) model

for learning in biological synapses [23]. This STDP mechanism is one of the popular

learning algorithms for spiking neural networks. However, if we want to consider non-spiking

networks, other approaches include convolutional neural network [34], winner-take-all circuit

[74] and some also learning rules such as back propagation [30] and least mean square [96].

Considering the implementation and the devices used in designing synaptic hardware,

we can find a good amount of variety from static CMOS design and also emerging devices.

CMOS has been a popular choice from the very start because CMOS technology has been

well-established and is relatively easy to design and fabricate. In [42], authors have designed

a CMOS synapse with a 0.8 µm CMOS process and achieved both short and long term
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plasticity for the synapses. It contains four different stages for the synapse design, including

STDP mechanism, STD, bi-stability and a current mirror circuit to generate inputs to the

neurons.

There are more works in the literature such as [28, 51, 100] where CMOS has been used in

the design of synapses. For instance, authors in [51] implemented a synapse design with fully

analog components leveraging a 0.6 µm CMOS process technology. This work contains two

operational transconductance amplifiers (OTAs) to replicate the synaptic weights and also

includes on-chip STDP learning. The synapse architecture described in [28] provides a very

similar approach. However, [28] interestingly introduced a crossbar structure of memristors

to reduce the size of the analog CMOS synapse design.

Memristors are first proposed by Chua in 1971 [22] as a theoretical circuit component.

Later HP lab fabricated their own memristor in 2008 [113]. Memristors are one of the

most promising emerging devices in neuromorphic computing because they exhibit some

characteristics that can be found in biological synapses, such as the STDP mechanism.

Moreover, memristors are non-volatile and nano-scale devices that make them viable for

designing area and energy efficient systems. Also, with the saturation of Moore’s law, it has

become critical to work with non-linear CMOS technologies in designing vast neuromorphic

systems. Hence, leveraging memristors researchers have proposed several synapse designs.

Some of them, such as [40, 5] use the memristive crossbar design to implement neuromorphic

synapses. The primary advantage of using crossbars is that a high density of synapses can be

reached using the crossbar architecture. Moreover, physical crossbars have been fabricated

to prove the efficiency of the architecture. There are other architectures such as [49] where

the memristor bridge synapse idea has been proposed to represent both positive and negative

weights. This structure uses four memristors connected as a Whitstone bridge connection

with the input voltage direction deciding the weight orientation.

Other than memristors, there are some other interesting materials used in designing

synaptic components such as floating gate transistors, spin devices and phase change

memories. Floating gate transistors are mainly used as flash memory devices [117] to provide

synaptic weight storage and also implement the STDP mechanism [79]. On the other hand,
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both phase change memory [107] and Spintronic devices [106] are used for their high density

and implementation of learning behaviors.

2.2 Related Work on Neuron Design

Biological neurons transmit signals using complex chemical processes in which the release

of neurotransmitters modulates the electrical potential of individual neurons [68]. When

looking at the spiking neuron as a core building block of ANNs, at its most basic it can be

modeled by a comparator circuit that compares an input voltage to a pre-defined threshold

and if the input is over the threshold, it generates a voltage spike as output (i.e. a voltage

pulse with a fixed pulse width is generated). As long as the input voltage remains above the

threshold, the circuit will continue spiking. In biological systems these spikes typically have

a frequency on the order of milliseconds. Many designs maintain this firing rate in order

to mimic biological neurons as closely as possible, though some proposed circuits operate in

accelerated time. Here are a number of approaches to modeling neurons that attempt to

replicate this spiking behavior with varying degrees of biological accuracy. The most common

are the Hodgkin-Huxley model [37], the Izhikevich Model [44], and the Leaky Integrate and

Fire model [1]. Among these three, the Hodgkin-Huxley neuron models biological behavior

more closely and emulates the biochemical processes. It allows researchers to study brain

functionality in detailed manner and hence helps in implementing the brain features in

hardware with precision. The drawback of this model is that it can cost high power and

chip area consumption [16]. The next model is an updated version of Hodgkin-Huxley.

The Izhikevich model [44] is comparably easier to implement because it compromises the

biological function with simpler circuits. So, it can achieve better energy and area efficiency

in hardware implementations. The third model is the Leaky Integrate and Fire (LIF)

neuron model, mentioned by Carver Mead in [62]. Mead described an axon-hillock circuit to

represent the mechanism of LIF. In the axon-hillock circuit, an amplifier is used to generate

spike events. An input current is used to charge a capacitor, which represents the neural

circuits membrane capacitance, until the switching threshold is reached and the output

moves to VDD (power rail voltage). Once a spike is generated, a feedback circuit is used
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to discharge the membrane capacitor and cause the amplifier to switch back to ground. In

its most straight forward implementation this circuit uses a basic two-inverter amplifier and

the neurons threshold voltage is entirely dependent on the switching characteristics of the

transistors being used to implement it. This implementation is the basis of working with a

simpler circuit for neuron representation.

There have been different implementations of Integrate and Fire (IAF) neurons. In

[43], a design of a conductance based silicon neuron has been introduced. Here the neuron

is implemented as a current mode conductance based neuron with plasticity. The output

current here is proportional to the injected spikes which is analogous to the integrate and

fire mechanism. Thus, this silicon neuron is a good representation of IAF. Another neuron

described in [110] is a pretty good example of the IAF neuron. This neuron has a low-power

op amp operating in two asynchronous phases. First one is the integration phase and the

next is the firing phase. During the integration phase the op amp acts as a leaky integrator

with a preferred leak rate and charges a capacitor based on the incoming input spikes. While

charging the capacitor, the membrane potential gradually increases upto a certain voltage

which is called the threshold. When the membrane potential exceeds the threshold, the op

amp enters the firing phase and acts as a buffer to propagate the input spikes in the forward

direction and the output spikes to the synapse inputs.

Usually, most of the available neuron implementations are pure CMOS silicon neurons.

However, there are other emerging materials which are being used in designing neurons

because of their efficiency in energy consumption and area optimization. For instance,

memristors are being used in the neurons to define stochastic nature and define complex

spiking behavior [76, 4]. Also, phase change memory [103, 109] is being used in neuron

designs effectively.

2.3 Related Work on Neuromorphic System Design

Neuromorphic system design has been a very lucrative field in system design research

industries. Because of the popularity of artificial neural networks and spiking neural

networks, demand has emerged for hardware dedicated to neural network architecture.
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Moreover, with the rise of neuromorphic computing, different research groups were eager

to build some hardware implementations of neuromorphic systems. There have been works

in digital, analog and mixed-signal design to build neuromorphic system. If we compare the

architectures available, all have their own advantages and some draw-backs. For instance,

the digital systems are often synchronous and more robust but they are also more power

hungry whereas the analog systems are typically asynchronous and energy efficient. But the

analog systems are a bit noisy and less prone to probabilistic noises. To implement a fully

digital neuromorphic system, FPGAs are useful as they have a programmable fabric easily

programmable for any working system. For instance, [15] presents an FPGA implementation

of a neuromorphic system where one million neurons have been included. Neurons were

defined as arithmetic logic units and a fully digital approach has been used to implement

the system but a full neuromorphic system was not realized. More specifically, the hardware

was not fully capable of doing extensive computation which a neuromorphic hardware can

achieve. So, IBM came up with a fully custom ASIC neuromorphic chip named TrueNorth

[38] fabricated using Samsung’s 28nm process. The system contains 256 million synapses

with over 1 million neurons. TrueNorth is a synchronous deterministic neuromorphic system

and it is being used to execute several neuromorphic applications. Another example of

an ASIC neuromorphic system is SpiNNaker [33] by the University of Manchester research

group. The system contains ARM processors, local and shared memory, and peripherals

for general system support. Since they use a conventional processor, the processing unit

is not customized for neuromorphic activities but the integration and connection of several

SpiNNaker chips gives the flexibility to build a larger system. Both TruNorth and SpiNNaker

are designed as spiking neural network architectures with reported energy consumption in the

pJ-nJ range. There are other similar hardware projects such as BrainScaleS [82], Neurogrid

[32] etc.

Apart from digital ASIC designs, several other analog and mixed-signal approaches

have also been explored as well. For instance, Carver Mead [62] introduced neuromorphic

computing as an analog VLSI implementation where all the synapses and neurons were

presented with pure analog implementation. Then there is the famous silicon retina [61]

where a thin sheet of retina is built using analog sensors. Moreover, there are several
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familiar characteristics of biological signals and analog components that make the retina

suitable to implement analog neuromorphic systems. Another approach introduced by Mead

is the sub-threshold mode of operation for analog neuromorphic implementations. Later

research led to analog neuromorphic hardware [8, 21] based on the power efficiency argument

because running sub-threshold would help in reaching drastically improved energy efficiency.

However, the sub-threshold operation again can slow down the total system.

Considering the von Neumann bottleneck with increasing demand of neuromorphic

architectures, researchers have also explored hybrid systems that include a CMOS process

and several new emerging devices. The memristor is one such promising device and has

been used in building neuromorphic systems where area density and low energy have been

driving forces. Initially, researchers proposed a nano-molecular device acting as an active

synapse in the presence of CMOS neurons [56, 97]. So, the advancement in technology

made it possible to place both CMOS and non-silicon devices together in a chip. Also,

the crossbar architecture of the nano-material/memristors have been proposed because of

the area density. Later, many researchers began working with memristor modeling and

playing with different memristor materials and models. Hence, several researchers are now

considering hybrid memritive-CMOS neuromorphic systems like [41, 105, 90]. Hopefully,

the addition of interesting research each and every day will lead this platform to a level

where the neuromorphic system could help in accelerating the computing power for the next

generation.

2.4 Background on Proposed Neuromorphic System

The proposed works is on designing a CMOS memristive neuromorphic system. The idea of

this architecture is inspired from the work by Schuman et. al [85]. In [85], a neuroscience-

inspired dynamic architecture or NIDA is introduced which is a 3D spiking neural network

architecture (shown in Fig. 2.1). This architecture includes neurons and synapses as

computing elements in 3D space. This way, it can contain the information including time and

delay and hence compatible for dynamic network such as recurrent neural network (RNN)

architecture. An RNN is capable of storing information for the previous cycles and later
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Figure 2.1: An example of NIDA network with different varieties of neurons and synapses.

helping in future computation providing those information. Since NIDA contains features of

a continuous RNN architecture such as storing synaptic delay and spiky event generation,

NIDA is useful in analyzing spatio-temporal data.

The NIDA networks are generated using a genetic algorithm called Evolutionary

Optimization (EO) and the networks contain both neurons and synapses. Being a 3D spiking

architecture, NIDA neurons and synapses are both spaced in space. Synapses are of two

types: inhibitory and excitatory. The synapses in NIDA are defined by their connection to the

corresponding neurons and store synaptic weights to regulate charge accumulation. They also

represent synaptic delay as a part of dynamic behavior. The neurons are the computational

nodes that generate firing event and hence, NIDA has a spiking network architecture. The

neurons also contain information about threshold and refractory period. The interesting

feature of the NIDA is that it generated very small and sparse networks that are recurrent

in nature. Thus, this architecture is more useful in solving neural network problems with

smaller but more efficient networks than conventional deep learning architecture.

Since NIDA is built on high-level simulation, a hardware implementation proved its

efficiency in connectivity and recurrent features. This hardware implementation is named as

dynamic adaptive neural network array or DANNA [25]. This is an FPGA implementation of

NIDA which is also dynamic in nature and compatible with RNN features. DANNA contains

neurons and synapses as computing elements. Each element can be represented as either
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synapse or neuron and each are connected to its neighboring elements. This architecture is

also event based and works well with spatio-temporal networks.

The implementation of DANNA inspired to work more on designing a system which is

more area and energy efficient because DANNA is implemented on FPGA and requires

a considerable amount of area and power. This need of reduction in area and energy

consumption led to the design of a CMOS memristive neuromorphic system which is named

as mrDANNA. This is a fully custom CMOS implementation. Though NIDA is asynchronous

in nature, mrDANNA is a synchronous implementation of NIDA and works on a digital

system clock. The main inspiration behind this work is building a system that contains the

dynamic feature of NIDA (suitable for RNN) while being energy and area efficient both in

circuit and system level.
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Chapter 3

Twin Memristive Synapse and

Mixed-Signal Neurons

3.1 Memristive Synapse Design

In biological neuronal systems, synaptic components play a vital role in transferring signals

from one node to another. Since neuromorphic synapses are inspired from biological synapse,

they are a major component of any neuromorphic system design. According to the existing

works on synapse design inspired from the biological brain, a synapse can be constructed

in two major ways; one can be defined as a spiking based synapse and the other is event

based synapse. Both types contribute in synapse architecture based on the necessity of the

specific neuromorphic system and there are several works on designing synapse circuitry

based on these approaches. Initially, most works in designing synapse circuits involve fully

CMOS implementation since the technology is well established for semiconductor devices.

Unfortunately, the CMOS synapse implementation is facing the von Neumann bottleneck

of sizing. Consequently, energy and area issues are becoming more prominent with the

advancement of technology. Hence, researchers have begun to explore other materials and

devices for designing synapses that help reduce the area. People have considered several

two and three terminal devices such as phase-change memory [29, 98, 52, 107], ferroelectric

devices [71, 106], floating gate transistors [79, 117] and memristors [2, 108] while designing

synapses for neuromorphic system. Among these implementations, memristive synapses are
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non-volatile and multi-resistive, particularly promising characteristics for artificial synapses.

Moreover, memristive are good solutions for implementing area and energy efficient synapse

structure.

3.1.1 Background of Memristor

Memristors are one of the four basic circuit components. It was first theorized by Leon O.

Chua [22] in 1971, representing the missing link between the electric flux and charge. The

term Memristor, is a conjunction of ”memory resistor” as they are two terminal nanoscale

devices that exhibit switching resistance and non-volatile in nature. One interesting feature

of memristors is that its resistance can be modulated by changing the voltage applied across

the device. A memristor has two extreme resistance limits called low resistance state (LRS)

and high resistance state (HRS). The device will switch from one state to another when

a switching voltage is applied for a certain amount of time across it. Moreover, it can

attain any resistance level based on the magnitude of the voltage applied and the amount of

time the voltage is applied. Hence, memristors have the characteristics of storing different

resistance levels, which is analogous to artificial synapses in spiking neural networks. While

the memristor is switching from one resistance state to another, the minimum amount of

voltage applied for switching is called the threshold voltage and the minimum amount of

time required is the switching time. Threshold voltages could be different for (HRS to LRS)

and (LRS to HRS) switching and are referred to as positive threshold voltage (Vtp), and

negative threshold voltage (Vtn). Similarly, the switching time is also different for (HRS

to LRS) and (LRS to HRS) switching and are referred to as positive switching time (tswp),

and negative switching time (tswn), respectively. There are several materials that show the

characteristics of memristors including TaOx [114], TiO2[64], HfOx [53], chalcogenides [54,

73], silicon [13, 66], organic materials [10], ferroelectric materials [20, 75], carbon nanotubes

[45], etc. Each memristive material is differentiated by its LRS values, LRS to HRS ratios,

threshold voltages, and switching times. A good range of LRS and HRS values (Table

3.1) has been considered for the proposed memristive synapse design based on the available

