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Abstract

Distributed heterogeneous computing is being widely applied to a variety of large size

computational problems. This computational environments are consists of multiple het-

erogeneous computing modules, these modules interact with each other to solve the prob-

lem. Dynamic load balancing in distributed computing system is desirable because it is

an important key to establish dependability in a Heterogeneous Distributed Computing

Systems (HDCS). Load balancing problem is an optimization problem with exponential

solution space. The complexity of dynamic load balancing increases with the size of a

HDCS and becomes difficult to solve effectively. The solution to this intractable problem

is discussed under different algorithm paradigm.

The load submitted to the a HDCS is assumed to be in the form of tasks. Dynamic

allocation of n independent tasks to m computing nodes in heterogeneous distributed

computing system can be possible through centralized or decentralized control. In central-

ized approach,we have formulated load balancing problem considering task and machine

heterogeneity as a linear programming problem to minimize the time by which all task

completes the execution in makespan.

The load balancing problem in HDCS aims to maintain a balanced allocation of tasks

while using the computational resources. The system state changes with time on arrival

of tasks from the users. Therefore, heterogeneous distributed system is modeled as an

M/M/m queue. The task model is represented either as a consistent or an inconsistent

expected time to compute (ETC) matrix. A batch mode heuristic has been used to de-

sign dynamic load balancing algorithms for heterogeneous distributed computing systems

with four different type of machine heterogeneity. A number of experiments have been

conducted to study the performance of load balancing algorithms with three different ar-

rival rate for the task. A better performance of the algorithms is observed with increasing

of heterogeneity in the HDCS.

A new codification scheme suitable to simulated annealing and genetic algorithm has

been introduced to design dynamic load balancing algorithms for HDCS. These stochastic

iterative load balancing algorithms uses sliding window techniques to select a batch of

tasks, and allocate them to the computing nodes in the HDCS. The proposed dynamic

genetic algorithm based load balancer has been found to be effective, especially in the

case of a large number of tasks.

ii



Approximation algorithms have been used to design polynomial time algorithms for

intractable problems that provide solutions within the bounded proximity of the optimal

solution. Analysis and design of two approximation algorithms based on task and ma-

chine heterogeneity has been presented with makespan as performance metric. The two

proposed approximation schemes have been compared with an optimal solution computed

as lower bound and are proved to be 2-approximation and 3/2 approximation algorithm.

The decentralized load balancing problem in heterogeneous distributed systems is

modeled as a multi-player non-cooperative game with Nash equilibrium. In the process

prior to execute a task, the heterogeneous computing nodes are participate in a non-

cooperative game to reach an equilibrium. Two different types of decentralized load

balancing problems are presented in this thesis as minimization problems with price,

response time, and fairness index as the performance metric. These algorithms are used to

design decentralized load balancing strategies to minimize the cost of the entire computing

system.

We have proposed eight new centralized load balancing algorithms that operates in

batch mode and two decentralized load balancing algorithm. These algorithms are appli-

cable to our proposed linear programming problem formulation for load balancing in a

HDCS. The centralized algorithms have been presented in three groups as per algorithmic

paradigm. As distributed systems continue to grow in scale, in heterogeneity, and in di-

verse networking technology, they are presenting challenges that need to be addressed to

meet the increasing demands of better performance and services for various distributed

application. All theses proposed load balancing algorithms are tested with nodes and

task availability and found to be effective with different performance metric.
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Chapter 1

Introduction

Parallel and Distributed computing over the past three decade witnessed phenomenal

growth due to the declined cost of hardware, advancement in communication technol-

ogy, explosive growth of internet and need to solve large-scale problems. The resources

in distributed computing systems should be allocated to the computational tasks, so as to

optimize some system performance parameter that guarantee a user specified level of sys-

tem performance. In particular, the load balancing is concerned with resource allocation

policies to assign tasks to computing nodes. The load balancing of distributed computing

system becomes a major research issue to utilize the ideal computing resources. The thesis

addresses different aspects of dynamic load balancing issues in heterogeneous distributed

computing system with task and machine heterogeneity

1.1 Introduction

Distributed computing systems are built over a large number of autonomous computer

nodes. These computing nodes are uniquely identified in a network with their IP address

and interconnected by SANs, LANs, or WANs in a hirarchical manner [1]. Distributed

computing platforms are designed to deliver parallel computing environment for various

potential computing and non-computational problems. The potential of distributed com-

puting systems are related to the management and allocation of computing resources rel-

ative to the computational load of the system [2, 3, 4, 5, 6]. There has been a phenomenal

growth in the number of Internet users and variety of applications in the Internet. Hetero-

geneous Distributed Computing System (HDCS) utilizes a distributed suite of different

high-performance machines, interconnected with high-speed links, to perform different

1



CHAPTER 1. INTRODUCTION 2

computationally intensive applications that have diverse computational requirements.

Modern distributed computing technology includes clusters, the grid, service-oriented ar-

chitectures, massively parallel processors, pear-to-pear networking, and cloud computing

[1]. Distributed computing provides the capability for the utilization of remote computing

resources and allows for increased levels of flexibility, reliability, and modularity.

Heterogeneous computing is the coordinated use of different types of machines, net-

works and interfaces to maximize their combined performance [7, 8, 9]. In a heteroge-

neous distributed computing system the computational power of the computing entities

are possibly different for each node. The advanced architectural feature of the node can be

exploited by the task to meet the computational requirement. The HDCS structure pro-

vides information on computing system and communication network to the users. The

applicability and strength of HDCSs are derived from their ability to match the com-

puting need of a task, and allocate them to appropriate resources. However, the large

computing power remains unexploited to a greater extent because of the lack of software

systems and tools for managing the resources. Scheduling problems mainly addresses the

allocation of distributed computing resources over time to the tasks that are parts of the

process running in the system.

There are numerous applications that run on top of a distributed system. The services

provided by these applications are grouped into two category, data intensive and compu-

tation intensive. Some of the popular applications that are using distributed systems are:

world wide web(WWW), network file server, banking network, peer-to-peer networks,

process control systems, sensor networks, grid computing, and cloud services. In general,

HDCS environments are well suited to meet the computational demands of large, diverse

groups of tasks. Hence, the area of research is of interest among the researchers from

industry and academia.

1.2 Distributed computing system

A distributed system [1, 10, 11, 12, 13] is a collection of multiple autonomous computers

each having its own private memory, interconnected through a computer network, and

capable of collaborating on a task. The functional capabilities of a distributed system

are based on multiple processes, interprocess communication, disjoint address space and

a collective goal. In computer architecture terminology, these implementation belongs to

the class of loosely coupled MIMD machines, with each node having a private address

space. Distributed systems can also be implemented on a tightly couple MIMD machine,

where processes running on separate processors are connected to a globally shared mem-
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ory [12].

A large heterogeneous distributed computing system consists of potentially millions of

heterogeneous computing nodes connected by the Internet. The applicability and strength

of HDCS are derived from their ability to meet computing needs by the use of appropriate

resources [5, 14, 15]. Heterogeneity in distributed computing system can be expressed

by considering three systems attributes (i) processor with computing node, (ii) memory,

and (iii) networking [14]. Performance metric used to quantify the processing power of

the processor or node by means of processing speed and represented with Floating point

Operations per Second (FLOPS). LINPACK is being used as the benchmark to quantify

the processing capability of a node, and expressed in FLOPS [16]. The computing nodes

in this thesis is a computer, a workstation, a cluster, or a supercomputer that can be

identified by an unique address to the rest of the world. The computing power of a node is

expressed in FLOPS. Memory attributes are measured as the available memory capacity

to support the process. The networking attributes are the link capacity associated with

transmission medium, propagation delay and available communication resources [17].

Heterogeneity of architecture and configuration complicates the load balancing problem

[5].

A distributed application consists of a set of task with certain relation among them.

Tasks are the basic units handled by an HDCS. We have assumed an application in an

HDCS to be either a task or represented by a Task Interaction Graph(TIG). The exe-

cution time of an application may be influenced by a number of parameters, which are

either application dependent or system dependent [18]. The major factors considered for

task execution are, (i) communication topology induced by the application, (ii) the work

load assigned to the computing nodes, (iii) computing capability of the node and (iv) inter

node communication cost. Heterogeneity can also arise due to the difference in task ar-

rival rate at homogeneous processors or processors having different task processing rates.

Large degrees of heterogeneity in an HDCS adds significant additional complexity to the

scheduling problem [19]. It is possible to minimize the total execution time in a HDCS

by considering the node to which a task can be assigned and the cost of communication

that results from task assignment.

Each individual computing node has a local scheduler, If the scheduling decisions are

left to the individual nodes without global coordination it results in distributed schedul-

ing. Using distributed schedulers, each node can take an independent decision to execute

the task or the task is to be migrated to another node. This decentralized mechanism

are more suitable for dynamic load-balancing of a large-scale distributed computing en-
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vironment than centralized mechanisms in term of scalability and fault tolerance [20, 21].

the central scheduling model is based on interleaving of actions and coordination with

local schedulers of every computing node in the HDCS. The central scheduler, also known

as a serial scheduler or load balancing service, is able to effectively control the comput-

ing resources for dynamic allocation of the tasks in a distributed system [20]. A single

computing node that acts as a central scheduler or resource manager of the distributed

computing system collects the global load information of other computing nodes. The

resource management sub systems of the HDCS are designated to schedule the execution

of the tasks dynamically as that arrives for the service. However, a central scheduler

exhibits poor parallelism and poor scalability. In practice each of the schedulers finds its

own importance in distributed resource management and is used by the researchers in

representation and design of distributed algorithms.

There are number of techniques and methodologies for scheduling processes of a dis-

tributed system. These are task assignment, load balancing, and load-sharing approaches

[22, 23]. In the task assignment approach, each process submitted by a user for processing

is viewed as a collection of related tasks and these tasks are scheduled to suitable nodes

so as to improve performance. A load sharing approach simply attempts to conserve the

ability of the system to perform work by assuring that no node is idle while processes

wait for being processed. In a load balancing approach, tasks submitted by the users are

distributed among the nodes of the system so as to equalize the workload among the

nodes at any point of time. Task might have to be migrated from one machine to another

even in the middle of execution to ensure equal workload. Load balancing strategies may

be static or dynamic [6, 17, 22].

1.3 Load balancing in distributed system

Load balancing is a crucial issue in parallel and distributed systems to ensure fast pro-

cessing and optimum utilization of computing resources. The load of a computing node is

measured as sum of the expected time to compute (ETC) of the individual tasks [24, 25].

