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Abstract—Multicoset sampling scheme is a technique to
achieve high-speed sampling rate, using a bank of lower-rate
sampling channels. In this technique, each channel samples with
a small delay with respect to the other channels. As a result, we
often can reconstruct the high bandwidth input signal, by wisely
combining the information from different channels. However, in
many applications, the reconstruction is not the goal. Here, we
consider an application, i.e. Radar Electronic Surveillance, in
which the aim is the detection and identification of the incoming
Radar pulses. As the sampling rate is very high, e.g. up to tens of
Giga samples per second, we also need a fast detection scheme. We
have recently proposed an efficient multicoset sampling technique,
called LoCoMC, which is based on the thresholding for the
detection and combining the information from different channels,
to extract pulses. We here present an analytical investigation of
the thresholding based detection and demonstrate how to choose
the thresholding parameter. We then show that the algorithm can
be competitive with a state of the art algorithm in performance,
while it is computationally very cheap.

I. INTRODUCTION

There are many applications which need a very fast front-
end analog to digital converters (ADC) before application
of any digital signal processing. Some of such applications
are spectrum sensing for cognitive radio [1] and electronic
surveillance [2]. In these applications, we do not often use
a full-band ADC for practical reasons, e.g. cost, weight and
power consumption. The standard sub-optimal technique is
based on the sweeping, where we each time only monitor
some parts of the band and switch to another band in the next
time period. Such an approach in Radar electronic surveillance
is called Rapid Swept Superheterodyne Receiver (RSSR).
However, sweeping techniques are not sensitive to the short-
period events. As a result, many modifications have been
proposed to compensate such a short-coming [2]. Most of
such techniques are using multiple channels to simultane-
ously monitor a wider band. When the system has as many
sub-ADC’s as the downsampling factor, the ADC is called
a time-interleaved ADC [3]. The implementation of a fast
ADC needs accurate delay generation and a full-band Track
and Hold (T&H) [4], [5]. Such an equivalence between the
downsampling factor and the number of channels restricts
us to a low downsampling ratio. On the other hand, we
know that the signal of interest may have structures, which
can be used to significantly reduce the number of necessary
channels for successful signal reconstruction. The Multicoset

(MC) sampling scheme [6] is one of such approaches, which
uses the sparsity of the signals in some transform domain,
e.g. Fourier domain. Canonical multicoset sampling uses a
subspace method to reconstruct the signal with a variant of
the MUSIC technique [7]. An alternative technique is using
an inspired method from compressed sensing, called spectrum
blind MC sampling, when the signal is band-sparse [8], i.e. a
few band out of whole spectrum is occupied. Both methods
are computationally expensive, particularly considering desired
sampling rates, e.g. multi-Giga samples per second. A new
approach has been presented in [9], which breaks the large
problem to some small size sparse approximation subproblems,
and solves them with a fast greedy technique. In this approach,
we still need to use an iterative method, which may not be easy
to implement it in the real time.

We proposed a new low-computational complexity MC in
[10], which is called a Low Complexity MultiCoset (LoCoMC)
sampling. The front-end analog part of LoCoMC is similar
to other multicoset samplers, which includes a delay and a
sub-ADC in each channel and they sample with the same,
but a fraction of the Nyquist rate, see [6] for more details on
MC sampling framework. The selection of the delays here is
different and follows a rule which provides us a nice property
in the Harmonic frame which we use later for the sub-band
classification. This part of the Multicoset sampler can be
interpreted as a subselection of a time-interleaved ADC, for
which some efficient fabrications have already been proposed,
see for example [11]. As we only need fewer channels than a
time-interleaved ADC, the hardware would be simpler, smaller
and less power hungry.

The main difference between LoCoMC and other Mul-
ticoset sampling schemes is on the digital part, where we
reconstruct the signal. As the aim is to reduce the compu-
tational complexity, we proposed a new fast reconstruction
technique which is based on some simple linear transforms
and low-complexity non-linear operators, e.g. absolute value
and comparison. In an even more efficient implementation of
the LoCoMC [12], we replaced the digital fractional delay and
the time-frequency (TF) transform in the original framework
[10], with a fractionally delayed TF transform which auto-
matically accommodates the fractional delay and avoids the
errors introduced by an independent DFD filter, see Figure 1.
In the subband classifier, we received outputs of each channel,
which are similar in magnitude and their phases are different.



