120 research outputs found

    Design and Implementation of a Re-Configurable Arbitrary Signal Generator and Radio Frequency Spectrum Analyser

    Get PDF
    This research is focused on the design, simulation and implementation of a reconfigurable arbitrary signal generator and the design, simulation and implementation of a radio frequency spectrum analyser based on digital signal processing. Until recently, Application Specific Integrated Circuits (ASICs) were used to produce high performance re-configurable function and arbitrary waveform generators with comprehensive modulation capabilities. However, that situation is now changing with the availability of advanced but low cost Field Programmable Gate Arrays (FPGAs), which could be used as an alternative to ASICs in these applications. The availability of high performance FPGA families opens up the opportunity to compete with ASIC solutions at a fraction of the development cost of an ASIC solution. A fast digital signal processing algorithm for digital waveform generation, using primarily but not limited to Direct Digital Synthesis (DDS) technologies, developed and implemented in a field-configurable logic, with control provided by an embedded microprocessor replacing a high cost ASIC design appeared to be a very attractive concept. This research demonstrates that such a concept is feasible in its entirety. A fully functional, low-complexity, low cost, pulse, Gaussian white noise and DDS based function and arbitrary waveform generator, capable of being amplitude, frequency and phase modulated by an internally generated or external modulating signal was implemented in a low-cost FPGA. The FPGA also included the capabilities to perform pulse width modulation and pulse delay modulation on pulse waveforms. Algorithms to up-convert the sampling rate of the external modulating signal using Cascaded Integrator Comb (CIC) filters and using interpolation method were analysed. Both solutions were implemented to compare their hardware complexities. Analysis of generating noise with user-defined distribution is presented. The ability of triggering the generator by an internally generated or an external event to generate a burst of waveforms where the time between the trigger signal and waveform output is fixed was also implemented in the FPGA. Finally, design of interface to a microprocessor to provide control of the versatile waveform generator was also included in the FPGA. This thesis summarises the literature, design considerations, simulation and implementation of the generator design. The second part of the research is focused on radio frequency spectrum analysis based on digital signal processing. Most existing spectrum analysers are analogue in nature and their complexity increases with frequency. Therefore, the possibility of using digital techniques for spectrum analysis was considered. The aim was to come up with digital system architecture for spectrum analysis and to develop and implement the new approach on a suitable digital platform. This thesis analyses the current literature on shifting algorithms to remove spurious responses and highlights its drawbacks. This thesis also analyses existing literature on quadrature receivers and presents novel adaptation of the existing architectures for application in spectrum analysis. A wide band spectrum analyser receiver with compensation for gain and phase imbalances in the Radio Frequency (RF) input range, as well as compensation for gain and phase imbalances within the Intermediate Frequency (IF) pass band complete with Resolution Band Width (RBW) filtering, Video Band Width (VBW) filtering and amplitude detection was implemented in a low cost FPGA. The ability to extract the modulating signal from a frequency or amplitude modulated RF signal was also implemented. The same family of FPGA used in the generator design was chosen to be the digital platform for this design. This research makes arguments for the new architecture and then summarises the literature, design considerations, simulation and implementation of the new digital algorithm for the radio frequency spectrum analyser

    Review of high-speed phase accumulator for direct digital frequency synthesizer

    Get PDF
    A review of high-speed pipelined phase accumulator (PA) is proposed in this paper. The detail explanation of ideas, methods and techniques used in previous researches to improve the PA throughput designs were surveyed. The Brentโ€“Kung (BK) adder was modified in this paper to be applied in pipelined PA architecture. A comparison of different adder circuits, includes a modified BK, ripple carry adder (RCA), Kogge-Stone adder (KS) and other prefix adders were applied to architect the PA based on Pipeline technique. The presented pipelined PA design circuit with multiple frequency control word (FCW) and different adders were coded Verilog hardware description language (HDL) code, compiled and verified with field programmable gate array (FPGA) kit platform. The comparison result shows that the modified BK adder has fast performances. The shifted clocking technique is utilized in the proposed pipelined PA circuit to reduce the unwanted repetitive D-flip flop (DFF) registers (coming from the pipeline technique), while preserving the high speed