Load imbalance in a distributed computing system is due to the fluctuations in arrival

and service patterns. Due to this a task waits for execution in a node while other nodes

are ideal [26]. The load imbalance factor quantifies the degree of load imbalance within a

distributed computing system. A decision on load balancing is made when load imbalance

factor is grater than load balancing overhead at a particular time. Load balancing strate-

gies try to ensure that every processor in the system does almost the same amount of work

at any point of time. There are a number of techniques and methodologies for scheduling
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processes of a distributed system. These are task assignment, load-balancing, and load-

sharing approaches [5]. Load balancing is a common approach to task assignment in a

distributed system such as web server farms, database systems, grid computing clusters,

and others [27]. A load balancing algorithm has to make use of the system resources

in such a manner that resource usage, response time, network congestion, and schedul-

ing overhead are optimized. Due to heterogeneity of computing nodes, jobs encounter

different execution times on different processors. In the task assignment approach, each

process submitted by a user for processing is viewed as a collection of related tasks and

these tasks are scheduled to suitable nodes so as to improve performance. A load shar-

ing approach simply attempts to conserve the ability of the system to perform work by

assuring that no node is idle while processes wait for being processed. In a load balanc-

ing approach, processes submitted by the users are distributed among the nodes of the

system so as to equalize the workload among the nodes at any point of time. Processes

might have to be migrated from one machine to another even in the middle of execution

to ensure equal workload.

Load balancing strategies may be static or dynamic [5, 6, 28, 29, 30]. Static strategies

are based on advance information governing the load balancing decision. The dynamic

load balancing strategies allocate the tasks to the computing nodes based on their cur-

rent state. Dynamic load distribution (also called load balancing, load sharing, or load

migration) can be applied to restore balance [29]. In general, dynamic load-balancing al-

gorithms can be broadly categorized as centralized or decentralized [15, 31] according to

how these are implemented. These are divided into reactive and predictive load balancing

strategies [15, 31]. Centralized algorithms use the central or serial scheduler to sched-

ules the tasks in a distributed system using the load information available from other

computing nodes. Decentralized algorithms are implemented with control mechanisms

distributed to each computing node of the distributed computing system. The allocation

decisions are the result of exchange of load information between the computing nodes. To

improve the utilization of the computing node, parallel computations require that tasks

be distributed to the nodes in such a way that the computational load is spread evenly

among the nodes.

A large amount of supporting research has been reported in the area of static and dy-

namic load balancing on distributed computing system. Due to the potentially arbitrary

nature of the load arrival and departure process, dynamic load balancing is substantially

more challenging than static load balancing [32]. Dynamic load balancing on HDCS

research covers a wide range of system models across homogeneous and heterogeneous

architectures suitable to applications. These applications range across embedded real-
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time systems, commercial transaction systems, transportation systems, and military or

space systems - to name a few. The supporting research includes system architecture,

design techniques, performance metric, queuing model, simulation framework, iterative

load balancing algorithms, theory, testing, validation, proof of correctness, modeling,

software reliability, operating systems, parallel processing, and real-time processing. The

performance of an HDCS can be improved by proper task allocation and an effective

scheduling policy.

The load balancing problem is an optimization problem with an exponential solution

space. The solution space is defined as the collection of all possible solutions for a given

problem. The optimization algorithms are the search algorithms, that are used to find

the optimal solutions from the search space. The load distribution problem is known

to be NP-hard [33]. Moreover, the complexity of dynamic load balancing increases with

the size of the HDCS and becomes difficult to solve effectively [34]. The load balancing

problem has been evenly treated, in both the fields of computer science and operations

research.

Dynamic load balancing algorithms are characterized by six policies: initiation, trans-

fer, selection, profitability, location and information [5, 6, 35, 36].

i. Initiation policy: decides who should invoke the load balancing activity.

ii. Transfer policy: determines if a node is in a suitable state to participate in load

transfer.

iii. Selection policy: source node selects most suitable task for migration.

iv. Profitability policy: a decision on load balancing is made based on load imbalance

factor of the system at that instant.

v. Location policy: decides which nodes are most suitable to share the load.

vi. Information policy: provides a mechanism to support load state information ex-

change between computing nodes.

An extensive methodology has been developed in this field over the past thirty years.

A number of load balancing algorithms have been developed, dealing with homogeneous

and heterogeneous distributed system on different work load models. The design of load

balancing algorithms, in general considers the underlying network topology, communi-

cation network bandwidth, and task arrival rate at each of the node in the system [37].

Wu [5] has suggested nine different quantifiable design parameters for load balancing

algorithms. Those parameters of a distributed system are listed below:
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i. System size: number of nodes in the system.

ii. System load: load on each node.

iii. System traffic intensity: arrival rate of task to computing node.

iv. Migration threshold: load level to initiate task migration.

v. Task size: size of the task suitable for migration effort.

vi. Overhead cost: costs for task migration.

vii. Response time: turnaround time for a task.

viii. Load balancing horizon: number of neighbouring nodes to be probed to finalize the

task destination.

ix. Resource demand: demands on system resource by a task.

To summarize, load balancing in HDCS can be defined by combining system archi-

tecture and the particular application with certain quality of service. Moreover, both

centralized and decentralized dynamic load distribution are desirable because of the ap-

plications running on various modern distributed computing system like clusters, the grid,

service-oriented architecture, massively parallel processors, and peer-to-peer system, and

cloud.

1.4 Literature review

Load balancing for distributed computing system is a problem that has been deeply

studied for a long time. Casavant and Kuhl [28] have characterized the structure and

behavior of decision-making policies, in particular referring to the load sharing policies

considering performance and efficiency. Xu and Lau [38] presented a classification of

iterative dynamic load balancing strategies in multicomputer concern with task migration

from a computing node to nodes across nearest neighbour. Shivaratri et al. [39] provides

a survey and taxonomy of load sharing algorithms based on the design paradigm. Boyer et

al. [40] presented load balancing dealing with heterogeneity and performance variability.

Analysis of load balancing strategy for the web server cluster system has been presented

in [41].

Kremien and Kramer [42] have presented an quantitative analysis for distributed sys-

tem that provides both performance and efficiency measures considering load and the
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delay characteristic of the environment. The task allocation problem of the distributed

computing system has been presented as a 0-1 quadratic programming problem by Yin et

al. [43]. They have designed a hybrid particle swarm optimization algorithm for finding

the near optimal task allocation within a reasonable time. A mixed integer linear pro-

gramming formulation for minimizing set up cost for multipurpose machine is presented in

[44]. A linear programming formulation representing task allocation model for maximiz-

ing reliability of a distributed system can be found in [45]. Altman et al. [46] investigated

optimal load balancing policy for multi-class multi-server systems and a Poisson input

stream and with heterogeneous service rates for centralized and distributed decentralized

non-cooperative systems. The probability of load imbalance in heterogeneous distributed

computer system have been studied by Keqin Li [47] with a method to minimize the

probability of load imbalance in the system.

Queueing model can be viewed as key models for the performance analysis and op-

timization of parallel and distributed systems [48]. Modeling of optimal load balancing

strategies using queuing theory was proposed by Francois Spies [29]. This is one of the

pioneer works reported in the literature that presents an analytical model of dynamic

load balancing techniques as an M/M/k queue and simulates it with fundamental param-

eters like load, number of nodes, transfer speed and overload rate [29]. Queuing-theoretic

models for parallel and distributed system can also be found in [48, 49]. The most appro-

priate queuing model for homogeneous distributed system is an M/M/m/n queue [50].

General job scheduling problem of n tasks with m machines is presented as an optimiza-

tion problem in [49] to minimize the makespan. Makespan measures the maximum time

by which all n tasks complete their execution in m machines. Nicola et al. [51] have

developed M/G/1 queuing models to derive the distribution of job completion time in a

failure-prone environment where the system changes with time according to events such

as failures, degradation, and/or repair. An adaptive load sharing techniques for queue

control in order to achieve optimal or near optimal efficiency and performance has been

discussed by Kabalan et al. [52].

A variety of distributed system model have been used by the researchers to present the

dynamic load balancing problem. Techniques for mapping tasks to machines in HDCS,

considering task and machine heterogeneity is reported in [53] for static and dynamic

heuristics. In dynamic resource allocation scenarios the responsibility for making global

scheduling decisions are lie with one centralized schedular, or are shared by multiple

distributed schedulers [54]. Hence, dynamic load balancing algorithms can be further

classified into a centralized approaches and a decentralized approaches. In a centralized

approach [6, 55, 56] one node in the distributed system acts as the central controller and
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is responsible for task allocation to other computing nodes. The central controller takes

the decision based on load information obtained from the other nodes in the distributed

system.

In a decentralized approach [39] all the computing nodes participated in the task allo-

cation process. This decentralized decision making can be realized through a cooperation

or without cooperation among the computing nodes. The related research work on dy-

namic load balancing presented in the following sections are grouped into (i) centralized

load balancing and (ii) decentralized load balancing.

1.4.1 Centralized dynamic load balancing

Gopal et al. [3] presented a simulation study for four load balancing algorithm on het-

erogeneous distributed systems with a central job dispatcher. A different form of linear

programming formulation of the load balancing problem has been discussed along with

greedy, randomized and approximation algorithms to produce sub-optimal solutions to

the load balancing problem. A mono-population and hybrid genetic based scheduling

algorithm has been proposed by Kolodziej and Khan [57] to schedule independent jobs to

minimize makespan and flow time. A minimized makespan central scheduler considering

the cost of communication has been presented by Tseng et al. [58] in the dynamic grid

computing environment. Bekakos et al. [59] discussed the generic resource sharing in a

grid computing platform. Li et al. [60] presented a centralized load balancing scheme

for sequential tasks on grid environment to achieve minimum execution time, maximum

node utilization and load balancing among the nodes. A new load metric called number of

effective tasks has been developed by Choi et al. [61] to design a dynamic load balancing

algorithm for the workstation clusters. A randomized dynamic load balancing algorithm

framework along with convergence proof are being discussed in [62]. The impact of

heterogeneity on scheduling independent tasks on a centralized platform is analyzed in

[63] with the objective of minimizing the makespan, maximize the response time and

the sum of all response times. A performance evaluation approach to compare different

distributed load balancing schemes can be found in [64]. A comparative analysis of cen-

tralized scheduling policies combining processor and I/O scheduling has been presented

by Karatza [65]. Scheduling of applications represented as Task Iteraction Graphs (TIGs)

and Directed Acyclic Graphs (DAGs) on heterogeneous computing systems can be found

in [45, 66, 67, 68]. A centralized task assignment policy suitable for a multiple-server

firm is presented by Jayasinghe et al. [69] based upon pre-emptive migration of tasks.

Solomon et al. [70] have presented a collaborative multi-swarm particle swarm optimiza-

tion for task matching in heterogeneous distributed computing environments. A general
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model is presented in [71] for a centralized heterogeneous distributed system to study

distributed service reliability and availability. Terzopoulos and Karatza [72] evaluated

centralized load balancing algorithms by varying the arrival rate of task in heteroge-

neous clusters. Dynamic load balancing algorithm based on task classification has been

presented by Wang et al. [73]. A particle swarm optimization based Load-Rebalance Al-

gorithm for Task-Matching in Large Scale Heterogeneous Computing Systems has been

addressed by Sidhu et al. [74].

1.4.2 Decentralized dynamic load balancing

A dynamic decentralized load balancing algorithm for computationaly intensive jobs on

HDCS has been proposed by Lu et al. [75]. A truthful mechanism for solving the static

load balancing problem in heterogeneous distributed system was addressed by Grosu and

Chronopoulos [76]. A predictive decentralized load balancing approach complemented

through CORBA can be found in [77]. Decentralized load distribution policies without

preemption, in non-dedicated heterogeneous clusters and grids, are presented using three

different queueing discipline [78]. Economides and Silvester [79] have formulated and

solved the load sharing, routing and congestion control problem in arbitrary distributed

systems using game theory. A decentralize task scheduling strategy for multiple classes

of tasks in a heterogeneous system has been presented by Qin and Xie [80] with a new

metric to quantify system availability and heterogeneity. A decentralized load distribution

scheme has been invented by Lakshmanan et al. [81]. Chakraborty et al. [82] have used

congestion game theoretic models to address the load balancing problem in a distributed

environment.

Number of researchers have used multi-agent based system for resource allocation

in distributed computing environment. A multi- agent task allocation model can be

found in [83]. However, both the centralized and distributed dynamic load balancing

algorithms are equally important considering the problems and applications that requires

a distributed computing system.

1.5 Motivation and research challenges

Distributed computing systems have become increasingly popular as cost effective alter-

native to traditional high performance computing platform [84]. The main aim of load

balancing problem on heterogeneous distributed computational environments is an ef-

ficient mapping of tasks to the set of computing nodes. The dynamic load balancing

problem remains a challenging global optimization problem due to the: (i) heterogeneous
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structure of the system, (ii) computing resources administrative domains and (iii) Quality

of Service(QoS) requisitions by applications. As suggested in lecture notes on approxi-

mation algorithm by Motwani [85] it is usually hard to tell the exact difference between

an optimal solution and a near-optimal solution. Hence, it seems reasonable to devise

algorithms which are really efficient in solving NP-hard problems, at the cost of providing

feasible solutions which in all cases is guaranteed to be only sub-optimal. The dynamic

load balancing problem considering heterogeneity of the computing system has been re-

ported rarely in the related research work. The major motivation that leads to study

dynamic load balancing strategies in HDCS are listed as:

• The computing capability of HDCS can be exploited by designing efficient task

allocation algorithms that assign each task to the best suitable computing node for

execution.

• Due to heterogeneity of computing nodes, jobs encounter different execution times

on different computing nodes. Therefore, research should address scheduling in

heterogeneous environments.

• As distributed systems continue to grow in scale, in heterogeneity, and in diverse

networking technology, they are presenting challenges that need to be addressed

to meet the increasing demands of better performance and services for various

distributed application.

• Because of the intractable nature of the task assignment problem on HDCS, it is

desirable to obtain a best-possible solution through the design of new strategies for

dynamic load balancing in HDCS.

• The tasks and computing resources could be dynamically added and dropped to

and from the system. This necessitates dynamic load balancing algorithms that

use system-state information for load assignment.

The problem of finding an assignment of task to the computing nodes that results

in minimum makespan is NP−hard [33]. The most common approach used by the re-

searchers to find solutions to NP−hard problems are treating them with integer pro-

gramming tools, or heuristics, or approximation algorithm [86, 87]. Scheduling in HDCS

remains a challenging global optimization problem due to the heterogeneous structure of

the system, co-existence of locally and geographically dispersed job dispatchers and re-

source owners that usually work in different autonomous administrative domains. Hence,

some of the research challenges in devising dynamic resource allocation policies for het-

erogeneous environments are listed as:
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• To design system model for heterogeneous distributed computing system

• To model dynamic load balancing problem as optimization problems that can be

appropriate to a variety of HDCS.

• To design queuing models, which can used as the key model for performance analysis

and scheduling in distributed system considering machine heterogeneity.

• To design dynamic resource allocation strategy in heterogeneous computing envi-

ronment considering task and machine heterogeneity for the different task arrival

rate.

• Heuristic algorithms may produce good solutions against the quality of the solution,

whereas approximation algorithm have the capability to produce solution, which

are guaranteed to be within a bound. So, it is a challenge to design approximation

polynomial time algorithms for an intractable load balancing problem that provide

solutions within the bounded proximity of the optimal solution.

• HDCS are highly scalable and regularly increasing with user base with the own-

ership from distinct individuals as organizations requires a decentralized resource

management system. So research challenge is to design decentralize load balancing

strategies with the involvement of all of the computing nodes in an HDCS.

1.6 Problem statement

The problem addressed in this thesis are the research challenges highlighted in the pre-

vious section. The load submitted to the HDCS is assumed to be in the form of tasks.

Dynamic allocation of n independent tasks to m computing nodes in heterogeneous dis-

tributed computing system is possible through centralized or decentralized control. The

load balancing problem in HDCS aims to maintain a balanced execution of tasks while

using the computational resources.

The load balancing problem using a centralized approach which is formulated consid-

ering task and machine heterogeneity, is presented in Section 2.6 as a linear programming

problem to minimize the time by which all complete execution or (makespan) in a HDCS.

The decentralized load balancing problem in heterogeneous distributed systems is

modelled as a multi player non-cooperative game with Nash equilibrium. Prior to exe-

cuting a task, the heterogeneous computing nodes participate in a non-cooperative game

to reach an equilibrium. Two different types of decentralized load balancing problems are

presented in Section 6.4 as minimization problems with either of price, response time, or,
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fairness index as performance metric. One is to minimize the total expected response time

of the system and the other is to minimize the total price agreed between the scheduler

and computing nodes to execute the set of task.

Since no optimal load balancing strategy exists for dynamic load balancing problem,

we resolve to design strategies to obtain sub-optimal solutions using different algorithmic

paradigms.

1.7 Research contribution

The generalized load balancing problem can be viewed as assignment of each of n indepen-

dent jobs on m heterogeneous distributed computing nodes. The Load balancing problem

has been formulated for a Heterogeneous Distributed Computing System (HDCS) con-

sidering the system and task heterogeneity and presented as an optimization problem

with the objective to minimize the makespan. The dynamic task assignments are carried

out by the central scheduler considering the load of each computing nodes at the instant.

The thesis uses three different algorithmic approaches namely (i) greedy algorithm,(ii)

iterative heuristic algorithm,and (iii) approximation algorithm, to obtain sub-optimal

solutions for load balancing problem.

Four greedy resource allocation algorithms using batch mode heuristic has been pre-

sented for heterogeneous distributed computing system with four different type of machine

heterogeneity. A number of experiments has been conducted to study the performance

of these load balancing algorithms with three different arrival rate for the consistent and

inconsistent task model.

Two stochastic iterative load balancing algorithms have been designed with sliding

window techniques to select a batch of tasks from the task pool, and allocates them

to the computing nodes in a HDCS. A new codification scheme suitable to simulated

annealing and genetic algorithm has been introduced to design dynamic load balancing

algorithms for a HDCS.

Approximation algorithms have been used to design polynomial time algorithms for

intractable problems that provide solutions within the bounded proximity of the opti-

mal solution. Analysis and design of two approximation algorithms based on task and

machine heterogeneity has been presented with makespan as a performance metric. A

non-cooperative decentralized game-theoretic framework has been used to solve the dy-

namic load balancing problem as an optimization problem. In decentralize approach of

load balancing, all computing nodes in HDCS are involved in load balancing decisions.

The decisions to allocate the resources in a HDCS are based upon the pricing model of
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computing resources using a bargaining game theory. Two different decentralized load

balancing problem presented in this thesis as minimization problems with price, response

time, and fairness index. Two algorithms have been proposed to compute load fraction.

These algorithms are used to design decentralized load balancing strategies to minimize

the cost of the entire computing system leading to load balanced.

1.8 Thesis organization

The present thesis is organized into seven chapters. Chapter 1 presents introduction and

importance of load balancing problem on HDCS with task and machine heterogeneity.

It also includes a review of related work. Chapter 2 presents model for Heterogeneous

Distributed Computing System, with the system architecture and workload model. Load

balancing problem is presented as a minimization problem with the objective to minimize

the makespan. An algorithmic approach to the load balancing problem with task and

node heterogeneity is presented in this chapter. Chapter 3 presents a queueing model

for the HDCS and analyses the impact of heterogeneity with greedy resource allocation

algorithms. Four different types of machine heterogeneity are considered for consistent

and inconsistent ETC matrix models. In Chapter 4 a new codification scheme suit-

able to SA and GA has been introduced to design dynamic load balancing algorithms

for the HDCS. The effect of a genetic algorithm based dynamic load balancing scheme

has been compared with first-fit, randomized heuristic and simulated annealing algo-

rithms through simulation. Chapter 5 presents the analysis and design of centralized

approximation algorithms based on task and machine heterogeneity through ETC ma-

trix on HDCS with makespan as the performance metric. The proposed approximation

scheme has been compared with the optimal solution computed as a lower bound. The

load balancing problem in heterogeneous distributed systems is modelled as a multi player

non-cooperative game with Nash equilibrium and load balancing strategies using the non-

cooperative game theory has been presented in Chapter 6. Performance of two existing

price-based job allocation schemes, namely Global Optimal Scheme with Pricing (GOSP)

and Nash Scheme with Pricing (NASHP), have been analyzed and modified versions of

theses schemes have been introduced to analyze the performance by considering the effect

of pricing on system utilization. Chapter 7 concludes the work done, highlighting the

contributions and suggests the directions for possible future work on load balancing.



Chapter 2

Heterogeneous Distributed System

Model and Algorithemic Framework

for Resource Allocation

This chapter introduces the basic concepts, the terminology and the state of the art of the

dynamic load balancing problem in heterogeneous distributed computing systems. A model

has been presented for a Heterogeneous Distributed Computing System (HDCS) including

the system architecture and the workload model. The dynamic load balancing problem is

presented as a minimization problem with the objective of minimizing the makespan. An

introduction to algorithmic approach to load balancing problem is discussed to solve load

balancing problem with task and node heterogeneity.