materials presented in the literature.
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Table 3.1: Switching parameters for metal-oxide memristors [17]
``````````````̀Parameter

Devices
TaOx HfOx TiOx Parameter

(mean) [114] [104] [65] variance
HRS 10kΩ 300kΩ 2MΩ ±20%
LRS 2kΩ 30kΩ 500kΩ ±10%
Vtp 0.5V 0.7V 0.5V ±10%
Vtn -0.5V -1.0V -0.5V ±10%
tswp 105ps 10ns 10ns ±5%
tswn 120ps 1µs 10ns ±5%

Here, the memristor model used for simulation is derived from a model previously

developed in [7]. Our model specifically emphasizes the bipolar behavior considered in

previous related works [104]. While performing a SET operation from HRS to LRS, the

resistance change in the memristor is given by:

Rnew = Rinitial −
∆r × |V (t)| × tpw

tswp × Vtp
. (3.1)

The resistance change during the RESET operation is given by:

Rnew = Rinitial +
∆r × |V (t)| × tpw

tswn × Vtn
, (3.2)

where R is the resistance of the memristor, ∆r is the absolute difference between the HRS

and LRS values, V (t) is the applied voltage across the memristor and tpw is the time duration

for an applied voltage pulse. Assuming the memristors have symmetric switching time and

threshold voltage, the change in memristance (∆R) in either direction is given by:

∆R = Rnew −Rinitial

=
∆r × |V (t)| × tpw

tsw × Vth

, (3.3)

where tsw = tswp = tswn and Vth = Vtp = Vtn. An example current-voltage relationship of the

memristor model used in this work is shown in Fig. 3.1,

Memristors being non-volatile and programmable by nature make them a good fit for

designing artificial synapses because they can achieve variable resistance states which refers
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Figure 3.1: Memristor current-voltage relationship.

to different synaptic weights. As synapses, memristors are able to transmit weighted inputs

to the connected neurons. The neuron then leverages the analog current output of the

memristive synapse to generate firing events or spikes that are digital and synchronous to the

system. Moreover, the system considered here follows an unsupervised Long Term Plasticity

(LTP) mechanism for online learning. This learning method enables the dynamic synaptic

weight adaptability based on the temporal relationship of the pre- and the post-synaptic fires

which is driven by the pre-neuron connection to the LTP control block and the necessary

feedback signal from the post-synaptic neuron.

3.1.2 Synapse Structure

The synapse structure considered in this design (shown in Fig. 3.2) consists of two memristors

connected back to back, referred to as a twin memristive synapse. The synaptic weight is

stored using the pair of memristors where the input voltages across the memristive weights

yield a weighted sum in the form of a current. Basically, the idea here is that the current

flowing through the synaptic node is proportional to its weight and hence depends on the

resistances of the two memristors. This approach of using weighted current to represent

synaptic weight is very similar to several other memristor-based neural network designs

available in the literature [80, 67, 40, 48].
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Figure 3.2: Twin memristor synapse architecture along with its synaptic driver.

Ideally, a single memristor can represent a single weight. To represent both positive and

negative weights a minimum of two memristors are required in a synapse design. Since we

are building recurrent spiking neural networks being inspired from biological phenomena, we

have considered the inhibitory and exhibitory connection from one neuron to another. Here,

exhibitory connections are based on the positive weight whereas the inhibitory one follows

from the negative weight [77]. There have been several approaches proposed in the literature

for implementing dual weights. For instance, ideas have been explored [40, 101, 102, 116]

that represent negative components of the weights using a twin memristive crossbar. The

idea behind using the twin crossbar is to represent each weight with a separate crossbar. If

M+ crossbar represents positive weight, there will be a M− crossbar with inverse weights

for the negative weight. In fact, in [101], research showed that identical crossbars can

be used instead of inverse crossbars for representing both the weights. In both cases the

twin crossbar architecture is considered. Moreover, there are other works with memristive

crossbars [39, 5, 47, 50, 112] to mimic human brain. All of these works using crossbars

consider some area overhead for controlling and programming circuits and are not prone to

sneak-path currents. On the other hand, the twin memristive configuration is smaller in size

compared to crossbars and peripherals and specifically considered to build synapses with

positive and negative weight features for simple neuromorphic system core. In addition, our
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goal is to design synapses for SNNs which are very sparse and don’t need fully connected

dense layers like deep neural networks and hence the design is area efficient.

In the twin memristive synapse shown in Fig. 3.3, each memristor drives current in a

single direction with the memristors are connected in opposite directions as mentioned earlier.

Thus, one memristor is responsible for driving a positive current while the other memristor

pulls the current or drives a negative current. For the twin memristive synapse, one terminal

is connected to respective input voltages whereas the common terminal connects to a post-

synaptic mid-rail voltage. The mid-rail voltage can be defined as the median voltage of the

high and low rail voltages. Depending on the design setup, this voltage is connected as

virtual ground since this node is actually an input port of an integrator op-amp which will

be discussed in detail in section 3.2. So, the twin memristive synapse connected to separate

voltages produces an effective current which depends on the relative values of the resistances

in the twin memristive synapse. Then the synaptic weight is proportional to the effective

current alongside the effective conductivity of the twin memristive pair shown in equation

3.4.

Geff,i ∝ Wi (3.4)

Here, Geff,i is the effective conductance of the ith synapse and Wi is its synaptic weight.

Figure 3.3: Twin memristor synapse along with its control block providing the interlink
between the pre- and post-neuron [17].
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This equation shows that there is a linear relationship between the effective conductivity

of any twin memristor and the weight of the corresponding synapse. To model the synaptic

weights based on the memristors, the following relations are defined.

Geff,i = Wi.Geff,1 (3.5)

Wi.Geff,1 =
1

Rp,i

− 1

Rn,i

=
1

Rp,i

− 1

LRS +HRS −Rp,i

;

whereRn = LRS +HRS −Rp

(3.6)

A twin memristive synapse has a limitation in synaptic weight mapping based on the

values of HRS and LRS which in turn controls the effective conductance of the synapse. So,

different effective conductance can be achieved by different combinations of Rp (resistance

of memristor in positive direction) and Rn (resistance of memristor in negative direction)

according to equation 3.6. When Rp is equal to LRS and Rn is same as HRS, the maximum

effective conductance (Gmax) can be achieved. On the contrary, when both Rp ans Rn are

equal, the effective conductance would be minimum for that synapse and it would represent

synaptic weight of “0”. For instance, when both values of Rn and Rp are equal to the

average allowed resistance (HRS + LRS)/2, a synaptic weight of “0” is achieved. Initially,

it is assumed that the synaptic weight change is approximately symmetric in both directions

from the median of LRS and HRS meaning that the change ∆Rn=∆Rp. Hence the values

of initial Rn and Rp need to be initialized at an equal distance from the median of HRS

and LRS assuming Rn+Rp=LRS+HRS. The synaptic weight as well as the resistance in

the memristors change after initialization based on the values of ∆Rn and ∆Rp as a result

of online learning. So, the resistance of the memristors for each synaptic weight can be

represented in the following way.

Rp,i =
HRS + LRS

2
+

1

Wi.Geff,1

+
1

2
.

√[
(HRS + LRS)2 +

1

(Wi.Geff,1)2

]
.

(3.7)
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It is to be noted that the currents through the twin memrisotrs would be similar if the

resistance values are equal in the memristive pair and that way the currents would cancel

each other resulting in a synaptic weight of zero. Similarly, if Rp is lesser (greater) than

Rn, the weight is positive (negative). In the synapse design, there is a driver logic block

which supplies driving voltages to the memristor pair to keep the synapse operating in either

of its two phases of operation and those are accumulation and learning. The synapse is

in accumulation phase when there exists a pre-neuron firing event. During this phase the

synaptic control block provides the driving force to make a positive current flow through Rp

and a negative current through Rn. It is to be noted that during the accumulation phase,

the post-synaptic node is ensured to rest on the mid-rail voltage by forcing the input node

of the post-neuron to virtual ground. When the synapse is in learning phase there exists

post-neuron firing events. During this phase two opposite phenomenon could occur on the

synaptic weight update. If the pre-neuron fire arrives just before the post-neuron fire, the

corresponding synapse weight would be potentiated or increased. On the other hand, if

the pre-neuron arrives just after the post-neuron, the synapse weight would be depressed

or decreased. This dynamic synapse weight update follows the famous STDP rule which is

inspired from the learning in the biological neural networks.

3.1.3 Digital Long Term Plasticity (DLTP)

According to the existing literature, most neural networks are trained using popular learning

algorithms, for example back-propagation or supervised gradient descent learning. These

learning algorithms are mostly offline learning topologies that help the neural networks

train well using an available dataset. However, these are inefficient for online learning

which is a prominent feature in biologically inspired spiking neural networks. An online

learning mechanism is necessary to make the networks learn online or during run-time.

Long Term Plasticity (LTP) is one of the widely used online learning mechanisms which

helps the network as well as the circuit learn online by continuously updating the synaptic

weights based on the pre- and post-neuron fires timing. Several works have been developed

where the circuits are trying to mimic synaptic plasticity behavior [111]. STDP technique

is popular in modeling LTP. The most interesting and mostly used techniques used by the
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prior works include modifying the magnitude of the applied voltages across the synapses.

This is achieved by taking account the time difference between the pre and post neuron fires

and an applied voltage tail that creates the variation in applied membrane voltage to update

synaptic weights.

Unlike other prior works, this design has a different approach in implementing online

learning for the system. Since the total system is mixed-signal in nature, the feature is

leveraged to develop circuits for online learning. Instead of crafting analog voltage tails

precisely, a digital pulse modulation method has been utilized here to implement a digital

LTP (DLTP). This DLTP process is based on tracking the timing of pre- and post-neuron

fires based on clock cycles. This algorithm refers to a single clock cycle only, meaning if

there is a post-neuron fire, the DLTP circuit considers pre-neuron fires in the cycles right

before and after the post-neuron fire. If there is any pre-neuron fire present before the post-

neuron fire, the synapse weight is increased or potentiated. On the other hand, if it arrives

after the post-neuron fire, the synaptic weight will be decreased or depressed. Since DLTP

considers the weight update based on a single clock cycle tracking, it can be referred to as

the one clock cycle tracking version of STDP which is a famous learning implementation

introduced in different learning circuits [95, 11, 46, 91]. Being a single cycle tracking version

of STDP, DLTP has several advantages over STDP. For example, implementing a detailed

STDP learning rule for several clock cycles would result in area overhead and hence more

energy whereas, DLTP acts similarly but with lower area and energy consumption.

The effective conductance of the twin memristor shown in Fig. 3.3 can be defined by the

following equation:

Geff =
1

Rp

− 1

Rn
(3.8)

If there is any synaptic weight update because of DLTP, the weight change in the resistance

values of the twin memristors ∆R for both potentiation and depression are assumed to be

the same. Considering a potentiation scenario, the new effective conductance can be defined
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by:

Geff,pot =
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− 1
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= Geff + ∆R (G2
p +G2

n) + ∆R2 (G3
p −G3

n) + ....

(3.9)

Thus, the change in the effective conductance can be described by:

∆Gpot = Geff,pot −Geff

= ∆R (G2
p +G2

n) + ∆R2 (G3
p −G3

n) + ....,
(3.10)

and for positive weights (Rp < Rn) the change would be higher than that of the negative

weights (Rp > Rn).

Next we consider the reduction in weight and the new depressed effective conductance

will be:

Geff,dep =
1

Rp + ∆R
− 1

Rn −∆R

=
1

Rp

(
1 + ∆R

Rp

) − 1

Rn

(
1− ∆R

Rn

)
=

1

Rp

(
1 +

∆R

Rp

)−1

+
1

Rn

(
1− ∆R

Rn

)−1

= Geff −∆R (G2
p +G2

n) + ∆R2 (G3
p −G3

n)− ....

(3.11)
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Thus, the synaptic weight change which is proportional to the effective conductance change

would be:

∆G = −
[
∆R (G2

p +G2
n)−∆R2 (G3

p −G3
n) + ....

]
, (3.12)

and similarly we can say that the change would not be perfectly equal for both positive

and negative weights. It is to be noted that the memristor device parameters and choice of

clock frequency ensures ∆R to be smaller than both Rp and Rn. Hence the binomial series

expansion is valid for both cases.

The circuit level implementation of DLTP consists of two important blocks. One is the

output control block that generates an enable signal to switch on the potentiation/depression

and the other one is the driver logic block. The output control block generates an enable

signal sensing the firing of post-neurons caused by any pre-neuron fires following

EN = Fpost ∗ Fpre t ∗ Fpre b, (3.13)

where Fpost is the signal from the post-neuron, Fpre t is a delayed signal from pre-neuron and

Fpre b is the inversion of the pre-neuron signal. The EN signal is also asserted during the

accumulation phase so that Vop and Von can drive positive and negative currents through

Rp and Rn, respectively.

The synapse driver logic block (shown in Fig. 3.4) generates both the positive (Vop)

and negative (Von) driving voltages to the memristors. During accumulation, Rp and Rn are

driven to the positive and negative rails respectively. This is achieved by making Vop = Von =

Figure 3.4: Driver logic block.
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VDD. It should be noted that the signal Von drives an inverter to supply negative voltage

(VSS) on Rn (Fig. 3.3). Additionally, the post-synaptic node is held at virtual ground (mid-

rail) so that the voltages across the memristors stay below the switching threshold of the

memristor. This operational block is also responsible for supplying correct driving voltage

to the twin memristor during the learning phase. If the control block senses a potentiation

event, the driver logic block will operate in such a way that the voltage across the memristors

Rp and Rn crosses the positive and negative thresholds, respectively, and hence the synaptic

weight will increase following equation 3.10. So, for potentiation, Vop = VSS and Von = VDD

while the post-synaptic node is held at VDD by the feedback from the neuron which will be

described in section 3.2. This results in a rail-to-rail voltage drop across Rp and Rn. Since

they are connected in opposite polarity, the value of Rp decreases while Rn increases, making

the Geff rise according to equation 3.8. Similarly, the depression logic is also dependent on

the proper voltage across the memristors Rp and Rn crossing the threshold in the opposite

direction. However, the post-synaptic node is also responsible for controlling DLTP.

A small network of synapses with two pre-neurons and a post-neuron is considered here

to analyze the implementation of our DLTP approach. Fig. 3.5 shows the network with

synapses containing weights of “1”, two pre-neurons and a single post-neuron with a threshold

of “2”. The pre-neurons sends the synaptic signals to the corresponding synapses and the

post-neuron receives that weighted signal. The post-neuron also generates post-synaptic fires

which will be input to the next layer of pre-neurons. The pre-neuron inputs are digital pulse-

Figure 3.5: A single neuron connected with two synapses network presenting DLTP [17].
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trains Fpre1 and Fpre2 and the post-neuron output is denoted by Fpost (shown in Fig. 3.6).

Since the DLTP circuit tracks the pre- and post-neuron spikes for a clock cycle before and

after firing events, we can assume from the figure that both of the synapses will go through

potentiation and depression in different clock cycles. In Fig. 3.6, Geff1 and Geff2 are the

effective conductance values of the two synapses, primarily at an initial state based on the

initial resistance of the memristive synapses. If we analyze the pre- and post-neuron spikes,

we would see that the first post-neuron fire occurs after accumulating the charge of the first

two Fpre1 fires. So, the synapse Rn1 is being potentiated and hence Geff1 is increased. On

the other hand, the first fire of Fpre2 is arriving simultaneously with post-neuron fire and it

is not responsible for post-neuron fire. So, the synapse Rn2 is being depressed and hence the

effective conductance, Geff2 is decreased. However, the synaptic weight change will not be

the same for each stage because with online learning the next weight change will be based

on the updated weights.

3.1.4 Layout of the Synapse Circuit

The synapse layout was done in CMOS 65nm CMOS technology provided by SUNY Poly

in order to fabricate the design. The design for the synapse includes a twin memristor

connection, driver logic block and an output control block. These blocks are described

in detail in section 3.1.3. The synapse layout includes the layout of this synaptic driver

block as shown in Fig. 3.7 with the highlighted section in the figure showing one of the
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Figure 3.6: Simulation result for small DLTP network [17].
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Figure 3.7: Layout of the memristive synapse with synaptic control circuits using 65nm
technology node.

updated versions of the synaptic buffer (driver and the output control). In addition, there are

other digital circuit components surrounding the synaptic buffer and the memristors. The

memristors are typically laid out as an intermediate material between metal 1 and metal 2.

The synapse layout also includes different NMOS for initializing memristors.

3.2 Mixed-Signal Neuron Design

The neuron is the component of a neural network where the weighted inputs from the

synapses are summed together to generate an output signal or spike. Neurons can be

biologically plausible or biologically inspired. Since we are more interested in spiking

neural network (SNN), spike based neurons are specifically considered here. Hardware

implementations of neurons become more prominent when the need for emulating a SNN

needs to be more efficient. With increasing network size, the hardware needs to be specialized

to take part in the neural computation. Thus, an efficient hardware implementation for the

neurons is necessary.

Different approaches for implementing neurons in electronic hardware have been pre-

sented in the literature [43, 63, 70]. Depending on how these neurons are modeled the circuit

level implementations vary. Some neurons are more inclined to neuroscience and are modeled
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to represent the dendritic activities from the cell-level whereas some neurons are modeled

to capture enough complexity to represent the functionality of biological neurons. Integrate

and fire neurons are one of the more popular neuron architectures that covers the complexity

level from the very basic integrate and fire approach to more complex computational models

[44]. Here, an integrate and fire neuron is proposed which can be related to the state of the

art considering it’s robustness with integrating it into a large system.

The mechanism for the integrate and fire neuron is dependent on the membrane potential

of the neuron. The inputs to any neuron is the weighted sum of pre-synaptic inputs that

come from the synapses connected to the particular neuron. If the accumulated weighted

sum is larger than a specified threshold, the neuron fires or it generates an output spike.

Thus, the membrane potential Vmem can be defined in a following way.

Cmem
dv(t)

dt
= Iin + Ileak (3.14)

Here, Cmem, Iin, Ileak and v(t) are the membrane capacitance, input current from synapse to

the neuron, leakage current through the membrane and the membrane voltage, respectively.

3.2.1 Neuron Functionality

The general behavior of an IAF neuron is to integrate charges from the incoming pre-synaptic

inputs and generate a post-synaptic output as a fire event when the accumulated charge is

higher than the threshold. The approach followed in this work leverages the advantage of

mixed-signal design where the integration is done using the weighted input currents rather

than voltage spikes and producing fire outputs as binary voltage pulse. This process is

analog in nature while integrating but is digital for output spike generation. The IAF neuron

designed for this work is presented in Fig. 3.8 which is similar to the design explained in

[110].

The proposed neuron operates in two different phases. The first one is the integration

phase and the second one is the firing phase. When the neuron is in the integration phase,

the op amp operates as an integrator. It accumulates charges from the incoming weighted

current through the connected synapses. The feedback capacitor Cfb in Fig. 3.8 helps
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Figure 3.8: Mixed-signal Integrate and Fire (IAF) Neuron [17].

decide the accumulation rate for the integration. The accumulated charge is presented as a

membrane potential Vmem and it keeps changing based on the accumulated charge. There

is a comparator circuit that compares the membrane potential Vmem against a threshold

voltage Vth and helps in generating output values. An output value is then used by the firing

flop to generate a firing pulse that is synchronized to a system clock. One additional thing

to note here is that the reference voltage, Vref is tied to a mid rail voltage which is “0V” for

this design. This reference voltage is leveraged to ensure that the “-” input of the op-amp

remains in the virtual ground while the neuron is in accumulation phase.

During the firing phase, the op amps operates as a buffer which helps in resetting the

active charge potential available as the membrane voltage. The firing phase also enables

the feedback mechanism which in turn results in activating the online learning mechanism

(DLTP) to make the synaptic weights adaptive to the results. Based on the DLTP mechanism

described in 3.1.3, if any input synapse arrives just before to a firing event, it is correlated

with the output fire and a potentiation occurs such that the synaptic weight of that particular

synapse is increased. On the other hand, if the synaptic input arrives at the same time as the

output firing event, depression occurs making weight of the synapse decrease. This ensures

that the input node of the IAF neuron plays an important role in driving the single cycle

online learning DLTP process. Also, while the neuron is in the firing phase, the feedback

control circuit supplies a voltage potential to one side of the twin memristor synapses so

that the weight is altered based on the voltage present across the memristors. In addition,

the feedback mechanism helps in establishing an one cycle refractory period, meaning the
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neuron would be idle for one clock cycle after it has gone through a firing event. When the

neuron is in its refractory period, it will not accumulate charge for any incoming synaptic

input current.

One additional feature of this neuron design is that the neuron is implemented to reset

itself after a firing event. Then it starts preparing itself for the upcoming input spikes. This

implementation also ensures that the neuron operating phases are synchronous with the

system clock.

3.2.2 Neuron Components

Based on the characteristics of the IAF neuron, our neuron is composed of three main

component blocks. These are the integrator, comparator and the digital control part. In Fig.

3.9, transistor M0-M12 constructs the integrator part with the feedback capacitor Cfb. The

integrator is basically a three stage op-amp designed to operate in a range of 20− 25MHz,

consistent with other existing works [59]. Moreover, we are using twin memristive synapse

with metal oxide materials and considering the switching time, we settled on a system

frequency that can provide a good range of analog resistive values. The integrator takes in

input current Iin and the bias voltage, while Vbias on the gates of M4, M9 and M12 secure

the biasing current and the integration of the input current. The next stage of the neuron

is the comparator which is comprised of another op-amp containing the M13-M19 transistors

in Fig. 3.9. This op-amp is a two stage amplifier with higher output resistance. The bias

voltage works similar to the integrator part. The comparator takes in two input voltages.

Figure 3.9: Analog integration of charges and comparison with neuron threshold [17].
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One comes directly from the output of the integrator which is the membrane potential Vmem

with the other being an external input which is the threshold. The comparator drives a high

voltage output when the membrane potential is higher than the threshold.

Since the core of the neuron is analog in nature and the connection from the core to the

system is digital, we would like to design the neuron in such a way that the output from

the neurons can be fed to the post-synapses as digital inputs. Hence, there are some digital

components such as flops and transmission gates that help generate digital pulses for each

output spike. Moreover, there are additional digital circuits that help establish an one cycle

refractory period mentioned in the earlier section so that the neuron gets enough time to

reset itself to the resting mid-rail voltage before it starts integrating the next set of input

signals.

3.2.3 Layout of the Neuron

The mixed-signal neuron layout was completed using Cadence Virtuoso tool with 65nm

process from SUNY Poly. The layout is shown in Fig. 3.10. This layout has five different

metal layers from M1-BB and it also includes the polysilicon, oxide and dopant layers. Two

different capacitors are used in this layout. One is the internal feedback capacitor Cc1 with a

capacitance value of 357.76fF which is laid out on top. The other is the integrator feedback

capacitor Cfb with a value of 670.814fF . The Cfb capacitor is the larger one drawn on the

bottom of the layout in Fig. 3.10. The total height of the neuron layout is 61.08µm and the

width is 56.59µm. The testing strategy for testing the neuron is included in appendix B.1.

3.3 Synapse and Neuron Test Structures

Synapses and neurons are the component blocks of the neuromorphic computing system. For

this work, memristive synapses and mixed-signal neurons have been designed and verified in

isolated design tests. Some tests also have been designed to verify the characteristics of each

component and their behavior when connected together. Hence, some test structures have

been considered with different synapse and neuron combinations and these test structures
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Figure 3.10: Layout of the mixed-signal neuron with 65nm technology node.

are also available in the fabricated die to test physically in near future. The testing strategies

are included in appendix B

3.3.1 Single Resistive Synapse and a Mixed-Signal Neuron

This test structure includes a single resistor as a resistive synpase connected to the mixed-

signal neuron described in section 3.2. The test is used to verify the neuron functionality

when driven by a simple synapse. The neuron receives the weighted pre-synaptic input

current based on applied “SFire” and accumulates charge until the accumulated voltage is

higher than the threshold voltage Vth. Then the neuron generates a spiking voltage “Fire1”

as an output. The schematic of this test structure is shown in Fig. 3.11 and the layout is

also provided in Fig. 3.12. Details for the pin structures and assignments are provided in

the appendix.
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Figure 3.11: Schematic of the single resistor with mixed-signal neuron with 65nm technology
node.

Figure 3.12: Layout of the single resistor with mixed-signal neuron with 65nm technology
node.
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3.3.2 Multiple Resistive Synapses and a Mixed-Signal Neuron

This test structure emulates the combination of two different synapses (resistors) driving

a single mixed-signal neuron. Here, the resistor values are chosen in a way so that the

conductance matches the highest synaptic weight possible for the memristive synapses

considered. Since the equivalent resistance values represent high conductivity, this test

structure is also a representation of a single synapse and a single neuron connection.

Moreover, this test also verifies the accumulation and firing of a neuron like the previous

test.

In this test structure, two inverted input signals are supplied to the resistors connected

in parallel. The neuron has threshold voltage Vth and a CLK clock signal. The output of

the neuron is denoted by Fire signal. The schematic of this test structure is shown in Fig.

3.13 and the layout of the test structure is presented in Fig. 3.14. The detailed simulation

result with pin assignments are provided in appendix B.1

3.3.3 Memristive Synapse with Forming and Programming Cir-

cuit and a Mixed-Signal Neuron

This test structure is important to verify that the forming of the memristors happen

successfully because without forming the memristors are only regular resistors.

Figure 3.13: Schematic of the multiple resistors with mixed-signal neuron with 65nm
technology node.
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Figure 3.14: Layout of the single resistor with mixed-signal neuron with 65nm technology
node.

Thus, the memristors need to be formed with a particular forming voltage depending

on the memristive material. After forming, the memristors are programmed to a specific

resistance value by again applying a programming pulse for a certain period of time. Hence,

from the synapse perspective, this test is used to verify initialization of the memristive

synapse. Moreover, this test also analyzes the synaptic connection to the mixed-signal neuron

because this involves the memristive synapse connection to the analog neuron. So, this helps

in verifying the twin memristive synapse as well as the analog neuron.

This test structure has pins similar to previous tests but also includes pins corresponding

to the forming and programming of twin memristors which are Vformn, Vprogn, Vformp and

Vprogn. The schematic of this test structure is shown in Fig. 3.15 and the layput is shown in

Fig. 3.16. The pin assignment and the details of simulations are included in appendix B.2.
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Figure 3.15: Schematic of the single memristive synapse with mixed-signal neuron with 65nm
technology node.

Figure 3.16: Layout of the single memristive synapse with mixed-signal neuron with 65nm
technology node.
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3.3.4 Single Neuromorphic Core

This test structure helps in verifying the neuromorphic core. A neuromorphic core can be

described as a connection of several synapses driving a single neuron. This core acts as

the building block of a multiple neuromorphic core processor. A detailed description of the

neuromorphic core and the system is provided in Chapter 4. For this test structure, the

motivation is to verify the fan in of the neuron and the connection of the synapses. Instead

of memristive synapses, this test includes eight resistive synapses shown in section 3.3.2.

Each resistive synapse receives pre-synaptic input from incoming pulse signals. The neuron

generates an output fire when the accumulated charge is higher than the threshold voltage.

So, this test structure has eight input signals connected to the resistances and one output

signal as a post-synaptic output.

The schematic of the test structure is shown in Fig. 3.17 and the corresponding layout

is shown in Fig. 3.18. The details of this test structure with pin assignment and simulation

result with testing strategy is discussed in appendix B.3

Figure 3.17: Schematic of the core prototype with 65nm technology node.
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Figure 3.18: Layout of the core prototype with 65nm technology node.

3.4 Synapse and Neuron Energy

The energy efficiency of any system depends on its components. Synapses and neurons are

the building blocks for the proposed memristive neuromorphic computing system. Here,

the energy for the memristive synapse and the mixed-signal neuron are first determined

separately. Then with the component level energy, system level energy is determined. In the

literature, some works reported the amount of energy consumption for their neuromorphic

components. For example, in [39], the energy consumed by each synapse is 36.7pJ for

learning where a resistance range of 70Ω to 670Ω for the memristors has been considered.

The energy consumed per synapse is 11pJ to 0.1pJ and in [12] with the working resistance

is from 1kΩ to 1MΩ. Considering these existing works, three different types of memristive

devices have been considered for the proposed system (see Table 3.2), specifically TaOx,

TiO2 and HfOx based on information provided in existing literature.

In this design, we considered four different phases of synapse operation. In Table 3.2, the

active phase is when the synapse is actively receiving synaptic input signals. The idle phase

is defined based on the inactive phase of the synapse. Potentiation and depression are the two

online learning phases when the synaptic weight is increased or decreased respectively based
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Table 3.2: Synapse energy with metal-oxide memristors
``````````````̀Synapse Phase