Such phased differences help us to robustly identify the correct
location of active area in the aliased signals and transfer it to
the correct location in the original TF domain, i.e. de-alias the
signal. To this end, a Harmonic frame has been used which
can identify the exact locations, from noisy observations. We
choose a set of delays such that the corresponding Harmonic
frame is an Equiangular Tight Frame (ETF), to have a robust
band allocation. The delay selection can be done off-line by
exhaustive search as the size of the Frame is very small i.e.
number of channels. It is worth mentioning that the recovery
will be exact, if the signal has a property in the TF domain,
called the Approximate Disjoint Aliased Support (ADAS) [10],
where after the spectrum folding caused by aliasing, no two
active TF bins overlaps. While this is not true for all signals,
Radar ES signals are very sparse and as a result they satisfy
this condition, with a high probability. For more detailed
description of the LoCoMC framework, we refer the reader
to [10] and [12].

We here discuss the back-end of an Radar early warning
ES, where the task is to detect and identify incoming pulses.
In such systems, it is not necessary to fully reconstruct the
signal for the detection of pulses. This task is sometimes
more difficult than a simple signal reconstruction. We will
explain a new simple TF based detection and pulse centre
identification, using a multicoset sampling scheme. A Constant
False Alarm Rate (CFAR) analysis for the parameter selection
is presented in this paper. A different CFAR analysis for the
compressive measurement has been presented in [13], where a
classical random Fourier subsampling was used as the sensing
structure. As this approach needs to solve an `1 optimisation,
the authors proposed to use complex approximate message
passing (CAMP) algorithm. While CAMP is generally a fast
solver, it is still an iterative technique, which would be difficult
to have a real-time implementation in a multi-GHz sampling
setting.

In the following, we first present the preliminary Math-
ematical tools for a constant false alarm analysis. We then
explain how to detect TF-centres of the incoming pulses
based on the Multicoset thresholding. We then explain how
to calculate the threshold parameter. We finally compare the
performance of the proposed technique with the Nyquist rate
and RSSR type samplings.

A. Preliminaries

If the pdf’s of random variables X1 and X2 are respectively
fX1(x) and fX2(x), the pdf of their sum X̂ := X1 +X2 can
be found by [14],

f bX(x̂) =
∫ +∞

−∞

∫ x̂−x2

−∞
fX1(x1)fX2(x2)dx1dx2

=
∫ +∞

−∞
fX1(x̂− x2)fX2(x2)dx2

= (fX1 ∗ fX2)(x̂)

The convolution can be more efficiently calculated in the
inverse Fourier domain as follows,

F bX(ω̂) = FX1(ω)FX2(ω) (1)

Fractionally delayed TF 

Transform with

Fractionally delayed TF 

Transform with

Fig. 1. Low-Complexity sub-Nyquist sampling system (LoCoMC).

where FX1 and FX2 are respectively the characteristic func-
tions of fX1 and fX2 , and then calculate Fourier transform of
F bX(ω̂).

II. MULTICOSET THRESHOLDING DETECTION

In a Multicoset sampling system, we have delayed versions
of the input signal. Such a delay appears as a change in the
phase of the aliased signals. On the other hand, sub-ADC’s
sample at different time instances. We can then assume that
the additive noise in different channels are independent, e.g.
i.i.d. zero-mean Gaussian. Similar to the Nyquist rate TF
detection, we calculate the STFT’s of Multicoset signals. We
recall that applying such STFT’s would be much simpler than
applying it to the Nyquist rate sampled signals. The reason is in
the dimensionality reduction of the downsampling operation,
which generates aliasing signals.

When the signal is sampled with the Nyquist rate, we can
simply apply a threshold to the STFT coefficient magnitudes
and identify the active areas in the TF plain. While we
can similarly apply this process to a single channel, it will
practically be better to use the information from all channels,
to average out the noise. For this reason, we need to calibrate
Multicoset signals, by inverse delaying each channel, with the
corresponding delay factor. Such a process is automatically
embedded in LoCoMC, when we use Fractionally delayed TF
transforms.

In the next stage of the detection/identification, we need
to combine connected/closed active areas, to identify the total
active area of each pulse. We also need to cancel isolated active
cells in the TF plain and remove some noise artefacts. We also
note the centre of each group of connected/closed active bins,
as the centre of a pulse. In this case, we can have a comparison
between different approaches in the TF pulse centres recovery.

To have a reliable pulse detection, we need the energy
of each pulse be generally larger than the noise level. Based
on using a local noise level estimation or some assumptions
about the noise level, we can theoretically find a thresholding
level that the noise energy is often lower than individual
pulse energy, but with the given rate of false alarms. In the
next section, we use the standard CFAR analysis for the
ES [2], and extend it for the Multicoset-thresholding based
detection/identification.