2.1 Introduction

Distributed systems are loosely coupled and do not have a global clock driving all the

nodes. Major atomic components of the distributed systems are the processors, commu-

nication network, clocks, software, and non-volatile storage or secondary storage. The

key properties of distributed systems are the scalability and autonomous nature of vari-

ous nodes. Heterogeneous computing systems ranges from diverse computing elements or

paradigms within a single computer, to a cluster of different type of Personal Computers,

to coordinated geographically distributed computing nodes with different architectures

[88]. An abstract model of the HDCS has to be created in order to formalize the system

behavior of a heterogeneous distributed computing system. The abstract model of HDCS

15
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describes the system architecture and the workload model. Dynamic load balancing poli-

cies may be further sub-divided into centralized and distributed structures according to

the use of information about the computing nodes for assigning tasks to the nodes. A

detail classification is listed in [28] as a hierarchical taxonomy. In distributed computing

systems maximizing utilization of resources is a major concern. Hence, the tasks are

assigned/mapped and migrated among computing nodes so that the overall performance

and utilization of the system can be optimized. The dynamic load balancers in the cen-

tralized controlled systems are able to defer the task allocation until the best computing

node is ascertained and/or until one of the suitable computing node becomes ready to

receive the task for execution [31].

The present thesis suggests system models, which can be used to represent different

distributed computing infrastructures such as network of workstations, commodity of

workstations, web server clusters, grids, server firms, and high performance computing

clusters. The heterogeneity in distributed computations are mostly influenced by the

continuous advancement in micro-electronics technology and communication technology

using highly efficient computer networks. We have presented two different heterogeneous

distributed system models with centralized and distributed control for resource allocation.

Heterogeneity can also arise due to the difference in task arrival rate at homogeneous

processors or processors having different task processing rates. There are a large variety

of heterogeneous distributed systems, all of which have certain common characteristics

that differentiate them from homogeneous distributed system. Here, we briefly look

at heterogeneous distributed system components and system models in the context of

dynamic load balancing.

2.2 HDCS model and assumptions

Heterogeneous computing systems are the set of diverse computing resources that can be

on a chip, within a computer, or on a local or geographically distributed network [89].

The heterogeneity in computing systems are mostly due to the frequent dynamic devel-

opments in computer hardware, software, protocols, application programming interface,

communication networks, mobile computing devices and operating system. We consider

an HDCS consisting of m independent, heterogeneous, and uniquely addressable com-

puting entities (also termed as computing nodes or processors) as shown in Figure 2.1.

Let M be the set of m computing nodes, denoted as M = {M1,M2, ...,Mm}. The system

consists of m heterogeneous nodes, which represent the heterogeneous distributed com-

puting system (HDCS). Each node has three prime resources, processor, main memory,
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Figure 2.1: Heterogeneous Distributed Computing System

and secondary memory, identified as Pj, πj and Sj for the node Mj . In the HDCS model

all computing nodes are with heterogeneous service capacities. The task execution on

node Mj can be characterized as the service rate or processing rate, is denoted as µj and

exponentially distributed with a mean
1
µj

. The total computing power of the system

is µ = Σm
j=1µj.

In our study we define an heterogeneous distributed system as follows;

Definition 2.1 (Heterogeneous Distributed System). An heterogeneous distributed sys-

tem consists of computing nodes connected by a interconnect, where the messages transfer

time between the nodes is bounded. Each node may execute a system kernel that provides

the local and remote inter-process communication and synchronization as well as the usual

process management functions and input/output management.

2.3 Computing node model

The HDCS is a scalable computing infrastructure, integrating various hardware, software

and network technologies. A computing node in a distributed computing system is an au-

tonomous computer having its own private memory, communicating through a computer
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network [1]. A computing node in a distributed system can be a personal computer or

workstation or a high performance computing cluster. In general the computing power

of a node is dominated by the processor architecture.

A node in a HDCS has three components that are involved in task execution. The local

scheduler is responsible for scheduling of tasks that arrive at the computing node. The

dispatcher invokes the next task to be executed on the node following a scheduling policy.

The global scheduler interacts with the scheduler of other nodes in order to perform load

distribution among other nodes in the HDCS. We assume the following regarding the

computing nodes:

• Each node Mj is autonomous, has full information on its own resource, and it

manages its work load.

• Each node is characterised by its processing rate and only its true value is known

to Mj .

• Each node Mj has a processing rate µj.

• Each node handles its own communication and computation overheads indepen-

dently.

• Each node incurs a cost proportional to its utilization.

• Each computing node is always available for processing.

• The computing nodes in a HDCS do not perform multitasking.

Heterogeneity of service is a common feature of many real world multi server queueing

situations. These heterogeneous service mechanisms are invaluable scheduling methods

that allow the task to receive different quality of service [90]. In practice computing nodes

with different architectures and operating systems provides different processing capabil-

ities. Each of the computing nodes is modelled as a single-queue single-server queuing

system with an FCFS service discipline. The queue lengths in each node are assumes to

be large enough so that the probability of overflow is negligible. The local task arrival to

the arbitrary node Mj is assumed to be Poisson with a mean arrival rate λj . The com-

puting capability of the node is represented as a service rate of the node, and is assumed

to be exponentially distributed with a mean 1/µj [55]. Hence, the performance of a node

without load sharing can be calculated using the M/M/1 queuing model. The M/M/1

queueing model represents a single server system with exponential job arrival times and

exponential job service times [76, 91].
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2.4 System models for dynamic load distribution

The scheduling problem in HDCS aims to maintain a balanced execution of tasks while

using the computational resources with computing nodes. Dynamic resource allocation

in HDCS is possible through centralized or decentralized control. A dynamic load distri-

bution algorithm must be general, adaptable, stable, scalable, fault-tolerant and trans-

parent [5].

2.4.1 Centralized system model for HDCS

A centralized dynamic load balancing algorithm operates based on the load information

from other computing nodes and can be realized through a centrally controlled HDCS.

A centralized model of HDCS consists of a set M = {M1,M2, ...,Mm}, of m independent

heterogeneous, and uniquely addressable computing nodes as shown in Figure 2.2, with

one node acts as the resource manager. The single computing node that acting as a central

scheduler or resource manager of the system is responsible for collecting the global load

information of other computing nodes. Resource management sub-systems of the HDCS

are designated to allocate the tasks to the computing nodes for their execution.

Figure 2.2: Heterogeneous Distributed Computing System with central scheduler
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A centralized HDCS model can be characterized by the following:

• A finite collection of computing nodes and a waiting queue. The waiting queue can

be accessed by all the computing units through a communication network.

• Every computing node can be evaluated by a time metric and designated with the

exponential service time distribution.

• Tasks are arriving at the central scheduler following Poisson distribution with an

arrival rate of λ.

• Allocation of a tasks to the computing nodes are equally probable and can be

assigned by the central scheduler independently. It is assumed that if all the com-

puting nodes are busy, the task will keep waiting in a waiting queue of infinite

length at the central scheduler.

The tasks arriving from the different users to the central scheduler or serial scheduler

have the same probability of being allocated to any one of the m computing nodes. Each

computing node executes a single task at a time. The arrivals of the tasks at the central

server or resource manager follow a Poisson process with an arrival rate of λ. Each of

the computing nodes can be modeled as shown in Figure 2.2. The tasks that are to be

executed at a node under the control of a local scheduler and the scheduling policy of

the node is responsible for the execution of the assigned task. The centralized HDCS can

be modeled as an M/M/m (Markovian arrivals, Markovian service times, m computing

nodes as server, and with infinite buffer for incoming task) multi-server queuing system.

2.4.2 Decentralized system model for HDCS

Decentralized dynamic load balancing algorithms are implemented in the individual com-

puting nodes and operates on periodic information exchange between the computing

nodes. A computing node in a decentralized HDCS is shown in Figure 2.3.

In a decentralized distributed system model the tasks are arriving independently at

m computing nodes. Let tasks arrive at node Mj in accordance with a Poisson process

with a rate λj. The total arrival rate to the system is denoted as λ = Σm
j=1λj. The tasks

arriving at a computing node either serve at that node or as the result of load balancing

decision, migrate to other computing nodes for execution.
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Figure 2.3: Computing Node in decentralized HDCS

2.5 Task or work load model

The workload submitted to the HDCS is assumed to be in the form of tasks. Depending

on the dynamic scheduling approach, the tasks are submitted either to the central sched-

uler or submitted to different computing nodes independently. For different domains of

computer science the exact meaning varies greatly. Terms such as application, task, sub

task, job and program are used to denote the same object in some instances, and yet, have

totally different meanings in others. We have assumed the task to be the computational

unit to execute on the computing nodes of HDCS.

Definition 2.2 (Heterogeneous Distributed System task). A task is an independent

scheduling entity and its execution cannot be preempted. The tasks are independent and

can be executed in any node.

Definition 2.3 (Meta-task). A meta-task is defined as a set of independent tasks with

no data dependency.

Formally, each arriving task ti is associated with an arrival time and expected time to

compute on different computing node. Let T be the set of task, T = {t1, t2, ..., tn}. Each

task ti has an expected time to compute on node Mj , denoted as tij . Hence, the tasks

are characterized by Expected Time to Compute (ETC) as in Table 2.1, where all m
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Table 2.1: Expected Time to Compute: ETC

Task/Node M1 · · · Mj · · · Mm

t1 t11 · · · t1j · · · t1m

...
... · · ·

...
...

...
ti ti1 · · · tij · · · tim
...

... · · ·
...

...
...

tn tn1 · · · tnj · · · tnm

computing nodes can be represented in the first row. In ETC matrix, the elements along

a row indicate the execution time of a given task on different nodes [24]; in particular, tij
represent expected time to compute ith task on machine Mj .

A heterogeneous distributed computing system utilizes a distributed suite of different

high-performance nodes, interconnected with high-speed links, to perform different com-

putationally intensive applications that have diverse computational requirements. An

application of distributed computing platform many be defined as:

Definition 2.4 (Application). A set of tasks that can be represented by a Directed Acyclic

Graph (DAG), with operational precedence constraint among the task.

Let a meta-task be represented by a set of n tasks. If the HDCS has m computing

nodes, then tasks can be represented by an ETC matrix. But a DAG can be listed as a

set of ordered tasks with level order traversal of the DAG. Hence, a program with n tasks

can be represented as an n×m ETC matrix on m computing node. Hence, ETC matrix

can be used to study dynamic load balancing problems in HDCS. Because there are no

dependency among the tasks, load balancing schemes are simplified, and mostly focuses

on efficient matching of tasks to the computing nodes [92]. It is assumed that the size

of the meta-task is the number of tasks to be executed on the HDCS and is denoted as

|T | = n. The major assumptions regarding the tasks to be executed on a HDCS are as

follows:

• Tasks cannot be preempted once they begin to execute on a computing node.

• Only mapping heuristics can assign tasks to computing nodes, no task from external

source is permitted.

• A task can be executed on one node of the system.
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• When a nodes executing a task, there is no priority distinctions between the tasks

with the computing node.

• A computing node cannot remain idle when the tasks are in waiting queue of the

node.

• An estimation of the execution time for each task on each computing node is known

a priori.

The ETC models presented in [24] are characterized by three parameters (i) machine

heterogeneity, (ii) task heterogeneity and (iii) consistency. The task heterogeneity can

be represented with two categories (i) consistent and (ii) inconsistent. A consistent ETC

matrix can be obtained by arranging the computing nodes in order of their processing

capability or may be arranged as decreasing order of FLOPS. In particular, if a node Mi

has a lower execution time than node Mj for task tk , then tki < tkj . An inconsistent ETC

matrix results in practice, when the HDCS includes different type of machine architectures

such as high performance computing clusters, multi-core processor based workstations,

parallel computers, and work stations with GPU units. In the literature most of the

researchers assumed the task execution times to be uniformly distributed [24, 93, 94,

95]. The entire task has expected time to compute on m nodes of HDCS. Hence, the

generalized load-balancing problem is to assign each task to one of the nodes Mj so that

the loads placed on all of the nodes are as ”balanced” as possible [86].

2.6 Dynamic load balancing as linear programming

problem(LPP)

The dynamic load balancing problem of assigning n tasks on an HDCS with m computing

nodes can be represented as an optimization problem to minimize the makespan. The

tasks to be executed on the HDCS are represented by the ETC matrix and follows the

basic assumptions as listed in Section 2.5. Let A(j) be the set of tasks assigned to node

Mj ; and Tj be the total time machine Mj needs to finish all the task in A(j). Hence

Tj =
∑

ti∈A(j) tij ; for all task in A(j). This is otherwise denoted as Lj and defined as load

on node Mj . The basic objective of load balancing is to minimize the makespan, which

is defined as maximum load on any node (T = maxj:1:mTj). Let xij correspond to each

pair (i, j) of node Mj ∈M and task ti ∈ T such that

xij = 0; when the task i is not assign to node Mj . (2.1)
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or

xij = tij ; when the task i is assigned to node Mj . (2.2)

For each task ti, we need
∑m

j=1 xij = tij ; for all task ti ∈ T . The load on node Mj can

be represented as Lj =
∑m

j=1 xij , where xij is defined in Equations 2.1 and 2.2. The load

balancing problem aims to find an assignment that minimizes the maximum load. Let L

be the load of HDCS with m nodes. Hence, the generalized load balancing problem on

an HDCS can be formulated as

MinimizeL =
m
∑

j=1

xij = tij , ∀ ti ∈ T (2.3)

subjected to:
n
∑

j=1

xij ≤ L, ∀Mj ∈M (2.4)

where xij ∈ {0, tij}, ∀ti ∈ T, and Mj ∈M

xij = 0, ∀ ti < A(j)

The objective function 2.3 maps each possible solution of the load balancing problem

to some non-negative value, and an optimal solution to the optimization problem is one

that minimizes the value of this objective function. A feasible assignment is a one-to-one

correspondence with xij satisfying the constraints in Equation 2.4. Hence, an optimal

solution to this problem is the load Lj on the node Mj , also denoted as corresponding

assignment A(j). For n tasks to be assigned to m computing node, the number of possible

allocation will be mn and the number of states for execution will be n!. The load balancing

problem is therefore intractable when the number tasks or computing nodes exceeds a

few units.

The objective function defined here is to minimize the makespan, hence the makespan

is used as the performance metric for evaluating various load balancing scheme through

resource allocation. Moreover, the makespan has been used as the most common perfor-

mance metric by a majority of researchers [6, 63, 95, 96, 97, 98].

2.7 Load balancing algorithm: State of the art

In dynamic resource allocation scenarios the responsibility for making global scheduling

decisions are lie with one centralized schedular, or are shared by multiple distributed

schedulers [54]. Hence, dynamic load balancing algorithms can be further classified into
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a centralized approaches and a decentralized approaches. In a centralized approach [6,

55, 56] one node in the distributed system acts as the central controller and is responsible

for task allocation to other computing nodes. The central controller takes the decision

based on load information obtained from the other nodes in the distributed system. In

a decentralized approach [39] all the computing nodes participated in the task allocation

process. This decentralized decision making can be realized through a cooperation or

without cooperation among the computing nodes.

The algorithms approaches used for the load balancing problem are roughly classi-

fied as (i) exact algorithms, (ii) heuristic algorithms, and (iii) approximation algorithm

[87, 99]. An algorithmic approach to load balancing problem is presented in [86]. Dif-

ferent forms of linear programming formulation of the load balancing problem has been

discussed along with greedy, randomized and approximation algorithms to produce sub-

optimal solutions to the problem. The solution to this intractable problem was discussed

under different algorithmic paradigms. The selection of load balancing algorithm mostly

depends on the set of system parameters such as (i) system size, (ii) system load, and

(iii) system traffic intensity [5].

Iterative load balancing methods rely on successive approximations to a global opti-

mal work load distribution, and hence at each iteration, need be only to concerned with

task migration to the computing nodes [38]. Xu and Lau [38] presented a classification

of iterative dynamic load balancing strategies in multicomputer systems into two major

group, (i) deterministic iterative strategies and (ii) stochastic iterative strategies.Three

stochastic iterative strategies successfully used by the researchers to solve load balanc-

ing problem are: (i) randomized allocation, (ii) simulated annealing, and (iii) genetic

algorithms. Heuristic algorithms can find approximate or sub-optimal solutions with ac-

ceptable time and space complexities, and are promising in solving intractable problems.

Algorithms where some of the actions are dependent on chance are generally termed

as probabilistic algorithms or randomized algorithms. Randomization has long been used

in algorithm design. Randomness can be used to find approximate numerical solution

to problems having an exponential solution space [100]. Randomized algorithms are

preferred over deterministic algorithm because: (i) they runs faster than the best known

deterministic algorithm and (ii) they are simple to describe and implement than the

deterministic algorithms. Four major subdivisions of randomized algorithms based upon

uniqueness and correctness of solution are numerical randomized algorithm, Monte-Carlo

algorithm , Las Vegas algorithm and Sherwood algorithm. In this thesis we have used

randomized load balancing algorithms for comparative analysis in Chapter 3 and Chapter

4 using centralized scheduler.
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Table 2.2: The Genetic Algorithm based load balancer in distributed system

GA Load balancer Obj. function Pop size Selection Crossover Mutation Heterogeneity Load balancing
Zomaya et al. maxspan 10 roulette wheel NA NA Yes Static
Subrata et al. makespan twice the task set Tournament 0.8 0.0005 Yes Dynamic
Kumar et al. makespan 20 roulette wheel 0.8 0.2 No Dynamic

kolodziej et al. flow time NA Liner ranking 0.9 0.4 Yes Dynamic
Greene et al. time duration 20 roulette wheel NA NA Yes Dynamic
Page et al. makespan 20 roulette wheel NA NA Yes Dynamic

Aguilar et al. cost function NA roulette wheel NA NA Yes Static
Braun et al. makespan 200 roulette wheel 0.6 0.4 Yes Static

Lee and Hwang CPU queue length 50 wheel of fortune 0.7 0.05 No Dynamic
Nikravan et al. CPU utilization 50 roulette wheel 0.9 0.1 No Static
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Simulated annealing is a general and powerful iterative technique for combinatorial

optimization problems.The technique is Monte Carlo in nature, which simulates the ran-

dom movements of a collection of vibrating atoms in the process of cooling [101]. The

dynamic load balancing algorithm using simulated annealing exercise are initiated from

the central scheduler in an HDCS. The global workloads are the tasks waiting with central

scheduler to be allocated to the computing nodes after a fixed number of iterations.

Genetic algorithms are meta-heuristics based on the iterative application of stochastic

operators on a population of candidate solutions [102]. They are proved to be useful

heuristic approaches to find sub-optimal solutions for the problems with an exponential

solution space [103, 104]. In the process of problem solving in genetic algorithm, solutions

are selected from the population in each iteration. The selected solutions are subjected

to recombination with genetic operators to produce new solutions. These solutions may

replace other solutions selected randomly or through a selection strategy suitable to the

problem domain. A typical genetic algorithms are characterized by following attributes;

the genetic representation of candidate solutions, the population size, the evaluation

function, the genetic operators, the selection algorithm, cross over probability, mutation

probability, the generation gap, and the amount of elitism used. However based on the

various researchers finding Table 2.2 presents a comparison of various genetic algorithm

based schedulers. The NA indicates the non availability of the information relation to

genetic scheduler.

The limitation of integer programming tools(exact algorithm) is that, it does not pro-

vide any guarantee to produce a quality of solution in reasonable running time. Moreover,

the heuristic methods are also suffers from certain drawbacks. In particular it requires a

well defined analysis to evaluate the quality of heuristics besides the excellent numerical

performance. The approximation algorithm addresses both the issue of guarantee and

making feasible solution. Also an approximation algorithm is polynomially bounded and

characterised approximation ratio[105].

The central or serial scheduler schedules the processes in a distributed system to make

use of the system resources in such a manner that resource usage, response time, network

congestion, and scheduling overhead are optimized.

In a decentralized approach [39] all the computing nodes participated in the task

allocation process. This decentralized decision making can be realized through a coop-

eration or without cooperation among the computing nodes. Most of the decentralized

approaches use the partial information available with the individual computing nodes to

make sub-optimal decisions. The scope of applying game theoretic techniques to load

balancing in distributed computer systems has been analyzed in the context of Nash
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equilibrium by a majority of the researchers. To facilitate a game theoretic approach, the

HDCS is viewed as the collection of computing resources that are under the supervision of

the server with each node. The scheduler or load balancer is available as a component of

the server to facilitate the task allocation. This chapter presents a non-cooperative game

theoretic framework for dynamic load balancing in heterogeneous distributed systems

with the goal of achieving Nash equilibrium.

2.8 Conclusion

This chapter introduced the basic concepts, the terminology and the state of the art of

dynamic load balancing in heterogeneous distributed computing systems. Dynamic load

balancing problem on an HDCS is represented as a linear programming problem, with

the objective of minimizing the makespan. A model for a Heterogeneous Distributed

Computing System(HDCS) has been presented. It includes the system architecture and

workload model that has to be followed for the design of dynamic load balancing algo-

rithms for the HDCS. To this end, the basic concepts of the load balancing algorithm

theory were over viewed, focusing primarily on the dynamic load balancing of tasks on

heterogeneous computing nodes.



