90,684 research outputs found

    Dynamic load balancing strategies in heterogeneous distributed system

    Get PDF
    Distributed heterogeneous computing is being widely applied to a variety of large size computational problems. This computational environments are consists of multiple het- erogeneous computing modules, these modules interact with each other to solve the prob-lem. Dynamic load balancing in distributed computing system is desirable because it is an important key to establish dependability in a Heterogeneous Distributed Computing Systems (HDCS). Load balancing problem is an optimization problem with exponential solution space. The complexity of dynamic load balancing increases with the size of a HDCS and becomes difficult to solve effectively. The solution to this intractable problem is discussed under different algorithm paradigm.The load submitted to the a HDCS is assumed to be in the form of tasks. Dynamic allocation of n independent tasks to m computing nodes in heterogeneous distributed computing system can be possible through centralized or decentralized control. In central-ized approach,we have formulated load balancing problem considering task and machine heterogeneity as a linear programming problem to minimize the time by which all task completes the execution in makespan.The load balancing problem in HDCS aims to maintain a balanced allocation of tasks while using the computational resources. The system state changes with time on arrival of tasks from the users. Therefore,heterogeneous distributed system is modeled as an M/M/m queue. The task model is represented either as a consistent or an inconsistent expected time to compute (ETC) matrix. A batch mode heuristic has been used to de-sign dynamic load balancing algorithms for heterogeneous distributed computing systems with four different type of machine heterogeneity. A number of experiments have been conducted to study the performance of load balancing algorithms with three different ar-rival rate for the task. A better performance of the algorithms is observed with increasing of heterogeneity in the HDCS.A new codification scheme suitable to simulated annealing and genetic algorithm has been introduced to design dynamic load balancing algorithms for HDCS. These stochastic iterative load balancing algorithms uses sliding window techniques to select a batch of tasks, and allocate them to the computing nodes in the HDCS. The proposed dynamic genetic algorithm based load balancer has been found to be effective, especially in the case of a large number of tasks

    mGrid: A load-balanced distributed computing environment for the remote execution of the user-defined Matlab code

    Get PDF
    BACKGROUND: Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. RESULTS: mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. CONCLUSION: Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet

    Improvement of Data-Intensive Applications Running on Cloud Computing Clusters

    Get PDF
    MapReduce, designed by Google, is widely used as the most popular distributed programming model in cloud environments. Hadoop, an open-source implementation of MapReduce, is a data management framework on large cluster of commodity machines to handle data-intensive applications. Many famous enterprises including Facebook, Twitter, and Adobe have been using Hadoop for their data-intensive processing needs. Task stragglers in MapReduce jobs dramatically impede job execution on massive datasets in cloud computing systems. This impedance is due to the uneven distribution of input data and computation load among cluster nodes, heterogeneous data nodes, data skew in reduce phase, resource contention situations, and network configurations. All these reasons may cause delay failure and the violation of job completion time. One of the key issues that can significantly affect the performance of cloud computing is the computation load balancing among cluster nodes. Replica placement in Hadoop distributed file system plays a significant role in data availability and the balanced utilization of clusters. In the current replica placement policy (RPP) of Hadoop distributed file system (HDFS), the replicas of data blocks cannot be evenly distributed across cluster\u27s nodes. The current HDFS must rely on a load balancing utility for balancing the distribution of replicas, which results in extra overhead for time and resources. This dissertation addresses data load balancing problem and presents an innovative replica placement policy for HDFS. It can perfectly balance the data load among cluster\u27s nodes. The heterogeneity of cluster nodes exacerbates the issue of computational load balancing; therefore, another replica placement algorithm has been proposed in this dissertation for heterogeneous cluster environments. The timing of identifying the straggler map task is very important for straggler mitigation in data-intensive cloud computing. To mitigate the straggler map task, Present progress and Feedback based Speculative Execution (PFSE) algorithm has been proposed in this dissertation. PFSE is a new straggler identification scheme to identify the straggler map tasks based on the feedback information received from completed tasks beside the progress of the current running task. Straggler reduce task aggravates the violation of MapReduce job completion time. Straggler reduce task is typically the result of bad data partitioning during the reduce phase. The Hash partitioner employed by Hadoop may cause intermediate data skew, which results in straggler reduce task. In this dissertation a new partitioning scheme, named Balanced Data Clusters Partitioner (BDCP), is proposed to mitigate straggler reduce tasks. BDCP is based on sampling of input data and feedback information about the current processing task. BDCP can assist in straggler mitigation during the reduce phase and minimize the job completion time in MapReduce jobs. The results of extensive experiments corroborate that the algorithms and policies proposed in this dissertation can improve the performance of data-intensive applications running on cloud platforms