Devices
TaOx HfOx TiOx

[114] [104] [65]
Energy per spike

Active 8.074pJ 0.48pJ 0.17pJ
Idle 0.002pJ 0.002pJ 0.002pJ

Potentiation 10.76pJ 0.65pJ 0.26pJ
Depression 10.38pJ 0.58pJ 0.13pJ

on the position of the pre- and post-synaptic spikes. If the pre-synaptic spike arrives before

the post-synaptic spike, the synapse is in potentiation and if the pre-synaptic spike arrives

simultaneous with the post-synaptic spike, the synapse weight is decreased or depressed.

For this design, we consider the signle clock cycle before and after the post-synaptic spike

considering the DLTP mechanism.

Like the synapse operating phases, the mixed-signal neuron also has three different

operating phases and those are idle phase, accumulation phase and finally the firing phase.

During the idle phase, the neuron remains inactive meaning it receives no input and

experiences minimum activity. During idle, the neuron consumes energy of approximately

7.2pJ/spike. Next phase is the accumulation phase when the neuron receives the pre-

synaptic input spikes and accumulates the charge before reaching a threshold. During

the accumulation phase the integrator part of the neuron is active and consumes around

9.81pJ/spike. And the final phase is the firing phase when the neuron’s accumulate charge

is higher than the threshold and the neuron generates a post-synaptic spike. This phase

includes the cooperator and the digital circuit components to generate a digital pulse and

the energy consumed during the firing phase is approximately 12.54pJ/spike.

These energy data are calculated with a single system clock of 20MHz. To determine the

energy value from the circuit level simulation, the currents through the neuron are sampled

for three different phases of operation. Then the average current per spike is calculated from

the obtained data and this average current is multiplied with the supply voltage to obtain

the average power for each phase. From the average power, the average energy per spike is

calculated using the timing duration of each phase.
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The energy consumption of the mixed-signal neuron in different phases is summarized in

Table 3.3. The calculation of neuron energy considers all the analog and digital components

and hence the energy estimation in this work is a bit higher than the pure analog alternatives

in the literature. However, the output spikes generated digitally can be routed through the

complete system in a more efficient way which will ensure greater drive strength with robust

communication. For comparisons against the neuron energy with existing works, there has

been energy reported as 6.04nJ for 16.67MHz in [59] also 8.29nJ for 10MHz in [58]. There

have been other works reported with lower energy such as in [110] where the clock frequency

is as slow as 1MHz. In addition, the operating voltage pulse ranges from “−100mV ”

– “140mV ” which makes the energy consumption lower but raises concerns for the drive

strength of the propagating spikes.

The component level energy estimations are the building blocks for the total energy

estimation of the system. The per spike energy estimation of synapses and neurons in Table

3.2 and 3.3 help in estimating the total energy for any application implemented on the system.

It is a time consuming and tedious process to determine the total energy of any application

for the total system using the low-level circuit design simulator. So, a high-level simulator is

used in determining the system level energy details. More details on the high-level simulator

for the system level simulation are discussed in Chapter 4.

Here, three different phases for neuron and four different phases for synapses are

considered and hence the high-level simulator would track the activity factors for these

phases. Activity factors refer to the number of spikes for all the neurons and synapses in

these phases throughout the simulation time. Each of these numbers are summed based on

what phases they fall into. Then the total activity factor is multiplied by the energy per

spike estimation for the corresponding phase. Summing up all the energy values leads to

Table 3.3: Energy consumption of neurons in different phases

Neuron Phase Energy per spike (pJ)
Idle 7.2

Accumulation 9.81
Firing 12.5
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the total energy consumed by the system for the application to complete. This total energy

estimation algorithm can be summarized in the following equation 3.15.

Total energy = Energy per spikesyn idle ×Number of spikesidle

+ Energy per spikesyn active ×Number of spikesactive

+ Energy per spikesyn pot ×Number of spikespot

+ Energy per spikesyn dep ×Number of spikesdep

+ Energy per spikeneu idle ×Number of spikesneu idle

+ Energy per spikeneu accu ×Number of spikesneu accu

+ Energy per spikeneu fire ×Number of spikesneu fire

(3.15)

This algorithm for energy estimation has been developed in order to build a system where

we can estimate the energy at a hardware level. Because energy estimation is a critical factor

for designing any system and it is also helpful to have a low-level circuit simulation with

energy estimation. Moreover, energy is one of the main motivations where researchers are

working hard to build energy efficient systems. That’s why, this approach to estimate energy

using data from low-level and high-level simulation help in getting an energy estimate for a

system.
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Chapter 4

Mixed-Signal Neuromorphic System

4.1 Architecture of Neuromorphic System

A neuromorphic system includes synapse and neuron design blocks as the fundamental

units. But the placement and connection of these components must contend with several

interconnect challenges. Considering these, the proposed neuromorphic system in this

dissertation is designed using m×n memritstive neuromorphic cores, as mentioned briefly

in Chapter 3. A neuromorphic core can be defined as a collection of memristive synapses

connected to one mixed-signal neuron. This neuromorphic core is specially designed with

an aim to achieve the “analog in and digital out” mechanism that makes the computation

and connectivity of the proposed system reliable for designing spiking neural networks. The

structure of the neuromorphic architecture is shown in Fig. 4.1 which illustrates a system

of several neural cores with each core including multiple synapses with one single neuron.

As mentioned earlier, the connection of the synapses and neurons in a neuromorphic

system depends on some interconnect issues. For example, the placement of the neurons

and synapses are costly in performance because if the neurons and synapses are placed

independently instead of simultaneously when laying out a neuromorphic core, the wires

connecting the components would be relatively long. The longer the wires are, the larger the

capacitance of the interconnects, resulting in lower performance for the system. Moreover,

synapses in different locations would experience variation in interconnect capacitance to

the neuron and the charge accumulation would also vary even though the synaptic weights
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Figure 4.1: A representation of memristive neuromorphic core system [17].

would be same. These issues are of huge importance since the motivation is building a high

performance neuromorphic system. Hence, this work presents an innovative configuration

considering the performance issues where the synapses and a neuron are placed inside a

memristive neural core as shown in Fig. 4.1(right). This configuration ensures a better

arrangement of the synapse and neuron so that similar capacitance is maintained across

the synaptic outputs to the corresponding neuron. Also, the similar distances between

the synapses and the neuron inputs ensure a negligible amount of difference in charge

accumulation.

The main goal of this dissertation is to design a neuromorphic system with the memristive

synapses and mixed-signal neurons described in section 3.1 and 3.2. This overall architecture

is tailored for implementing artificial neural networks. So, it can be described as a specialized

hardware for processing neural networks with an emphasis on energy and area efficiency. In

addition, the research goal behind this work is to contribute to the community in translating

neural networks to circuit-level components so that there is a strong bridge between the

simulator and the low-level circuit components. We started drafting this work based on a

high-level architecture called NIDA by Schuman et. al [85]. NIDA is a continuous time
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recurrent neural network architecture which is specifically built as a spiking neuromorphic

platform. It includes the biologically inspired feature of dynamic behavior and is also

represented in a three dimensional space. NIDA networks are event driven, meaning the

networks deal with asynchronous firing or spiking events. The networks are generated using

a genetic algorithm called Evolutionary Optimization (EO) and all the networks contain

neurons and synapses [87]. NIDA neurons are connected to several synapses on each layer,

with each storing charge until a corresponding threshold is reached. Like neurons, synapses

are defined within three dimensional spaces as well. All the synapses are determined by the

neurons they are connected to. Each synapse contains a synaptic weight which regulates

the charge accumulation of the connected neurons. The synapses also include the feature of

synaptic delay representation. One of the most interesting features of NIDA is the networks

tend to be very sparse and small, yet they have been shown to achieve good accuracy

for different tasks such as classification and control problems, often as high as that of

conventional deep learning networks [88]. Considering the benefits of the NIDA architecture,

we considered a hardware implementation that can accelerate the computational efficiency of

NIDA architecture at the hardware level. DANNA in [25] is a hardware implementation on

FPGAs based on the NIDA architecture which is robust and almost reaches the efficiency of

NIDA. Since we do not have dedicated hardware to explore the promising aspects of NIDA, we

began to explore several emerging technologies to build energy and area efficient hardware.

This is the primary motivation behind designing the neurons and synapses discussed in

section 3.1 and 3.2. Our approach to this research starts with a top to bottom perspective

and later moves to a bottom-up approach to verify the system level architecture within the

existing software framework. This dual approach provides confidence in building a robust

and efficient neuromorphic system.

In order to build a software framework, C++ models have been developed considering

the behavior of the memristive synapses. The model captures several memristive features as

parameters so that the model is adaptive to circuit level variation. Like synapses, a neuron

model has also been developed in C++ which preserves the circuit level characteristics

of a mixed-signal CMOS neuron including the current input feature. The system level

simulator model also utilizes the online learning mechanism (DLTP) to train and test
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networks generated using a genetic algorithm or evolutionary optimization. The following

section 4.2 explains more about network training and generation using a genetic algorithm.

Also, section 4.3 explains the high-level simulation framework including the synapse and

neuron models and system level energy estimation process.

4.2 Network Initialization and Evolutionary Optimiza-

tion (EO)

Neural networks can be constructed with different topologies where the network size

and connectivity vary depending on the topology used. Some topologies work well with

classification problems whereas some perform better for control tasks. It is a challenging

task to find a topology for a neural network that is suitable for a general set of problems. In

this work, a genetic algorithm called Evolutionary Optimization (EO) proposed by Schuman

et. al in [87] has been utilized for network initialization. EO has been successful in generating

optimized spiking neural networks specifically for neuromorphic systems. It works well with

basic logic problems as well as classification problems [87] and control tasks [24].

To generate an initial network for any specific application, the genetic algorithm or EO

goes through several steps. At first, the user needs to specify the number of input and output

neurons. By specifying these numbers, users actually provide EO information about the

task (input neurons) and what would be returned back from the network (output neurons).

Besides the input and output neurons, the user also specifies an initial number of hidden

neurons and synapses. Then a population of initialized networks is generated which contain

the same number of input, hidden and output neurons and synapses. The placement of

input and output neurons are same for all the randomly initialized network but the hidden

neurons and synapses are random, making the networks in the population distinct from each

other. Moreover, the connectivity of the network is random as well with the possibility of

both feedback and feed-forward connections.

While training a neural network, one important thing that needs to be specified by the

user is a fitness function for the specific task. This fitness function can be defined as a metric
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to verify the quality of the network since the fitness function receives the network as input

and returns a numerical value based on the performance of the network for the particular

task. So, the fitness function is used to measure the quality of the networks in the population

and helps in scoring the networks so that the best networks would be chosen as parents for the

reproduction process in the next step. Usually the better performing networks are selected

for producing the next generation by default. When there are parent networks present,

crossover and mutation operations are applied in a probabilistic way to generate children

networks. Here, crossover means combining sub-networks of parents to produce children

networks while mutation refers to making some structural change such as adding or deleting

a neuron or changing a parameter such as the threshold of a neuron. After producing the

children networks, the fitness evaluation again evaluates the networks and scores those for

next step reproduction. In this way, the reproduction, evaluation and selection process is

continued until the fitness function reaches a desired value for the particular task of interest.

Then the highest performing task is selected and returned to the user to be deployed on the

hardware or the simulator with online learning to provide more possibilities for the synaptic

weights to be refined. This network initialization and generation algorithm is summarized

in Fig. 4.2.

A genetic algorithm is very helpful in producing optimized networks for a variety of

tasks given certain constraints. For instance, it has the ability to perform well with synaptic

weight constraints of the memristive devices and also constraints on the network connectivity.

Unlike other fixed topologies, genetic algorithms optimize the network at its best possibility

within the constraints of the system instead of mapping the ideal parameters to the reality.

Also, it can operate with a software simulator as well as “chip in the loop” for evaluation.

