76 research outputs found

    A low complexity Wyner-Ziv coding solution for Light Field image transmission and storage

    Full text link
    Compressing Light Field (LF) imaging data is a challenging but very important task for both LF image transmission and storage applications. In this paper, we propose a novel coding solution for LF images using the well-known Wyner-Ziv (WZ) information theorem. First, the LF image is decomposed into a fourth-dimensional LF (4D-LF) data format. Using a spiral scanning procedure, a pseudo-sequence of 4D-LF is generated. This sequence is then compressed in a distributed coding manner as specified in the WZ theorem. Secondly, a novel adaptive frame skipping algorithm is introduced to further explore the high correlation between 4D-LF pseudo-sequences. Experimental results show that the proposed LF image compression solution is able to achieve a significant performance improvement with respect to the standard, notably around 54% bitrate saving when compared with the standard High Efficiency Video Coding (HEVC) Intra benchmark while requiring less computational complexity

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Adaptive Content Frame Skipping for Wyner–Ziv-Based Light Field Image Compression

    Full text link
    Light field (LF) imaging introduces attractive possibilities for digital imaging, such as digital focusing, post-capture changing of the focal plane or view point, and scene depth estimation, by capturing both spatial and angular information of incident light rays. However, LF image compression is still a great challenge, not only due to light field imagery requiring a large amount of storage space and a large transmission bandwidth, but also due to the complexity requirements of various applications. In this paper, we propose a novel LF adaptive content frame skipping compression solution by following a Wyner–Ziv (WZ) coding approach. In the proposed coding approach, the LF image is firstly converted into a four-dimensional LF (4D-LF) data format. To achieve good compression performance, we select an efficient scanning mechanism to generate a 4D-LF pseudo-sequence by analyzing the content of the LF image with different scanning methods. In addition, to further explore the high frame correlation of the 4D-LF pseudo-sequence, we introduce an adaptive frame skipping algorithm followed by decision tree techniques based on the LF characteristics, e.g., the depth of field and angular information. The experimental results show that the proposed WZ-LF coding solution achieves outstanding rate distortion (RD) performance while having less computational complexity. Notably, a bit rate saving of 53% is achieved compared to the standard high-efficiency video coding (HEVC) Intra codec.</jats:p

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Distributed Video Coding: Selecting the Most Promising Application Scenarios

    Get PDF
    Distributed Video Coding (DVC) is a new video coding paradigm based on two major Information Theory results: the Slepian–Wolf and Wyner–Ziv theorems. Recently, practical DVC solutions have been proposed with promising results; however, there is still a need to study in a more systematic way the set of application scenarios for which DVC may bring major advantages. This paper intends to contribute for the identification of the most DVC friendly application scenarios, highlighting the expected benefits and drawbacks for each studied scenario. This selection is based on a proposed methodology which involves the characterization and clustering of the applications according to their most relevant characteristics, and their matching with the main potential DVC benefits

    High-Quality Symmetric Wyner–Ziv Coding Scheme for Low-Motion Videos

    Get PDF
    Traditional Wyner-Ziv video coding (WZVC) structures require either intra (Key) or Wyner-Ziv (WZ) coding of frames. Unfortunately, keeping the video quality approximately constant implies drastic bit-rate fluctuations because consecutive frames of different types (Key or WZ) present significantly different compression performances. Moreover, certain scenarios severely limit rate fluctuation. This work proposes a WZVC scheme with low bit-rate fluctuations based on a symmetric coding structure. First, this work investigates the performance of a generic nonasymmetric distributed source coding structure, showing that the low-density parity-check accumulate channel decoding method is best suited. This is used as a basis to design a symmetric WZVC scheme in which every input video frame is divided into four parallel subframes through subsampling, and then the subframes are encoded by using a symmetric method. Compared with the traditional asymmetric WZVC scheme, the proposed scheme can achieve higher bit-rate stability over time, which is a great advantage to guarantee a reliable transmission in many wireless communication application environments in which bit-rate fluctuations are strongly constrained. Simulation results show the effectiveness of the proposed symmetric WZVC scheme in maintaining a steady bit rate and quality, as well as a quality comparison with the traditional WZVC scheme

    Distributed Coding/Decoding Complexity in Video Sensor Networks

    Get PDF
    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    Towards practical distributed video coding

    Get PDF
    Multimedia is increasingly becoming a utility rather than mere entertainment. The range of video applications has increased, some of which are becoming indispensable in modem lifestyle. Video surveillance is one area that has attracted significant amount of focus and also benefited from considerable research effort for development. However, it is noted that there is still a notable technological gap between an ideal video surveillance platform and the available solutions, mainly in the form of the encoder and decoder complexity balance and the associated design costs. In this thesis, we tocus on an emerging technology, Distributed Video Coding (DVC), which is ideally suited for the video surveillance scenario, and fits many other potential applications too.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore