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ABSTRACT

MapReduce, designed by Google, is widely used as the most popular distributed programming

model in cloud environments. Hadoop, an open-source implementation of MapReduce, is a data

management framework on large cluster of commodity machines to handle data-intensive applica-

tions. Many famous enterprises including Facebook, Twitter, and Adobe have been using Hadoop

for their data-intensive processing needs. Task stragglers in MapReduce jobs dramatically im-

pede job execution on massive datasets in cloud computing systems. This impedance is due to

the uneven distribution of input data and computation load among cluster nodes, heterogeneous

data nodes, data skew in reduce phase, resource contention situations, and network configurations.

All these reasons may cause delay failure and the violation of job completion time. One of the

key issues that can significantly affect the performance of cloud computing is the computation

load balancing among cluster nodes. Replica placement in Hadoop distributed file system plays a

significant role in data availability and the balanced utilization of clusters. In the current replica

placement policy (RPP) of Hadoop distributed file system (HDFS), the replicas of data blocks

cannot be evenly distributed across cluster’s nodes. The current HDFS must rely on a load bal-

ancing utility for balancing the distribution of replicas, which results in extra overhead for time

and resources. This dissertation addresses data load balancing problem and presents an innova-

tive replica placement policy for HDFS. It can perfectly balance the data load among cluster’s

nodes. The heterogeneity of cluster nodes exacerbates the issue of computational load balancing;

therefore, another replica placement algorithm has been proposed in this dissertation for hetero-

geneous cluster environments. The timing of identifying the straggler map task is very important

for straggler mitigation in data-intensive cloud computing. To mitigate the straggler map task,

Present progress and Feedback based Speculative Execution (PFSE) algorithm has been proposed

in this dissertation. PFSE is a new straggler identification scheme to identify the straggler map

tasks based on the feedback information received from completed tasks beside the progress of the
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current running task. Straggler reduce task aggravates the violation of MapReduce job comple-

tion time. Straggler reduce task is typically the result of bad data partitioning during the reduce

phase. The Hash partitioner employed by Hadoop may cause intermediate data skew, which re-

sults in straggler reduce task. In this dissertation a new partitioning scheme, named Balanced

Data Clusters Partitioner (BDCP), is proposed to mitigate straggler reduce tasks. BDCP is based

on sampling of input data and feedback information about the current processing task. BDCP

can assist in straggler mitigation during the reduce phase and minimize the job completion time in

MapReduce jobs. The results of extensive experiments corroborate that the algorithms and policies

proposed in this dissertation can improve the performance of data-intensive applications running

on cloud platforms.
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CHAPTER 1: INTRODUCTION

The advances in Information Technology and the storage demands of cloud computing have been

growing rapidly in the last few years. Storage systems are under intense pressure due to the ex-

plosive growth of data amount generated through many distributed applications, such as search

engines, social networking sites, grid computing applications, data mining applications, etc. An

efficient file system is required to store internet generated large data and effective handling of

huge files. Cloud computing is an emerging technology that attracts data service providers offer-

ing tremendous opportunities for online distribution of services. It offers computing as a utility,

sharing resources of expandable data centers [2]. End users can benefit from the convenience of

accessing data and services globally, centrally managed backups, and high computational .

1.1 Mapreduce

The rapid growth of information and data in the age of data explosion in industry and research

poses tremendous opportunities, as well as tremendous computational challenges. To manage the

immense volumes of data, users have needed new systems to scale out computations to multiple

nodes. Modern cloud datacenters are composed of thousands of servers to support the increasing

demand on cloud computing. Due to the large scale of the data-intensive jobs, the only feasible

way to solve them while fulfilling Quality of Service (QoS) requests is to partition them into small

tasks which can be processed in parallel across many computing nodes [4]. MapReduce, designed

by Google, has been widely used as the most popular distributed programming model for parallel

processing of massive datasets (usually greater than 1 TB) in cloud environments. It divides a large

computation into small tasks and assigns them to multiple computational cluster of nodes running

in parallel. MapReduce is unique in reliability, and scalability to large clusters of inexpensive com-

modity computers. It automatically partitions a job into multiple tasks and transparently handles
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parallel tasks execution and complexity of fault tolerance from the programmer in a distributed

manner [69].

MapReduce consists of two main phases: map, and reduce. Tasks are distributed to cluster

of processing nodes during Map and Reduce phases. During Map phase, chunks of the huge data

sets are processed concurrently on individual computers in the cluster. The Map function is applied

to an individual input record to compute a set of intermediate key/value pairs. For each key, Reduce

works on the list of all values with this key [35]. Reduce phase has 3 steps: shuffle, sort, and reduce.

Shuffle starts when the data is collected by the reducer from each mapper. Shuffle may start when

mappers have generated enough amount of data. On the other hand, sort and reduce can start once

all the mappers have finished map phase and the resulted intermediate data have been shuffled to

the reducers. Reduce phase combines the intermediate data from Map phase and derives the final

output.

1.2 Hadoop

Hadoop, an open source implementation of MapReduce, is a data management framework on

large cluster of commodity machines to handle large-scale data intensive applications. Hadoop is

a solution that provides reliability, scalability, and manageability of big data [64]. Hadoop divides

a large computation into small tasks and assigns them to multiple computational cluster nodes

running in parallel. It manages the parallel processes on a large file, where the file is divided into

many chunks distributed on clusters of inexpensive commodity computers, automatically handles

failures, and hides the complexity of fault tolerance from the programmer. It scales easily to large

clusters of inexpensive commodity computers [68]. To build such a cloud system, an increasing

number of companies and academic institutions have started to rely on the Hadoop Distributed

File System HDFS. The next generation of Hadoop, namely Hadoop YARN, is accommodated

to various programming frameworks and capable of handling many kinds of workload such as
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interactive analysis, and stream processing.

1.3 Hadoop Distributed File System HDFS

In order to meet the ever-growing data storage demands from users, The storage system for cloud

computing consolidates large numbers of distributed commodity computers into a single storage

pool to provide online services for data storage with immense capacity and high quality of ser-

vice in an unreliable and dynamic network environment at low cost [75]. To build such a cloud

storage system, an increasing number of companies and academic institutions have started to rely

on the Hadoop Distributed File System (HDFS) [57]. Many cloud vendors have given attractive

storage service offerings that provide a giant cloud-based storage space for users, such as Amazon,

Dropbox, Google Drive, and Microsoft’s OneDrive [23, 25, 28]

HDFS has been widely used and become a common storage appliance for cloud computing.

It is the storage part of Hadoop framework, it is a distributed, scalable, and portable file system

designed to run on low-cost hardware. Although it has many similarities with other existing dis-

tributed file systems, the differences from other distributed file systems are significant. HDFS is

especially designed to be highly fault-tolerant, and to provide high throughput access to application

data and is suitable for applications that have large data sets.

The idea of blocks is exist in many file systems. Block is the smallest unit which is loaded

into memory in one operation. However HDFS is dealing with very large files, a block in HDFS is

the smallest replication unit. All blocks in a file except the last block are the same size, the default

block size is 64MB. In HDFS each data file is stored as a sequence of blocks. A file is split into

blocks during the write operation and distributed across cluster nodes. Also depending on the client

application, a block is, usually, the data unit on which an application copy operates on. Blocks of

a file are replicated for reading performance and fault tolerance. More replicas could enhance the

availability of files on cloud systems and provide users a better chance to retrieve their data when
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serious disasters occur [73]. HDFS uses an uniform triplicating policy (i.e. three replicas for each

data block) to improve data locality and ensure data availability and fault tolerance in the event

of hardware failure [57]. The placement policy of replicas is critical to HDFS performance and

reliability. This policy could also achieve load balancing by distributing work across the replicas.

For the common case, the triplication policy in HDFS works well in term of high reliability and

high performance. The consequence of the current replica placement policy is that the hadoop

cluster gets unbalanced in terms of both storage load and the data processing load. However, the

more data a node contains, the higher probability the node could be selected to serve the data. An

unbalanced cluster puts a greater strain on the highly utilized DataNodes, and results in straggler

tasks in MapReduce jobs [68].

1.4 Straggler task

In MapReduce, after a job is submitted, the input file is divided into multiple map tasks, and then

both map and reduce tasks are assigned to multiple data nodes. Slow task or task with more data

becomes straggler. The straggler task degrades the performance of MapReduce applications be-

cause it delays the final results. In cloud computing platform, stragglers are very common problem

especially in the case of data-intensive computing jobs because of two major reasons. First, cloud

data centers use commonly commodity hardware instead of expensive, powerful, and highly reli-

able hardware. As a result, the probability of part failure is high for large clusters. Part failure may

just degrade the node performance Instead of causing complete node failure, which would generate

stragglers. For example, a node, with a faulty hard drive may experience frequent read errors that

are correctable, can still work but with very slow disk read speed.

Second, virtualization technology, such as the Amazon Elastic Compute Cloud (EC2) [5],

is widely used by service providers of utility computing to provide an abstraction of the underly-

ing hardware. Even though virtualization technology isolates the CPU and memory usage, both
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disk and network bandwidth are still shared among virtual machines residing on the same phys-

ical host, which can cause notable heterogeneity in virtual machine performance as the resource

contention, the growth of virtualization have further aggravated the heterogeneity, as a result, all

virtual machines on overloaded physical host become stragglers. Thus, dealing with the problem of

stragglers becomes critical and significant because stragglers can seriously impact the completion

time of parallel processing jobs.

Hadoop employs a mechanism called speculative execution to deal with the straggler issue,

it runs a speculative copy of a straggler’s task on another normal node, the default speculative

algorithm in Hadoop aggressively starts many backup tasks. Although speculative execution can

dramatically reduce the job completion time because, in most cases, the speculative copy completes

much earlier than the original task running on the straggler, but some of the straggler finish before

the backup tasks, in this case the backup becomes ineffective and results in insufficient resource

consuming. So the Identification of the straggler is the most crucial part of speculative execution,

because accuracy in identifying the straggler can significantly improve job completion time and

sufficiently increase the resource utilization by avoiding running backup task that will be discarded

if it’s original task was incorrectly identified as straggler, where the results of the earlier completed

task is taken and the other task is ignored. So stragglers must be detected correctly and early

enough to get better efficiency of the speculative execution mechanism.

1.5 Dissertation organization

The dissertation is organized as follows. Chapter 2 describes the existing research related to our

work. Chapter 3 presents a balancing policy for data placement in cloud storage systems. An in-

novative replica placement policy for HDFS in heterogeneous cluster environments is presented in

Chapter 4. Furthermore, Chapter 5 presents a new straggler identification scheme to make Hadoop

more efficient in cloud environments. Subsequently, in Chapter 6 a new partitioning scheme, called
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balanced data clusters partitioner (BDCP), is proposed to handle straggler reduce tasks in MapRe-

duce jobs. Finally, Chapter 7 discusses the conclusion of the dissertation.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, some literature that related to this research work are reviewed

2.1 Replicas distribution policy in Hadoop distributed file system

The drawback of the existing block placement policy of hadoop is that it does not distribute replicas

of blocks fairly and evenly across cluster’s nodes [8]. Large amount of research work has been

conducted on the HDFS RPP due to its importance regarding improving the performance of HDFS.

Shabeera et al. proposed a RPP for Hadoop that depends on the available bandwidth between the

HDFS client and cluster nodes in [56], the bandwidth can be measured and compared periodically,

and the node that has the maximum bandwidth is selected to place the replica on it in order to

reduce the time of data transfer. Khan et al. [38] presents an algorithm that finds the optimal

number of codeword symbols needed for recovery for any XOR-based erasure code and produces

recovery schedules that use a minimum amount of data. It improves I/O performance in practice

for the large block sizes used in cloud file systems, such as HDFS.

Zhang et al. present Aurora [78], a dynamic block placement mechanism, which imple-

ments several local search algorithms in HDFS. They propose several constant-factor local search

approximation algorithms, and present a dynamic replica distribution mechanism that implements

the algorithms in HDFS. The results of Experiments show Aurora can solve the dynamic block

replication problem and remarkably reduce the uneven load distribution, also it meets all the rank

level reliability requirements of HDFS. Long et al.[52] proposed Multi-objective Optimized Repli-

cation Management (MORM). It is an improved artificial immune algorithm used for optimizing

file unavailability, service time, load variance, energy consumption and access latency by manag-

ing the replication factor and replica placement in VMs. Lin et al. [48] proposed a strategy where

the NameNode chooses DataNodes according to the load status. In this strategy a new node named

7



BalanceNode is proposed. It is used to match heavy-loaded and light-loaded DataNodes, so that

the light-loaded DataNodes can share the load with heavy-loaded ones. In our previous work [20]

we address the load balancing issue from the perspective of balancing replicas assignment across

all cluster nodes of Hadoop, and propose a new placement policy that split the nodes in to three dif-

ferent sections and run an algorithm to distribute the replicas on the three sections across all cluster

nodes. Zhou et al. [79] proposed BigRoots algorithm to identify the root causes of the stragglers.

BigRoots incorporates both framework and system features for root-cause analysis of stragglers

in the big data system. The results of extensive experiments corroborate that BigRoots is effec-

tive for identifying the root causes of stragglers and providing useful indicators for performance

optimization.

Nonava et al. [53] proposed a policy based on the processing power of the hardware gen-

eration. They proposed placing more data blocks onto newer hardware generation nodes. In this

policy, they calculate a quota based on the hardware generation of the Data Nodes during placing

blocks. Blocks will be placed on the nodes which have the highest quota. Lee et al. [42] proposed a

dynamic block placement algorithm. this algorithm places blocks on the DataNodes based on their

processing capacity. in this Algorithm, NameNode creates a RatioTable, it is used to determine

the ratio of data blocks that decided to be placed on each DataNode. However [42, 53] depends

only on the processing capacity of the DataNodes for placing data blocks. it does not consider the

storage capacity of the DataNodes. The storage capacity gets unbalanced when the higher pro-

cessing capacity DataNodes get greater number of data blocks. therefore, DataNodes with high

processing capacity will be over utilized while the DataNodes with low processing capacity re-

main under utilized in terms of storage. Both algorthims result in an imbalanced storage load on

the DataNodes.

Dai et al. in [18] address the load balancing issue from the perspective of task assignment

of Hadoop. It propose an improved task assignment scheme that strives to balance the map task

processing load of MapReduce jobs across all cluster nodes. Cheng et al. simulat[17] proposed
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Elastic Replication Management System ERMS for HDFS. ERMS provides an active/standby stor-

age model for HDFS to where the replication policy is elastic and adapt to data popularity in order

to get better performance and disk utilization. ERMS has a real-time event processing engine to in-

crease the replication factor only for the files with higher popularity. To distinguish real-time data

types, ERMS utilizes a complex event processing engine. It dynamically increases extra replicas

for hot data, while it cleans up these extra replicas when the data cool down. Moreover, it uses era-

sure codes for cold data. The experiments results indicate that ERMS reduces storage overhead and

improves the performance and reliability of HDFS.and . The experiments results show that ERMS

effectively improves the reliability and performance of HDFS and reduces the storage overhead.

Eltabakh et al. in [22], propose CoHadoop, a lightweight extension of Hadoop, it addresses the

performance problem of Hadoop that it cannot collocate related data on the same set of nodes. in

CoHadoop the HDFS has been extended to allow applications to define and exploit customized

placement strategies to improve the performance of the system. The results of experiments on CO-

Hadoop show that only when applications need to process data from multiple files, CoHadoop can

remarkably outperform Hadoop. Finally, the recent research work in [24, 45, 50, 54, 77] helped

with the formation of our research idea.