III. CONSTANT FALSE ALARM RATE ANALYSIS

The analysis of false alarm for the Gaussian I and Q
input channels in the Radar ES [2], will be derived in some
steps. We separately investigate the effect of each part of
the Multicoset-thresholding detector, and combine them all



to derive a threshold, which guarantees a given CFAR. We
assume that the additive noise on each sample has Gaussian
real and imaginary parts. If X and Y are i.i.d. Gaussian random
processes, with the probability density functions (pdf),

fX(x) =
1√
2πσ

e
−x2

2σ2 , fY (y) =
1√
2πσ

e
−y2

2σ2 ,

we can formulate an instance of the measurement noise process
Z as follows,

z = x+ iy

= re−iφ

where 0 ≤ r and 0 ≤ φ ≤ 2π are respectively the magnitude
and phase of z and i =

√
−1. r and φ can be respectively

interpreted as instances of random processes R and Φ. It is
easy to check that R has a Rayleigh distribution in this setting,
e.g. see [2, Chapter 9].

A. Multichannel and Complex Combination of Noises:

If we have q channels in the Multicoset sampling system,
we simply add the corresponding values of channels to average
over the noise. In this setting, we can derive the pdf of the real
part of noise, using the formulation of (1) as follows,

fX(x) = fX(
q∑
l=1

xl) =
1√

2qπσ
e
− x2

2qσ2 , (2)

where x =
∑q
l=1 xl is the total noise of one channel. The pdf

of the imaginary part can be calculated similar to (2). We can
now calculate fR(r) by marginalising fX(x)fY (y) over φ as
follows,

fR(r) =
∫ 2π

0

rfX(r cosφ)fY (r sinφ)dφ

=
∫ 2π

0

r

2πqσ2
e
−(r2 cos2 φ+r2 sin2 φ)

2qσ2 dφ

=
∫ 2π

0

r

2πqσ2
e
−r2

2qσ2 dφ

=
r

qσ2
e
−r2

2qσ2 .

B. Windowed Fourier Signals:

We now investigate the effect of windowing and transform-
ing into the Fourier domain. Let the window be presented by a
vector w = [wl]1≤l≤N , for a length-N window. As the window
is applied first, i.e. zi = wixi, we can derive the effect of
windowing on X ∼ N (0, σX), as follows,

E{zHi zi} = w2
iE{xHx}

= w2
i σ

2
X = (wiσX)2

The kth element of the Fourier transform of the windowed
signal z can be calculated as follows,

z̄k =
N∑
j=1

e−
i2πkj
N zj

where bar sign indicates that the signal is in the Fourier
domain. We can then calculate the power spectral density as
follows,

E{z̄2
k} =

N∑
j′=1

N∑
j=1

e−
−i2πk(j−j′)

N E{zHj zj′}

=
N∑
j′=1

N∑
j=1

e−
−i2πk(j−j′)

N w∗jwj′E{xHj xj′}

= σ2
N∑
j=1

w2
j

(3)

To derive the third equation in (3) we used the fact that xj
and xj′ are independent for j 6= j′. To have an analogy with
the case that there is a rectangular window, we normalise
the window to have

∑N
j=1 w

2
j = N . We can then have

E{z̄2
k} = Nσ2

X . In other words, using a rectangular window
magnifies the variance with a factor of O(N), but, of course
the amplitude of a single tone can be magnified by N, leading
to the well-known result that the signal to noise ratio in this
case is improved by a factor of N. Other windows will spread
the signal across multiple elements of the Fourier transform,
reducing the gain slightly as tabulated in [15].

C. Threshold Setting

In the multicoset sampling, we have a bank of down-
sampled versions of the signals. If we downsample with a
factor of L, the window length would be reduced to N/L, to
observe the same structure in the Frequency domain. As it was
mentioned earlier, we add the signals from different channels
before applying the Frequency domain thresholding detection.

Let we have q channels, each downsampled with a factor
of L. We can use the standard false alarm analysis to derive
the probability of false alarms Pfa as follows,

Pfa =
∫ ∞
τ

fR(r)
∣∣∣∣√
Nσ

dr

=
∫ ∞
τ

rL

qNσ2
e
− Lr2

2qNσ2 dr

=e−
Lτ2

2qNσ2

where τ is the thresholding parameter. We can then easily
calculate τ for a fixed probability of false alarm as follows,

τ =
√
−2
( q
L

)
Nσ2 lnPfa. (4)

IV. SIMULATIONS

The setting for evaluating the proposed Multicoset-
thresholding detector, is very similar to [10]. We used the
pulse information provided by Thales UK, which is a set
of pulse descriptor words in X-band. For simplification, we
demodulated the active bandwidth of 1.4 GHz to the baseband
and used q = 4 sub-ADC’s. We also downsampled with a
factor of L = 13, i.e. 1400/13 ≈ 108 MHz, which approxi-
mately provides the total undersampling rate of 3. STFT used



Fig. 2. Time-Frequency plots of recovered signals and pulses TF centres
(indicated by stars). Nyquist rate system (left column), LoCoMC (middle
column) and RSSR (right column)

a Hann (cosine-squared) window [15] of length N = 1014,
i.e. 13×78, with half length overlapping between consecutive
windows. Each STFT therefore contains data from a period of
724 ns. The set of delays in the Multicoset system was selected
c = [6 7 10 12], which generates a Harmonic equiangular tight
frame of size 4× 13. The input SNR was 14.94 dB. We also
selected the ratio between the magnitudes of the largest to the
smallest pulses to be twenty.