    The design and implementation of a wideband digital radio receiver

    Get PDF
    Historically radio has been implemented using largely analogue circuitry. Improvements in mixed signal and digital signal processing technology are rapidly leading towards a largely digital approach, with down-conversion and filtering moving to the digital signal processing domain. Advantages of this technology include increased performance and functionality, as well as reduced cost. Wideband receivers place the heaviest demands on both mixed signal and digital signal processing technology, requiring high spurious free dynamic range (SFDR) and signal processing bandwidths. This dissertation investigates the extent to which current digital technology is able to meet these demands and compete with the proven architectures of analogue receivers. A scalable generalised digital radio receiver capable of operating in the HF and VHF bands was designed, implemented and tested, yielding instantaneous bandwidths in excess of 10 MHz with a spurious-free dynamic range exceeding 80 decibels below carrier (dBc). The results achieved reflect favourably on the digital receiver architecture. While the necessity for minimal analogue circuitry will possibly always exist, digital radio architectures are currently able to compete with analogue counterparts. The digital receiver is simple to manufacture, based on the use of largely commercial off-the-shelf (COTS) components, and exhibits extreme flexibility and high performance when compared with comparably priced analogue receivers

    LISA Metrology System - Final Report

    No full text
    Gravitational Waves will open an entirely new window to the Universe, different from all other astronomy in that the gravitational waves will tell us about large-scale mass motions even in regions and at distances totally obscured to electromagnetic radiation. The most interesting sources are at low frequencies (mHz to Hz) inaccessible on ground due to seismic and other unavoidable disturbances. For these sources observation from space is the only option, and has been studied in detail for more than 20 years as the LISA concept. Consequently, The Gravitational Universe has been chosen as science theme for the L3 mission in ESA's Cosmic Vision program. The primary measurement in LISA and derived concepts is the observation of tiny (picometer) pathlength fluctuations between remote spacecraft using heterodyne laser interferometry. The interference of two laser beams, with MHz frequency difference, produces a MHz beat note that is converted to a photocurrent by a photodiode on the optical bench. The gravitational wave signal is encoded in the phase of this beat note. The next, and crucial, step is therefore to measure that phase with ยตcycle resolution in the presence of noise and other signals. This measurement is the purpose of the LISA metrology system and the subject of this report

    Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations

    Get PDF
    Over the years, there has been significant interest in defining a hardware abstraction layer to facilitate code reuse in software defined radio (SDR) applications. Designers are looking for a way to enable application software to specify a waveform, configure the platform, and control digital signal processing (DSP) functions in a hardware platform in a way that insulates it from the details of realization. This thesis presents a tool-based methodolgy for developing and optimizing a Direct Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field Programmble Gate Arrays (FPGAs). The system model consists of a tranmitter which employs a quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise (AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter (ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-polar converter. The design methodology is based on a new programming model for FPGAs developed in the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design portability and streamlines system development by enabling engineers to create and validate a system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code generation for programmable devices, designs can be easily verified through hardware-in-the-loop (HIL) simulations. HIL provides a significant increase in simulation speed which allows optimization of the receiver design with respect to the datapath size for different functional parts of the receiver. The parameterized datapath points used in the simulation are ADC resolution, DDC datapath size, LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath size. These parameters are changed in the software enviornment and tested for bit error rate (BER) performance through real-time hardware simualtions. The final result presents a system design with minimum harware area occupancy relative to an acceptable BER degradation