Chapter 3

Impact of System Heterogeneity

with Greedy Resource Allocation

Algorithms

This chapter presents experiments with greedy resource allocation algorithms using batch

mode paradigms and its approach to find an optimal or sub-optimal solutions for the dy-

namic load balancing problem with attempts to minimize the makespan on an HDCS. The

simulation result in this chapter show that the greedy based scheduling policy depends on

system heterogeneity. The different types of heterogeneity in an HDCS is represented as

consistent and inconsistent ETC matrix models. The relative performance of the heuris-

tics under different circumstances has been simulated on four different HDCSs. Simu-

lation study has been presented to determine the impact of a simple heuristic on task

allocation policies in the heterogeneous distributed system.

3.1 Introduction

Dynamic load balancing strategies are categorized into centralized or distributed con-

trolled strategies. The system state changes with time on arrival of tasks from the user.

The effectiveness of any load balancing scheme depends on the quality of load measure-

ment and prediction that indicate the degree of load imbalance in the system [36]. In

dynamic load balancing, the decision to allocate tasks are taken on the fly considering

the load on different computing nodes during task execution. The greedy heuristic con-

structs a feasible solution from scratch and defines the mapping of tasks to the computing

29
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nodes. In these algorithms tasks are sorted with a given criteria, and then mapped in

that order to the computing nodes in the HDCS. The allocation of one task depends

on previously allocated tasks. Greedy algorithms maintain feasibility while generating

the optimal solution by considering the resource constraints [84]. The heuristics based

scheduling algorithms used for load balancing can be grouped into two category: on-line

mode and batch mode [8, 53, 96, 97, 106, 107, 108]. In the on-line mode (also known as

the immediate mode) a task is mapped onto a computing node as soon as it arrives at the

scheduler. In batch mode heuristics, the tasks are not mapped onto the machines as they

arrive; instead they are collected in a set that is examined for mapping at pre-scheduled

time [96]. The batch mode scheduling is the most appropriate framework to design dy-

namic load balancing algorithms. This is a simple scheduling scenario in an HDCS, and

is useful to illustrate many real-life approaches that utilizes parallel nature of the HDCS,

enabling independent computation of tasks on the nodes [109].

The greedy paradigm provides a framework to design an algorithm, that works in

stages, considering one input at a time. At each stage a particular input is selected

through a selection procedure. Then a decision is made regarding the selected input,

whether to include it into the partially constructed optimal solutionor not [110]. The

selection procedure can be realized in ©(1) a time with the use of a binary heap ( max

heap or min heap) data structure, with time complexity of ©(log n) for an instance

of size n. Hence, the realization of a greedy heuristic is the simplest and the selection

procedure can be realized with worst case time complexity of©(log n). All the load bal-

ancing algorithms discussed in this chapter uses a selection procedure with best case time

complexity of ©(1) and worst case time complexity of ©(log n). The greedy heuristic

algorithms presented in this chapter are simulated to study the load balancing in four

different HDCSs by varying the system heterogeneity. The simple heuristic algorithms

are the First-Come, First-Served (FCFS) algorithm that follows the order of arrival time

of the task with the central scheduler, the second algorithm (MINMIN) selects the task

with minimum ETC on the node to be allocated, the third algorithm (MINMAX)selects

the task with maximum ETC on the node to be allocated and the fourth one is the ran-

dom task allocation algorithm that selects the node randomly from m nodes to allocate

task ti.

The load balancing in distributed computing systems becomes a major research issue

to utilize the ideal computing resources. This chapter presents the centralized dynamic

load balancing algorithm, that operates in batch mode, to realize the concept of dynamic

allocation. A node operates as the central scheduler and collects the load information

from the other computing nodes in the HDCS to finalize the allocation decision.
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3.2 Related work

Centralized static resource allocation algorithms have been studied extensively in [111, 92]

using heuristics. Tasks are assigned to the computing nodes with a centralized load bal-

ancing algorithm, a central node collecting the load information from the other computing

nodes in the HDCS. Dandamudi [112] has presented a study on impact of heterogeneity

and variance in inter-arrival times in an HDCS with two different arrival rates of the

tasks to central scheduler. However, he has not considered the task model and expected

time to execute a task on different systems. Most scheduling heuristics used in HDCSs

try to minimize the makespan. Tseng et al.[58] presented a simulation study to compare

five different scheduling heuristics to minimize the makespan in a dynamic environment

for grid computing systems. A quality of service guided new min-min algorithm based on

a general adaptive scheduling environment has been presented by Xiaoshan et al. in [96].

Izakian et al. [97] have presented an efficient heuristic method for scheduling indepen-

dent tasks on heterogeneous distributed environments and compare it with five popular

heuristics for minimizing the makespan. The paper by Xhafa and Abraham [98] reveals

the complexity of the scheduling problem in computational grids when compared with

classical parallel and distributed systems. A static mapping of meta-tasks to minimize the

total execution time has been presented by Braun et al. [95] for an HDCS. Batch mode

scheduling using min-min, max-min, and the surffrage heuristics has been demonstrated

in [58, 113, 114, 115, 116, 117, 118] with makespan as the performance parameter.

3.3 Greedy load balancing algorithm

Using the makespan as the load balancing metric for a given distributed computing envi-

ronment should reasonably predict the performance of the system [53]. Makespan is also

used in the mathematical model of the load balancing problem discussed in algorithm de-

sign [86]. This chapter follows a simple Greedy-Balance algorithmic framework, discussed

by Kleinberg and Tardos [86] to suggest a generalized greedy load balancing algorithm

for an HDCS. The proposed algorithms operates with the ETC matrix and arrival time

for each task, to allocate the task to computing nodes for load balancing. The arrival

time of the task is to be recorded in a priority queue HAT (MaxTask). The priority

queue, implemented as min-heap, records the order at which the tasks are arriving at

the central scheduler. The min-heap can be created with a time complexity of ©(log n).

The task with the earliest arrival time is selected and assigned to the machine with the

minimum load. Further, it is assumed that the initial load of each of the computing
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node is zero. The greedy Algorithm 3.1 is designed to obtain an optimal task assignment

by assigning the n tasks in stages, one task per stage in a non-decreasing order of task

arrival time. The greedy load balancing algorithm operates by initializing the set of task

A(j) and the total time to finish the task Tj for every node Mj . Algorithm 3.1 can be

implemented with time complexity ©(n log n). This algorithm successfully terminates

when task queue becomes empty. The selection of the computing node is based upon a

greedy criterion : assign the task to the node with minimum Tj . The algorithm computes

makespan for the set of task having MaxTask number of tasks.

Algorithm 3.1 Greedy load balancing algorithm with priority queue

Require: ETC(MaxTask,MaxNode), HAT (MaxTask) : task Queue
Ensure: L : makespan

1: Lj ←− 0 forall node Mj

2: A(j)←− φ forall node Mj , Let φ be the empty set
3: repeat
4: Let Mj be a node with minimum Tj

5: Let ti be the task on root of the min-heap HAT
6: Allocate task ti to Node Mj

7: A(j)←− A(j) ∪ {ti}
8: Lj ←− Lj + tij
9: Remove task ti from min-heap HAT

10: until HAT is not empty
11: L←− maxjLj

The objective of a dynamic load balancing algorithm is to allocate the tasks on the fly

as the tasks arriving according to a Poisson process are queued with the central scheduler.

A fixed batch size, denoted as WinSize, represents the number of tasks selected in a

batch for allocation. As there are too many tasks waiting to be allocated with the central

scheduler, the scheduling heuristics are applied only to the tasks that are within the

batch. The greedy heuristic algorithms listed in Section 3.6 are being used to allocate

the tasks for load balancing. Once one batch of tasks are allocated to the computing

nodes, the next batch of tasks are selected from the task queue for allocation. Algorithm

3.1 can be modified to Algorithm 3.2 with MaxTask = WinSize to facilitate batch

mode resource allocation. Algorithm 3.2 can be called n
W inSize

times in batch mode to

allocate n tasks dynamically to m computing node. For simplicity it is assumed that

MaxTask is an integer multiple of WinSize. Algorithm 3.2 is executed for the first time

with the following initialization:

Lj ←− 0 for all node Mj



3.4. SYSTEM AND TASK HETEROGENEITY 33

A(j)←− φ for all node Mj

The makespan can be obtained after n
W inSize

steps as L = maxjLj .

Algorithm 3.2 Greedy load balancing for batch job with priority queue

Require: T,A,ETC(WinSize,MaxNode), HAT (WinSize) : task Queue
1: repeat
2: Let Mj be a node with minimum Lj

3: Let ti be the task on root of the min-heap HAT
4: Allocate task ti to Node Mj

5: A(j)←− A(j) ∪ {ti}
6: Lj ←− Lj + tij
7: Remove task ti from min-heap HAT
8: until HAT is not empty

3.4 System and task heterogeneity

An HDCS model consists of n heterogeneous computing nodes, which represent host of

computers having different processing abilities, connected by an underlying communica-

tion network [37]. For convenience, we use node, and computing node interchangeably

in the rest of this thesis. The assumptions on computing node and task are discussed in

Section 2.3 and 2.5 respectively. The HDCS can be characterized by using the expected

time to execute the task on different computing nodes present in the system. Hence, the

heterogeneity of the system is defined as:

Definition 3.1 (Machine heterogeneity). Machine heterogeneity, otherwise known as

computing node heterogeneity, is the variation among the execution times for a task on

all the machine in the HDCS.

Definition 3.2 (Task heterogeneity). Task heterogeneity is defined as the amount of

variance among the execution times of the tasks in the meta-task for a given machine.

A task has different execution times if it executed on different heterogeneous com-

puting nodes of an HDCS. The expected execution time of task ti is denoted as tij when

assigned to node Mj without any load. The completion time Cij of task ti on node Mj

is defined as the wall-clock time at which the node completes the task ti, and is com-

puted as Cij = tij + Lj , where Lj is the load of the node Mj when task is assigned.

Execution times of the tasks on different computing node are estimated and represented

using the Expected Time to Compute (ETC) matrix model in [24]. We have consistent
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Algorithm 3.3 Range based ETC generation algorithm

Require: Rtask, Rmach,MaxTask,MaxNode
Ensure: ETC

1: for i = 1 to MaxTask do
2: x(i)←− 1 + (Rtask − 1) ∗ rand(1)
3: for j = 1 to MaxNode do
4: ETC(i, j)←− round(x(i) ∗ (1 + (Rmach − 1) ∗ rand(1)))
5: end for
6: end for

as well as the inconsistent ETC matrix to demonstrate the resource allocation abilities

of four greedy algorithms. To generate the ETC matrix, we have used the range based

ETC generation technique suggested in [24]. The ETC generation process is outlined

in Algorithm 3.3. Let Rtask and Rmach be the numbers representing task heterogeneity

and machine heterogeneity respectively. In this chapter we have used range based ETC

generation algorithm with the typical value for Rtask and Rmach as follows:

• Rtask is 105 and 10 for high and low heterogeneity respectively.