The proposed Multicoset sampling scheme generates 78
opportunites for a false alarm every STFT. With 50% overlap,
this corresponds to about 2×108 opportunities for a false alarm
per second so a false alarm probability of Pfa = 10−6 would
be expected to give rise to about 200 false pulses per second.

For comparison, we used an RSSR system, which used
2 sub-ADC’s, with overlapping in time to compensate the
windowing artefacts, each with 6-times undersampling. This
gives an overall undersampling rate of 3. We assumed an
ideal switch-over between different bands in RSSR, i.e. no
delay, to eliminate the switch-over error. We also used a full
Nyquist rate sampling system as a reference. We have shown
three different parts of the signal in Figure 2, which are a
train of pulses (top row), two closed individual pulses (middle
row) and a linear chirp (bottom row). The outputs of the
Nyquist, LoCoMC and RSSR detectors are respectively shown
from left to right. The identified pulse centres are shown with
white stars. In this experiment, the reconstructed signal using
LoCoMC has a higher SNR, which is due to noise cancellation,
and all pulses are correctly recovered. In a contrast, RSSR fails
to recover some of pulses and reduces the processing gain in
long pulses and chirps. It is also clear that we need to combine
sets of active TF bins with larger distances to compensate
the TF sweeping artefact, i.e. missing some parts of the long
pulses/chirps by looking to another part of TF domain. While
this helps us to successfully recover the centre of a chirp, i.e.
bottom right, we misidentify the pulses in the middle-right
panel, where two pulses are closed.

We ran the simulations with a slightly longer signal, with
the input SNR of 20.97 dB. If we use the thresholding

Fig. 3. Time-Frequency locations of pulses: original location (stars) and
identified locations (circles). Nyquist rate, LoCoMC and RSSR methods are
respectively shown on the top, middle and bottom panels.

Fig. 4. Average True Positive (top) and False Positive (bottom) figures with
different input SNR’s.

detection with the explained techniques, i.e. Nyquist, LoCoMC
and RSSR, we get the results showing in Figure 3, where
the original TF location of the pulses/chirps are shown with
stars and detected locations are shown with circles. This figure
shows that the proposed Multicoset detection algorithm, with
the derived threshold in (4), can precisely recover the exact
locations in high SNR.

Sometimes we are interested to use the Radar ES early
warning systems in the low-SNR scenario. We already know
that the noise-folding artefact reduces the effective SNR in
Multicoset and compressive sensing systems [16]. We therefore
repeated the simulations for a very long signal, i.e. more than
fifty thousand pulses (about 350 ms), to farther investigate
such a setting. As there are many circumstances that the



recovery of TF pulse centres are challenging, all sampling
techniques fail to correctly detect some pulses. This cases
include overlapping pulses, too close pulses and short pulses
in very noisy measurements. In a very low SNR, some of the
pulses will be buried in the noise, particularly in the Multicoset
and CS based systems. We have respectively plotted the actual
true positive and false positive rates in the top and bottom
panels of Figure 4. The performance of LoCoMC locates
between the two compared techniques, while its complexity
is roughly the same as RSSR. We observe that, while for high
SNR the performance is close to the Nyquist rate sampling
setting, it is getting closed to the RSSR performance for low
SNR’s.

The percentage of false positives is the number of false
positives expressed as a percentage of the number of pulses
actually present in the data set. Note that we would expect
about 70 false positive due to noise over 350ms, i.e. a false
positive rate due to noise of 0.14%. In fact most of the false
positives are due to spurious detections associated with the
edges (in either time or frequency) of genuine pulses. This
explanation is supported by the fact that the false pulse rate
increases with signal to noise ratio, whereas the rate of false
pulses due to noise will be independent of the signal to noise
ratio.

V. CONCLUSION

A new method was proposed here to reduce the complexity
of high speed Radar ES early warning systems, using the
signal models and a Multicoset sampling scheme. We here
presented a thresholding based detection algorithm and derive
the relation between threshold parameter and CFAR. We can
then use the optimal parameter for the Radar pulse detection
and identification. We presented the statistical figures of the
proposed algorithm and compared with Nyquist rate system
and a well-known technique, i.e. RSSR. The performance of
the LoCoMC is comparable with the Nyquist rate system
in a high SNR setting, while it is computationally simpler.
LoCoMC also performs better than RSSR in all investigated
simulations, which may be due to the continuously monitoring
property of LoCoMC.
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