39 research outputs found

    A low-complexity sub-Nyquist sampling system for wideband Radar ESM receivers

    Get PDF
    International audienc

    Non Co-Operative Detection of LPI/LPD Signals Via Cyclic Spectral Analysis

    Get PDF
    This research proposes and evaluates a novel technique for detecting LPI/LPD communication signals using a digital receiver primarily designed to detect radar signals, such as a Radar Warning Receiver (RWR) or an Electronic Support Measures (ESM) receiver. The proposed Cyclic Spectrum Analysis (CSA) receiver is a robust detector that takes advantage of the spectral correlation properties of second-order cyclostationary signals. A computationally efficient algorithm is used to estimate the Spectral Correlation Function (SCF). Using state-of-the-art FFT processing, it is expected that the proposed CSA receiver architecture could estimate the entire cyclic spectrum m approximately 0.6 ms. The estimate is then reduced to an energy related test statistic that is valid for all cycle frequencies within the receiver bandwidth. By producing an estimate of the cyclic spectrum, the CSA receiver also benefits post-detection tasks such as signal classification and exploitation. As modeled, the ideal CSA receiver detection performance is within 1.0 dB of the radiometer in benign signal environments and consistently outperforms the radiometer in adverse signal environments. The effect on detection performance when the CSA receiver is implemented with channelized and quadrature digital receiver architectures is also examined

    Modellbasierte Entzerrung von Analog/Digital-Wandler-Systemen

    Get PDF
    Software Defined Radio/Radar ist als Kennzeichnung moderner Kommunikations- und Radarsysteme ein stehender Begriff geworden. Auf diesem Weg stellt der ADC die kritische Komponente am Übergang von der analogen zur digitalen Signalverarbeitung dar. Die Dissertation untersucht neue SystemansĂ€tze, die das Potential analoger und digitaler Möglichkeiten gleichermaßen ausschöpfen, und fĂŒr RadarempfĂ€nger der nĂ€chsten Generation optimierte und verbesserte Lösungen versprechen

    Journal of Telecommunications and Information Technology, 2005, nr 2

    Get PDF

    Analysis of Emission Source Microscopy Through Simulation

    Get PDF
    In 2016, a method of resolving an electric field radiation source by sampling in the far field was published. The result of this publication was a device, deemed the Emission Source Microscope (ESM). Following these developments, this paper presents a comparison and validation study between results created with an ESM, and a simulated environment which is designed to mimic the operation of a physical ESM. From the developmental process of this study, this paper addresses the issues that arise in Emission Source Microscopy and present best practices associated with application. This paper concludes with a study of this assertion by creating a simulation environment that compares ESM performance using two antennas of differing gain and beamwidth characteristics.Electrical Engineerin

    Photonic Technologies for Radar and Telecomunications Systems

    Get PDF
    The growing interest in flexible architectures radio and the recent progress in the high speed digital signal processor make a software defined radio system an enabling technology for several digital signals processing architecture and for the flexible signal generation. In this direction wireless radar\telecommunications receiver with digital backend as close as possible to the antenna, as well as the software defined signal generation, reaches several benefits in term of reconfigurabilty, reliability and cost with respect to the analogical front-ends. Unfortunately the present scenario ensures direct sampling and digital downconversion only at the intermediate frequency. Therefore these kinds of systems are quite vulnerable to mismatches and hardware non-idealities in particular due to the mixers stages and filtering process. Furthermore, since the limited input bandwidth, speed and precision of the analog to digital converters represent the main digital system‘s bottleneck, today‘s direct radio frequency sampling is only possible at low frequency. On the other hand software defined signals can be generated exploiting direct digital synthesizers followed by an up-conversion to the desired carrier frequency. State-of-the-art synthesizers (limited to few GHz) introduce quantization errors due to digital-to-analog conversion, and phase errors depending on the phase stability of their internal clock. In addition the high phase stability required in modern wireless systems (such as radar systems) is becoming challenging for the electronic RF signal generation, since at high carrier frequency the frequency multiplication processes that are usually exploited reduce the phase stability of the original RF oscillators. Over the past 30 years microwave photonics (MWP) has been defined as the field that study the interactions between microwave and optical waves and their applications in radar and communications system as well as in hybrid sensor‘s instrumentation. As said before software defined radio applications drive the technological development trough high speed\bandwidth and high dynamic range systems operating directly in the radio frequency domain. Nowadays, while digital electronics represent a limit on system performances, photonic technologies perfectly engages the today‘s system needs and offers promising solution thanks to its inherent high frequency and ultrawide bandwidth. Moreover photonic components with very high phase coherence guarantees highly stable microwave carriers; while strong immunity to the electromagnetic interference, low loss and high tunability make a MWP system robust, flexible and reliable. Historical research and development of MWP finds space in a wide range of applications including the generation, distribution and processing of radio frequency signals such as, for example, analog microwave photonic link, antenna remoting, high frequency and low noise photonic microwave signal generation, photonic microwave signal processing (true time delay for phased array systems, tunable high Q microwave photonic filter and high speed analog to digital converters) and broadband wireless access networks. Performances improvement of photonic and hybrid devices represents a key factor to improve the development of microwave photonic systems in many other applications such as Terahertz generation, optical packet switching and so on. Furthermore, advanced in silicon photonics and integration, makes the low cost complete microwave photonic system on chip just around the corner. In the last years the use of photonics has been suggested as an effective way for generating low phase-noise radio frequency carriers even at high frequency. However while a lot of efforts have been spent in the photonic generation of RF carriers, only few works have been presented on reconfigurable phase coding in the photonics-based signal generators. In this direction two innovative schemes for optically generate multifrequency direct RF phase modulated signals have been presented. Then we propose a wideband ADC with high precision and a photonic wireless receiver for sparse sensing. This dissertation focuses on microwave photonics for radar and telecommunications systems. In particular applications in the field of photonic RF signal generation, photonic analog to digital converters and photonic ultrawideband radio will be presented with the main objective to overcome the limitations of pure electrical systems. Schemes and results will be further detailed and discussed. The dissertation is organized as follows. In the first chapter an overview of the MWP technologies is presented, focusing the attention of the limits overcame by using hybrid optoelectronic systems in particular field of applications. Then optoelectronic devices are introduced in the second chapter to better understand their role in a MWP system. Chapters 3,4, and 5 present results on photonic microwave signal generation, photonic wideband analog to digital converters and photonic ultrawideband up\down converter for both radar and telecommunications applications. Finally in the chapter 6 an overview of the photonic radar prototype is given
    corecore