    Load Balancing in Distributed Cloud Computing: A Reinforcement Learning Algorithms in Heterogeneous Environment

    Get PDF
    Balancing load in cloud based is an important aspect that plays a vital role in order to achieve sharing of load between different types of resources such as virtual machines that lay on servers, storage in the form of hard drives and servers. Reinforcement learning approaches can be adopted with cloud computing to achieve quality of service factors such as minimized cost and response time, increased throughput, fault tolerance and utilization of all available resources in the network, thus increasing system performance. Reinforcement Learning based approaches result in making effective resource utilization by selecting the best suitable processor for task execution with minimum makespan. Since in the earlier related work done on sharing of load, there are limited reinforcement learning based approaches. However this paper, focuses on the importance of RL based approaches for achieving balanced load in the area of distributed cloud computing. A Reinforcement Learning framework is proposed and implemented for execution of tasks in heterogeneous environments, particularly, Least Load Balancing (LLB) and Booster Reinforcement Controller (BRC) Load Balancing. With the help of reinforcement learning approaches an optimal result is achieved for load sharing and task allocation. In this RL based framework processor workload is taken as an input. In this paper, the results of proposed RL based approaches have been evaluated for cost and makespan and are compared with existing load balancing techniques for task execution and resource utilization.

    Applications Sharing using Binding Server for Distributed Environment

    Get PDF
    Abstract Today's environment is a fast growing environment and data is distributed for the expansion of computation. Distributed computing has a major issue such as how to share a data, how to locate the services and how to make it scalable. When a limited number of nodes are available and load of running application is more as well as overhead are also major then sharing of applications among the node will definitely improve the performance of system. Locating the registered nodes to the binding server is located by making remote procedure call. Using appropriate load balancing technique threshold value will be calculated and sharing of the application on node are performed and utilization of processor as well as resources can be balanced accordingly

    PHR: A parallel hierarchical radiosity system with dynamic load balancing

    Get PDF
    In this paper, we present a parallel system called PHR for computing hierarchical radiosity solutions of complex scenes. The system is targeted for multi-processor architectures with distributed memory. The system evaluates and subdivides the interactions level by level in a breadth first fashion, and the interactions are redistributed at the end of each level to keep load balanced. In order to allow interactions freely travel across processors, all the patch data is replicated on all the processors. Hence, the system favors load balancing at the expense of increased communication volume. However, the results show that the overhead of communication is negligible compared with total execution time. We obtained a speed-up of 25 for 32 processors in our test scenes. © 2005 Springer Science + Business Media, Inc

    Redundant movements in autonomous mobility: experimental and theoretical analysis

    Get PDF
    <p>Distributed load balancers exhibit thrashing where tasks are repeatedly moved between locations due to incomplete global load information. This paper shows that systems of autonomous mobile programs (AMPs) exhibit the same behaviour, and identifies two types of redundant movement (greedy effect). AMPs are unusual in that, in place of some external load management system, each AMP periodically recalculates network and program parameters and may independently move to a better execution environment. Load management emerges from the behaviour of collections of AMPs.</p> <p>The paper explores the extent of greedy effects by simulating collections of AMPs and proposes negotiating AMPs (NAMPs) to ameliorate the problem. We present the design of AMPs with a competitive negotiation scheme (cNAMPs), and compare their performance with AMPs by simulation. We establish new properties of balanced networks of AMPs, and use these to provide a theoretical analysis of greedy effects.</p&gt
    corecore