Another interesting feature of the model used here is that the programmable synaptic delay

can be easily programmed with the genetic algorithm. This is done by mapping the network

in a 2-dimensional grid where the distance between the synapse and corresponding neuron

represents the synaptic delay. Moreover, these delays can be altered using mutation to

produce more optimized and efficient networks.
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1: procedure Evolve
2: population = InitializePopulation
3: MaxFitness = -1
4: epoch = 0
5: while MaxFitness < and epoch < MaxEpoch do
6: fitnesses = []
7: for net in population do
8: fitnesses[net] = Fitness(net)
9: if fitnesses[net] > MaxFitness then

10: MaxFitness = fitnesses[net]
11: BestNet = net
12: end if
13: end for
14: children = []
15: while size(children) < size(population) do
16: p1, p2 = SelectParents(population, fitnesses)
17: if randomFloat < CrossoverRate then
18: c1,c2 = Crossover(p1,p2)
19: else
20: c1 = Duplicate(p1)
21: c2 = Duplicate(p2)
22: end if
23: if randomFloat < MutationRate then
24: Mutate(c1)
25: end if
26: if randomFloat < MutationRate then
27: Mutate(c2)
28: end if
29: children.append(c1)
30: children.append(c2)
31: end while
32: population = children
33: epoch += 1
34: end while

return MaxFitness, BestNet
35: end procedure

Figure 4.2: Network initialization with genetic algorithm [17].

4.3 Software Framework on Low-level Design

An important motivation for leveraging neuromorphic computing is energy efficient hardware

specialized for complex neural computations with feature like parallel processing. For this,

the design needs to be verified from various perspectives. For instance, both the hardware

and high-level networks need to be compatible so that the simulator is aware of hardware

details. Hence, there is need for a software simulator which will model the neuromorphic

hardware as accurately as possible, bridging the gap between the simulated network and the

hardware itself.

A software stack has been developed by the TENNLab research group at UTK to

work with a large range of neuromorphic systems. This software repository is helpful in

connecting different neuromorphic algorithms such as NIDA, DANNA and mrDANNA (our
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memristive neuromorphic system). Among these three, mrDANNA networks are based on

the neuron and memristive synapse models described in this work. To build a software stack

for this particular memristive neuromorphic system, the models have undergone multiple

design iterations since the neuron and synapse models have been evolving from the very

beginning. Currently, the models used in the simulator contain the latest versions of the

equations and parameters that best relate to the represented hardware. To make the software

stack consistent with the design, there are connections among the architecture, learning,

application and the software stack (Fig. 4.3). The software stack works by training a

neural network using a genetic algorithm and can generate networks for specific applications,

particularly for memristive neuromorphic architecture. The stack is also responsible for

simulating the generated network and can be used to estimate the energy consumption for

the application.

4.3.1 High-level Synapse Model

Designing the synapse model for the memristive neuromorphic software simulator, several

details have been incorporated from the hardware specification and into the behavioral

model. For instance, hardware synapses include twin memristors with parameters of high

resistance state (HRS), low resistance state (LRS), switching time in positive and negative

Figure 4.3: Relation of software framework with architecture learning and application.
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directions, and switching voltages. These memristive features are added to the simulation

model in order to provide an accurate representation of memristor based weight updates.

Additionally, the synapse model also includes synaptic delays (from 1 to 7 cycles) which

are present in the hardware synapse component as a delay chain. This model also has a

parameter for initializing the number of unique resistance states possible for the memristors

during training. The interesting feature of the twin memristive synapse described in section

3.1 is that the synapse receives input as voltage pulses and then supplies outputs as weighted

currents. The software model is also tailored in such a way that the synapse node will take

voltage input as an event and generate output current for the neurons. This way, the

software simulator is essentially a circuit level simulation while training and testing, but

only for analog components such as the twin memristor structures. The model defines the

critical parameters of the synapses, particularly the analog sections have been detailed in

the high-level model by using similar equations and behavior from the low-level design.

However, other sections of the synapse circuits, such as the digital logic blocks, are kept as

abstract. This way, the simulator model captures the important details and also accelerates

the simulation as compared to low-level circuit simulators.

4.3.2 High-level Neuron Model

The neuron design considered for the hardware implementation of this neuromorphic system

is based on integrate and fire mechanism described in section 3.2. According to the

neuron characteristics, the mixed signal neuron accumulates incoming charge until a certain

threshold is reached. To be more specific, the neuron receives weighted current inputs from

the synapses connected to its input and then integrates the corresponding charge. When

the accumulated charge is higher than the threshold, the neuron generates a firing event in

the form of an output pulse or spike. While designing the neuron model for the high-level

simulator, hardware features such as current inputs, threshold voltage, integrator feedback

capacitance and also the voltage output were considered as parameters. All of these are

arranged in the neuron model so that its performance matches with the hardware component.

Another interesting feature of the neuron model is that it has a parameter called “STDP

cycle length” which can be changed by the user depending on what type of online learning
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mechanism is desired for the network simulation. Here, the analog components have been

modeled in detail, including the integrator capacitance and the input analog current from

the synapses. Like the synapse model, the other digital circuit components of the neuron

are kept as abstract to make the high-level model faster. However, obtaining precise data

for sensitive parts, the model ensures accuracy in cycle to cycle verification. Online learning

in EO based initialization is discussed in a later section.

4.3.3 Verification of High-level Simulator Testing

The high-level simulator is built not only to train memristive neural networks but also to

simulate and test the network. To rely on the simulator, it is verified against simulation

results from low-level circuit simulator, specifically Cadence Spectre. As a verification aid,

the high-level simulator produces a detailed event log that includes the result of each neuron

and synapse firing event in cycle to cycle precision. Hence, this simulator is defined as a

“cycle accurate, event driven” simulator. The outputs and event logs from the simulator

are also used to produce images of any given network simulation.

For verification of the high-level simulator compared to low-level circuit simulator

(Cadence Spectre), a small classification network has been chosen and simulated using both

simulators. The network selected for this task is from iris flower classification dataset [55].

The dataset contains 150 test-cases for three classes of iris flowers where each case includes

four features of a flower. Chapter 5 provides more detail about this dataset. During the

verification process certain assumptions were made for computing purposes. For example,

the input and output neurons are assumed to be connected through non-learning synapses.

Also, a single test case is leveraged so that the run time is reduced. The inputs are processed

and programmed following the rules provided by neuromorohic library with those used by

both simulators to start the verification process.

The network used for this test has been generated using genetic algorithm with the

resulting network having seven input neurons, three output neurons and a single hidden

neuron. Since, the hidden neuron has no output connection, this is apparently inactive and

can be pruned. This inactive neuron is included to illustrate the random nature of the

genetic algorithm approach to training. The network is shown in Fig. 4.4. The synapses are
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Figure 4.4: An example of Iris network [94].

denoted by the arcs with direction indicating information flow and connectivity. Here, the

input neurons are marked with an ’I’ and the output neurons are marked with an ’O’.

One of the important metrics in performing the verification test is the run-time of each

simulation. It is determined using high precision timers built into the operating system with

the same configurations, specifically a 4th generation Intel i7 processor in this case. The

low-level circuit simulator Cadence Spectre produces an output graph after the simulation.

A Python script is used to process the event log from the high-level simulator to generate

corresponding output graphs. Both outputs as well as events are verified against one another

to ensure that all the events such as firing, delay, and accumulation occur at the same cycle

for both simulators. This way, the high-level simulator justifies its cycle accurate event

driven nomenclature.

Fig. 4.5 and Fig. 4.6 show results from the high-level and Cadence simulations

respectively. Here, the input spikes are shown for input neurons two, three and seven since

the input pulses are received on those three neurons only. Among three output neurons,

only the third output neuron fires twice determining the iris flower class as Virginica.
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Figure 4.5: Inputs and outputs for Iris network in high-level simulation [94].
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Figure 4.6: Inputs and outputs for Iris network in cadence simulation[94].
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Taking a precise look at the figures, it can be said that the low-level Cadence simulator is

extremely time accurate in detailing events whereas the high-level simulator is cycle accurate

in detaining events. This helps in processing events at each cycle and then grouping them

so that similar groups can be simulated in batch. This way, the simulation speed can be

further improved. In fact, the runtime difference for high-level and Cadence simulations

is very large, 632.6 seconds in Cadence using 8 processing cores and 5 milliseconds for the

high-level simulator on a single core. This illustrates the efficiency of the high-level simulator

which is able to log the event details with fast and accurate results.

4.3.4 High-level Energy Estimation

Since the synapse and neuron models in the high-level simulator have identical features

as those in the hardware circuit components, it is easier for the high-level simulator to

provide interesting insights about the hardware without simulating a network at the circuit-

level, using Spectre or SPICE. This provides an advantage when estimating total energy

consumption and some process variations before the hardware is fabricated. Hence, it helps

in analyzing the neuromorphic system for further improvement. Moreover, from the software

perspective, using realistic the synapse and neuron models help with training the neural

networks in an energy efficient way.

The energy estimation of the overall neuromorphic system has been described in section

3.4. In that section, the energy per spike for each synapse and neuron is determined and

with those values used to help in determining the energy consumption of the whole system.

This process for energy estimation needs extensive manual tracking of activity factors in

the network along with some manual calculations using equation 3.15 to calculate the total

energy consumed by the system. Considering the manual work, the high-level simulator is

designed to do the extensive calculations and is now able to provide the energy estimation

after each network simulation.

The algorithm for high-level energy estimation from the simulator is shown in Fig. 4.7.

The way the simulator determines the energy is very similar to the manual computation. The

only difference is that the user does not need to manually keep track of all network events.

The simulator recognizes every single event, such as pre-synaptic input fires, post-synaptic
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1: procedure Energy estimation
2: Num neu = Number of neurons
3: Num syn = Number of synapses
4: Num cycle = Number of cycles
5: neuron fire = []
6: neuron accumulate = []
7: neuron inactive = []
8: synapse fire = []
9: synapse potentiate = []

10: synapse depression = []
11: synapse delay = []
12: synapse inactive = []
13: while event do
14: if neuron phase == firing then
15: neuron fire← neuron fire + 1
16: end if
17: if neuron phase == accumulation then
18: neuron accumulate← neuron accumulate + 1
19: end if
20: if synapse phase == firing then
21: synapse fire← synapse fire + 1
22: end if
23: if synapse phase == potentiation then
24: synapse potentiate← synapse potentiate + 1
25: end if
26: if synapse phase == depression then
27: synapse depression← synapse depression + 1
28: end if
29: if synapse phase == delay then
30: synapse delay ← synapse delay + 1
31: end if
32: end while
33: neuron inactive← Num neu×Num cycle− (neuron fire + neuron accumulate)
34: synapse inactive = Num syn × Num cycle − (synapse fire + synapse potentiate +

synapse depression + synapse delay)
35: energy neuron←

∑
energy per spike× neuron phases

36: energy synapse←
∑

energy per spike× synapse phases
37: energy total← energy neuron + energy synapse

return energy total
38: end procedure

Figure 4.7: High -level energy estimation algorithm.

output fires, weight update in both potentiation and depression, accumulation, and firing,

that occurs on the synapse and neuron models. Each of these events are accounted for as

activity by the simulator which counts the activities from the beginning of any simulation.

If there is no activity on the models, it also keeps track of that as inactive or idle phases. At

the final stage, the net number of activities is determined by subtracting the total activities

from the inactive events. It must be mentioned here that the energy per spike values for each

operational phase of the synapses and neurons are parameters for the high-level simulator.

Here, the energy per spike values of each phase is provided to the high-level simulator. Hence,

it does not need to calculate all the energy values from the current and voltage equations.
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Thus, it helps speed of the simulator to be faster by a factor of roughly 105 than the hardware

simulator. Basically, it keeps track of energy on each phase and hence the total energy of

the system for any network can be easily calculated using the software simulator.

To verify that the energy estimation from the high-level simulator is similar to the energy

estimation from Cadence Spectre, the same iris network has been used. For this small

network both the simulators reported total energy consumption of 7.45pJ for one single

classification.

4.4 Online Learning on High-Level Initialization

Online learning is an important feature in the memristive neuromorphic system considered

here. This method helps the network learn using live updates of synaptic weights that

influence future decisions based on current experiences instead of relying entirely on a

fixed training environment. In this work, we use DLTP (discussed in section 3.1.3) as the

online learning method according to which the synaptic weights are updated based on the

relative position of pre- and post-synaptic spike events. DLTP is incorporated into the high-

level simulator during the testing process so the system learn from unknown environments.

However, DLTP has been utilized for offline training as well. To be specific, DLTP helps

in altering the synaptic weights while measuring the fitness of the network. This actually

provides the opportunity to assess network fitness and choose a comparatively better network

for further training. For instance, the iris classification task considered here requires 22500

cycles for fitness evaluation and also involves many classification events that represent a

whole training epoch.

The DLTP mechanism is a part of the synapse model in the high-level simulator. A brief

description of high-level synapse model is presented in section 4.3.1 where it is mentioned

that the synapse model has a parameter for initializing the number of unique synaptic weight

states. To elaborate on this feature, it can be defined as a mapping of the resistance of the

memristors to some abstract weight values. By doing so, the simulator gets the opportunity

to explore a specified range of abstract synaptic weight values while training any network.

Here, the twin memristive model is considered to have a symmetric range assuming the
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highest positive weight would have the same magnitude as the highest magnitude negative

weight. This is advantageous for generating a network for exposure to DLTP. However, the

synaptic weight here is initialized to some integer value, even though those can be anywhere

between the range while being trained on DLTP. Hence, the networks can be restricted by

the genetic algorithm while allowing online learning to modify and fine tune the synaptic

weights for improved results.

The resistance mapping to an abstract weight follows some cumulative steps. The first

step is to represent the largest effective conductance of the synapse as the largest abstract

weight. After that, the effective conductance representing the abstract weight of ‘one’ is

determined. Then the effective conductance for the weight of ‘one’ can be utilized in

normalizing any effective synaptic weights present in the neural network. Since DLTP is

used in the synapse model, synaptic weight updates due to DLTP will affect the resistance

value updates of both memristors in a twin memristive synapse. So, the memristor values

are updated accordingly if there is any potentiation or depression event and later the model

updates the effective synaptic weight by updating and normalizing the effective conductance.

It can be noted that synaptic weights are related to the effective conductance of the synapses

in the model.

Since the effect of DLTP is important for training an optimized network, it should be

enabled while training. Moreover, the effects of DLTP on the network depend on the topology

of the network since the potentiation and depression of any synaptic weight is determined by

the network’s connectivity. This is why DLTP is “turned on” during network training using

evolutionary optimization. While enabling the DLTP mechanism, there will be networks that

have positive effect over DLTP and those networks will show better performance in terms of

fitness. On the other hand, there will be networks where DLTP would have a negative impact

and will lower the fitness of the networks. If DLTP is disabled during training, it might be

possible to generate networks without knowing the adverse effects of online learning on the

networks and their performance would degrade while testing. Hence, DLTP is suggested to

be enabled during training with a genetic algorithm, considering the long term effects of the

network’s performance. Some results for DLTP during training and testing are discussed in

Chapter 5.
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Chapter 5

Application and Results

Our one of the main goals of this research is to determine the performance of the proposed

neuromorphic system in terms of potential area and energy efficiencies. For that, we

have explored several applications using the software framework and have observed some

promising results. We begin with very simple gate-level computations such as XOR

and AND operations before moving to larger applications for classification tasks, control

applications and high energy particle detection. For each application considered, we

determine estimations of the accuracy and energy consumed while the system is running.

In Chapter 4, top-down and bottom-up approaches are described for designing the system,

keeping the hardware design in close alignment with the software framework. Here, we

concentrate on the bottom-up approach which provides a foundation for simulating larger

networks using high-level simulator. We are inclined to use the high-level models of our

circuit level models as the larger networks are slow to simulate using the low-level simulator.

Thus, we have developed the high-level models based on circuit-level parameters to obtain

outputs faster but with comparable accuracy.

5.1 Classification Application

Like other computing algorithms, classification applications have been implemented using the

proposed neuromorphic system. We focused on total energy consumed for each classification
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since energy is one of the main metrics for quantifying system efficiency. Also, we calculate

the accumulated accuracy for different applications based on the proposed DLTP learning.

For classification applications three different classification tasks are considered from UCI

Machine Learning Repository [55]. Those are iris flower dataset, Wisconsin Breast Cancer

dataset and the Prima Diabetes dataset. All of these are commonly used in the literature as

benchmark applications for machine learning systems. The iris dataset is a set of 150 flower

instances with each instance consisting of four properties of iris flowers. The breast cancer

dataset includes 699 instances with each instance defining ten different features of a cell

nucleus. Finally, the diabetes dataset includes 768 instances with each defining four different

fields per record. All of these datasets have been processed to make them acceptable as

inputs to a neuromorphic system. Specifically, the input values have been encoded as integers

between 0 to 10 by scaling the raw data such that it is easier to perform a computation using

our approach. For instance, an example network for the iris dataset is shown in Fig. 5.1.

This network is generated from EO using the genetic algorithm mentioned in Chapter 4. This

network includes four input neurons for four features, six hidden neurons and one output

neuron. The single output neuron represents the output class. The other two applications

lead to similar networks generated from EO with input and output neurons defining the

input features and classes, respectively. Table 5.1 summarizes the three datasets used in this

work.

Since energy is one of the prime metrics for the efficiency, the total energy consumed

while each classification is calculated using the calculation algorithm described in Chapter 3.

Here, the activity factors for all the neurons and synapses for an application are monitored

and stored during the task simulation for different neuron phases (idle, accumulation and

Table 5.1: Characteristics of dataset [55]

Data Set No. of No. of No. of
instances inputs Output Class

Iris 150 4 3
Wisconsin Breast Cancer 699 10 2
Prima Indian Diabetes 768 8 2
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Figure 5.1: An example network for the iris classification task. The input neurons are yellow,
hidden neurons are red and the output neurons are blue. The neurons are labelled with their
thresholds and the synapse labels denote the synaptic weights followed by the delays [17].

firing) and synapse phases (active, idle, potentiation and depression). The energy per spike

for the neurons and synapses are then multiplied with the total activity numbers for all

phases. Summing all of these numbers yields the total energy for the classification task. To

analyze different suitable memristive devices for the system, the energy estimation is shown

in Fig. 5.2 based on three different memristive devices, defined by their LRS and HRS values

(LRS/HRS).

Another metric considered here is the effectiveness of using the online learning mechanism.

DLTP mechanism described in Chapter 3 is used here for online learning. Networks have

been trained both with and without online learning using the genetic algorithm. Those

networks are then tested for two cases, either keeping DLTP on or turning it off . The

accuracy for each classification application has been determined and is shown in Fig. 5.3.

To be more specific, the first two columns of the figure show the accuracy of the networks

both trained using DLTP but the average accuracy is higher for the network when online

learning (DLTP) is present.

Another interesting case has also been considered when the networks are trained without

online learning but DLTP is present while testing. Results for this case using all three

datasets are also shown in Fig. 5.3 on the third column. This shows that the change
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Figure 5.2: Total energy per classification [17].

Figure 5.3: Average accumulated accuracy for classification task for network trained with
learning but tested with/without learning and trained/tested without learning [17].
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in the accuracy result between the networks trained/tested with/without DLTP is very

small. However, this result can be justified by considering the average number of epochs to

achieve the observed accuracy. Table 5.2 shows that the average number of epochs while

training and testing with DLTP is higher than that without DLTP since EO is engaged in

numerous iterations for DLTP to reach the highest accuracy with optimized steps. Hence, the

DLTP process can be helpful in classification tasks to achieve higher accuracy while training

networks. However, DLTP during training is essentially an additional fitness objective which

require more epoch to train for as compared to the case with no online learning. In addition,

the average accumulated accuracy for all the classification tasks mentioned in Fig. 5.3 is

higher for trained/tested with DLTP which is very similar to [93] where an RRAM model

is used for simulation and an accuracy of 85% has been reported for iris classification with

online learning.

For this work, DLTP has been used as the online learning mechanism. To compare the

area efficiency of DLTP, other techniques have been considered from the literature. A very

similar technique is a digital implementation of STDP [14] that has been analyzed for two

OR gates, two AND gates and a shift register. On the other hand, for DLTP, a driver logic

block and an output control block are used which include three NAND gates, two inverters

and a flip-flop, as shown in Fig. 3.3. Hence, the DLTP approach is more efficient in terms

of area usage. Moreover, the implementation in [14] is accomplished using a Xilinx Spartan

FPGA leveraging several LUTS to build the STDP logic.

Table 5.2: Average number of epochs to achieve accumulated accuracy [17]

Data Set Trained and tested Trained and

without DLTP tested with DLTP

Iris 194.2 267.2

Wisconsin Breast Cancer 37.7 108.6

Prima Indian Diabetes 299 299
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Another interesting approach described in [9] also utilizes an FPGA but with block

RAMs, a multiplier and LUTs for a successful implementation. Both of these mentioned

logic implementations of STDP require LUTs. Hence, the DLTP approach using 65nm

CMOS 65nm is more efficient in both energy and area consumption.

One more recognized dataset has been utilized in this work to explore system-level

efficiency. MNIST image classification is one of the more popular datasets for handwritten

digit recognition. EO has been used to generate networks for MNIST image classification

on the proposed neuromorphic system. The network considered here has an accuracy of

approximately 90% which is comparable to other non-convolutional spiking neural network

approaches such as [26]. The network considered is specifically used for classifying the zero

digit. Like other classification tasks, the energy of this classification is also calculated with

an operating clock frequency of 16.67MHz. The average power and energy consumption for

one classification task here is 304.3mW and 18.26nJ , respectively. It can be noted here that

these power and energy values include both analog and digital circuit components such as

delay components and registers. However, the core analog power and energy estimation is

much lower at approximately 87.43mW and 5.24nJ per spike, respectively. These values are

comparatively more efficient than other MNIST classification approaches using GPU, FPGA

or even ASIC architectures which have power estimations reported in ‘W’ range [31], higher

than other neuromorphic implementations such as IBM’s TrueNorth [115].

5.2 Control Application

The internet of things (IoT) is becoming one of the top technologies where almost all the

devices are resource constrained and in need of emerging technologies that ensure energy and

area efficiency. Hence, memristive neuromorphic computing can be an excellent resource for

developing the IoT sector and memristor based spiky neural networks can be be leveraged for

IoT based machine learning options. For instance, an autonomous robot and its navigation

system is frequently used in IoT control applications. Control applications for robots are

usually very resource limited because higher energy batteries also lead to increased size

and weight. So, it is preferred to use area and energy efficient batteries. In this work,
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a navigation robot described in [69] has been evaluated for the memristive neuromorphic

system considered. According to the authors of [69], the robot gets input spikes from the

sensors and output spikes are used to directly control the motors. The input sensors used

in this task are LIDAR sensors on a servo that takes five measurements in an arc and limit

switches which generate input spikes for the robot network. The robot is designed to explore

as much space as possible with introduced difficulties and the possibility to adapt to unknown

environments using online learning.

This control application network has been generated using the same EO framework with

possible room configurations. Each robot navigation simulation is evaluated to make sure the

robot performs well in unknown environments avoiding obstacles. For training purposes, the

neuromorphic system has been simulated many times instead of the actual physical robot in

real environments. An example simulated path is shown in Fig. 5.4. The simulated network

is then deployed into DANNA, another FPGA based neuromophic architecture where it has

been used to control a physical robot as described in [69].

Figure 5.4: Visualization of the robot navigation application. Here, the floor is represented
as a grid where the red boxes denote the unexplored section and the explored area is in
yellow. The robot is represented using a red sphere and the five blue rays represent its
sensors. The obstacles are represented with teal. Robot’s taken path is referred with the
black path on the floor [19].
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The network used in this control application includes 9 input neurons where five of the

inputs are from the LIDAR sensors, two other inputs are supplied from the limit switches

and the rest are from bias and random values to help with drive functionality. There are

18 hidden neurons and 4 output neurons to control the motion of the motors. The example

network is shown in Fig. 5.5. In total, the network includes 119 synapses for communication

from neuron to neuron. It shows that the network has a single layer only which makes this

representation easy for processing and hence low energy. Specifically, this type of network

representation ensures a much smaller network with lower energy consumption as compared

to traditional deep learning networks.

In order to analyze the performance of this network, different activity factors for all the

neurons and synapses have been recorded. Using the measurements in Tables 3.3 and 3.2, an

average power estimation of the network on the physical chip has been defined. An interesting

analysis of the total number of spikes present in the simulation shows that the network has

an average of 4425 spikes per second but in real time, the robot remains idle most of the time

with the vast majority of the spikes becoming trivial for the energy calculation. The network

has been simulated for a 20MHz clock where the robot is active while taking decisions only

five times per second. So, the average power used by the network is approximately 142.7µW

as shown in Table 5.3. The average power reported here is measured only for the core logic of

Figure 5.5: An example of robot navigation network. The colored circles represent neurons:
Blue refers to input neurons, red refers to output neurons, and white denotes hidden neurons.
Synapses are presented by arcs with blue end being the pre-neuron and the pink end being
the post-neuron [19].
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Table 5.3: A description of a NeoN network
Number of Neurons 31
Number of Synapses 119

Average Spikes per Second 4425
Power Usage (Core Logic) 142.7 µW

the neuromorphic system since most of the energy consumed for computation occurs in the

core logic. Again the average power can also be translated into average energy consumption

using the clock frequency and here the energy consumption is 7.135pJ .

5.3 High Energy Particle Application

Somewhat different from other classification and control tasks, we have also worked to apply

the proposed architecture to a completely different application: A neutrino particle detection

problem using data from Fermi National Accelerator Lab. The task involves the classification

of a horizontal region where the interaction between a potential neutrino particle and a

projector occurs.

One network example for neutrino data includes 50 input neurons and 11 output neurons.

Each output neuron corresponds to 11 class labels in the neutrino data. For the experimental

setup, only a single view of the data (x-view) has been considered (shown in Fig. 5.6). The

data input in this experiment is different than other applications. The data has been fed as

time lattice data instead of using it as an image because the time lattice data carries the time

at which the energy values exceeded the threshold. These times are incorporated with spikes

to generate the neural network. This results in a network with 90 neurons and 86 synapses

which is smaller than networks built using the conventional algorithms, specifically deep

learning. This network has been tested with an accuracy of 80.63% which is comparable to

the network of 80.42% accuracy trained for a deep neural network where the data there was

also restricted to a single view [99]. The total energy for this application has been analyzed

and determined to be approximately as 1.66µJ per classification.

This application basically shows the strength of spiky neural networks for classifying

spatio-temporal data over deep neural networks. Leveraging the advantage of small and
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Figure 5.6: MINERvA detector [99].

sparse network generation for this proposed system, it helps in achieving low energy in

architectural level. Thus, the proposed neuromorphic system can achieve similar or better

accuracy relative to deep learning but with much less area and energy.
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Chapter 6

Mixed Signal Neurons with

Stochasticity

Considering neuromorphic computers are biologically inspired, this work also considers

how the probabilistic characteristics of the human brain can be emulated in artificial

systems. Recently, there have been some works on probabilistic approaches such as Bayesian

computing with networks that can be used for biologically-plausible implementations of

Boltzmann machines and deep belief networks. The neuromorphic system considered here

are constructed from IAF or LIF neurons that are more deterministic with few explicit

stochastic effects.