2.2 MapReduce tasks and speculative execution

Due to its importance to data-intensive computing, the subject of straggler identification and tol-

erance has received considerable amount of research attention. The mechanism of speculative

execution is used in MapReduce to address the straggler problem, which performs backup execu-

tion of the remaining running tasks when the parallel processing is close to completion. Numerous

speculation based techniques have been developed for straggler mitigation providing enhancement

within different operational scenarios. SkewTune [41] re-partitions the data of stragglers to move

it to idle slotes resulted after completing the processing of short tasks. However, moving re-
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partitioned data to idle nodes may lead to nodes communication overload, which could negatively

impact the computing performance.

One commonly used straggler identification scheme is the classical Standard Deviation

(SD) method. It constantly monitors the performance of all processing nodes, and marks any node

as straggler if its performance is significantly lower than the sample mean of the task comple-

tion times of all running nodes. Despite its wide adoption, the SD method has certain inherent

limitations, which makes it not an ideal solution to the problem of straggler identification.

Dolly [6], provides a speculative execution at job level which clones small jobs with strag-

gler tasks. Dolly launches multiple clones of every task, the output of the clone that completes first

is used and the other clones are killed. But the approaches that use the duplication of the entire job

increases the resource usage and I/O contention on intermediate data, in addition to that, it does not

have the coordination between Hadoop and the cloud infrastructure. Dolly employs a technique

called “delay assignment” to avoid contention for intermediate data. however Dolly specifically

tackles stragglers in small jobs.

Xie et al. [70] propose skew data partitioning according to cluster node capabilities; slow

nodes receive less work than faster nodes. This static profiling does not consider a third party

loads that may begin or end in the middle of a MapReduce job, making the actual node’s ability to

complete work different from the profile-based prediction. Furthermore, if the nodes that predicted

to receive more load fail, the application stalls for longer than when slower nodes fail. Wang et al.

[67] presented an algorithm named Partial Speculative Execution (PSE), it is improved strategy to

enhance the efficiency of Speculative Execution. However PSE is not designed for heterogeneous

cluster’s nodes while it works good in Homogeneous cluster environments. Li et al [46] presented

(SECDT), it is a new speculative execution algorithm for Hadoop. SECDT was designed and

implemented by calculating the completion time of a task based on C4. 5 decision tree. Tang

et al. [61] proposed Speculative Execution Performance Balancing (SEPB) with a dynamic slot

allocation to improve the performance of job execution.
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Wu et al. [29] proposed ERUL algorithm, it calculates the prediction of system load and

the remaining time of a task. ERUL improves the accuracy of the prediction by the real-time

system load feedback. However this algorithm does not take into account cluster efficiency. Maxi-

mum Cost Performance (MCP) [12], a new speculative execution strategy, employs exponentially

weighted moving average (EWMA) to predict the remaining time of a task. uses both progress rate

and process bandwidth within a phase to identify stragglers. MCP selects the node for speculative

execution using a sophisticated cost-benefit model which considers the workload on each node

and the data locality. The experimental results indicate that MCP significantly improves the job

performance, it can outperform Hadoop 0.21 with respect to both job completion time and cluster

throughput.

There is great research interest in improving Hadoop from different perspectives. A rich

set of research focused on the performance and efficiency of Hadoop cluster. After conducting

a comprehensive performance study of Hadoop, Jiang et al. [34] summarized the factors that

can significantly improve the Hadoop performance. Verma et al. [65] proposed cluster resource

allocation approach for Hadoop. They focused on improving the cluster efficiency by minimizing

resource allocations to jobs while maintaining the service level objectives. They estimated the

execution time of a job based on its resource allocation and input dataset, and determined its

minimum resource allocation.

There are a few recent studies focus on the improvement of speculative execution. Mantri is

presented in [7], it focuses on starting speculative execution as soon as a straggler is detected during

the job’s execution by monitoring the performance of processing nodes in MapReduce clusters

and removing stragglers based on their causes. It kills the straggler task if the speculative task is

faster than the straggler. Mantri employs three major techniques: network-aware task placement,

restarting tasks running on stragglers, and protecting the output of valuable tasks. Mantri estimates

a task’s remaining time based on the progress bandwidth. The major drawback of Mantri is there is

no guarantee that the speculative copy of the straggler task will complete earlier, and it may need
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to kill and restart the speculative task on multiple cluster nodes.

Wrangler [72] starts speculative tasks according to the prediction of which task would

benefit from speculative execution, the prediction based on a statistical learning model that gets its

facts from historical workloads. For workloads with low repetitiveness, the learning time may not

be short. However, the accuracy of the prediction is affected by the performance interference in

the cloud. SARS (Self-Adaptive Reduce Scheduling), a mechanism based on job context, includes

the job completion time, can decide the start time points of each reduce tasks dynamically [62].

However, It focuses only on the reduce tasks. Jung et al. [36] proposed Dynamic Scheduling for

Speculative Execution (DSSE) algorithm which enhances performance of the speculative execution

in heterogeneous environments. DSSE prevents wasted speculative execution because it based on

calculating the processing capability of each node. DSSE decreased rate of wasted speculative

execution to 0%. However DSSE does not apply the speculative execution at early stages of the

job execution.

Chen et al.[14] proposed Self-Adaptive MapReduce scheduling algorithm (SAMR), it uses

the historical information stored on each node to create adaptable phase weights. SAMR MapRe-

duce scheduling technique uses the historical information to find the slow nodes and launches

backup tasks. According to historical information at each map stage, the time weight is adjusted

and the tasks are reduced. However, SAMR does not consider the fact that different types of jobs

can run on each node, therefore, different jobs have different phase weights. So SAMR cannot gen-

erate high accuracy phase weights In multi-job environment. Enhanced Self Adaptive MapReduce

scheduling algorithm (ESAMR), an improved version of SAMR, was proposed by Sun et al. [59]

. It groups historical information by using uses the K-mean clustering and creates a middle point

of each group which contains phase weights that can be used for estimation. ESAMR calculates

parameters from running tasks and compares the parameters between the running tasks and the

clusters.

Lin et al. [47] proposed Self-Learning MapReduce scheduler (SLM) to improve the spec-
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ulative algorithm in a multi-job cloud platform. SLM uses feedback information collected from

some recently completed tasks of the same job to calculate the phase weights. However, SLM gets

better accuracy of estimation with the progress of time because it needs to determine a specific

number of finished tasks to use it for learning process, which affects the accuracy of the estimation

process. Moreover, the estimation process is distorted by the assumption that tasks are processed

at the same rate. All these approaches lack the ability to identify the performance bottleneck of the

straggler tasks, they cannot guarantee that the speculative copies of tasks will perform better. Liu

et al. [51] proposed LWR-SE, it is an optimized speculative execution strategy based on local data

prediction in heterogeneous Hadoop environment. LWR-SE selects an appropriate node to run the

backup task based on the predicted remaining time of each running tasks. LWR-SE calculates the

predicted remaining time by using the collected task execution information in real time and the

locally weighted regression.

Load imbalance among cluster nodes is also a major reason for the occurrence of stragglers

in parallel processing. The load balance issue of Hadoop has been addresses from two different

perspectives: task assignment and replica placement mechanism. The Earliest Completion Time

scheme has been presented in [18] ,it is an improved task assignment scheme for Hadoop. we

presented two improved replica placement policies for Hadoop, the Partition Replica Placement

Policy and the Slot Replica Placement Policy, in [19, 20] respectively. Guo et al. [26] proposed,

FlexSlot, a new strategy on tackling the data skew issue in Hadoop applications. Rather than miti-

gating skew among tasks, they try to balance the processing time of tasks. instead of balancing the

distribution of data across DataNodes, tasks with expensive data records are accelerated by having

more resources. FlexSlot is an effective yet simple extension to the Hadoop’s slot management

that provides the flexibility to alternate the number of slots in a slave node and the slot memory

size online. However, despite this strategy does not need to balance the data distribution across

cluster’s nodes, it increases the overhead by monitoring the memory and slot size required for each

task.
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DynMR [60] significantly increases both performance and efficiency of Hadoop, by op-

portunistically schedule all tasks. It enables interleaved MapReduce execution that overlaps the

map tasks with reduces tasks. Liu et al [49] proposed a new strategy called Speculation-NC, it is

introduced and implemented in Hadoop-2.6. this algorthim can relatively save time and resource

for WordCount sample.

2.3 Straggler reduce tasks

Many algorithms and models about reduce tasks scheduling have been proposed in recent years.

Hassan et al. proposed a MRFA-Join algorithm [27], it is a new frequency adaptive algorithm

based on MapReduce programming model and a randomized key redistribution approach for join

processing of large-scale data sets. Data skew and load balancing problem is one of the main

reasons of straggler reducers. In order to achieve balanced load, many researchers have focused on

designing a new parallel programming model based on MapReduce [37, 44, 66]. LIBRA has been

proposed in [13]. It is a lightweight strategy to resolve the data skew problem, it applies a sampling

technique to produce an accurate estimation of the distribution of the intermediate data. It samples

a part of the intermediate data during the map phase. LIBRA supports large cluster and it works

for heterogeneous environments, but the partitioning does not consider the current processing load

of the reducers.

Yujie et al. in [71], use a sampling MapReduce job to gather the distribution of keys’

frequencies, make estimation of the overall distribution, then partition scheme is generated in ad-

vance. Two partition schemes have been proposed based on sampling results: cluster combination

and cluster partition combination. The idea of cluster combination is that the biggest data cluster is

assigned to the reducer with the smallest load in order to achieve the load balancing of all reducers.

The cluster partition combination is used when the skew in intermediate data is very high. In this

case the large cluster is divided into equal pieces, and then, every piece is assigned to a reducer.
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This method breaks the rule that each partition should be processed by a single reducer. An ad-

ditional reduce phase is configured to merge the results generated from multiple reducers which

increase the job completion time.

Tang et al. In [63], have proposed splitting and combination algorithm for skew intermedi-

ate data blocks (SCID). The sampling is used to predict the distribution of the keys in intermediate

data. In SCID, the data clusters are sorted, and for each map task the output filled into buckets. A

data cluster will be split once it exceeds the residual volume of the current bucket. After filling this

bucket, the remainder cluster will be started the next iteration. The main idea is that each reduce

task gets its share of intermediate data from particular bucket of map task. SCID focuses on how

to split and combine the output data from map tasks to the proper buckets rather than decide when

the sampling should start. in addition to that, this method split a big partition to be processed by

more than one reducer.

Chen et al. [10] proposed a partitioner to distribute the intermediate data in a balanced par-

titioning with the traditional trie, resulting in its corresponding imbalance ratio approaching one.

However, their algorithm requires big amount of memory and incurs a heavy processing overhead,

but they eliminated the need for big amount of memory and processing overhead required by intro-

ducing the condensed trie, which is a 3-level trie a. Then, they introduced a collapsed-condensed

trie for capturing the data statistics authentically [9]. Despite their new algorithm requires less

memory and processing overhead but it still requires non small amount of memory and processing

overhead, and this amount depends on the sampling rate.

In our previous work [30], we proposed Progress and Feedback based Speculative Execu-

tion Algorithm (PFSE). It is a new Straggler identification scheme to identify the straggler tasks

in MapReduce jobs based on the feedback information received from completed tasks, and the

progress of the currently processing task. (PFSE) focuses on map phase and sort part of reduce

phase only. Zaharia et al. [74] suggested Longest Approximate Time to End (LATE), a dynamic

scheduling technique, was designed for heterogeneous clusters. It is modified version of specula-
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tive execution. LATE allows Hadoop to speculatively execute the task that expected to be delayed.

Instead of considering the progress made by a task, LATE computes the estimated remaining time

to complete the task. LATE depends on HDFS for replica placement, this restriction minimizes the

number of tasks that involved in the speculative execution. LATE is designed to enhance Hadoop

performance in both homogeneous and heterogeneous environments. The experimental results

indicate that LATE can improve the job completion time of Hadoop by a factor of two.

Ibrahim et al [33] developed an algorithm named LEEN for locality-aware and fairness-

aware key partitioning in MapReduce to minimize the network bandwidth during the shuffle phase

of MapReduce caused by partitioning skew. In LEEN all intermediate keys are partitioned and dis-

tributed according to their frequencies and the fairness of the expected data distribution after the

shuffle phase. Chen et al [11] proposed data Locality Rather prior to data Skew (LRS) algorithm to

improve the performance of MapReduce jobs. LRS is an extension of the LEEN algorithm. How-

ever LRS obtains the actual intermediate data on each map node by using Data Amount Monitor

while LEEN assumes the amount of output data on each map node are equal. LRS produces data

files and a metadata file. The number of data files is the number of keys. The metadata file contains

a frequency table. When all map tasks are done, all metadata files will be aggregated.

Chen et al. [15] have comprehensively investigated data locality for reduce-side as well

as data skew by developing Cluster Locality Partition (CLP) algorithm. It consists of three parts:

Preprocess part, Data-Cluster part and Locality-Partition part. CLP uses random sampling to gather

useful data information in Preprocess part, makes sure balancing load of each reducer in Data-

Cluster part, and Locality-Partition part is used to partition data to right reducer. The three parts

work together to improve the cluster performance. The experimental results illustrated that the

CLP was better than the default partition algorithm of Hadoop in the aspects of execution time and

load balancing.

However, CLP has ignored the fact that for different types of MapReduce jobs, data locality

and data skew could can vary in affecting MapReduce execution time under varying in network
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bandwidth. Chen et al [11] designed an extension of the CLP algorithm, it is a data Skew Rather

prior to data Locality on the reduce side (SRL) algorithm, SRL algorithm is designed to increase

data locality and decrease data skew on reduce side. They proposed a bandwidth-aware partitioner

(BAPM), it uses the naive Bayes classifier by considering bandwidth and job type as classification

attributes for proper selection SRL algorithm or LRS algorithm under various bandwidths. In our

previous work [32] we address the load balancing issue from the perspective of balancing replicas

assignment across all cluster nodes of hadoop, and propose a replica placement policy that run an

algorithm to distribute the replicas across all cluster nodes based on their data load. In another work

[31] we proposed an algorithm to address issue of load balance among heterogeneous cluster nodes.

Consequently, the balancing in computational load on mappers minimizes the map phase time as

well as make the reduce phase time starts earlier. Even though the distribution of intermediate data

can not be predicted at the beginning of MapReduce job, balanced computational load during map

phase may help in mitigating intermediate data skew if exists.
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CHAPTER 3: REPLICA PLACEMENT POLICY FOR HDFS1

Hadoop has been widely adopted as a general-purpose platform for data-intensive computing,

therefore, HDFS RPP has become popular research area to improve the data partitioning and place-

ments. In HDFS each data file is partitioned and stored as a sequence of data blocks. Every data

block is replicated to three replicas and stored on three different DataNodes to improve the pro-

cessing performance data reliability. The placement of data replicas is one of the key issues that

affect the performance of HDFS. Load imbalance is the major source of overhead in MapReduce

jobs. Tasks with more data become stragglers and delay the overall job completion because of the

uneven distribution of input data. In the current HDFS replica placement policy, the replicas of data

blocks cannot be evenly distribute across cluster nodes, so the current HDFS has to rely on load

balancing utility to balance replica distributions which results in extra time and resources consum-

ing. These challenges drive the need for intelligent methods to solve the data placement problem

to achieve high performance without the need for load balancing utility. In this chapter, Intelligent

Data Placement Mechanism (IDPM), has been proposed to address the above challenges.