    ฮ”-ฮฃ ฮบฮฑฮน MSLA ฮ”ฮนฮฑฮผฮฟฯฯ†ฯ‰ฯ„ฮญฯ‚ ฮฃฮฎฮผฮฑฯ„ฮฟฯ‚

    Get PDF
    ฮฃฮบฮฟฯ€ฯŒฯ‚ ฯ„ฮทฯ‚ ฯ€ฮฑฯฮฟฯฯƒฮฑฯ‚ ฮดฮนฯ€ฮปฯ‰ฮผฮฑฯ„ฮนฮบฮฎฯ‚, ฮตฮฏฮฝฮฑฮน ฮฑฯฯ‡ฮนฮบฮฌ ฮท ฮบฮฑฯ„ฮฑฮฝฯŒฮทฯƒฮท ฯ„ฯ‰ฮฝ ฮตฮฝฮฝฮฟฮนฯŽฮฝ ฯ€ฮฟฯ… ฮฑฯ†ฮฟฯฮฟฯฮฝ ฯ„ฮทฮฝ ฮผฮตฯ„ฮฑฯ„ฯฮฟฯ€ฮฎ ฯƒฮฎฮผฮฑฯ„ฮฟฯ‚ ฮฑฯ€ฯŒ ฯ„ฮฟฮฝ ฯˆฮทฯ†ฮนฮฑฮบฯŒ ฮบฯŒฯƒฮผฮฟ ฯƒฯ„ฮฟฮฝ ฮฑฮฝฮฑฮปฮฟฮณฮนฮบฯŒ, ฯ„ฮทฮฝ ฯ…ฯ€ฮตฯฮดฮตฮนฮณฮผฮฑฯ„ฮฟฮปฮทฯˆฮฏฮฑ, ฯ„ฮทฮฝ ฮดฮนฮฑฮผฯŒฯฯ†ฯ‰ฯƒฮท ฮธฮฟฯฯฮฒฮฟฯ… ฮบฮฑฮน ฯ„ฮฑ ฯƒฯ†ฮฌฮปฮผฮฑฯ„ฮฑ ฮบฮฒฮฑฮฝฯ„ฮนฯƒฮผฮฟฯ. ฮฃฯ„ฮท ฯƒฯ…ฮฝฮญฯ‡ฮตฮนฮฑ ฮณฮฏฮฝฮตฯ„ฮฑฮน ฮตฮนฯƒฮฑฮณฯ‰ฮณฮฎ ฮบฮฑฮน ฮฑฮฝฮฌฮปฯ…ฯƒฮท ฯƒฯ„ฮฟฯ…ฯ‚ ฮ”ฮญฮปฯ„ฮฑ - ฮฃฮฏฮณฮผฮฑ ฮดฮนฮฑฮผฮฟฯฯ†ฯ‰ฯ„ฮญฯ‚ ฯƒฮฎฮผฮฑฯ„ฮฟฯ‚ ฯ€ฯฯŽฯ„ฮฟฯ… ฮบฮฑฮน ฮดฮตฯ…ฯ„ฮญฯฮฟฯ… ฮฒฮฑฮธฮผฮฟฯ ฮบฮฑฮธฯŽฯ‚ ฮบฮฑฮน ฯƒฮต ฯƒฯ…ฮณฮบฯฮฏฯƒฮตฮนฯ‚ ฮผฮตฯ„ฮฑฮพฯ ฯ„ฮฟฯ…ฯ‚. ฮˆฯ€ฮตฮนฯ„ฮฑ ฮตฯ€ฮตฮพฮทฮณฮตฮฏฯ„ฮฑฮน ฮฟ ฮฑฮปฮณฯŒฯฮนฮธฮผฮฟฯ‚ MSLA ฮบฮฑฮน ฮท ฮตฯ†ฮฑฯฮผฮฟฮณฮฎ ฯ„ฮฟฯ… ฯƒฯ„ฮฟฯ…ฯ‚ ฮ” โ€“ ฮฃ ฮดฮนฮฑฮผฮฟฯฯ†ฯ‰ฯ„ฮญฯ‚ ฮบฮฑฮน ฯ„ฮญฮปฮฟฯ‚ ฯ€ฮฑฯฮฑฯ„ฮฏฮธฮตฮฝฯ„ฮฑฮน ฮฑฯ€ฮฟฯ„ฮตฮปฮญฯƒฮผฮฑฯ„ฮฑ ฮบฮฑฮน ฮตฯ…ฯฮฎฮผฮฑฯ„ฮฑ ฯ„ฮฟฯ… MSLA ฯƒฮต ฮดฮนฮฌฯ†ฮฟฯฮตฯ‚ ฮตฯ†ฮฑฯฮผฮฟฮณฮญฯ‚ ฮผฮญฯƒฯ‰ ฯ€ฯฮฟฯƒฮฟฮผฮฟฮนฯŽฯƒฮตฯ‰ฮฝ.The purpose of this thesis is to primarily understand the basic concepts of signal conversion and processing from the digital to the analog world, oversampling, noise shaping and errors in quantization. Thereafter, a brief introduction and analysis on Sigma Delta modulators of first and second order as well as the comparison between them is being shown. Then the MSLA algorithm and its application in Delta Sigma modulators are explained and finally various applications through extensive simulations are presented

    ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ๋ฅผ ์œ„ํ•œ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this dissertation, major concerns in the clocking of modern serial links are discussed. As sub-rate, multi-standard architectures are becoming predominant, the conventional clocking methodology seems to necessitate innovation in terms of low-cost implementation. Frequency synthesis with active, inductor-less oscillators replacing LC counterparts are reviewed, and solutions for two major drawbacks are proposed. Each solution is verified by prototype chip design, giving a possibility that the inductor-less oscillator may become a proper candidate for future high-speed serial links. To mitigate the high flicker noise of a high-frequency ring oscillator (RO), a reference multiplication technique that effectively extends the bandwidth of the following all-digital phase-locked loop (ADPLL) is proposed. The technique avoids any jitter accumulation, generating a clean mid-frequency clock, overall achieving high jitter performance in conjunction with the ADPLL. Timing constraint for the proper reference multiplication is first analyzed to determine the calibration points that may correct the existent phase errors. The weight for each calibration point is updated by the proposed a priori probability-based least-mean-square (LMS) algorithm. To minimize the time required for the calibration, each gain for the weight update is adaptively varied by deducing a posteriori which error source dominates the others. The prototype chip is fabricated in a 40-nm CMOS technology, and its measurement results verify the low-jitter, high-frequency clock generation with fast calibration settling. The presented work achieves an rms jitter of 177/223 fs at 8/16-GHz output, consuming 12.1/17-mW power. As the second embodiment, an RO-based ADPLL with an analog technique that addresses the high supply sensitivity of the RO is presented. Unlike prior arts, the circuit for the proposed technique does not extort the RO voltage headroom, allowing high-frequency oscillation. Further, the performance given from the technique is robust over process, voltage, and temperature (PVT) variations, avoiding the use of additional calibration hardware. Lastly, a comprehensive analysis of phase noise contribution is conducted for the overall ADPLL, followed by circuit optimizations, to retain the low-jitter output. Implemented in a 40-nm CMOS technology, the frequency synthesizer achieves an rms jitter of 289 fs at 8 GHz output without any injected supply noise. Under a 20-mVrms white supply noise, the ADPLL suppresses supply-noise-induced jitter by -23.8 dB.๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ๊ด€์—ฌ๋˜๋Š” ์ฃผ์š”ํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•˜์—ฌ ๊ธฐ์ˆ ํ•œ๋‹ค. ์ค€์†๋„, ๋‹ค์ค‘ ํ‘œ์ค€ ๊ตฌ์กฐ๋“ค์ด ์ฑ„ํƒ๋˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์— ๋”ฐ๋ผ, ๊ธฐ์กด์˜ ํด๋ผํ‚น ๋ฐฉ๋ฒ•์€ ๋‚ฎ์€ ๋น„์šฉ์˜ ๊ตฌํ˜„์˜ ๊ด€์ ์—์„œ ์ƒˆ๋กœ์šด ํ˜์‹ ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. LC ๊ณต์ง„๊ธฐ๋ฅผ ๋Œ€์‹ ํ•˜์—ฌ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด๊ณ , ์ด์— ๋ฐœ์ƒํ•˜๋Š” ๋‘๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ์ ๊ณผ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๊ฐ ์ œ์•ˆ ๋ฐฉ๋ฒ•์„ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์„ ํ†ตํ•ด ๊ทธ ํšจ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ , ์ด์–ด์„œ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๊ฐ€ ๋ฏธ๋ž˜์˜ ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ์‚ฌ์šฉ๋  ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ์ฃผํŒŒ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ํ”Œ๋ฆฌ์ปค ์žก์Œ์„ ์™„ํ™”์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ๋ฐฐ์ˆ˜ํ™”ํ•˜์—ฌ ๋’ท๋‹จ์˜ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์˜ ๋Œ€์—ญํญ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋Œ€ํ™” ์‹œํ‚ค๋Š” ํšŒ๋กœ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๊ธฐ์ˆ ์€ ์ง€ํ„ฐ๋ฅผ ๋ˆ„์  ์‹œํ‚ค์ง€ ์•Š์œผ๋ฉฐ ๋”ฐ๋ผ์„œ ๊นจ๋—ํ•œ ์ค‘๊ฐ„ ์ฃผํŒŒ์ˆ˜ ํด๋ฝ์„ ์ƒ์„ฑ์‹œ์ผœ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์™€ ํ•จ๊ป˜ ๋†’์€ ์„ฑ๋Šฅ์˜ ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ํ•ฉ์„ฑํ•œ๋‹ค. ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๋ฐฐ์ˆ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํƒ€์ด๋ฐ ์กฐ๊ฑด๋“ค์„ ๋จผ์ € ๋ถ„์„ํ•˜์—ฌ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํŒŒ์•…ํ•œ๋‹ค. ๊ฐ ๊ต์ • ์ค‘๋Ÿ‰์€ ์—ฐ์—ญ์  ํ™•๋ฅ ์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ LMS ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๊ฐฑ์‹ ๋˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ๊ต์ •์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ ์ตœ์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐ ๊ต์ • ์ด๋“์€ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜ ๊ทผ์›๋“ค์˜ ํฌ๊ธฐ๋ฅผ ๊ท€๋‚ฉ์ ์œผ๋กœ ์ถ”๋ก ํ•œ ๊ฐ’์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง€์†์ ์œผ๋กœ ์ œ์–ด๋œ๋‹ค. 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์˜ ์ธก์ •์„ ํ†ตํ•ด ์ €์†Œ์Œ, ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ๋น ๋ฅธ ๊ต์ • ์‹œ๊ฐ„์•ˆ์— ํ•ฉ์„ฑํ•ด ๋ƒ„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” 177/223 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8/16 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ์ „์› ๋…ธ์ด์ฆˆ ์˜์กด์„ฑ์„ ์™„ํ™”์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด ํฌํ•จ๋œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ๊ฐ€ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ์ „์•• ํ—ค๋“œ๋ฃธ์„ ๋ณด์กดํ•จ์œผ๋กœ์„œ ๊ณ ์ฃผํŒŒ ๋ฐœ์ง„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋‚˜์•„๊ฐ€, ์ „์› ๋…ธ์ด์ฆˆ ๊ฐ์†Œ ์„ฑ๋Šฅ์€ ๊ณต์ •, ์ „์••, ์˜จ๋„ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ๋ฏผ๊ฐํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ ์ถ”๊ฐ€์ ์ธ ๊ต์ • ํšŒ๋กœ๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์œ„์ƒ ๋…ธ์ด์ฆˆ์— ๋Œ€ํ•œ ํฌ๊ด„์  ๋ถ„์„๊ณผ ํšŒ๋กœ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ์˜ ์ €์žก์Œ ์ถœ๋ ฅ์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š๋Š” ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ํ•ด๋‹น ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ 289 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋˜ํ•œ, 20 mVrms์˜ ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์—ˆ์„ ๋•Œ์— ์œ ๋„๋˜๋Š” ์ง€ํ„ฐ์˜ ์–‘์„ -23.8 dB ๋งŒํผ ์ค„์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivation 3 1.1.1 Clocking in High-Speed Serial Links 4 1.1.2 Multi-Phase, High-Frequency Clock Conversion 8 1.2 Dissertation Objectives 10 2 RO-Based High-Frequency Synthesis 12 2.1 Phase-Locked Loop Fundamentals 12 2.2 Toward All-Digital Regime 15 2.3 RO Design Challenges 21 2.3.1 Oscillator Phase Noise 21 2.3.2 Challenge 1: High Flicker Noise 23 2.3.3 Challenge 2: High Supply Noise Sensitivity 26 3 Filtering RO Noise 28 3.1 Introduction 28 3.2 Proposed Reference Octupler 34 3.2.1 Delay Constraint 34 3.2.2 Phase Error Calibration 38 3.2.3 Circuit Implementation 51 3.3 IL-ADPLL Implementation 55 3.4 Measurement Results 59 3.5 Summary 63 4 RO Supply Noise Compensation 69 4.1 Introduction 69 4.2 Proposed Analog Closed Loop for Supply Noise Compensation 72 4.2.1 Circuit Implementation 73 4.2.2 Frequency-Domain Analysis 76 4.2.3 Circuit Optimization 81 4.3 ADPLL Implementation 87 4.4 Measurement Results 90 4.5 Summary 98 5 Conclusions 99 A Notes on the 8REF 102 B Notes on the ACSC 105๋ฐ•