Stochasticity can be introduced into IAF neurons via a variety of mechanisms. One

simple method is to inject noise into the neuron using incoming signals [78]. However, this

process can cause huge increase in power consumption and there is limited availability for

scalable features. Some other ways of injecting noise in neurons include the use of noisy

firing thresholds and noisy reset voltages. The idea here is to modify the existing IAF

neuron so that, irrespective of the incoming input signals, the neuron is still able to account

for accumulated voltage and generate output pulses. We also do not want to explicitly inject

noise through the inputs or make the threshold itself noisy. Instead, randomized control

logic is introduced to provide stochasticity in the neuron by randomly adjusting the charge

required to fire. This allows a method for introducing stochastic effects in a controlled way.
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6.1 Stochastic Neuron Design

Considering existing available designs in the literature for stochastic neurons, we found that

there are very few implementations in hardware system [3, 103]. Most stochastic neuron

designs are handled with software models based on Gaussian or ReLU activation functions

but implementing the complex exponential stochastic functions on a hardware system is

really difficult. Some researchers have developed neuron designs with stochasticity using

inherent stochasticity of the memristive devices [4, 3]. The drawback here is the reliability

of the device considering challenges such as the filament formation. Since, in our system

design, we are concentrating on mixed-signal computation (analog inside and digital outside),

we propose to design CMOS neurons with added stochasticity. The main reason for this

approach is the robustness and the reliability achieved.

The stochastic neuron design introduces stochasticity by forcing the firing rate of the

neuron to be probabilistic. A Gaussian distribution is expected in the firing rate depending

on the number of incoming input spikes. It is worth noting that the neuron firing rate

depends on the charge accumulation rate. Further, charge accumulation is controlled by

the membrane capacitance. Thus, the idea here is to occasionally change the membrane

capacitance randomly depending on a true random number generator.

To ensure random variations in the membrane capacitance, a chaotic random number

generator (RNG) is used. A three-transistor chaotic map circuit (proposed in [27]), along

with gating and feedback techniques (discussed in [92]), generate and hold output values at

each clock edge. The chaotic map circuit is shown in Fig. 6.1.

Figure 6.1: Chaotic map circuit from [27].
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The initial analog input voltage for the chaotic circuit, Vseed is provided by an enable

signal en before normal operation begins. The bias voltages Vc1 and Vc2 in Fig. 6.2 are

chosen to ensure that the map circuits operate within a chaotic region. During the firing

event, the neuron generates a firing spike and a 3-bit resolution analog-to-digital converter

(ADC) captures an analog voltage from the RNG simultaneously. Basically, the ADC helps

in splitting the random chaotic voltage from the RNG into three digital control bits: Q1,

Q2, and Q3. These digital values are stored in registers until there is a new firing event.

As shown in Fig. 6.3, three capacitors (C1, C2, and C3) are added in parallel to

the existing membrane capacitance Cf . Each of the capacitor is connected in series with

a pass transistor controlled by one of the output bits from the RNG. These transistors

act as switches to “enable” or “disable” the additional capacitors. The value of Cf was

lowered slightly from the non-stochastic neuron so that the range of possible capacitance

combinations would encapsulate the old value of Cf .

6.1.1 Verifying Stochastic Behavior of Individual Neuron

Since the amount of accumulation due to an incoming spike depends on the membrane

capacitance, it was expected that the number of incoming spikes required to surpass the

firing threshold would change stochastically along with stochastic variations in the membrane

capacitance. This theory has been tested using Cadence Spectre by feeding a periodic 50%

duty cycle spike train into the neuron and monitoring the neuron’s output spike rate. After

acquiring a sufficient number of data points, we plotted the average probability that the

neuron will have fired after receiving a given number of input spikes. This curve, shown in

Fig. 6.4, convincingly shows the intrinsic stochastic behavior of the neuron.

Figure 6.2: Random number generator using scheme from [92].
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Figure 6.3: Mixed-signal stochastic neuron.
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Figure 6.4: Firing distribution for the stochastic IAF neuron compared with a shifted sigmoid
function.
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The stochastic behavior of the simulated neuron closely approximates a shifted sigmoid,

which implies it is an effective implementation of a stochastic binary spiking neuron model. In

other words, the neuron will fire an output spike with a probability approximately following

a sigmoid distribution.

6.2 Stochasticity Analysis of Neuron

After verifying the stochastic behavior of a single neuron, we moved to the network level.

Here, we compare the performance of two identically structured networks, one utilizing

deterministically spiking neurons and the other utilizing stochastic spiking neurons. This

direct comparison allows us to more easily assess the potential advantages and disadvantages

of using stochastic spiking neurons for high-level applications.

A small hand-tooled network structure is used to perform a simple shape recognition

task. Specifically, its synaptic weights and delays were designed such that it would be able

to recognize triangles and to reject all other shapes with high accuracy. A detailed description

of the construction of the network can be found in [81], but for convenience, its topology is

shown here in Fig. 6.5.

Figure 6.5: Topology of the hand-tooled shape recognition network. The w/d notation refers
to the weight/delay of each synapse. The number within each neuron refers to its threshold.
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A shape is encoded as a 5×5 array of binary input spikes, where the top row drives

input “In0” and the bottom row drives input “In4.” Each column in the 5×5 image is given

to the network sequentially, ensuring that the shape recognition task becomes a time-series

classification problem. The network recognizes a triangle when the output neuron “N3”

spikes. To test the stochastic and non-stochastic networks, we constructed datasets using

triangles, squares and plus signs. Some of these datasets contained the “ideal” shapes while

others contained shapes with added bits of noise. Fig. 6.6 shows some examples of ideal

shapes and shapes with up to two added noise bits. The first row represents the “ideal”

triangle, square, and plus sign. The second and third rows introduce noise bits. To clarify,

the noise added to these shapes was not used in any way to implement stochastic neuron

behavior, but simply to make the shapes more difficult to classify.

We simulated the stochastic and non-stochastic networks’ responses to the datasets and

recorded the resulting recognition accuracies in figures with triangles only, squares only

and plus only sets. Fig. 6.7 shows that the stochastic network is significantly better in

recognizing noisy triangles than its deterministic counterpart. For example, the stochastic

network recognized triangles with 85% accuracy even with 6 noise bits, whereas the non-

stochastic network only recognized triangles with 62% accuracy. We believe that the

Figure 6.6: 5x5 shapes with and without added noise bits [18].
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Figure 6.7: Shape recognition non-stochastic vs. stochastic performance on triangle-only
set.

stochastic firing rate of the neurons essentially allows the network to perform probabilistic

sampling and thus generalize its behavior, accounting more for uncertainty.

In Fig. 6.8 and 6.9, the average recognition accuracy depicts the ability of the stochastic

and non-stochastic networks to reject squares and plus signs (as they are not triangles).

Interestingly, the stochastic network performed less accurately for the dataset of noisy squares

in Fig. 6.8. This demonstrates a drawback of the generalizing behavior of the stochastic

network. Because it accounted for more uncertainty, it found triangles where they did not

actually exist. Since the 5x5 square is already somewhat similar to the 5×5 triangle (due the

low resolution), it makes sense that introducing noise bits into a square would create some

triangle-like patterns. The stochastic and non-stochastic networks performed similarly for

the dat set of plus signs, and we believe it is because there is very little information overlap

between the plus sign and the triangle. The ideal plus sign has more pixels near its center,

but in general the square and triangle have more pixels around their perimeters. Since

the shape types are so different, the networks never encounter situations of high uncertainty,

and the generalization behavior of the stochastic neuron does not cause obvious performance

differences between them.
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Figure 6.8: Shape Recognition Non-Stochastic vs. Stochastic Performance on Square-Only
Set.
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6.3 Power Overhead of Adding Stochastic Dynamics

The proposed stochastic neuron circuit has a similar pattern of energy consumption per spike

to the IAF shown in Fig. 3.8. The energy consumption of the stochastic neuron is 9.005pJ

during the accumulation phase. It is slightly lower than 9.81pJ (mentioned in section 3.4), for

the non-stochastic neuron. Introducing a lower average value of the membrane capacitance

yields both a higher accumulation rate and a lower input current. On the other hand, the

firing phase energy consumption, 12.6pJ , may be marginally higher for the stochastic neuron

opposed to the non-stochastic version because of the increased switching activity.

The addition of stochastic feature to the IAF introduces other sources of energy

consumption by the RNG and the accompanying ADC and registers. The chaotic oscillator

portion of the RNG consumes 191.8 fJ per clock cycle, showing the potential of the 3-

transistor map circuit as an energy efficient RNG solution. However, the ADC and registers

are likely to be the biggest energy consumers in the proposed circuits. For instance, an

available solution based on a 3-bit flash ADC was found to consume approximately 67 nJ

per clock cycle. Here, ADC optimization has not been analyzed being outside the scope

of this work. However, it is clear from this analysis that ADC selection is a critical design

decision for energy efficiency.

To summarize the concept of stochastic neurons, an interesting implementation of

introducing stochasticity is discussed in this chapter. Using capacitance variation to add

stochastic effect to existing IAF neuron helps in ensuring randomness in firing rate. Thus,

there is a generalization behavior introduced to the network because of using stochastic

neurons. This behavior helps the networks specifically here, the shape recognition network

to gain better accuracy with added noise bits or randomness. The results from this analysis

also direct toward the concept of generalizing with input information overlap. This could

be useful for networks while working with online learning by updating the synaptic weights

based on the generalizing behavior. Moreover, this is a full CMOS approach of introducing

stochasticity in the neurons even though there are works that involve emerging devices.

Thus, this approach also ensures a controlled and robust way to add stochastic effects to a

neuron.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Neuromorphic computing, being one of the promising alternative computing architectures,

is leveraged here to improve computational energy and area efficiency. Neuromorphic

computing is also shown to act as an efficient platform for implementing complex neural

networks. Since memristors are leveraged as the building blocks for synapses, gains in

energy efficiency are ensured at the component level design. If we take a system level

perspective, the memristive mixed-signal neuromorphic system follows a synchronous version

of NIDA [86] architecture which involves spiking neural networks, more specifically recurrent

neural networks. This type of network is commonly used in spatio-temporal classification

which often requires complex network topologies. However, the system discussed in this

dissertation leverages a genetic algorithm to produce sparse recurrent neural networks

which are comparatively smaller than conventional deep neural networks. Hence, gains

in energy and area efficiency are also achieved at the system level. Memristive mixed-signal

neuromorphic computing is therefore one of the most promising available approaches to move

forward the state of the art in area and energy-efficient specialized hardware for Artificial

neuromorphic systems. To summarize this work, the following points are listed as highlights:

77



• A twin memristive synapse with a control block for online learning has been designed.

Layouts of the synapse have been completed using Cadence Virtuoso and integrated

with peripheral circuits.

• An integrate and fire or IAF neuron with an analog core and digital periphery is

designed to ensure better use of digital communication. The neuron layout was also

completed using Cadence tools and integrated with synapses in different combinations

to verify neuron characteristics for different synaptic weights when integrated with the

full system.

• Our synchronous digital long term plasticity or DLTP approach introduces one cycle

based learning.

• An algorithm has been established to estimate energy for the neuromorphic system

in high-level simulations based on activity factors. These activity factors are

captured from the high-level simulator and then used with per spike energy estimation

determined from the low-level simulation of key components (synapses and neurons).

• Widely used datasets are used to analyze the effect of online learning in training neural

networks for the proposed system and it is proven that the DLTP approach ensures

efficiency in power and area with mixed-signal circuit implementations.

• An interesting version of a mixed-signal neuron with stochastic effects has been

proposed. This stochastic neuron presents a reliable way to introduce probabilistic

interference in neural networks. For the proof of concept, a shape recognition network

has been simulated with both regular and stochastic neurons with added noise bits. It

is shown in Chapter 6 that, when considering added noise, the probabilistic features

in neuron becomes advantageous.

7.2 Future Work

The importance of alternative computing techniques is extensively high in minimizing the

energy and performance gap. That is why neuromorphic computing is one of the best
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available options. Since this dissertation investigates on an innovative approach with

memristive materials and CMOS ICs, there is definitely a wide scope of future work based on

this dissertation. Following are some interesting directions for future works that can leverage

this work and contribute more to the neuromorphic computing community.

7.2.1 Study of Stochastic Neuron in Advanced Level

A mixed-signal CMOS neuron with stochastic nature has been discussed in Chapter 6.

The low-level circuit details have been presented with simulation results and a small shape

recognition application. Since the results show promising features while stochasticity is

added, there are plenty of directions to further explore this design. Following are some

directions for future work regarding the stochastic neuron.

• Exploring the result of using the stochastic neuron in large applications such as

classification or spatio-temporal applications so that there are comparisons in using

both deterministic and stochastic neurons.

• Study the DLTP mechanism on stochastic neurons. This might be an interesting study

because the learning of stochastic neurons might be different than the deterministic

neurons because of their probabilistic nature. Also it might build up different learning

rates while online learning.

• Study the effects of neural networks with a combination of both stochastic and non-

stochastic neurons, as both neuron types have advantages over some tasks. Thus, it

would be interesting to analyze the results of combining both.

7.2.2 Leveraging Energy Estimation Algorithm

The energy estimation algorithm discussed in this dissertation has been one of the main

contributions of this work. It involves accurate circuit-level energy consumption as well

as faster high-level energy estimation calculation. Since, technologies with low energy

consumption will thrive in future, this algorithm helps in establishing a connection between
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the hardware circuit components and the high-level model. This way, it is easier to design

an energy-efficient system.

Multi-objective training has been popular lately because it can be used in several fields

of sciences starting from business to engineering. Machine learning has been utilizing this

multi-objective training recently because it helps in optimizing different cost-functions and

help in establishing optimal networks. The energy estimation algorithm can be leveraged in

this type of training. Because it would be interesting to generate networks keeping the energy

optimization active since it would help to optimize the network performance while optimizing

the energy consumption of the system during training. Hence, it would be advantageous to

ensure an energy efficient system.
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Appendix A

VerilogA Code for IAF Neuron Design

A verilog-a code is written for the IAF neuron design to verify the behavior of the real

neuron. This neuron model follows the functionalities of the circuit-level mixed-signal IAF

neuron meaning it takes input currents from the connected pre-synaptic inputs and delivers

an output as a voltage pulse. It also presents the feature of refractory period for firing phase

and has a capacitance value for accumulation phase.