3.1 Introduction

Hadoop Distributed File System (HDFS) is a distributed storage system to stores large volumes

of data reliably and provide access to the data by the applications at high bandwidth. HDFS

provides high reliability and availability by storing the file as a sequence of blocks, each block is

replicated, typically three copies. These replicas are distributed across multiple DataNodes. HDFS

introduces a simple but highly effective policy to allocate the replicas of each data block. The

default Hadoop distributed file system replica placement policy, HDFS RPP, (as of Hadoop 2.9.2)

1Related publication: I. A. Ibrahim, W. Dai, and M. Bassiouni. Intelligent data placement mechanism for repli-
casdistribution in cloud storage systems. In2016 IEEE International Conference on Smart Cloud(SmartCloud), pages
134–139. IEEE, 2016.
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places one replica on one node in the local rack; another replica on a node in a remote rack; and

the third on a different node in the same remote rack as shown in Fig. 3.1. This policy can reduce

the inter-rack write traffic when distributing data to DataNodes because the three replicas of every

data block are stored on only two racks. High fault tolerance and data availability are maintained

in this policy because replicas are placed on three different DataNodes. However, The drawback

of the policy is that it cannot evenly distribute replicas to cluster nodes. Data placement problem,

therefore, needs to be considered to obtain an optimal placement solution to balance the data load

on cluster nodes and minimize the data retrieval time [2].

3.2 Background

Even though HDFS RPP improves data reliability and processing performance, it has been clari-

fied in our extensive experiments [32] that it cannot generate balanced replica distributions. For

example: a cluster of three racks, rack0 has two DataNodes, Rack1 has three DataNodes, and Rack2

has four data nodes; Let’s assume a file is stored on Hadoop cluster nodes, the file is partitioned

into 34 Blocks, every block is replicated to 3 replicas. The current replicas placement policy of

HDFS generates unbalanced replicas distribution of this file as shown in Fig. 3.2. Every node gets

a different number of replicas. This may result in unbalanced access load. Because the higher the

data blocks stored in a DataNode the more client requests for accessing data blocks in DataNode.

In a Hadoop cluster, DataNodes may not be able to handle such excessive client requests, which

results in stragglar map tasks. To overcome this performance issue, HDFS provides a balancing

utility to address the issue of unbalanced HDFS cluster which can seriously degrade the perfor-

mance of Hadoop applications. This utility is used to analyze replica placement and re-balancing

replicas distribution across the DataNodes at the cost of extra system resources and running time.
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Rack 1 Rack 2

Figure 3.1: Block replication in HDFS

3.3 Balanced replicas placement policy

The unbalanced replica assignment of HDFS RPP is generated because the policy places two repli-

cas on two different nodes belong to one rack, and the third replica on a node located in another

rack. This issue increases with the increasing of the number of files distributed in the cluster. To

overcome this problem, the new policy proposed in this chapter places the replicas on DataNodes

with the lowest load in the cluster, at the same time, it maintains the same distribution rules of ex-

isting HDFS RPP. It is implemented by keeping pointer for each rack in the cluster to keep tracking

the load on this rack. This policy makes it possible to generate an even replica distribution because

the placement of replicas by using this policy is driven by the load on the DataNode instead of

selecting a random racks. Since the intelligent balancing scheme is the key of the new policy, it is

named the Intelligent Data Placement Mechanism Policy (IDPM).

20



Node0           Node1           Node2  

Rack 1 Rack 2
Node0           Node1  Node0            Node1           Node2              Node3  

Rack 0

0

1

7

9

15

16

17

18

20

22

31

33

1

3

4

8

16

21

0

1

9

10

11

12

2

6

9

11

13

3

4

6

12

14

23

2

4

5

7

10

15

2

5

8

10

14

18

3

6

8

11

14

17

0

5

7

12

13

17 19

27

28

30

13

19

23

24

29

33

25

26

27

30

32

2420

22

23

25

26

27

15

16

18

20

24

28

29

31

21

22

25

26

28

32

32

30

31

19

21

29

33

Figure 3.2: Replicas placement of HDFS RPP

In IDPM, the replica placement process consists of two phases: rack selection phase, and

node selection phase. Before the placement of a replica, rack is selected then a node inside this

rack is selected to place the replica on it, the rack and node selection is the core of this policy.

In rack selection phase, IDPM selects two racks with the lowest load depending on a pointer

called Rack_Pointer, it is continuously updated in every time a replica placement is achieved. The

Rack_Pointer of a specific rack is the number of free nodes in this rack for the current iteration.

the distribution process consists of many iterations as will be disscussed later in this chapter. Node

selection phase starts after rack selection, in this phase a free node from the selected rack in the
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current iteration is selected. In every iteration, one replica is assigned to every node. The number

of iterations needed to complete the whole replicas placement can be calculated as following: Let’s

assume R is a collection of L racks, each of which has ri(i = 0,1,2, . . . ,L−1) available nodes on

it. Let N be the total number of all available nodes. n is the total numbers ofdata blocks to be

distributed, and D is the duplication factor which is assumed to be three replicas for each data

block. If p is the total number of replicas to be distributed to the DataNodes in main distribution

table, and I is the number of Iterations to complete the distributions, then p,N, and I can be

calculated according to Eq.3.1, Eq.3.2, and Eq.3.3 respectively.

p = n×D (3.1)

N =
L−1

∑
i=0

ri (3.2)

I =
⌈ p

N

⌉
(3.3)

After calculating out N and I, IDPM builds the main assignment table MAT. It is two

dimensional array with N columns and I rows. Every column represents a DataNode, and every

row represent a distribution iteration. all the numbers of data blocks is stored in MAT. MAT

consists of small tables attached together to form the main table. Each small table represents a

rack, with number of columns equal to the number of nodes in that rack. The rows corresponding

to the number of iterations for that rack. In each iteration of the distribution, the replicas are

assigned to the whole current row before it jumps to the next iteration with the new row. The

column number on the main table C which dedicated for a selected rack R, and selected node d can
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be calculated according to Eq.3.4

C = d +
R−1

∑
i=0

ri (3.4)

Every replica assigned to selected rackR, and selected noded is stored in column C in the

main assignment table. Assume there are three racks, rack0 has five available nodes, rack1 has

three nodes, and rack2 has seven nodes. As shown in Fig. 3.3 the total number of columns in the

main table is N = 15. The main table consists of three sections. IDPM first assigns all five nodes

on rack0 to section 1, all three nodes on rack1 to section 2, and then the seven nodes of rack2 to

section 3. The main assignment table can be formed from merging these three sections. So the

main distribution table has 15 columns and I rows, where I can be found according to formula 3.3.

Figure 3.3: Racks tables

IDPM uses a tabular scheme to distribute replicas. the number of replica that supposed to

be placed on a rack is stored in the table section corresponding to this rack. Each column in replica

placement table is used to store the replicas assigned to one node. As shown in Fig. 3.4, replica’s

numbers are assigned into the main assignment table in block number order. Each colored section

is used for the replicas of one rack, the three sections forming the main assignment table. At the

beginning of distribution, two replicas of block number 0 are assigned to the section of rack2.
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However rack2 is selected at the beginning because it is the rack that has more free nodes. Each of

these two replicas are placed on different free node, node0 and node1, the third replica is assigned

to another rack has higher free nodes, rack0, on free node, node0. When all the columns of the first

row have been assigned replicas, the distributions start on the second row and so on.

Figure 3.4: Main Assignment Table (MAT)

As shown in Fig 3.4, the replicas are assigned into the replica assignment table in block

number order from replica 0 through replica n−1, line by line. Before assigning the third replica

of current block, IDPM tags the rack in which the first two replicas of current block are residing as

avoid_rack to discard it during the process of finding the elected rack for the third replica. After

each rack election, IDPM assigns the replica to the elected node of this rack. The pseudo-code

of elected rack algorithm, and elected node algorithm are shown in Alg. 1, 2 respectively. This

process continues until all the p replicas have been assigned. Finally, IDPM produces an even

distribution of replicas of file across all cluster nodes regardless the number of nodes in each rack

in this cluster because the distribution of replicas is achieved depending on the total number of

available nodes for this file. The pseudo-code of the replica distribution algorithm for all nodes is

shown in Alg.3.
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Algorithm 1: FUNCTION - Elected rack
Input: Rack_compete[0,1, ..R−1]
Result: current_rack

1 begin
2 if rack_avoide = 0 then
3 rack_avoide = 0;
4 end
5 for i = 0 to L-1 do
6 if (i = rack_avoide) then
7 skip the current rack for the second third replica;
8 end
9 if (iteration[i] < iteration[current_rack]) then

10 current_rack = i; // use the rack with the lowest iteration.
11 end
12 if (Rack_compete[i]>Rack_compete[current_rack])& (iteration[i] = =

iteration[current_rack]) then
13 current_rack= i; // election of the rack with more free nodes.
14 end
15 end
16 return (current_rack)
17 end

3.4 Evaluation

In replica distribution generated by the HDFS RPP the number of replicas on one single node is a

Discreet Random Variable (DRV). To test the distribution of a DRV, large scale simulation is con-

ducted to examine the replica distribution generated by HDFS RPP, where theoretical simulation is

more appropriate than actual implementation because much more distribution samples can be ob-

tained by simulation. Two scenarios are considered, in each scenario a simulation was conducted

as shown in Table 3.1. Scenario one is similar to the situations Hadoop applications encounter in

practice. There are many cases in which an application has a dedicated cluster where the applica-

tion can use all the nodes of racks belong to this cluster which is the case of scenario one. Assume

Z is the number of replicas assigned to a single node resulted from replica distributions generated

by HDFS RPP.
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Algorithm 2: FUNCTION - Elected node
Input: current_rack
Result: current_node

1 begin
2 for i = 0 to r[current_rack] do
3 if (node_ f ree[current_rack][i])=0 then
4 (node_free[current_rack][i])= 1;
5 current_node = i;
6 rack_compete[current_rack]= rack_compete[current_rack] -1;
7 end
8 end
9 if (rack_compete[current_rack]=0 then

10 iteration[current_rack]= iteration[current_rack] +1;
11 rack_compete[current_rack] = r[current_rack];
12 for i = 0 to r[current_rack] do
13 node_free[current_rack][j] = 0;
14 end
15 end
16 return current_node
17 end

Fig. 3.5 shows the probability distribution of Discreet Random Variable Z in Scenarios one,

based on 15,000 simulation runs. HDFS RPP generates uneven replica distributions in scenario

one as confirmed in simulation results. The number of replicas assigned to one node Z spreads

over a wide range from 8 to 70 in scenario one. HDFS RPP randomly selects nodes directly

instead of selecting a rack of this node first, therefore, the replica distribution is not significantly

affected by the node distribution across racks. However, if the rack is randomly selected, the

replica distribution would be more uneven when the node distribution is heterogeneous, because

the nodes of rack with less nodes would have more replica assignment load than the nodes of rack

with more nodes. HDFS RPP produces more load on the rack that has fewer nodes because the

selected rack for the first replica would be selected for the second replica too. On the other hand,

our simulation confirms that the proposed IDPM can generate perfectly even replica distributions

in scenario one because Each node has 30 replicas.
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Algorithm 3: Replicas Distribution algorithm
Input: A collection of L racks each rack has ri(i = 0,1,2, , ...L−1) available nodes on
it.
n data blocks to be distributed, which are numbered 1 through n.
Result: T [0,1, ..I−1][0,1, ..,N−1]

1 begin
2 calculate N and I according to Eq. 3.2 and Eq. 3.3 respectively.
3 for i = 0 to L-1 do
4 Rack_compete [i] = r[i]; //initializing rack competition register.
5 for j = 0 to r[i] do
6 Node_ f ree[i][ j] = 0; // indicator to check if the node is assigned a block or

not.
7 end
8 end
9 rack_avoid =−1 // used to avoid the same rack for the third replica.

10 for Block = 0 to n-1 do
11 current_rack = Elected_rack(Rack_compete) ;
12 current_node = Elected_node(current_rack) ;
13 Count = 0;
14 for i=0 to current_rack do
15 Count=Count +r[i]; // to count the number of columns located before the

current rack.
16 end
17 Column =Count + current_node; // calculated from Eq. 3.4
18 T [iteration[current_rack]][column]= Block;
19 current_node = Elected_node (current_rack);
20 Column =Count + current_node;
21 T [ iteration[currentrack]][column] = Block;
22 rack_avoid= current_rack; //avoid current rack for 3rd replica.
23 current_rack = Elected_rack (Rack_compete)
24 current_node = Elected_node (current_rack)
25 for i=1 to current_rack do
26 Count=Count +r[i]; // to count the number of columns located before the

current rack.
27 end
28 T [ iteration[currentrack]][column]= Block;
29 end
30 return T [0,1,..I-1][0,1,..,N-1]
31 end
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Figure 3.5: Probability distribution of Z in scenario one.

Because of the large scale of this scenario, a figure showing the replica distributions gen-

erated cannot be shown in this dissertation. Therefore, scenario two, reduced scale, is included to

present the replica distributions generated by both HDFS RPP and IDPM as shown in Table 3.1.

Fig. 3.6 shows one replica distribution generated by HDFS RPP in scenario two. The replica dis-

tribution is uneven with number of replicas on one single node ranging from 2 to 11. The replica

distribution generated by IDPM in scenario two, as shown in Fig.3.7, is perfectly even, does not

need to run balancing utility, and meets all HDFS replica placement requirements.
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Figure 3.6: Replica distribution generated by HDFS RPP in scenario Two

Table 3.1: SIMULATION SETTINGS OF IDPM EVALUATION

Simulation Settings Scenario One Scenario Two
Total Number of Blocks 6,000 35
Duplication Factor 3 3
Total Number of Replicas 18,000 105
Total Number of Nodes 600 15
Average Number of Replicas on One Node 40 7
Minimum Number of Replicas on One Node 8 2
Maximum Number of Replicas on One Node 70 11
Total Number of racks 40 3

Number of available nodes on racki 15
5(i=0)
3(i=1)
7(i=2)
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Figure 3.7: Replica distribution generated by IDPM in scenario two
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CHAPTER 4: BALANCED REPLICA PLACEMENT POLICY FOR

HETEROGENEOUS CLUSTERS1

Replica placement in HDFS plays a significant role in data availability and balancing the com-

putational load on DataNodes. In the current Hadoop Distributed File System replica placement

policy HDFS RPP the replicas of data blocks cannot be evenly distributed across the cluster of data

nodes, specially when variety of hardware generations coexist in the cluster. As mentioned earlier

in the previous chapter the current HDFS must rely on load balancing utility for balancing replica

distribution, which results in extra overhead for time and resources. However, in heterogeneous

clusters the even distribution of replicas does mean it is a fair distribution. It does not produce

balanced computational loads on data nodes because of the variation in the processing capabilities

and resources of data nodes. This chapter addresses the load balancing problem and presents an

innovative replica placement policy for HDFS. It can perfectly balance the distribution of replicas

of file among the data nodes in heterogeneous cluster environments. Experimental results of the

proposed solution confirm that, the proposed replica placement scheme gives better DataNodes

utilization than the default replica placement policy of Hadoop in heterogeneous cluster environ-

ment.