    Design of ASIC Based Electrical Impedance Tomography Microendoscopic System for Prostate Cancer Surgical Marginal Assessment

    Get PDF
    Prostate cancer is the second most common cancer in the United States. It is typically treated by surgically excising the cancerous section of the prostate. Because there is not always a visible distinction between the healthy and cancerous sections, surgery often leaves some cancerous tissue behind. This is referred to as a positive surgical margin and it requires adjuvant treatment with adverse side effects. Electrical impedance tomography (EIT) is a low-cost low-form-factor method that can be used to assess surgical marginal intraoperatively to ensure that no cancerous tissue is left behind. EIT-based surgical margin assessment works on the principle that the electrical properties of cancerous tissue are different from those of healthy tissue. These differences are small at lower frequencies but become more pronounced at frequencies of 1 MHz and higher. Unfortunately, previous EIT solutions for surgical marginal assessment have been limited to operating frequencies of less than 1 MHz. This thesis presents a custom application-specific integrated circuit (ASIC) analog front end for performing EIT with a signal-to-noise ratio of 75 dB up to an operating frequency of 10 MHz. The custom ASIC was integrated into a 16-electrode EIT system for surgical marginal assessment. The entire system was tested on a saline phantom with a 2 mm bead that represented a cancerous lesion. The EIT system produced single-frequency and multi-frequency images showing the presence of the inclusion

    Direct digital synthesizers : theory, design and applications

    Get PDF
    Traditional designs of high bandwidth frequency synthesizers employ the use of a phase-locked-loop (PLL). A direct digital synthesizer (DDS) provides many significant advantages over the PLL approaches. Fast settling time, sub-Hertz frequency resolution, continuous-phase switching response and low phase noise are features easily obtainable in the DDS systems. Although the principle of the DDS has been known for many years, the DDS did not play a dominant role in wideband frequency generation until recent years. Earlier DDSs were limited to produce narrow bands of closely spaced frequencies, due to limitations of digital logic and D/A-converter technologies. Recent advantages in integrated circuit (IC) technologies have brought about remarkable progress in this area. By programming the DDS, adaptive channel bandwidths, modulation formats, frequency hopping and data rates are easily achieved. This is an important step towards a "software-radio" which can be used in various systems. The DDS could be applied in the modulator or demodulator in the communication systems. The applications of DDS are restricted to the modulator in the base station. The aim of this research was to find an optimal front-end for a transmitter by focusing on the circuit implementations of the DDS, but the research also includes the interface to baseband circuitry and system level design aspects of digital communication systems. The theoretical analysis gives an overview of the functioning of DDS, especially with respect to noise and spurs. Different spur reduction techniques are studied in detail. Four ICs, which were the circuit implementations of the DDS, were designed. One programmable logic device implementation of the CORDIC based quadrature amplitude modulation (QAM) modulator was designed with a separate D/A converter IC. For the realization of these designs some new building blocks, e.g. a new tunable error feedback structure and a novel and more cost-effective digital power ramp generator, were developed.reviewe
    • โ€ฆ
    corecore