• Rmach is 102 and 10 for high and low heterogeneity respectively.

The ETC matrix for simulation are generated by using two uniform distribution U(1, Rtask)

and U(1, Rmach) and are realized as:

1 + (Rtask − 1) ∗ rand(1)

and

1 + (Rmach − 1) ∗ rand(1)

where rand() function generates a value between (0, 1).

The ETC generation Algorithm 3.3 uses Rtask = 1000 and Rmach = 50 respectively.

We have assumed that the expected time to compute the task ti on node Mj is the integer

values in time unit of seconds. An example of inconsistent ETC matrix generated for

15 tasks on 7 nodes is shown in Table 3.1. If the computing nodes are arranged in the

decreasing order of their processing rate, then a consistent ETC matrix results. The

example of a consistence ETC matrix generated for 15 tasks on 7 nodes using Algorithm

3.3 is shown in Table 3.2.
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Table 3.1: Inconsistent ETC matrix for 15 task on 7 nodes

M1 M2 M3 M4 M5 M6 M7

t1 2610 67 2113 2226 2362 279 1116
t2 5254 2893 5962 1295 1820 1063 1002
t3 12785 12149 3523 18608 13687 7911 11369
t4 952 2570 1419 2017 2571 4321 692
t5 21351 11310 11274 7922 20362 8620 2911
t6 7845 5013 8116 2235 2915 18409 18678
t7 1132 3602 5272 11878 505 895 2673
t8 11974 10637 7504 9034 5042 12181 3333
t9 3434 6549 10880 13484 1710 15996 13408
t10 5453 5584 3905 6321 6348 10016 9743
t11 6306 13148 8743 5865 15162 14165 9017
t12 9275 3484 4911 7502 3831 13203 3285
t13 1065 1383 2542 1848 5260 2511 1144
t14 22178 10184 2917 6175 9516 13644 6267
t15 10820 3581 2038 4689 5016 6575 7813

Table 3.2: Consistent ETC matrix for 15 task on 7 nodes

M1 M2 M3 M4 M5 M6 M7

t1 1121 2379 10195 12843 13673 14864 14946
t2 1162 1463 1884 2306 2524 2872 3380
t3 2899 3284 7476 9005 11566 16452 20826
t4 2282 3486 3618 4076 4145 6782 7298
t5 2764 8164 9676 21642 21777 22372 30581
t6 340 3061 4569 8618 8712 10029 10828
t7 637 12022 13132 14212 14257 23342 27648
t8 889 2741 3108 7787 7820 11752 12749
t9 3553 4409 4848 10514 12709 13162 15706
t10 1035 2859 4142 5264 5539 6173 6534
t11 4439 7282 8148 20835 22207 23168 30658
t12 11036 13000 14012 14267 20319 20320 23545
t13 11423 11767 23154 24867 26155 35210 36738
t14 2181 7808 8827 10304 10402 10429 14998
t15 2240 3366 3470 6377 14481 19777 27049
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3.5 Queueing model for load balancing

The load balancing problem has been evenly treated, in both the fields of computer

science and operations research. Queueing models are used as the key model for perfor-

mance analysis and optimization of parallel and distributed systems [95]. Scheduling of

tasks while balancing the load is a distributed system involves deciding not only when to

execute a process, but also where to execute it. Accordingly, scheduling in a distributed

system is accomplished by two components: the allocator and the scheduler. The alloca-

tor decides where a job will execute and the scheduler decides when a job gets its share

of the computing resource at the node to which it is allocated. Queueing models can

be viewed as key models for the performance analysis and optimization of parallel and

distributed systems [48]. A queueing theoretic approach was used to analyse the perfor-

mance of heterogeneous multiprocessor computer system involving random environments

can be found in [119]. Optimal load balancing strategies are modeled using the queue-

ing theory by Spies [29] who obtained analytical results through simulation. Rykov and

Efrosinin [120] have presented an algorithm to find optimal threshold levels for different

queueing systems with heterogeneous servers. Wang et al. [121] has presented a study on

maximum likelihood estimates as well as confidence intervals of an M/M/m queue with

heterogeneous servers under steady-state conditions. An analysis using a queueing sys-

tem with two heterogeneous server and a threshold type queue discipline is presented in

[122]. The performance characteristics for a queueing system with heterogeneous servers

has been presented with the calculation of the steady-state probabilities and waiting time

by Vladimir et al. [123].

An HDCS can be modeled as a M/M/m queueing system with heterogeneous server as

discussed in [29, 121, 122] . The heterogeneous distributed computing system addressed

in this work can be expressed by using a Kendall notation [91] or as like M/M/m, where:

(i) First M: represents exponential inter arrival times between jobs(tasks) distribution,

(ii) Second M: represents exponential execution time of jobs, and (iii) m: represents

number of heterogeneous computing nodes in the system. It is also assumed that the

queue has infinite buffer to accept the incoming tasks. Each computing node executes

its queue of tasks in a first-come first-served order. Let the task enter into the queue at

the central scheduler at a mean rate, λ. The distribution is assumed to be exponential

with mean
1
λ

. A task ti with the central scheduler can be allocated to a computing node

with a probability ai; hence,
∑m

i=1 ai = 1 . The processing time of task ti on node Mj

is modeled as an independent exponentially distributed random variable with mean
1
µ j

[124]. For stability, it is also assumed that tasks must not be generated faster than the
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Figure 3.1: The state diagram for M/M/3 non-preemptive queue serving five task

rate at which the HDCS can process i.e. λ ≤
∑m

j=1 µj.

Let us consider there are three heterogeneous computing nodes with five task to exe-

cute. This can be modeled as an M/M/3 queue with infinite buffers. Each heterogeneous

computing node is multitasking and can accommodate a finite number of tasks assigned

by the central scheduler. This queue can be analyzed by drawing a state transition di-

agram with a state represented by m = 3 tuple and denoted as p(s1, s2, ... sm). The

Markov chain shown in Figure 3.1 describes the behaviour of the central scheduler and

also explains the task migration phenomenon before the task begins execution.

Figure 3.1 represents the state diagram for the heterogeneous computing nodeM1, M2, M3

with unequal mean service rates µ1, µ2, µ3 where µ1 > µ2 > µ3. It is assumed that the

central scheduler runs on M1. When more than one task is with the central scheduler, it
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assigns the tasks to the other nodes. The state of the system is defined to be the tuple

(s1, s2, s3) where (s1 ≥ 0) denotes the number of tasks in the queue including the task

on execution with node M1, and s2, s3 ∈ {0, 1} denotes number of task at the nodes

M2 and M3 respectively. Tasks arriving from the users have been modeled as a Poisson

process with an arrival rate λ and queued at the central scheduler. When all the three

nodes are idle, the faster computing node M1 is scheduled for the task execution before

the slow nodes M2,M3. Let p(s1, s2, s3) denotes the probability of the system state with

s1, s2, and s3 number of tasks scheduled to the three nodes. In steady state the following

equations are used:

• p(0, 0, 0): probability that there are no task in the system, otherwise denoted as p0.

• p(1, 0, 0): probability that there are one task in the system with M1.

• p(0, 1, 0): probability that there are one task in the system with M2.

• p(0, 0, 1): probability that there are one task in the system with M3.

• p1 denotes the probability that there is a single task and defined as:

p1 = p(1, 0, 0) + p(0, 1, 0) + p(0, 0, 1)

• p(1, 1, 0): probability that there are two task in the system with first and second

node.

• p2 denotes the probability that there are two tasks and defined as

p2 = p(1, 1, 0) + p(1, 0, 1) + p(0, 1, 1).

• p3 denotes the probability that there are three tasks in the system and defined as

p3 = p(1, 1, 1).

• p4 denotes the probability that there are four tasks in the system and defined as p4

= p(2, 1, 1).

• p5 denotes the probability that there are five tasks in the system and defined as p5

= p(3, 1, 1).

Steady-state equations for an M/M/3 queue with three heterogeneous servers are

given by:

λp(0, 0, 0) = µ1 p(1, 0, 0) + µ2 p(0, 1, 0) + µ3 p(0, 0, 1) (3.1)

(λ+ µ1)p(1, 0, 0) = µ2 p(1, 1, 0) + µ3 p(1, 0, 1) + λ p(0, 0, 0) (3.2)
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(λ+ µ2)p(0, 1, 0) = µ1 p(1, 1, 0) + µ3 p(0, 1, 1) (3.3)

(λ+ µ3)p(0, 0, 1) = µ1 p(1, 0, 1) + µ2 p(0, 1, 1) (3.4)

(λ+ µ1 + µ2)p(1, 1, 0) = µ3p(1, 1, 1) + λ p(1, 0, 0) + λ p(0, 1, 0) (3.5)

(λ+ µ2 + µ3)p(0, 1, 1) = µ1p(1, 1, 1) (3.6)

(λ+ µ1 + µ3)p(1, 0, 1) = µ2p(1, 1, 1) + λ p(0, 0, 1) (3.7)

(λ+µ1 +µ2 +µ3)p(1, 1, 1) = (µ1 +µ2 +µ3)p(2, 1, 1)+λ p(0, 1, 1)+λ p(1, 0, 1)+λ p(1, 1, 0)

(3.8)

(λ+ µ1 + µ2 + µ3)p(2, 1, 1) = (µ1 + µ2 + µ3)p(3, 1, 1) + λ p(1, 1, 1) (3.9)

As p1 has three possibilities p(1, 0, 0) or p(0, 1, 0) or p(0, 0, 1),it can be obtained from

Equation 3.1 as,

p1 =
λp0

µ1

+
λp0

µ2

+
λp0

µ3

(3.10)

or, p1 = λp0

(

µ1µ2 + µ2µ3 + µ1µ3

µ1µ2µ3

)

(3.11)

Similarly, p2 can be computed by adding Equations 3.2, 3.3 and 3.4.

λ [p(1, 0, 0) + p(0, 1, 0) + p(0, 0, 1)] + µ1 p(1, 0, 0) + µ2 p(0, 1, 0) + µ3 p(0, 0, 1) =

(µ1 + µ2)p(1, 1, 0) + (µ1 + µ3)p(1, 0, 1) + (µ2 + µ3)p(0, 1, 1) + λp(0, 0, 0)

Using Equation 3.1

λ (p(1, 0, 0) + p(0, 1, 0) + p(0, 0, 1)) + λp(0, 0, 0) = (µ1+µ2)p(1, 1, 0)+(µ1+µ3)p(1, 0, 1)+

(µ2 + µ3)p(0, 1, 1) + λp(0, 0, 0)

On cancelling λp(0, 0, 0) from both LHS and RHS, we have

λp1 = (µ1 + µ2)p(1, 1, 0) + (µ1 + µ3)p(1, 0, 1) + (µ2 + µ3)p(0, 1, 1) (3.12)

The system can have two tasks with three possibilities p(1, 1, 0) or p(0, 1, 1) or p(1, 0, 1).