4.1 Introduction

In recent years, Hadoop framework is popularly known for providing cost-effective solutions to

process large-scale data intensive applications in a distributed manner on cluster of processing

nodes. Cluster nodes of Hadoop may vary in their processing capabilities and availability of re-

sources. One of the key issues that can significantly affect the performance of cluster nodes in

1Related publication: I. A. Ibrahim and M. Bassiouni. Improvement of data throughput in data-intensive cloud
com-puting applications. In2019 IEEE Fifth International Conference on Big Data ComputingService and Applica-
tions (BigDataService), pages 49–54. IEEE, 2019.
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data intensive cloud computing is computational load balancing among cluster nodes. HDFS is the

storage part of Hadoop framework. It is a file system designed for storing very large files reliably

and stream data with high bandwidth, running on clusters on commodity hardware [68]. Cloud

computing applications that perform massive computing tasks (big data processing) offload data

and tasks to data centers or powerful servers in the cloud. In a typical Hadoop cluster, terabytes

of data are processed using parallel computations. The processing of jobs in a Hadoop cluster

is affected by the storage mechanism of data in HDFS, and the processing capabilities of cluster

nodes [40].

4.2 Background

In our previous work [32], the need for running the balancing utility used by RPP for HDFS has

been eliminated. An improved RPP for HDFS called Intelligent Data Placement Mechanism IDPM

has been proposed for replica distribution in Cloud Storage Systems , IDPM distributes replicas

evenly to cluster nodes and meet HDFS distribution requirements. However, IDPM works only for

homogeneous cluster environments, while in heterogeneous cluster environments, where the racks

are from different Hardware generations, the even distribution of replicas does not mean it is a fair

distribution because it cannot guarantee the load balancing among cluster nodes. For example, in

Fig 3.2. If the processing nodes of Rack1 are slower than the processing nodes of rack2, the even

distribution of replicas produced by IDPM fails in balancing the processing load because it does

not take into consideration the variations in processing capabilities of cluster nodes.

In HDFS, each data file is partitioned, replicated, and stored as a sequence of data blocks.

In MapReduce jobs, DataNodes perform map tasks on the file’s blocks in parallel. The current

HDFS Replica Placement Policy (RPP) is not designed for heterogeneous clusters ,therefore, the

replicas are not distributed over all nodes that selected to store the file based on their available

resources. As a result, the highly utilized DataNodes experiences overload in client access, this
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degrades the performance of MapReduce in heterogeneous environment. Similarly, the IDPM pro-

duces an even distribution of the file’s blocks but in heterogeneous clusters environment this even

distribution may lead to unbalanced processing load, thereby reducing the overall performance of

Hadoop. Load balancing among heterogeneous cluster nodes would be a great enhancement for

the performance of data-intensive cloud applications. It can improve job completion time, opti-

mize the usage of resource, maximize the throughput, minimize the retrieval time, and minimize

the overload on cluster nodes.

4.3 Speed-based Replica Assignment Policy SRAP

The current HDFS RPP generates unbalanced replicas assignment across all cluster nodes as shown

earlier in Fig.3.2. Consequently, HDFS RPP runs a balancing utility for analyzing and re-balancing

the replica placement among cluster nodes. In homogeneous cluster nodes, the data load balancing

is achieved by equalizing the number of data blocks assigned to each node, while in heterogeneous

cluster, the computational load balancing among cluster nodes cannot be achieved by merely bal-

ancing the number of data blocks assigned to each node. The number of blocks assigned to each

node must be equivalent to the node processing capacity and available resources. The new policy

proposed in this chapter generates balanced data distribution where the placement of data blocks

is driven by the load on the nodes.

The proposed policy fairly distributes the data blocks to cluster nodes depending on their

processing speed. The node that has higher processing speed is assigned more data blocks than

another node with lower processing speed in order to get better node utilization. Consequently, in-

crease the efficiency of data processing by cluster nodes to meet the requirements of data-intensive

cloud computing. For example, during MapReduce jobs, if map tasks are applied on the blocks

of many files that stored on the same cluster nodes simultaneously, the balancing of load among

cluster nodes is achieved when the blocks have been distributed using the new policy because
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nodes with high processing capacity have more data blocks than slower nodes. It minimizes the

chance of overloaded nodes, eventually minimizes the job completion time. Since the key to the

proposed replica placement policy is assigning replicas to nodes based on their processing capa-

bility, the new policy is Named Speed-based Replica Assignment Policy (SRAP). To deal with

heterogeneous cluster environments, since the racks are usually belonging to different hardware

generations, we assume the nodes on same rack are similar in their processing capability while

nodes on different racks may differ in their processing capability. SRAP assigns a processing rank

to the nodes. Rank of a node is the integer number of blocks it can process during a unit of time.

The unit of time is the time needed by the slowest node in the cluster to process one data block.

Rank1 is the rank of the slowest node. However, SRAP works for homogeneous cluster environ-

ments too. It is a special case of heterogeneous cluster environments where the rank of all nodes

is Rank1.

4.3.1 Main assignment table MAT

Let’s assume a cluster consists of L racks, each of which has ri nodes, where (i = 0,1, . . . ,L−1).

N is the total number of available nodes in the cluster. The nodes of each rack have a processing

speed Si where (i = 0,1, . . . ,L− 1). Assume a file to be distributed, the file is partitioned into n

blocks, the duplication factor, D, is assumed to be three replicas for each data block in this policy.

The total number of replicas to be distributed to the cluster nodes is p, as calculated in Eq.4.1. The

processing rank of nodes in racki = Ki, where (i = 0,1, . . . ,L−1). Ki is the greatest integer number

less than or equal to the result of dividing the speed of nodes of racki to the minimum speed in the

cluster. It can be calculated by using Eq. 4.2.

p = n×D (4.1)
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Ki =
Si

min
(0≤k≤L−1)

Sk
(4.2)

SRAP builds a rack assignment table for every rack, it is two dimensional array with mi

columns and I rows, every node has column(s) in the rack assignment table equals its processing

rank Ki. In the proposed algorithm, a node in Rack i has Ki columns allocated for it in the rack

assignment table. The number of columns in the assignment table of Rack i is mi. It is calculated

in Eq.4.3

mi = ri×Ki f or i = (0,1, ..,L−1) (4.3)

The racks assignment tables are merged together to form the Main Assignment Table MAT. The

number of columns in MAT is M. it is calculated in Eq.4.4

M =
L−1

∑
i=0

mi (4.4)

SRAP build the MAT for every file in HDFS that need to be distributed across cluster nodes. So

HDFS can use MAT of the file for the file’s blocks distribution. The number of rows in MAT is I,

it is calculated in the previous chapter using Eq. 4.5.

I =
⌈ p

N

⌉
(4.5)

4.3.2 Block index allocation in MAT

SRAP builds the main assignment table MAT and distributes the blocks’ numbers inside this table.

Every field in MAT is corresponding an actual location in the cluster. So, HDFS can use MAT to

distribute the actual blocks by placing each replica to the corresponding location referred by MAT.
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SRAP has p replicas to be assigned to MAT. It starts the process of allocating the blocks’ numbers,

0 through n−1, into the MAT. It only allocates M replicas at a time, row after row until it reaches

to the last block’s number. Every column in MAT is corresponding to a node in the cluster, one

node may have more than one column. Columns that dedicated for node d in rack R start from

column C through column C+KR−1. C can be calculated according to Eq.4.6

C = d×KR +
R−1

∑
i=0

(ri×Ki) (4.6)

KR is the rank of rack R. Starting from Block0, for every block, the algorithm picks the row and

columns to allocate it in the main assignment table. The row selection starts from row0 to row(I−1).

The selection of column must comply with the reliability constrains of RPP of HDFS. The column

selection of SRAP consists of two phases: rack selection phase, and node selection phase. In rack

selection a rack section is selected. While in node selection phase a free field in a column of a node

inside this rack section is selected.

The rack selection, and node selection are the core of this policy. In rack selection phase,

SRAP uses an index called Rack_Index to select two racks sections with more free fields on it. The

index is continuously getting updated. Rack_Index of a specific rack is the number of free columns

in this rack section for the current row. Node selection phase starts after rack selection. In this

phase, a node with more free columns from the selected rack in the current row is selected. When

every node is assigned replicas equal to the number of columns it has, a new row of distribution

begins.

For example, let’s assume a cluster of three racks, Rack0 has two nodes, Rack1 has three

nodes, and Rack2 has four nodes. The processing ranks are (K0) = 3 , (K1) =1, and (K2) = 2 . Then

nodes of Rack1 are the lowest processing capacity among the other nodes while nodes of Rack0 are

the highest processing capacity. As shown in Fig.4.1, SRAP generates three tables, the assignment

table of rack0 consists of six columns, the assignment table of Rack1 consists of three columns,
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and the assignment table of Rack2 consists of eight columns. The main assignment table MAT

is formed from merging the three tables, it has M = 17 columns and I rows, where M and I can

be found according to Eq.4.4,and 4.5 respectively. MAT is shown in Fig.4.2. Let’s assume a file

consists of 22 blocks, every block is replicated to three replicas. Blocks’ numbers are assigned

to the cells of MAT 17 blocks per row, with keeping the same reliability constrained of replica

placement policy for HDFS. The process starts with Block0, where two replicas of Block0 are

assigned to Rack2, each of these two replicas are placed on different node. Rack2 is selected at

the beginning because it is the rack that has more free nodes spots. The third replica of Block0 is

assigned on another rack that has higher free node spots than the other racks, it is Rack0. When all

the columns of the first row are assigned blocks’ numbers, the second row starts and so on until all

blocks’ numbers are distributed.

Finally, SRAP results in balanced and fair distribution of replicas to cluster nodes in term

of processing capabilities for better utilization of all the cluster nodes. SRAP is perfect replica

placement algorithm for heterogeneous cluster environment. the pseudo code of the replica dis-

tribution algorithm is shown in Alg. 4, and 5. During the rack selection for the third replica, the

algorithm must avoid the rack that store the first and second replicas. To do so, SRAP tags the

rack on which the first two replicas of current block reside as avoid_Rack in order to be discarded

during the process of finding the elected rack for the third replica. The Algorithm used to return the

elected rack is shown in Alg. 6. This Algorithm is used two times in the main algorithm. First to

place the first two replicas, and second, to place the third replica. During the algorithm of electing

a node for the selected rack, Alg. 7, SRAP tags the node on which the first replica of current block

resides as avoid_Node to discard it during the process of finding the elected node for the second

replica. After each rack election, SRAP assigns the replica to the elected node of this rack. The

process continues until the completion of distribution of all replicas.
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Algorithm 4: Replicas Distribution algorithm using SRAP
Input: A collection of L racks each rack has ri(i = 0,1,2, , ....L−1) available nodes
on it.
n data blocks to be distributed, which are numbered 0 through n−1.
Rank of every node in Racki is Ki, where (i= 0,1,2, ..., L-1)
Result: T [0,1, ..I−1][0,1, ..,N−1]

1 Begin
2 calculate M and I according to Eq. 4.4 and Eq. 3.3 respectively.
3 for i = 0 to L-1 do
4 rack_compete [i] = r[i] ×K[i];//initializingrackcompetition.
5 for j = 0 to r[i]-1 do
6 node_ f ree[i][ j] = K[i]; // indicator to check if the node is assigned a block

or not.
7 end
8 end
9 rack_avoid =−1

10 for Block = 0 to n-1 do
11 current_rack = elected_rack(Rack_compete) ;
12 current_node = elected_node(current_rack) ;
13 Count = 0;
14 for i=0 to (current_rack−1) do
15 Count=Count + r[i] ×K[i];
16 end
17 column =Count + current_node ×K[current_rack];
18 for p=0 to (K[current_rack]−1) do
19 if (T[iteration[current_rack]][column] = 0) then
20 T[iteration[current_rack]][column+p] =Block;
21 Exit the loop;
22 end
23 end
24 current_node = elected_node (current_rack);
25 column =Count + current_node×K[current_rack]; for p=0 to

(K[current_rack]−1) do
26 if (T[iteration[current_rack]][column] = 0) then
27 T[iteration[current_rack]][column+p] =Block;
28 Exit the loop;
29 end
30 end
31 end
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Algorithm 5: Replicas Distribution algorithm using SRAP- Part 2
32 rack_avoid= current_rack;
33 current_rack = elected_rack (Rack_compete);
34 current_node = elected_node (current_rack);
35 for i=0 to current_rack-1 do
36 Count=Count +r[i] ×K[i];
37 end
38 column =Count + current_node×K[current_rack];
39 for p=0 to K[current_rack]−1 do
40 if (T[iteration[current_rack]][column] = 0) then
41 T[iteration[current_rack]][column+p] =Block;
42 Exit the loop;
43 end
44 end
45 return T [1,2,..I][1,2,..,N]

Algorithm 6: FUNCTION - Elected rack using SRAP
Input: Rack_compete[0,1, ..R−1]
Result: current_rack

1 begin
2 if (rack_avoide = 0) then
3 current_rack =1;
4 end
5 for i = 0 to L-1 do
6 if (i = rack_avoid) then
7 skip the current rack for the third replica;
8 end
9 if iteration[i] < iteration[current_rack] then

10 current_rack = i; // use the rack with the lowest iteration.
11 end
12 if rack_compete[i]>rack_compete[current_rack] then
13 current_rack= i;
14 end
15 end
16 return current_rack
17 end
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Figure 4.1: Example of racks assignment tables

Figure 4.2: Main Assignment Table MAT using SRAP

4.4 Evaluation

The simulation results confirm that SRAP can generate perfectly even and fair replica distributions

of replicas in term of data node processing capability. Two scenarios are considered; in each sce-

nario an experiment was conducted as shown in Table 4.1. Scenario one represents heterogeneous

environment like the previous example in Fig.3.2. Three different generations of hardware exist:

nodes in rack0 are of rank 3, nodes in rack1 are of rank 1, and nodes in rack2 are of rank 2.
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Algorithm 7: FUNCTION - Elected node using SRAP
Input: current_rack
Result: current_node

1 begin
2 for i = 0 to r[current_rack]-1 do
3 if i = node_avoide then
4 Exit loop for for this node;
5 end
6 if (node_free[current_rack][i] > 0) then
7 current_node = i;
8 node_free[current_rack][i] = (node_free[current_rack][i])-1;
9 Exit and End the for loop;

10 end
11 end
12 if (rack_compete[current_rack] = 0 ) then
13 iteration[current_rack]= iteration[current_rack]+1;
14 rack_compete[current_rack]= r[current_rack]*K[current_rack];
15 for i = 0 to r[current_rack]-1 do
16 node_free[current_rack][j] = K[current_rack];
17 end
18 end
19 return current_node
20 end

In replica distribution generated by the HDFS RPP, the replicas are not evenly distributed

across the cluster nodes, and there are nodes with low computing capabilities are assigned replicas

more than other nodes with high computing capabilities. It results in node overload and significant

delay in data processing as shown in Fig.3.2. For example, node2 of rack1, although it has low

processing speed, it has been assigned 14 data blocks, while node0 in rack0 that has higher pro-

cessing speed is assigned 9 data blocks only. Even though HDFS user the balancing utility, it will

not take into consideration the heterogeneity of cluster.