// Veri logA f o r MemrDANNA 10lpe v2 , neu combo v2 ver i l og , v e r i l o g a

‘ include ” cons tant s . vams”

‘ include ” d i s c i p l i n e s . vams”

module neu combo v2 ver i l og ( in pu l s e1 , i n pu l s e2 , i n pu l s e3 ,

i n pu l s e4 , i n pu l s e5 , f i n a l f i r e , feedback , vo , neu in , vth ,

vss , vdd , c lk , comparator s ig , accu ) ;

input vth , vss , vdd , c lk , i n pu l s e1 , i n pu l s e2 , i n pu l s e3 ,

i n pu l s e4 , i n p u l s e 5 ;

inout neu in , feedback , comparator s ig ;

output f i n a l f i r e , vo , accu ;
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e l e c t r i c a l neu in , vth , vss , vdd , c lk , f i n a l f i r e , vo , feedback ,

feedback b , f i n a l f i r e b , accu , comparator s ig , f i r e b ,

i n pu l s e1 , i n pu l s e2 , i n pu l s e3 , i n pu l s e4 , i n p u l s e 5 ;

parameter real cap = 60p from ( 0 : i n f ) ;

parameter real td = 0 from [ 0 : i n f ) ; // d e l a y from c l o c k to q

parameter real t t = 0 from [ 0 : i n f ) ; // t r a n s i t i o n time o f

output s i g n a l s

parameter integer d i r = +1 from [−1:+1] exc lude 0 ;

real x , temp , x1 , temp1 , nowtime , pastt ime , s tate1 , s tate2 , z ;

analog begin

// i n t e g r a t o r

@( i n i t i a l s t e p ) begin

x = 0 ;

temp = 0 ;

temp1 = 0 ;

x1 = 0 ;

nowtime = 0 ;

pastt ime = 0 ;

end

nowtime = $abstime ;

x = I ( neu in ) ;

i f ( abs (x−x1 )>50p)

temp = (x−x1 ) ∗( nowtime−pastt ime )+temp ;

else

temp = x∗( nowtime−pastt ime )+temp ;

pastt ime = $abstime ;

x1=I ( neu in ) ;
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i f (V( feedback )>=0) begin

temp = 0 ;

x = 0 ;

end

V( accu ) <+ temp∗(−1/cap ) ;

// comparator

i f (V( accu ) < V( vth ) )

V( comparator s ig ) <+ V( vdd ) ;

else

V( comparator s ig ) <+ V( vss ) ;

// d f f 1

@( c r o s s (V( c l k ) −V( vdd ) /2 , d i r ) )

s t a t e 1 = (V( comparator s ig ) > V( vdd ) /2) ;

V( feedback ) <+ t r a n s i t i o n ( s t a t e 1 ? V( vdd ) : V( vss ) , td , t t ) ;

V( feedback b ) <+ t r a n s i t i o n ( s t a t e 1 ? V( vss ) : V( vdd ) , td ,

t t ) ;

// t r a n s i t i o n gate1

i f ( (V( feedback ) == V( vdd ) ) && V( c lk )==V( vdd ) ) // high

s t a t e s e t to t h i s v a l u e

V( neu in ) <+ V( vdd ) ;

else // low s t a t e s e t to t h i s v a l u e

V( neu in ) <+ 0 ;

// d f f 2

@( c r o s s (V( c l k ) −V( vdd ) /2 , d i r ) )

s t a t e 2 = (V( feedback ) > V( vdd ) /2) ;

V( f i n a l f i r e ) <+ t r a n s i t i o n ( s t a t e 2 ? V( vdd ) : V( vss ) , td , t t

) ;
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V( f i n a l f i r e b ) <+ t r a n s i t i o n ( s t a t e 2 ? V( vss ) : V( vdd ) ,

td , t t ) ;

// t r a n s i t i o n gate2

i f ( (V( f i n a l f i r e ) == V( vdd ) ) && V( c l k )==V( vdd ) ) //

high s t a t e s e t to t h i s v a l u e

V( neu in ) <+ V( vss ) ;

else // low s t a t e s e t to t h i s v a l u e

V( neu in ) <+ 0 ;

// h a l f wave

z = V( f i n a l f i r e ) ;

i f (V( f i n a l f i r e )<=0)

z=0;

V( vo ) <+ z ;

// nor f r e t and f r e

i f (V( f i n a l f i r e ) < V( vdd ) && V( feedback ) < V( vdd ) )

V( f i r e b ) <+ V( vdd ) ;

else

V( f i r e b ) <+ V( vss ) ;

// or ga te

i f (V( f i n a l f i r e ) < V( vdd ) && V( feedback ) < V( vdd ) )

V( f i r e b ) <+ V( vdd ) ;

else

V( f i r e b ) <+ V( vss ) ;

end

endmodule
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Appendix B

Testing Strategy for Test-structures

A test chip has been taped out for the proposed mrDANNA design. Besides, a handful of

test structures have been taped out as well. To test the mixed-signal neuron design different

test structures have been developed and the strategies to test the fabricated test structures

have been determined. For now, the fabrication steps have upto three metal layers and it is

not possible to test the test structures with probe station since we need upto BA layer to

reach the measurement node.

B.1 Test structure with Resistor (single and multiple)

and Mixed-signal Neuron

This test structure consists of two small tests. One with a single resistor and the other with

two resistors to implement synapse. These two tests are included in the same 12x2 probe

pad to utilize the pins. The pin arrangement of the probe pad is shown in Fig. B.1 where

the upper pins are noted from t1 to t12 and the bottom pins are noted from b1 to b12.
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Figure B.1: 12x2 probe pad structure.

For this particular test structure, pins are assigned following the stated arrangement

shown in table B.1. There are two sets of power sources of VDD and VSS for two different

tests. The test with single resistor is built to verify the accumulation of the mixed-signal

neuron. The thresholds can be varied with different DC input voltage. The resistance value

is fixed for this test. The single resistance value here represents the synaptic weight as well

as conductance. table B.2 shows the signals to different pins for this test, Fig. B.2 shows

the schematic and Fig. B.3 shows the input and output signals of the test structure. On

the other hand, the test with twin resistor is a prototype of the twin memristor explained

in chapter 3. Here the resistive synapse represents maximum effective conductance possible

with 9K and 15K resistances. table B.3 represents the signal connection to the pins, Fig. B.4

shows the schematic and Fig. B.5 shows the input and output signals for this test structure.
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Table B.1: Pin assignment of test structure B.1.

Pin name Pin Connection Pin Direction Pin name Pin Connection Pin Direction

t1 Not Connected floating b1 Not Connected floating

t2 fre1 output b2 Not Connected floating

t3 Fire1 output b3 Vth1 input

t4 CLK1 input b4 GND1 input

t5 Vb1 input b5 Vref1 input

t6 VSS input b6 SFire1 input

t7 VDD1 input b7 fre output

t8 Fire output b8 Vth input

t9 CLK input b9 GND input

t10 Vb input b10 Vref input

t11 SFire input b11 SFireb input

t12 VDD input b12 VSS input

Table B.2: Signal description of single resistor test structure in B.1.

Pin Attribute Pin type Signal Description

VDD1 DC input Power source for single resistor test (1.2V)

VSS1 DC input Power source for single resistor test (0V)

SFire1 DC pulse-train input Input voltage pulse for single resistor test

Vref1 DC input Reference voltage for single resistor test (0.6V)

Vb1 DC input Reference voltage for single resistor test (0.6V)

CLK1 DC pulse-train input Clock signal Reference voltage for single resistor

test (20MHz)

Vth1 DC input Threshold voltage for single resistor test (multiples

of 20mV)

fre1 DC output Initial output fire for single resistor test

Fire1 DC output Final output fire for single resistor test

103



Figure B.2: Schematic for single resistor and single neuron test structure.
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Figure B.3: Simulation of single resistor and single neuron test structure B.1.
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Table B.3: Signal description of twin resistor test structure in B.1.

Pin Attribute Pin type Signal Description

VDD DC input Power source for twin resistor test (1.2V)

VSS DC input Power source for twin resistor test (0V)

SFire DC pulse-train input Input voltage pulse for twin resistor test

SFireb DC pulse-train input Inverted SFire for twin resistor test

Vref DC input Reference voltage for twin resistor test (0.6V)

Vb DC input Reference voltage for twin resistor test (0.6V)

CLK DC pulse-train input Clock signal Reference voltage for twin resistor

test (20MHz)

Vth DC input Threshold voltage for twin resistor test (multiples

of 20mV)

fre DC output Initial output fire for twin resistor test

Fire DC output Final output fire for twin resistor test

Figure B.4: Schematic for multiple resistor and single neuron test structure B.1.
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Figure B.5: Simulation of multiple resistor and single neuron test structure B.1.

B.2 Test Structure with Memristive Synapse with

Forming Circuit and Mixed-signal Neuron

This test structure shows the connection of a synapse with a mixed-signal neuron. The twin

memristive synapse needs to be programmed to a state before we can use it as a synapse

device. So, this test structure also includes the forming and programming circuit discussed

in [6]. This test structure has the similar pin assignments as B.1. In fact there are additional

pins such as V formp and V formn for enabling the forming circuits; V progp and V progn

for enabling the programming circuits and V pin for the programming sequence. The pin

assignment details are mentioned in table B.4 and B.5. Fig. B.6 is the schematic of this test

structure and Fig. B.7-B.8 shows the input-output signals of the test structure.
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Table B.4: Pin assignment of test structure B.2.

Pin name Pin Connection Pin Direction Pin name Pin Connection Pin Direction

t1 Not Connected floating b1 Not Connected floating

t2 Not Connected floating b2 Not Connected floating

t3 Not Connected floating b3 Not Connected floating

t4 Vpin input b4 Not Connected floating

t5 Vformp input b5 Vprogn input

t6 Vprogp input b6 Vformn input

t7 VDDH input b7 fre output

t8 Fire output b8 Vth input

t9 CLK input b9 GND input

t10 SFire input b10 SFireb input

t11 Vref input b11 Vb input

t12 VDD input b12 VSS input
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Table B.5: Signal description of twin resistor test structure in B.2.

Pin Attribute Pin type Signal Description

VDD DC input Power source for twin resistor test (1.2V)

VSS DC input Power source for twin resistor test (0V)

SFire DC pulse-train input Input voltage pulse for twin resistor test

SFireb DC pulse-train input Inverted SFire for twin resistor test

Vref DC input Reference voltage for twin resistor test (0.6V)

Vb DC input Reference voltage for twin resistor test (0.6V)

CLK DC pulse-train input Clock signal Reference voltage for twin resistor

test (20MHz)

Vth DC input Threshold voltage for twin resistor test (multiples

of 20mV)

fre DC output Initial output fire for twin resistor test

Fire DC output Final output fire for twin resistor test

VDDH DC input Power source for dgxfets (3.3V)

Vformp DC input Forming enabler for positive memristor (3.3V)

Vformn DC input Forming enabler for negative memristor (3.3V)

Vprogp DC input Programming enabler for positive memristor

(3.3V)

Vprogn DC input Programming enabler for negative memristor

(3.3V)

Vpin DC pulse-train input Programming Pin for the synapses (3.3V)

108



Figure B.6: Schematic for single memristive synapse and single neuron test structure B.2.
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Figure B.7: Simulation of single memristive synapse and single neuron test structure B.2.
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Figure B.8: Simulation of memristor forming.

B.3 Test Structure of a System Prototype

A test structure has been built to verify the prototype of the whole system meaning several

(eight here particularly) synapses connected to a mixed signal neuron. This test is designed

to verify the mechanism of a memristive neuromprphic core or system. Here, we have used

resistive synapses instead of memristive synapse. The motivation behind this test structure

was to prove that the memristive core works well with multiple synapse and neuron design.

Moreover, the resistive synapses were designed to hold the maximum synaptic weight possible

when designed with memristors. So, this test structure can be shown as a prototype of the

designed core.

Like other test structures, this one includes the power sources V DD and V SS; some

DC reference voltages for the neuron such as V ref , V b, GND and V th; a clock, CLK for

the system, eight input pulse trains from SFire − SFire7 for synaptic inputs and output

signals, Fire and fre. All of these pins are described in table B.6 and B.7. Fig. B.9 is the

schematic for this test structure. The simulation result of this structure is shown in Fig.
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B.10. Here eight synaptic inputs are supplied to the corresponding synapses. The volatge

accumulation is shown with signal V mem and the threshold voltage is set to 500mV here.

When the accumulated voltage crosses the V th, fre signal indicates the generation of output

Fire.

Table B.6: Pin assignment of test structure B.3.

Pin name Pin Connection Pin Direction Pin name Pin Connection Pin Direction

t1 Not Connected floating b1 Not Connected floating

t2 Not Connected floating b2 Not Connected floating

t3 Vth input b3 Not Connected floating

t4 SFire7 input b4 GND input

t5 SFire5 input b5 SFire6 input

t6 SFire3 input b6 SFire4 input

t7 SFire1 input b7 SFire2 input

t8 Vb input b8 SFire input

t9 V800 input b9 V400 input

t10 Fire output b10 fre output

t11 CLK input b11 Vref input

t12 VDD input b12 VSS input
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Table B.7: Signal description of twin resistor test structure in B.3.

Pin Attribute Pin type Signal Description

VDD DC input Power source (1.2V)

VSS DC input Power source (0V)

SFire DC pulse-train input Input voltage pulse for synapse0

SFire1 DC pulse-train input Input voltage pulse for synapse1

SFire2 DC pulse-train input Input voltage pulse for synapse2

SFire3 DC pulse-train input Input voltage pulse for synapse3

SFire4 DC pulse-train input Input voltage pulse for synapse4

SFire5 DC pulse-train input Input voltage pulse for synapse5

SFire6 DC pulse-train input Input voltage pulse for synapse6

SFire7 DC pulse-train input Input voltage pulse for synapse7

CLK DC pulse-train input Clock signal Reference voltage for twin resistor

test (20MHz)

Vb DC input Reference voltage for twin resistor test (0.6V)

Vref DC input Reference voltage for twin resistor test (0.6V)

Vth DC input Threshold voltage for twin resistor test (multiples

of 20mV)

fre DC output Initial output fire for twin resistor test

Fire DC output Final output fire for twin resistor test
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Figure B.9: Schematic for system prototype test structure B.3.
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Figure B.10: Simulation of system prototype test structure B.3.
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