On the other hand, replica distributions generated by the SRAP generates balanced replicas

distribution based of the processing capabilities of the node, as shown in Fig 4.3. Nodes of rack 0

have been assigned more replicas than Nodes of rack1. Scenario two represents a highly heteroge-
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neous environment where there exist four different generations of hardware: nodes on Rack0 are

rank 1, nodes on Rack1 are rank 2, nodes on rack2 are rank 3, and the node on Rack3 are rank 4. In

Scenario two, the number of replicas to be distributed to 11 nodes are 192 replicas, every column

in MAT has 8 replicas. The results of scenario two are shown in Table 4.1.

Table 4.1: SIMULATION SETTINGS OF SRAP EVALUATION

Simulation Settings Scenario One Scenario Two
Total Number of Blocks. 34 64
Duplication Factor. 3 3
Total Number of Replicas. 102 192
Total Number of Racks. 3 4
Total Number of nodes in each rack. ri = [2,3,4] ri = [4,3,2,2]
Rank of node in each rack. Ki = [3,1,2] Ki = [1,2,3,4]
Number of replicas on one column. 6 8
Minimum number of replicas on One node 6 8
Maximum number of replicas on One node 18 32

Node0              Node1               Node2  

Rack 1 Rack 2
Node0                                Node1  Node0                  Node1                  Node2   Node3  

Rack 0

0

6

11

17

23

28

1

7

12

18

24

29

5

11

17

22

27

33

0

5

12

15

21

28

1

6

13

18

23

29

2

7

14

19

24

31

3

9

15

20

27

33

3

9

11

20

22

31

3

8

13

18

25

30

4

9

15

21

26

31

5

10

16

22

27

32

0

6

12

17

24

29

1

7

13

19

25

30

2

8

14

19

25

30

4

10

16

20

26

32

2

8

14

21

26

32

4

10

16

23

28

33

Figure 4.3: Replicas distribution generated by SRAP
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CHAPTER 5: STRAGGLER IDENTIFICATION AND SPECULATIVE

EXECUTION1

Straggler tasks dramatically impede parallel job execution of data-intensive computing in Cloud

Data centers. However, data-intensive computing frameworks, such as MapReduce or Hadoop,

employ a mechanism called speculative execution to deal with the straggler issue. Speculative

execution method is a widely adopted as a straggler identification and mitigation scheme. However,

speculative execution provides limited effectiveness because in many cases straggler identification

occurs too late within a job life cycle, or unsuccessful backup tasks are initiated based on inaccurate

straggler identification process. The successful identifying of the straggler, and the timing of

identifying it are very important for straggler mitigation in data-intensive cloud computing. In this

chapter, a new straggler identification scheme is proposed to make Hadoop more efficient in cloud

environments. It is named Progress and Feedback based Speculative Execution (PFSE) algorithm.

This algorithm identifies the straggler Map tasks based on the feedback information received about

the completed tasks and the progress of the current processing task. The extensive experiments

show that PFSE can outperform dynamic scheduling techniques like Self-Learning MapReduce

scheduler (SLM) and Longest Approximate Time to End (LATE) algorithm. PFSE can assist

in enhancing straggler identification and mitigation for tolerating late-timing failures within data

intensive cloud computing.

5.1 Introduction

Hadoop is an open-source implementation of MapReduce, it has been applied in data parallel pro-

cessing on a large cluster of commodity machines to handle large-scale data intensive applications.

1Related publication: I. A. Ibrahim and M. Bassiouni. Improving mapreduce performance with progress and
feed-back based speculative execution. In 2017 IEEE International Conference on Smart Cloud(SmartCloud), pages
120–125. IEEE, 2017.
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It divides a large computation job into small tasks and assigns them to multiple computational

cluster nodes running in parallel. It can be scaled easily to large clusters of inexpensive commod-

ity computers, automatically handles failures, and hides the complexity of fault tolerance from the

programmer. The attractive feature of MapReduce is the ability to automatically divide a job into

multiple tasks and transparently handle tasks execution by distributed processing nodes [30]. In

a MapReduce cluster, after a job is submitted, the job is divided into multiple map and reduce

tasks. MapReduce works by breaking the processing into two phases: the map phase and the re-

duce phase. Map tasks and the reduce tasks are distributed into processing nodes which continue

processing the tasks and keep updating the tasks’ progress by periodic heartbeat. Map tasks ex-

tract (Key, Value) pairs from the input data, transfer them to some user defined map function and

combine function, then generate map outputs. The output from the map function is processed by

the MapReduce framework before being sent to the reduce function. This process sorts and groups

the (Key, Value) pairs by key, transfers the stream to some user defined reduce function, and finally

generates the result of the job [16].

In general, a map task is divided into map and combine phases, while a reduce task is

divided into copy, sort and reduce phases. Since Hadoop-0.20, reduce tasks can start whenever

some map tasks are completed, to avoid network congestion because the reduce tasks copy map

outputs whenever they become available without waiting for all the map tasks to be completed.

However, reduce task can start the sort phase when all map tasks have been completed. This is

because each reduce task must finish copying outputs from all the map tasks to make the input

ready for the sort phase to produce the final result. This chapter focuses on straggler identification

of tasks in map and sort phases.
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5.2 Background

In MapReduce, after a job is submitted, the NameNode divides the input files into multiple map

tasks, and then schedules both map and reduce tasks to the DataNodes. The DataNode runs tasks

in its containers and keeps updating the tasks’ progress to the NameNode by periodic heartbeat.

Input data is partitioned and distributed to the computing nodes in the map phase. The intermediate

data generated in this phase are sorted then transferred to the nodes that perform reduce process.

Hash-Partitioner is the default partitioner of Hadoop that used to partition the intermediate data to

be submitted to the reducers [21]. One of the significant issues that can delay the final result of

MapReduce job is the Straggler task. Data-intensive computing frameworks, such as MapReduce

or Hadoop, employ a mechanism called speculative execution to deal with the straggler issue. It

runs a speculative copy of a straggler’s task on another DataNode. The default speculative execu-

tion algorithm of Hadoop aggressively starts many backup tasks in order to avoid straggler tasks.

However, the current speculative execution algorithm of Hadoop has limited effectiveness because

of the unsuccessful backup tasks. The inaccuracy in identifying the straggler causes initializing a

number of unnecessary backup tasks which degrade the performance of MapReduce and leads to

the increasing of MapReduce job completion time.

5.3 Progress and Feedback based Speculative Execution (PFSE) algorithm

In this dissertation, an algorithm named Progress and Feedback based Speculative Execution

(PFSE) is developed in order to improve MapReduce performance. This algorithm reduces the

number of unnecessary backup tasks by improving the estimation of the task execution time. PFSE

calculates phase completion time estimation from the fresh information collected from recently

completed tasks of the same job, and the current progress of task execution during the phase. To

evaluate the performance of PFSE, it has been implemented on Hadoop computing environment,

and experiments with four MapReduce application jobs have been conducted. the performance of
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PFSE has been compared with the performance of those of existing algorithms. PFSE focus only

on straggler tasks in map phase, because running backup tasks for map tasks generally does not

require exchanging intermediate data between nodes. However, a policy for straggler mitigation

in reduce phase is proposed in the next chapter. PFSE algorithm estimates the remaining execu-

tion time of each task. It uses the progress rate from the current phase and the feedback from the

completed phases to estimate the completion time of running tasks.

In PFSE, the accuracy of the estimation increases as the completed tasks increase. Two fac-

tors dramatically combined to give better estimation about the task completion time. First factor

is the current phase Progress Score (Ps) of the task. Ps is the amount of data the current task pro-

cesses during the current phase. the value of Ps is continuously updated. The larger the processed

data, the more precisely the estimated remaining time by using this factor. The second factor is

the feedback that has been received about the completion time of the already completed phases of

tasks from the same job. The larger number of completed tasks of the same job, the more accuracy

estimation of completion time using this factor. The accuracy of these factors depending on the

time during the job processing cycle. Calculations from completed phases information and that

from currently running tasks play significant role to accurately estimate the completion time. The

role of the source of calculations is changing over time depending of the accuracy of each calcu-

lation. The second factor is used only in case of there is at least one completed task. In the early

execution stages, where there is no completed task, the only factor used is the Ps.

At the beginning, the algorithm calculates the estimated completion time ECT [i] of the

currently running taski, where there is no finished task yet of the job including taski and the task

currently in the map phase. The algorithm estimates the ratio of execution time of the map phase

to that of the sort phase for the current taski. At the beginning, the default value of Ratio is 2/3

,it is similar to the default phase weight in LATE. Let’s assume psi is the progress score of taski,

which can be obtained from Hadoop, and ranges from zero to one. For each taski, psi is calculated

as the ratio of the amount of data successfully processed in taski, to the amount of total data to be

46



processed by taski.

During the map phase of taski the remaining time of the map phase, Trm[i], at the current

time Tcr[i] can be estimated as in Eq.5.1. The Tcr[i] is the duration of time from the first time that

taski reports its map phase progress to the current time. Not all the duration from the beginning is

taken, however the initial delay at the beginning of the phase is ignored in order not to negatively

effect on the estimation. The next phase is the sort phase. The estimated execution time of the sort

phase, Tsort [i], for taski can be calculated in Eq.5.2. Tmap[i] is total map phase estimated time, it

can be calculated using Eq. 5.3.

Trm[i] =
(

1− ps[i]
ps[i]

)
×Tcr[i] (5.1)

Tsort [i] =
(

Tcr[i]
ps[i]

)
×
(

1−Ratio
Ratio

)
(5.2)

Tmap[i] =
(

Tcr[i]
ps[i]

)
(5.3)

Ratio is the ratio of map phase to sort phase. When the task is in map phase, the estimated com-

pletion time of the currently running taski is calculated in Eq. 5.4.

TotalTrm[i] = T Mrm[i]+Tsort [i] (5.4)

The Second factor that can enhance these calculations and increase the efficiency of backup

task mechanism is the feedback from the completed phases. Every completed task is used to be

used in the estimated completion time of the map and sort phases. Let’s assume S is a set of

completed tasks. The average execution time of map phase for the completed task, Mavg, and the
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average execution time of sort phase for the completed task, Savg, can be calculated as in Eq. 5.5,

and 5.6 respectively.

Mavg =
1
N
×∑

i∈S
Mcomp[i] (5.5)

Savg =
1
N
×∑

i∈S
Scomp[i] (5.6)

N is the number of tasks in set S. Mcomp[i] is the execution time of the map phase of the ith

completed task in S. Scomp[i] is the execution time of the Sort phase of the ith completed task in S.

The default value of ratio of map to sort is 2/3. However Ratio gets updated based on the received

feedback from the competed tasks too. The average of map ratio, MRatio, and the average of sort

Ratio, SRatio, are calculated in Eq. 5.7, and 5.8 respectively.

MRatio =
Mavg

Mavg +Savg
(5.7)

SRatio =
Savg

Savg +Mavg
(5.8)

The estimated time of map phase can be adjusted based on the feedback received from

the completed task. At the beginning, when there is no task completed, the default value of the

estimated map task time, Mde f , can be initially calculated from the speed of node that process the

map taski, Sn[i], and the amount of data, M, that need to be processed in the map task. Mde f is

calculated in 5.9.

Mde f [i] =
M

Sn[i]
(5.9)
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Mde f is a default value. it assumes that the node is not busy and does not have any resource

contention or bandwidth restriction for the processed data. This value gets adjusted if there is at

least one completed task but its accuracy increases based on how many tasks have completed the

map phase. As shown in Eq.5.10, the value of feedback of the map phase processing time, M f b[i],

is either the default value, Mde f [i], or the average execution time of map phase for the completed

tasks belonging to the same job,Mavg.

M f b[i] =


Mde f [i], if no map task has completed yet .

Mavg, otherwise.
(5.10)

Similarly, the feedback of sort phase processing time for taski, S f b[i], can be either the

default value, Sde f [i], if there is none of the task has finished the sort phase yet, or the average

execution time of the sort phase for the completed tasks belonging to the same job. S f b[i], and

Sde f [i] are calculated in Eq.5.11, and 5.12 respectively.

Sde f [i] = Mde f ×
1−Ratio

Ratio
(5.11)

S f b[i] =


Sde f [i], if non of map task or sort task has completed yet .

MAvg× 1−Ratio
Ratio , at least one map task has completed but not sort phase yet.

Savg, otherwise.

(5.12)

The value of Ratio is 2/3, it is the default ratio as mentioned earlier, but it gets updated

when the values of MRatio and SRatio are calculated. Therefore, Ratio in calculated as shown in
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Eq.5.13

Ratio =


SRatio
MRatio

, If at least one Map task and one Sort task have been completed.

2
3 , Otherwise.

(5.13)

During the map phase, the estimated remaining processing time to complete both map and

sort phases, TotalTrm, can be calculated from the summation of the estimated remaining time for

map phase, and the total estimated time of the sort phase based on the two factors Progress Score

and the Feedback as shown in Eq. 5.14

TotalTrm[i] = ps[i]Trm[i]+ f b[i](|M f b[i]−Tcr[i]|)+ ps[i]
Tmap[i](1−Ratio)

Ratio
+ f b[i]S f b[i]. (5.14)

Psi ranges from zero to one. The feedback weight has a reverse relation with the progress

score. The initial estimations depends on the feedback because of the low progress score of the

task. when the progress score is increasing, the reliability on the feedback getting lower, and the

dependence on the data received about the processing progress of the task gets increased until the

progress score approaches one.

f b[i] = 1− ps[i] (5.15)

The difference between the total map phase time estimated from feedback and the current

time is the estimated remaining time for map phase based feedback. The absolute value is taken

just to avoid a rare case when the current time is greater than the feedback expected map phase

time. When taski starts the sort phase, the value of ps[i] is zero. The value of ps[i] starts increasing

gradually based on the progress score in the sort phase. The same two factors are used to find the
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estimated remaining time to complete the sort phase TSrm[i] using Eq.5.16.

TSrm[i] = (1− ps[i])×Tcr[i]+ f b[i]× (|S f b[i]−Tcr[i]|) (5.16)

TSrm[i] is the estimated remaining time to complete sort phase when the current task is in

sort phase. The feedback value of the estimated remaining sort time comes from the total sort phase

estimated time calculated from the feedback minus the current time. As calculated previously, the

absolute value is taken to the same reason mentioned earlier. At the beginning of the sort phase,

few of the map phases have been completed already, which can help in increasing the accuracy

of estimation of the sort phase remaining execution time. Therefore, the feedback during the

beginning of sort phase is more reliable.

There are four cases in which this algorithm find estimated completion time of taski in Map

phase or sort phase. First, when taski is in the map phase and there is no feedback information

about any completed task belonging to the same job. Second, taski is in the map phase and there

is a feedback information. Third, taski is in the sort phase and there is no feedback information.

Fourth, taski is in the sort phase and there is information collected about completed phases. Eq.5.14

calculates the estimated completion time of taski for the first and second cases, while Eq.5.16

calculates the estimated completion time of taski for the third and fourth cases.

5.4 Evaluation

To test the performance of the proposed strategy, a practical environment has been prepared. Four

practical MapReduce application jobs based on HiBench benchmark suite: Wordcount job, KMean

clustering job, PageRank job, and Inverted Index job were chosen to evaluate the performance of

straggler identification strategy. The accuracy of the suggested algorithm is examined by com-

paring the estimated execution time of map task from each job with the estimations resulted from

LATE and SLM algorithms.
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The crucial factor is to minimize the number of the unsuccessful backup tasks resulted from

implementing speculative execution of the tasks that tagged incorrectly as straggler. Based on the

mechanism of the examined algorithms, the accuracy of the estimated completion time using the

three algorithms gradually increases during the process time, the estimated execution time changes

with the progress of task processing. However, the estimations of the PFSE become closer to the

real value with the increasing of the completed map tasks and that what makes it different from the

other algorithms.

The accuracy of the algorithm is measured by the difference between the estimated task

completion time for each algorithm, and the real execution value, which is obtained after com-

pleting the task execution. The result from these estimations controls the decision of how many

backup tasks must start speculative execution because the estimated completion time of it is higher

than predefined value. The results of the experiments showed that, the three algorithms identified

many tasks that should not have been identified as a straggler, but FBSE has the lowest number of

unsuccessful backup Map tasks. So, the main factor of examining the algorithm is the successful

backup rate. Table 5.1 shows the number of backup map tasks decided based on the estimated task

completion time generated from each algorithm for each job type. The successful backup rate col-

umn shows the rate of successful backup map tasks initiated for speculative execution. As shown

in the table, for the wordcount job, the number of initiated backup map tasks of LATE,SLM, and

PFSE algorithms are 75, 63, and 51 respectively. PFSE outperforms LATE and SLM algorithms by

minimizing the number of backup tasks, as well as, increasing the successful backup rate, which

leads to improving MapReduce performance.
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Table 5.1: COMPARISON OF LATE, SLM, AND PFSE ALGORITHMS

Job Strategy Number of
backup tasks

Number of
successful
backup tasks

Number of
unsuccessful
backup tasks

Successful
backup rate

Wordcount LATE 75 42 33 56.00%
Wordcount SLM 63 43 20 68.25%
Wordcount PFSE 51 41 10 80.39%
KMean Clustering LATE 86 55 31 63.95%
KMean Clustering SLM 73 54 19 73.97%
KMean Clustering PFSE 69 58 11 84.06%
PageRank LATE 59 42 17 71.19%
PageRank SLM 57 43 14 75.44%
PageRank PFSE 52 44 8 84.62%
Inverted Index LATE 86 51 35 59.30%
Inverted Index SLM 77 49 28 63.64%
Inverted Index PFSE 60 51 9 85%
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CHAPTER 6: STRAGGLER REDUCE TASKS OF MAPREDUCE JOBS1

Data skew of intermediate data in MapReduce job causes delay failures due to the violation of

job completion time. Data-intensive computing frameworks, such as MapReduce or Hadoop Yarn,

employ HashPartitioner. This partitioner may cause intermediate data skew, which results in strag-

gler reduce task. Straggler reduce task delays the final result of MapReduce job because the final

result of reduce phase is computed after receiving the results of all reduce tasks including straggler

reduce task. Therefore, the overall running time of a MapReduce job is determined by the longest

running reducer. In this chapter, we strive to make Hadoop more efficient in cloud environments.

A new partitioning scheme, called Balanced Data Clusters Partitioner (BDCP), is proposed in this

chapter to mitigate straggler reduce tasks based on sampling of input data and feedback information

about the current processing tasks. We examined the proposed partitioner BDCP in a real MapRe-

duce job environment that generates big intermediate data with high data skew. BDCP has been

compared with default Hadoop partitioner and another previously suggested partitioner . Our ex-

tensive experimental results show that BDCP can outperform the default Hadoop HashPartitioner

and Range partitioner.

6.1 Introduction

Big data tools like Hadoop and Apache Spark provide productive high-level programming interface

for large scale data processing. Hadoop uses MapReduce as programming paradigm. It has been

used for parallel processing of large-scale data on a large cluster of commodity machines to handle

data-intensive applications. The next generation of Hadoop, namely Hadoop YARN, is accommo-

dated to various programming frameworks and capable of handling many kinds of workload such

as interactive analysis, and stream processing.

1Related publication : I. Ibrahim and M. Bassiouni, “Improvement of job completion time in data-intensive cloud
computing applications ”, in Journal of Cloud Computing, Springer Publishing 2019.
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In a MapReduce cluster, the job is submitted, then it is divided into multiple map tasks.

Map tasks extract (Key, Value) pairs from the input data chunks. All (Key, Value) pairs sharing

the same key form a data cluster. The total number of (Key,Value) pairs in the data cluster is the

data cluster size. Map outputs generate the intermediate data. The intermediate data are divided

according to a user defined partitioner before being sent to the reducers [68]. Thus, the mapper

groups the data clusters into partitions. The partition is a set of data clusters assigned to the same

reducer. Therefore, the number of partitions in each mapper equals the number of reducers. Every

partition from each mapper is sent to the corresponding reducer, as shown in Fig. 6.1. The default

partitioner of Hadoop is HashPartitioner.

Since all map tasks use the same partitioner, all similar keys are dispatched to the same

partition. Every partition consists of many data clusters. The number of data clusters is equal to

the number of distinct keys in the input data. One reducer processes one data partition. Ideally, the

resulted intermediate data consists of keys that are approximately similar in their values, and the

reducers are not busy with other tasks. In this ideal case, all data cluster are similar in their sizes.

Therefore, the data processing load on the reducers is balanced because all reducers process same

number of data clusters. However, in real applications, the reducers vary in their assigned inter-

mediate data because the data clusters vary in their sizes, and the reducers vary in their processing

capabilities.

Moreover, one reducer may have been assigned too much data to process as compared to

the other reducers for the same job, which results because of the data skew. Data skew refers to

the unfairness in the amount of data assigned to each task. Consequently, the reducers complete

their reduce tasks while heavy reducer becomes straggler reducer. The straggler reducers degrade

the performance of MapReduce applications because the result of the reduce phase is computed

after receiving the results of all reduce tasks including straggler reduce task. In cloud computing

platform, the reduce task that receives extremely large data becomes straggler, eventually delays

the overall job completion time.
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Figure 6.1: Map Reduce process

Straggler problem is very common in reduce tasks in data-intensive MapReduce jobs be-

cause of three major reasons:

• The data skew resulted from the partitioner: In case of data skew, the resulted data load on a

reducer is much higher than the data load on the other reducers for the same job. In Hadoop,
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data skew happens because of the keys dispatching is based on the hashing algorithm. The

size of partition depends on the number of relevant (Key, Value) pairs. Data skew is one of

the main performance bottlenecks in MapReduce environment.

• The variations in computing capabilities of reducers: In heterogeneous Hadoop cluster the

DataNodes may vary in data processing speed due to the diversity of their computing ca-

pabilities [58]. Even if there is no data skew, the variations in computing capabilities of

DataNodes that perform the reduce tasks lead to the case in which the slow node becomes

straggler.

• The network congestion: It is resulted from the huge amount of data transferred from map-

pers to the reducers during the shuffle phase. Since the reducer waits for all the data clusters

to arrive in order to start reduce task, the delay in transferring the data needed by a reducer

leads to straggler reduce task.

Partitioner controls the partitioning process of the keys generated in map phase. The key (or

a subset of the key) is used to derive the partition, typically by a hash function. The total number

of partitions is the number of reduce tasks of the job. During the reduce phase, a data partition of

large size may be assigned to one reducer while the other reducers receive small size partitions, as

shown in Fig. 6.1. Consequently, all other reducers complete their reduce tasks, while the reduce

task on the large partition becomes straggler because the result of this task takes long time, which

leads to delay of final result.

6.2 Background

Hadoop 2.9.2 employs the following static hash function to partition the intermediat (Key, Value)

pairs [13].

Hash
[
HashCode

(
Key
)
mod

(
numReducer)

]
.
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Figure 6.2: Variation in reducers data load

Unfortunately, this hash function used by Hadoop cannot solve the issue of skewed data.

For reduce tasks, partitioning skew leads to shuffle skew, eventually some reducers will receive

more data than others [76]. For example, Fig. 6.2 shows the different amounts of input data that

have been assigned for 12 reducers when running the benchmark Word Count using 15 GB of text

data [1].

Many straggler mitigation techniques have been developed in order to solve the issue of

straggler. One of straggler mitigation techniques is the reallocation of straggler reduce task. In this

technique, an alternative reducer is selected to run the reduce task. This process requires transfer-

ring all data of the reduce task to the new alternative reducer. In some cases, task reallocation leads

to a higher overhead compared to the overhead produced by processing the task using the original

slow node. This overhead resulted from the delay of transferring the data over the network to the

alternative node.
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However, the decision of transferring a reduce task to another reducer should be based

on accurate calculations about the data transfer cost in order to minimize the completion time of

the reduce phase. The ideal way to avoid straggler reduce tasks issue is by distributing the data

clusters evenly as much as possible to the reducers. In order to distribute the intermediate data

to reducers in an efficient way, the partitioning policy must be based on information about the

(Key, Value) pairs resulted from each map task before the beginning of the shuffle process, and the

data processing capabilities of reducers. The information must include the frequency of each key

produced from every mapper in order to apply the partitioning policy that produce partitions that

are similar in their sizes. Obtaining an ideal solution for this problem is unrealistic because of two

reasons:

• In current Hadoop, the execution time of shuffling the mappers outputs to the reducers is

overlapped with the map tasks execution time. Reduce phase is activated when specific

percentage of map tasks have been completed, (5% by default in Hadoop 2.9.2). Overlapping

the execution of map tasks and reduce tasks is handled in order to avoid network congestion,

and fully utilize the resource. Consequently, minimizing the job completion time.

• An accurate information about the intermediate data can be obtained only when all map tasks

have been finished. However, it is meaningless to obtain the (Key, Value) distribution after

processing all input data in map phase, because the cost of pre-scanning the whole data is

hard to be accepted when the amount of data is very large.

Furthermore, when the amount of input data is very large, the job completion time in case

of waiting for all map task to finish then starting the shuffling is higher than the job completion

time when the current default hash policy has been used [43].
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6.3 Balanced Data Clusters Partitioner BDCP

An algorithm named Balanced Data Clusters Partitioner BDCP has been developed to improve

MapReduce performance. This algorithm reduces the MapReduce job execution time by address-

ing the problem of straggler reducers caused from skewed data, network overhead, and slow re-

ducers, by the following contributions:

1. Minimizing the effect of intermediate data skew.

2. Preventing the reducers skew by balancing the data load on the reducers.

3. Minimizing the amount of data transfer during shuffle phase over the network from mappers

to the reducers.

The main steps of this algorithm are summarized as following:

1. Implementing the MapReduce job on a small sample from each split of the input data.

2. Calculating the estimated frequency of every key .

3. Collecting feedback information about the computing capabilities of reducers.

4. Building a new partitioning policy of the intermediate data for heterogeneous and homoge-

neous reducers nodes.

BDCP policy starts the sampling phase before the actual execution of MapReduce job. In

sampling phase, a sample from the data input of each map task is taken. The sampling process

used must ensure an accurate data representation of the original data in the sample data. The

original MapReduce job is applied on the sampled data by using the same mappers and reducers

reserved for this job. Once the information about the intermediate data and the reducers processing

capabilities are received by the partitioning algorithm, the partitioning policy is created, and the

MapReduce job starts to be implemented on the original data.
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Figure 6.3: MapReduce job with BDCP partitioning policy

The efficiency of the algorithm depends on the size of data sample, the accuracy of sam-

pling method used, and the accuracy of feedback information about the reducer nodes. The bigger

the size of data sample used, the more accuracy of the estimation of the key frequency for the

original data.
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However, the bigger size of data sample used, the longer time it takes to complete the sam-

pling phase, consequently longer job completion time. Sample size %10 of the original input data

is used in the experiments in policy evaluation. The main processing steps of MapReduce job with

BDCP partitioning policy is shown in Fig. 6.3. At the beginning, the reservoir sampling takes a

sample of input data from each split using efficient sampling method as discussed in next section,

then the regular MapReduce job is implemented on the sampled data. The intermediate data are

partitioned using the default HashPartitioner. The reducers that are assigned to the original job is

used to reduce the intermediate data in sampling phase. The last part of sampling phase is that

the partitioning policy part of BDCP receives the results. However, the NameNode receives the

information about speed of data processing of the reducers through the heartbeats. Thus, during

the sampling phase and before the actual execution of MapReduce job, an accurate information

about the data processing tare of the reducers are available in the NameNode to be used in the dis-

tribution policy. The distribution policy uses a modified knapsack problem algorithm. It assumes

the reducers are the buckets with one size or different sizes, and data clusters are the items that

need to be placed inside the buckets. The size of the reducer is based on the data consumption rate

received by NameNode.

6.3.1 Sampling

Sampling is the selection of a subset (representative sample) from a target population then col-

lecting data from that sample in order to estimate characteristics of the whole population. It is an

efficient tool to reduce the amount of input data and dealing with a sample as a representative for

the original data. Even though there are many sampling techniques, the type and features of data

determine the sampling method that makes best representation of the original data. For example,

if the data set is already sorted and a sampling method needed to find the distribution of this data

set, then the best sampling technique is the interval sampling method. When a general information

about the density distribution of numbers, and the probability about data distribution are known,
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then a probability sample may be used.

In probability sample every unit in the population has a chance of being selected in the

sample, and this probability can be accurately determined. When the data set is entirely unknown,

it is best to apply simple random sampling. In a simple random sample (SRS) of a given size,

all such subsets of the frame are given an equal probability. Each element of the frame thus has

an equal probability of selection. Since the Hadoop MapReduce processes different kind of data

with different features, it is best to use simple random sample. In practical applications of Hadoop

MapReduce, the amount of data is very large, therefore BDCP use the sampling phase. The number

of (Key, Value) pairs for each key in sample is approximately the proportion of (Key, Value) pairs

in the original input data. The number of (Key, Value) pairs sharing the same key appear in the

sample can be scaled up by dividing it by the sampling ratio to produce the estimated frequency of

this Key in the original data, as in Eq. (6.1).

size(k) =
size(k

′
)

S_Ratio
(6.1)

S_Ratio is the sampling ratio, k is the original key, and k
′

is the key that appears in the

sample.

6.3.2 Reservoir sampling

The reservoir sampling takes k elements from the population. It saves k preceding elements first,

then randomly replaces original selected element in the reservoir with a new element that is selected

from outside the reservoir. The final sample data of size k is generated after finishing the scanning

of all the original input data, as shown in Alg. 8. Assume S is the data population and the required

sample size is k. The algorithm creates a "reservoir" array of size k, and directly place first k items

of S in it. It then iterates through the remaining elements of S, beginning from the (k+1)th element
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until the last element of S. At the ith element of the iterations, the algorithm generates a random

number j between 1 and i. If j is less than or equal to k, jthelement of the reservoir array is replaced

with the ith element of S. In effect, for all i, the ith element of S is chosen to be included in the

reservoir with probability k/i. Similarly, at each iteration the jth element of the reservoir array is

chosen to be replaced with probability (1
k )× (k

i ) = (1
i ). The time complexity of Alg.8 is analyzed

as follows: Line 2 takes O(1) time. The time of the loop in lines 3–12 depends on N, where the

data blocks consist of N records to be assigned. Therefore, the time complexity of this loop is O(

N ). If statement in lines 4–12 take O(1) time. So the total time complexity of sampling algorithm

is O (N) .

Theorem: When the Reservoir Sampling algorithm has finished sampling process on a

data set, each item in the data set has gotten equal probability of being chosen for the reservoir.

Proof: Let’s assume that a sample of size k representing data set of size S. We are required

to prove that each item in S has gotten equal probability of being chosen for reservoir. As shown

in Fig.6.4, assume the algorithm is in the (i− 1)th round, x is the element of the (i− 1)th round,

it either selected as a sample in the reservoir or skipped. The probability of x is selected and

being in the reservoir array after completing round (i− 1) is ( k
i−1). Since the probability of the

jth element of the reservoir array is chosen to be replaced in the ith round is (1
i ), the probability

that x survives inside the reservoir in the ith round is ( i−1
i ). Thus, the probability that x is in the

reservoir after the ith round is the product of these two probabilities, i.e. the probability of being

in the reservoir after the (i− 1)th round, and probability of x staying inside reservoir in the ith

round: ( k
i−1)× ( i−1

i ) = k/i. The probability for the ith element to be swapped in is also k
i . Hence,

the result holds for i. Since the base case of i− 1 = k is true, the result is true for all i ≥ k by

induction. In general, for (k+1)< i≤ n, probability of S[i] being in the reservoir is: (Probability

of selecting S[i] to be in the reservoir in ith round)×(Probability of not removing S[i] from the

reservoir during the (i+1)th round)× (Probability of not removing S[i] from the reservoir during

the (i+2)th round)×..× (Probability of not removing S[i] from the reservoir during the nth round).
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Figure 6.4: Reservoir sampling

The probability of S[i] being in the reservoir can be simplified as follows:

p(i) =
k
i
× i

i+1
× i+1

i+2
× i+2

i+3
...

n−2
n−1

× n−1
n

=
k
n

the result is true for all (k+1)< i≤ n.

Algorithm 8: Reservoir sampling.
Input: Input: Si[1,2, ..,N]: Data block, it has N records.
Data blocks consist of N records to be assigned, which are numbered from 1 to (N)
Result: Ri[1,2, ..,K]: sample which has k records.

1 begin
2 CB = 0; (Current block number)
3 for i = 1 to n do
4 if i≤ k then
5 R[i] = S[i];
6 else
7 j = random(1, i);
8 if j ≤ k then
9 R[ j] = S[i];

10 end
11 end
12 end
13 Return R
14 end
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6.3.3 Partitioning policy

Partitioning of the data clusters is the process of grouping data clusters into partitions. Every

partition is assigned to a reducer to implement the reduce task. To increase the utilization of the

resources in reduce phase, the reducers must be similar in their data load received during the shuffle

phase. After finding an accurate sample that represents the original input data, partitioning policy

of BDCP is decided. There are three important factors controlling the partitioning policy:

• Estimated (key,value) distribution.

• Data processing rate of the reducers.

• Network bandwidth.

Let’s assume that the number of mappers and reducers are M, and R, respectively. The key

and value sets are K, and V respectively. The intermediate data set, (key,value) pairs, generated

during map phase is I. Data cluster is the set of all (key,value) pairs that share the same key.

The number of data clusters in I is C. The data clusters, Cluster1 through Clusterc, need to be

distributed into R reducers.

ki ∈ K is the key of Clusteri for i = 1,2, ..C.

Clusteri = <ki,v> ∈ I for i = 1,2, ..C.

One partition, Pi, is a set of data clusters that assigned to Reduceri. Therefore, the interme-

diate data I consists of partitions from P1 through PR: I = (P1,P2, ..,PR). Let’s assume a Hadoop

cluster consists of R reducers. C is the total number of data clusters appearing in the sampling

phase. The frequency of keys in data clusteri is keyi , where (i = 1,2, ...,C). The total number of
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(Key,Value) pairs that need to be distributed to the reduce tasks is D. As in Eq. (6.2).

D =
C

∑
i=1

keyi (6.2)

Since data clusters vary in their sizes, and one data cluster must be assigned to one reducer,

the sizes of partitions are not similar. Consequently, the distribution of data loads to the reduce

tasks cannot be even. The mean size of the partitions, Mean, can be calculated as shown in Eq.

(6.3).

Mean =
D
R

(6.3)

The ideal case is when the data partitions are similar in their size, i.e. the partition size

equals Mean. Practically this case is unrealistic, but as much as the partition size is close to Mean

as much as it is closer to the ideal case. The suggested partitioning algorithm minimizes this

variation. the partitioning algorithm tries as much as possible to minimize the standard deviation

of the number of (Key,Value) pairs on every reducer from Mean, as shown in Eq. (6.4).

min
Ti j

s =

√
∑

R
i=1

(
(∑C

j=1 key jTi j)−Mean
)2

n

s.t. ∑
R
i=1 Ti j = 1, for all j =

(
1, ..,C

)

Ti j = 0 or 1, for all i = (1, ..,R)

and j =
(
1, ..,C

)

(6.4)

The distribution algorithm is shown in Alg.9. Data clusters assignment algorithm assigns

C clusters to R partitions, one partition for one reducer. Every reducer pulls its data from its

corresponding partition to achieve the reduce task. Lines 1-5 in Alg.9 clear the array called re-
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Algorithm 9: Data clusters assignment algorithm-homogeneous
Input: Input: A collection of R reducers.
C data clusters to be distributed, which are numbered Cluster1 through ClusterC.
Number of keys in every data cluster i is Key[i] where (i = 1,2, ...,C)
Result: T [1,2, ..R][1,2, ..,C]

1 begin
2 for i = 1 to R do
3 Reducer_load [i] = 0;
4 T [i][ j] = 0; for all j = 1 to C
5 end
6 Sorted_key[] = sort_descending(Key[]);
7 Index_Sorted_key[]=index of Sorted_key[ ] in Key[] ;
8 for i = 1 to C do
9 j = Index_Sorted_key[i];

10 if (keys of Cluster j are the Map output of Mapper/Reducer node) && (this
node produces more than half of data cluster j) then

11 z = Index(Mapper/Reducer node);
12 else
13 z = Minimum(Reducer_load[1,..,R]);
14 end
15 T [z][ j] = 1;
16 Reducer_load[z] = Reducer_load[z]+Key[ j];
17 end
18 Return T [1,2,..R][1,2,..,C]
19 end

ducer_load, it stores the current load on the reducer. At the beginning of the distribution the value

of reducer_load of every reducer equals 0. The algorithm creates R×C array to store the main

assignment table as shown in Fig. 6.5. At the beginning of the algorithm, all values of main as-

signment table equal 0. During the process of the algorithm, if a cell inside this table has been

assigned value of 1, then data cluster of corresponding column number is assigned to the reducer

of corresponding row number in the main assignment table.

It is important to sort the data clusters based on their size in descending order. The reason

of this descending order is to start the assignment of the largest data clusters first then the smaller

size. Leaving the small sizes data clusters not distributed until the end of distribution makes it
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easier to balance the load among reducers. In lines 6− 7, the function Sort_descending sorts

the sizes of data clusters, key[], in descending order. The results are saved in sorted_key[] array

and their original index in Key[] are stored in array named Index_sorted_key[]. For example:

Key = [22,41,11,32], then sorted_key = [41,32,22,11], and Index_sorted_key = [2,4,1,3]. Line

9 takes the next data cluster from sorted_key[], and store its index on the original data clusters

sequence.

Lines 10− 11 in Alg. 9 is the part that minimizes the data transfer over the network. A

DataNode may be selected to execute both map and reduce tasks of a job, we call it Mapper/Re-

ducer node. BDCP takes advantage of this opportunity to reduce the network traffic during the

shuffle phase. The amount of data transferring over the network can be minimized by keeping

the output of map task on a DataNodeas as an input of reduce task on the same node. Assume

a DataNode X acts as Mapper/Reducer node for specific MapReduce job. In the proposed algo-

rithm, if DataNode X produces more than half of the size of any data cluster during map task, the

partitioning algorithm assigns this data cluster to DataNode X for reduce task. Line 13 assigns the

data cluster to the the minimum load reducer for the current iteration. The data load of the selected

reducer is updated in line 16 by adding the size of the data cluster to its load. BDCP produces

the Main Assignment Table (MAT ) as shown in Fig.6.5. MAT is the partitioner that used during

the shuffle phase to map every key to its dedicated reducer. The final values of Ti j determine the

reducer of every data cluster.

During the assignment process, in every iteration, line 15 assigns value of 1 to the selected

row and column in the main assignment table. The time complexity of Alg. 9 can be analyzed as

follows: each of line 3 and line 4 takes O(1) time. The time of the loop in lines 2–5 depends on

R, where R is the number of reducers. Therefore, the time complexity of this loop is O( R ). Line

6 is a descending order for the sizes of clusters, the worst case of the time complexity is:O(C2).

The time of the loop in lines 8–17 depends on C, where C is the number of data clusters to be dis-

tributed. Therefore, the time complexity of this loop is O(C). So, the total time complexity of data
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assignment algorithm is O (N) + O(C2). The partitioning algorithm is different in heterogeneous

cluster environments. Since the reducers are usually belonging to different hardware generations,

reducers may differ in their processing capability. Name node receives, from every reducer, the re-

ducer data processing rate through the heart beats. Sampling phase is the perfect time for checking

the current data processing speed of reducers before the starting of actual MapReduce job. BDCP

assigns a processing ratio to the reducers and calculate the ratio of data every reducer should get

to satisfy the balancing capacity.

Figure 6.5: Main assignment table

During the sampling phase, BDCP calculates, di, the amount of data processed between

two successive heart beats by reducer i. So, the processing ratio, pi, of reducer i can be calculated

by BDCP during the sampling phase as shown in Eq. 6.5.

pi =
di

∑
R
j=1 d j

(6.5)

The value of pi is the approximate ratio that reducer i should get from the total intermediate

data, where (i = 1,2, ...R). The size of data that should be assigned to reducer i, noted as shi, is

calculated using Eq. 6.6

shi = pi×D (6.6)

D is the total estimated data size of intermediate data. During data clusters distribution,
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every time a data cluster is assigned to partition, the share, shi of the reducer corresponding to

this partition is decreased. The partitioning algorithm in heterogeneous reducers is designed as a

modified multiple knapsack problem, where every knapsack has a capacity, we called it balancing

capacity. The load distributed evenly across knapsacks if every knapsack maintains a data load

within its balancing capacity. Every reducer is considered as a knapsack, the balancing capacity

of reducer i is, shi, as shown in Eq. (6.6). Let’s assume there are C data clusters, the frequency

of keys in cluster j is key j, where ( j = 1,2, ..,C). These data clusters have to be partitioned into

R reducers, the data share of reducer i that satisfy the balancing capacity is shi, then the balancing

partitioning algorithm can be calculated based on Eq. 6.7.

min
Ti j

∑
R
i=1

∣∣∣∣ (∑
C
j=1
(
key j×Ti j

))
− shi

∣∣∣∣
s.t. ∑

R
i=1 Ti j = 1, for all j =

(
1, ..,C

)

Ti j = 0 or 1, for all i = (1, ..,R)

and j =
(
1, ..,C

)

(6.7)

Since the data clusters vary in their sizes, and one data cluster cannot be split into two

reducers, then the partitioner cannot guarantee that the reducer receives data load that equals to its

data share. However, the data load on a reducer is either larger than its share or lower than it. The

partitioning algorithm minimizes this difference as much as possible in order to give better data

load balancing among the reducers. As shown in the above minimizing equation, the balancing

partitioner minimizes the absolute difference between the load on the reducer and the balancing

capacity of the reducer.

In order to get better balanced distribution, the algorithm sorts the data clusters in descend-
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ing order according to the number of keys in each data cluster. The algorithm selects the first data

cluster in the sorted array (data cluster with largest size), assigns it to the reducer with the largest

balancing capacity , and update the remaining capacity of the reducer. In the second round, the

algorithm selects the second data cluster in the array (second largest size data cluster), assigns it

to the biggest capacity reducer, updates the remaining capacity of the reducer, and so on until it

reaches to the last data cluster (smallest data cluster). However, with the progress of the distribution

algorithm, the sizes of data clusters become smaller, and the capacity of reducers gets lower.

The reason of leaving the smaller data clusters to the end of distribution is because the

small size data clusters are easier to be distributed without effecting the overall balancing of data

load among reducers. The data clusters assignment algorithm for heterogeneous reducers is shown

in Alg.10. Lines 2−4 initiate the reducers competition array. The initial capacity of every reducer

is the data share of reducer calculated in Eq. (6.6). The value that represents capacity of reducer in

the competition array is decreased every time the reducer has been assigned a data cluster. Line 5

sorts the sizes of data clusters in descending order as mentioned earlier in the Alg. 9.

In line 9, for every data cluster, the algorithm checks if the mapper node that produce the

keys of this data cluster is Mapper/Reducer node. When such a case exists, and the Mapper/Re-

ducer node produces more than half of the size of this data cluster, during the map phase, the data

cluster is assigned to the Mapper/Reducer node for reduce task. Line 12 is the normal mode of

distribution. The function elected_R() returns the index of reducer with the minimum data load.

Line 14 is for assigning the data cluster to the selected reducer. Line 15 updates the capacity of the

selected reducer, and so no until the algorithm reaches the last data cluster in the array (smallest

data cluster).

In both homogeneous and heterogeneous reducers environments, during the sampling phase,

the selected sample size controls the accuracy of representation of input data in the sample. If the

sample size is small, many keys in the input data may not appear in the sample. The smaller the

sample size, the higher probability the key is not appearing in the sampling phase.
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Algorithm 10: Data clusters assignment algorithm-heterogeneous
Input: Input: A collection of R reducers.
shi The share of the intermediate data of reduceri that satisfying balancing capacity.
Calculated using Eq. (6.6)
C data clusters to be distributed, which are numbered Cluster1 through ClusterC.
Key[i] is the number of keys in data Clusteri
Result: T [1,2, ..R][1,2, ..,C]

1 begin
2 for i = 1 to R do
3 reducer_compete [i] = sh[i];
4 end
5 Sorted_key[] = sort_descending(Key[]);
6 Index_Sorted_key[]=Index of original order ofsort_key[];
7 for i = 1 to C do
8 j = Index_Sorted_key[i];
9 if (keys of Cluster j are the Map output of Mapper/Reducer node) && (this

node produces more than half of data cluster j) then
10 z = Index(Mapper/Reducer node);
11 else
12 z = elected_R (reducer_compete[1,2,..R])
13 end
14 T [z][ j] = 1;
15 reducer_compete[z] = reducer_compete[z]−Key[j];
16 end
17 Return T [1,2, ..R][1,2, ..,C]

18 end

It is very normal situation when many keys are not presented in the sample. BDCP is

designed for partitioning the keys that appear in the sampling phase. Moreover, it calculates the

actual size of data based on the resulted data sample. To solve this issue for those keys that do not

appear in the sample, BDCP applies the default HashPartitioner on those data clusters because their

size is very small in the actual input data, and do not cause reducers data skew. The partitioning

process using BDCP adds extra phase, (sampling phase), to MapReduce job phases. The sampling

phase cannot be overlapped with the other phases. Sampling phase makes the actual map tasks on

input data starts later than the actual job start time. This delay results in minimizing the reduce

phase time, and slightly decreasing the shuffle phase time. As illustrated in Fig. 6.6.
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Figure 6.6: MapReduce phases for default Hadoop and BDCP

6.4 Evaluation

To test the performance of the proposed strategy, homogeneous and heterogeneous Hadoop cluster

environment have been prepared. Practical MapReduce application jobs were chosen to evalu-

ate the performance of BDCP. The crucial factor is to minimize the job execution time. The

performance of the suggested algorithm is examined by comparing the execution time of reduce

phase using this algorithm against other algorithms. Two different types of benchmarks are used

for synthetic and real-world datasets with different data skew rate are used to evaluate BDCP in

homogeneous and heterogeneous Hadoop clusters. We compared BDCP with the default Hadoop

HashPartitioner, and Range partitioner [3] in same experiments environment. Hadoop HashPar-
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titioner is the default mechanism in Hadoop environment which can obtain a good performance

only when the (Key,Value) pairs are distributed uniformly. Range partitioner is a widely used

algorithm of partition distribution in which the intermediate (Key,Value) pairs are sorted by key

first, and then the pairs are assigned to reduce tasks according to this key range sequentially. Range

is one of the algorithms that can improve the data balance among reduce tasks.

The performance of default Hadoop hash-partitioner, range partitioner, and BDCP have

been compared based on the reduce phase execution time in order to verify the effect of intermedi-

ate data placement. Heavy MapReduce jobs that process large amounts of input data, and generate

large intermediate data are implemented. In order to ensure accuracy, each group of experiments

has been executed at least 10 times, and the mean value has been used as result. the proposed

system is implemented on Hadoop YARN version 2.9.2. During the sampling phase, 10% of the

input data has been chosen as the sample size. The experiments have been implemented on homo-

geneous cluster environment, then the same experiments on implemented on heterogeneous cluster

environment.

6.4.1 Homogeneous cluster experiments

The experiments are conducted on a Hadoop YARN cluster consists of 20 physical machines con-

nected on single switch with 1 Gbps network bandwidth, installed with Ubuntu 14.10. with 8 cores

2.53 GHz processors, 16G memory, 1TB hard disk. The proposed system has been implemented

and evaluated by running different types of benchmarks.

6.4.1.1 Word count benchmark testing

Three algorithms are compared under Word Count benchmark. Word Count job counts the number

of each key in a file and produces an output file containing all keys and their frequencies. a heavy

MapReduce job has been used to processes large amount of input data. The input data is split into

blocks in HDFS. Each block is processed line by line to count the number of keys. Word Count
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job is suitable job to test the proposed algorithm because it generates large intermediate data [55].

Fig. 6.7 shows the reduce phase execution time of word count job on 6 GB of data file,

the skew degree of the data used ranges from 0.1 to 1.1. As shown in the figuer, as the data skew

increases the processing time gets larger because of the data skew leads to reducers skew espe-

cially with using the HashPartitioner. At the beginning, the execution times is relatively low. The

increasing of data skew has big impact on the reduce phase execution time using Hadoop HashPar-

titioner and lower impact on Range algorithm, while BDCP algorithm mitigates this impact and

shows slightly increasing in processing time as the data skew increases.

Figure 6.7: Word count job on a file of size 6 GB, and 0.1 to 1.1 skew degree in homogeneous
cluster

Fig.6.8 shows the reduce execution time of word count job on files with data sizes, 2 GB,

4 GB, and 6 GB. The skew degree of the data used is 0.1. Even though the data skew is low,

the increasing of file size makes the reduce phase execution time increases with different ratios

depending on the used partitioner. Fig.6.9 shows the reduce execution time of word count job on

file with data sizes, 2 GB, 4 GB, and 6 GB and the skew degree of the data used is 1.1. Because

the data skew is high, the reduce phase execution time is high even when the file size is not large.
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The increasing of file size makes the execution time longer, because the bigger data file the more

intermediate data skew for the same input data skew degree.

Figure 6.8: Word count job on files of sizes, 2, 4, and 6 GB. skew degree is 0.1. in homogeneous
cluster

6.4.1.2 Sort benchmark test

Sorting is a part of widely adopted benchmarks for parallel computing [39].Sort job, a reduce-

input- heavy job, is used to test the proposed algorithm by processing input data with different data

skew degrees. sort benchmark job has been implemented on file with size 6 GB of data, and the

skew degree of the data used ranges from 0.1 to 1.1.

The reduce phase execution time of BDCP is shorter than Hadoop HashPartitioner and

Range when processing the data with high skew rate. if the data skew rate is lower than a certain

value, BDCP performance is better but it is close to the performance of the other two algorithms.

While BDCP performs much better with the increase of data skew. As shown in Fig. 6.10, when

data skew degree is less than 0.40, the Hadoop HashPartitioner has an execution time closer to the

other two algorithms because of its even partitions of intermediate data.

When the skew becomes more than 0.3 BDCP starts to outperform the Hadoop HashPari-
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Figure 6.9: Word count job on files of sizes, 2, 4, and 6 GB. skew degree is 1.1. in homogeneous
cluster

tioner and Range algorithms. When both the data skew degree and file size are small, the reduce

phase execution times for the three algorithms are relatively low. However, the increasing of file

size with the same data skew degree makes the execution time slightly higher. However, BDCP has

lower execution time than other two algorithms with the increase of the file size. Fig. 6.11 shows

the reduce phase execution time of Sort jobs on files with data sizes, 2 GB, 4 GB, and 6 GB, the

skew degree of the data used is 0.1.

Using higher data skew for different sizes of data files shows that BDCP highly outperforms

both algorithms. With the increasing of data file for the same (high) data skew, the execution

time of reduce phase of BDCP becomes less than half of the reduce phase execution time using

HashPartitioner, and less than 0.6 of the reduce phase execution time using Range partitioner.

Fig.6.12 shows the reduce execution time of Sort jobs on files with sizes, 2 GB, 4 GB, and 6 GB

of data, the skew degree of the data used is 1.1.

78



Figure 6.10: Sort job on a file of size 6 GB, and 0.1 to 1.1 skew degree in homogeneous cluster

6.4.2 Heterogeneous cluster experiments

In order to implement the partitioning algorithm in a heterogeneous cluster environment where the

reducers vary in their available resources, experiments are conducted on a Hadoop YARN cluster

consists of 20 physical machines connected on single switch with network bandwidth of 1 Gbps

installed with Ubuntu 14.10, as following:

• 10 machines, 8 core 2.53 GHz processors, 16G memory.

• 5 machines with 4 core 3.4 GHz processor, 8G memory.

• 5 machines with 4 core 2.7 GHz processors, 4G memory.

The proposed system has been implemented and evaluated by running different types of

benchmarks. The data skew and the variation in DataNodes processing capabilities are the main

two reasons that cause straggler tasks.
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Figure 6.11: Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 0.1.in homogeneous cluster

Figure 6.12: Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 1.1.in homogeneous cluster

In this experimental environment these two factors are exist. In this experiment the im-

pact of these factors on the reduce phase running time is examined by running different types of

benchmarks.
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6.4.2.1 Word count benchmark

Heterogeneous Hadoop cluster with the mentioned configuration produces unbalanced distribution

of intermediate data load among reducers nodes which results in increasing the processing time of

reduce phase especially in HashPartitioner. However the increasing of data skew Aggravates the

problem of balancing the data load among reducer nodes. Fig. 6.13 shows the reduce execution

time of word count jobs on a files with 6 GB of data, the skew degree of the data used ranges

from 0.1 to 1.1. The figure shows that the reduce phase processing time in BDCP is lower than the

reduce phase processing time of the other two algorithms for all skew degrees.

Even though the processing times for the three algorithms are relatively low when the the

data skew is low, they are much higher than those of same job in homogeneous cluster environment.

The reduce phase processing time increases with the increasing of data skew with the existing of

variation of reducers processing capabilities. BDCP shows good mitigation for the increasing of

data skew in heterogeneous cluster environment.

Fig.6.14 shows the reduce phase execution time of word count job with data sizes, 2 GB,

4 GB, and 6 GB, the skew degree of the data used is 0.1. As shown the Figs. 6.13 and 6.14,

even though when the data skew is low, BDCP is achieving better than Hadoop HashPartitioner

and Range because it considers the variation of computing capabilities of the reducers. While

HashPartitioner, and range took longer time than the time they took previously in homogeneous

cluster environment. Fig. 6.15 shows the reduce execution time of word count job on a file with

data sizes, 2 GB, 4 GB, and 6 GB, on a heterogeneous Hadoop cluster, the skew degree of the data

used is 1.1.

Both high data skew and variation in computing capabilities of the reducers result in higher

reduce execution time for all algorithms. The results show that BDCP algorithm always has the

shortest reduce time for different file sizes with high skew degrees. However the increasing of file

size, for the same input data skew degree, increases the execution time of reduce phase.
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Figure 6.13: Word count job on a file of size 6 GB, and 0.1 to 1.1 skew degree in heterogeneous
cluster

Figure 6.14: Word count job on files of sizes, 2, 4, and 6 GB. Skew degree is 0.1.in heterogeneous
cluster
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Figure 6.15: Word count job on files of sizes, 2, 4, and 6 GB. Skew degree is 1.1.in heterogeneous
cluster

6.4.2.2 Sort benchmark test

Sort benchmark job has been implemented on a file with 6 GB of data, the skew degree of the data

used ranges from 0.1 to 1.1. Fig. 6.16 shows the reduce execution time of the sort job. BDCP

works in similar efficiency to Hadoop HashPartitioner and Range when the data skew rate is lower

than 0.2, but it gives shorter execution time, while it performs better with the increasing of data

skew. BDCP is much faster than Hadoop HashPartitioner and Range in processing the data with

high skew rate.

Hadoop HashPartitioner of intermediate data does not consider the heterogeneity on the

reducers, so it takes more time than the previous sort experiment on homogeneous environment.

Fig.6.17 illustrates the reduce phase execution time of Sort job of file with sizes, 2 GB, 4 GB,

and 6 GB, the skew degree of the data used is 0.1. BDCP performs better than HashPartitioner

and Range. The differences in reduce phase execution times for the three algorithms increase with

the increasing of the file size for the same skew degree. However, the variations in reduce phase

execution time are not large because the skew degree is low.
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Figure 6.16: Sort job on a file of size 6 GB, and 0.1 to 1.1 skew degree in heterogeneous cluster

Fig. 6.18 shows the reduce phase execution time of Sort jobs on files with data sizes, 2 GB,

4 GB, and 6 GB, the skew degree of the data used is 1.1. For this high skew degree, the reduce

phase execution times for the three algorithms are relatively high and increase with the increasing

of the file size. However, the variations in reduce phase execution time are large because the skew

degree is high. BDCP outperforms HashPartitioner and range especially with the increasing of file

size with high data skew.

To illustrate the timing of all the MapReduce job phases, a Word Count job on a file with

size of 2 GB of data and the skew degree is 0.3 has been implemented using the same configuration

of heterogeneous cluster environment. BDCP algorithm divides MapReduce job execution process

into five phases, as shown in Fig. 6.19. The phases are represented on the figure are sampling,

map, overlapped map and shuffle, shuffle, and reduce phase. Sampling phase is only used by

BDCP algorithm. It can not be overlapped with map phase. In BDCP, map phase starts right after

sampling phase.
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Figure 6.17: Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 0.1. in heterogeneous cluster

Figure 6.18: Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 1.1. in heterogeneous cluster

Because the partitioning policy has been already generated after the sampling phase, shuffle

phase starts whenever there is an output from the map phase. While the Hadoop HashPartitioner

begins shuffling the map task outputs when 5% of map tasks have completed. The execution time

of reduce phase is minimized in BDCP as shown in Fig.6.19.
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Figure 6.19: MapReduce phases of Word Count job on a file of size 2 GB, and skew degree is 0.3.
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CHAPTER 7: CONCLUSION AND PROPOSED FUTURE WORK

This dissertation proposes four algorithms to improve the performance of data-intensive applica-

tions running on cloud platforms from three different aspects: data load distribution across cluster

nodes, map task straggler identification, and reduce task straggler mitigation. The net effect of the

proposed algorithms is to improve the efficiency of task execution and minimize the job comple-

tion time. In this dissertation a new replica placement policy for HDFS, named Intelligent Data

Placement Mechanism (IDPM), has been proposed. The issue of data load balancing among clus-

ter nodes is addressed in this policy by evenly distributing replicas to cluster nodes. By using

IDPM, there is no more need for the load balancing utility used by HDFS because IDPM generates

perfectly even replica distribution and satisfies all HDFS replica placement rules as confirmed by

the experimental results. IDPM is designed for cluster environments in which all cluster nodes are

similar in their computing capabilities.

However, in heterogeneous cluster environments, an even replica distribution does not

mean it is a fair distribution. The fair distribution can be achieved only when the number of

replicas that are assigned to a node is based of the available resources for this node. If every file

in HDFS is fairly distributed to the DataNodes then the cluster load balancing and the cluster ef-

ficient utilization is satisfied. In this Dissertation, a new replica placement policy for HDFS has

been proposed for heterogeneous cluster environments that have variations of hardware comput-

ing capabilities. The proposed policy, named Speed-based Replica Assignment Policy SRAP, can

remarkably improve data load balancing among heterogeneous Hadoop cluster. SRAP can gen-

erate replicas distribution in a way where all cluster nodes are fully utilized, and data processing

throughput is increased, as confirmed by the evaluation results. There is an exciting future work

for the proposed policy, SRAP can be developed to be used for environments where hardware

with more sophisticated heterogeneity is present in cloud networks and the amount of memory of

DataNode is added as a factor beside the processing capability of the DataNode.
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The drawbacks of the commonly used straggler detection and mitigation methods are an-

alyzed in this dissertation. The identification of straggler task and the time of its identification

during the progress of running task is very critical part in straggler mitigation process. The ear-

lier the straggler tasks are identified the more successful buck up tasks are initiated. Progress

and Feedback based Speculative Execution (PFSE) algorithm is proposed in this dissertation as

an improved straggler identification scheme. PFSE uses phase level progress and feedback task

information to estimate task completion time in order to identify straggler task as early as possible.

Extensive experiments have been conducted to evaluate the performance of PFSE compared with

another previously suggested algorithms, LATE and SLM. The results indicate that PFSE gives

better accuracy in the estimation of task completion time, eventually it produces higher successful

backup task rate. Future work can be proposed to use PFSE to build an algorithm to estimate the

task remaining execution time in the other MapReduce phases.

In the reduce phase of MapReduce jobs, the straggler reduce tasks mainly results from the

unbalanced distribution of the intermediate data to the reducers. Unlike the map phase, distribution

of data to the reducers can not be decided before the start of the reduce phase because the distribu-

tion of the intermediate data is different for every data set and map task. Balanced Data Clusters

Partitioner (BDCP) algorithm is proposed to minimize the effect of the commonly known problem

of intermediate data skew, and mitigate the straggler reduce task by balancing the distribution of

intermediate data to the reducers. BDCP algorithm adds a new phase to MapReduce job phases, it

is the sampling phase. An estimation of the intermediate data distribution is calculated, and feed-

back about reducer processing capabilities is received during the sampling phase in order to create

the balanced partitioning policy. Extensive experiments have been implemented on different data

sizes with different skew degrees to evaluate the performance of BDCP compared with Hadoop

HashPartitioner and Range algorithms. To evaluate the performance of BDCP in hadoop comput-

ing environments, the proposed system is evaluated by running different types of benchmarks in

homogeneous and heterogeneous Hadoop clusters. Word Count benchmark test and Sort bench-
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mark test are implemented to evaluate the reduce phase execution time in BDCP. The extensive

experiments show that the MapReduce job completion time when using the partitioner BDCP is

shorter than the job completion time of the same job when the HashPartitioner of Hadoop or Range

partitioner is used. Future research line can be suggested to add the network bandwidth between

cluster nodes as a factor in the partitioning algorithm of intermediate data.
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