So, p2 can be obtained as follows:

p2 =
λp1

µ1 + µ2
+

λp1

µ2 + µ3
+

λp1

µ1 + µ3
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or,

p2 = λp1

(

1
µ1 + µ2

+
1

µ2 + µ3
+

1
µ1 + µ3

)

(3.13)

The system can have three tasks with only one possibility p(1, 1, 1). So, p3 can be

computed by adding Equations 3.5, 3.6 and 3.7 as follows:

(λ+ µ1 + µ2)p(1, 1, 0) + (λ+ µ2 + µ3)p(0, 1, 1) + (λ+ µ1 + µ3)p(1, 0, 1) =

µ3p(1, 1, 1) + λ p(1, 0, 0) + λ p(0, 1, 0) + µ1p(1, 1, 1) + µ2p(1, 1, 1) + λ p(0, 0, 1)

or,

λ [p(1, 1, 0) + p(0, 1, 1) + p(1, 0, 1)] + (µ1 + µ2)p(1, 1, 0) + (µ1 + µ3)p(1, 0, 1)+

(µ2 + µ3)p(0, 1, 1) = (µ1 + µ2 + µ3)p(1, 1, 1) + λ (p(1, 0, 0) + p(0, 1, 0) + p(0, 0, 1))

Using Equation 3.12

λ [p(1, 1, 0) + p(0, 1, 1) + p(1, 0, 1)] + λp1 =

(µ1 + µ2 + µ3)p(1, 1, 1) + λ (p(1, 0, 0) + p(0, 1, 0) + p(0, 0, 1))

As p2 has three possibilities p(1, 1, 0) or p(0, 1, 1) or p(1, 0, 1), above equation can be

simplified to

λp2 + λp1 = (µ1 + µ2 + µ3)p3 + λ (p(1, 0, 0) + p(0, 1, 0) + p(0, 0, 1))

Similarly p1 is possible through p(1, 0, 0) or p(0, 1, 0) or p(0, 0, 1), hence the above is

further simplified as,

λp2 + λp1 = (µ1 + µ2 + µ3)p3 + λp1

or,

λp2 = (µ1 + µ2 + µ3)p3

or,

p3 =
λp2

µ1 + µ2 + µ3
(3.14)

The system can have four tasks with one possibility p(2, 1, 1). So, p4 can be computed

from Equations 3.8 as,

(µ1 + µ2 + µ3)p(2, 1, 1) =

λp(1, 1, 1) + (µ1 + µ2 + µ3)p(1, 1, 1)− [λ p(0, 1, 1) + λ p(1, 0, 1) + λ p(1, 1, 0)]
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As p2 has three possibilities p(1, 1, 0) or p(0, 1, 1) or p(1, 0, 1), we have

(µ1 + µ2 + µ3)p(2, 1, 1) = λp(1, 1, 1) + (µ1 + µ2 + µ3)p(1, 1, 1)− λ p2

or,

p(2, 1, 1) =
λp(1, 1, 1)

(µ1 + µ2 + µ3)
+ p(1, 1, 1)−

λ p2

(µ1 + µ2 + µ3)
or,

p4 =
λp3

(µ1 + µ2 + µ3)
+ p3 −

λ p2

(µ1 + µ2 + µ3)

Using Equation 3.14

p4 =
λp3

(µ1 + µ2 + µ3)
+ p3 − p3

or,

p4 =
λp3

(µ1 + µ2 + µ3)
(3.15)

Similarly p5 can be obtained from Equation 3.9 as,

(µ1 + µ2 + µ3)p(3, 1, 1) = (λ+ µ1 + µ2 + µ3)p4 − λ p(1, 1, 1)

Using Equation 3.15

p5 =
λp4

(µ1 + µ2 + µ3)
+ p4 −

λ p3

(µ1 + µ2 + µ3)

or,

p5 =
λp4

(µ1 + µ2 + µ3)
(3.16)

Solving recursively, analytic solutions for probability that there are n number of tasks

in the HDCS with m computing nodes is denoted as pn or p(n − 2, 1, 1) and is derived

as follows:

pn =
λpn−1

µ1 + µ2 + · · ·+ µm
(3.17)

With three heterogeneous computing nodes, the traffic intensity for this system can

be computed as

ρ =
λ

µ1 + µ2 + µ3

Since the system is in a steady state, so ρ < 1, or equivalently λ < µ1 + µ2 + µ3.

Similarly for an HDCS with m computing nodes

ρ =
λ

µ1 + µ2 · · ·+ µm
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In general for the HDCS with m nodes, the state of the markov chain is described

by the m tuple (s1, s2, · · · , sm) in which sj denotes the number of tasks with node Mj .

A task is allocated to node Mj is with a probability, aj. Let λj be the arrival rate of

tasks at the computing node Mj due to allocation by the central scheduler. The average

utilization ρj can be computed as
λj

µ j

. Let Qj be the queue length of node Mj . Then

the average queue length can be computed as,

E(Qj) =
ρj

1− ρj

The average response time, denoted as E(Tj) is defined as

E(Tj) =
1
λ

(

ρj

1− ρj

)

As the central scheduler runs onM1 , let a1 is the probability that the task is scheduled

to node M1 locally. The probability that a task will migrate to another node is 1 − a1

and migration probabilities to all the nodes are identical. The average execution queue

length Lj , otherwise known as the load on node Mj , determines how smoothly the load

is balanced.

3.6 Greedy heuristic algorithms for load balancing

Heuristic and meta-heuristic algorithms are the effective strategies for scheduling in an

HDCS due to their ability to deliver high quality solutions in reasonable time [57]. In this

section, we present the greedy algorithms for task allocation in the HDCS. The heuristics

used are very simple to realize with very little computational cost in comparison to the

effort by resource allocation algorithms. A randomized resource allocation algorithm

is selected along with the heuristic algorithms because the randomness can guarantee

average case behaviour as well as it produces efficient approximate solutions to intractable

problems. The dynamic load balancing algorithms using batch mode heuristics MINMIN

and MINMAX operate by selecting a fixed small number that fits to the task window on

each iteration. The MINMIN and MINMAX operate for a fixed number of iterations to

assign n tasks to the computing nodes.

3.6.1 First-Come, First-Served (FCFS) heuristic

The FCFS heuristics is a very simple and most common resource allocation heuristic being

used by various researcher to study task scheduling in distributed system [6, 92, 95, 112].
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This is a non-preemptive scheduling policy that schedules tasks in the order of their arrival

to the central scheduler. The FCFS algorithm, i.e., Algorithm 3.4 is applied to the load

balancing problem discussed in Section 2.6. A min-heap is created to maintain the order

of the tasks as per their time of arrival at the system and it is represented as HAT . The

load status of the computing node Mj is represented as CLj . Every iteration assigns the

task with least arrival time to a computing node Mj in the HDCS with CLj = Null.

Algorithm 3.4 FCFS
Require: T : set of task,M : set of node, ETC : expected time to compute,HAT :

task Queue
Ensure: A : Allocation List, L : makespan

1: Lj ←− 0 for all node Mj

2: A(j)←− φ for all node Mj

3: repeat
4: let ti is the task at root of min-heap HAT
5: allocate←− false
6: repeat
7: for j = 1 to MaxNode do
8: if CLj = Null then
9: Allocate task ti to Node Mj

10: Remove task ti from min-heap HAT
11: A(j)←− A(j) ∪ {ti}
12: Lj ←− Lj + tij
13: allocate←− true
14: end if
15: end for
16: until allocate = false
17: until HAT is not empty
18: L←− maxjLj

3.6.2 Randomized algorithm

A randomized algorithm is defined as an algorithm that is allowed to access a source of

independent, unbiased random bits, and it is then allowed to use these random bits to

influence its computation [125]. Randomized algorithms are classified into two class as

Monte Carlo algorithms and Las Vegas algorithms. A Monte Carlo algorithm runs for

a fixed number of steps for each input and produces an answer that is correct with a

bounded probability, whereas a Las Vegas algorithm always produces the correct answer,

but its runtime for each input is a random variable whose expectation is bounded. The
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randomized algorithm used in this thesis is a Monte Carlo algorithm that runs for a fixed

number of steps equal to the maximum number of tasks to be assigned.

A random allocation of task to computing nodes in an HDCS is based on random

selection of the computing node. The results produced by randomized algorithms are

not optimal, but are characterized by certain probability to represent the average case.

Hence these are used to compare the performance of other deterministic algorithms. The

details of a randomized resource allocation algorithm is shown in Algorithm 3.5. Each

iteration select a task from the root of min-heap HAT and allocates it to a randomly

selected computing node. The time complexity of Algorithm 3.5 is©(n) to assign n tasks

to m computing node.

Algorithm 3.5 Random
Require: T : set of task,M : set of node, ETC : expected time to compute,HAT :

task queue
Ensure: A : Allocation List, L : makespan

1: Lj ←− 0 for all node Mj

2: A(j)←− φ for all node Mj

3: repeat
4: let ti is the task at root of min-heap HAT
5: let Mj be a node selected at random
6: allocate task ti to Node Mj

7: A(j)←− A(j) ∪ {ti}
8: Lj ←− Lj + tij
9: remove task ti from min-heap HAT

10: until HAT is not empty
11: L←− maxjLj

3.6.3 MINMIN algorithm

The MINMIN algorithm is a dynamic task allocation algorithm in an HDCS operate on

batch mode, and is simulated through discrete event simulation [126]. Min-Min heuristics

uses the ETC matrix to compute the completion time for n number of tasks. Algorithm

3.6 represents a heuristic-based algorithm for an HDCS and is named as MINMIN. This

algorithm considers all the unmapped tasks during each allocation decision but maps

only one task at a time.

Every allocation of a task to the computing node is followed by the update of expected

completion time of all of the unallocated tasks. Let the task tk have the minimum

expected completion time on node Ml, i.e. Ckl = min (Ck1, Ck2, · · · , Ckm). Algorithm

3.6 allocates the task tk to the computing node Ml as the task tk has the minimum
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Algorithm 3.6 MINMIN
Require: T : set of task,M : set of node, ETC : expected time to compute
Ensure: A : Allocation List, L : makespan

1: for all task ti in meta-task T do
2: for all machine Mj in M do
3: Cij ←− tij + Lj

4: end for
5: end for
6: repeat
7: for all task ti in T do
8: find the task with minimum completion time. Let tk be the task with minimum

completion time on node Ml

9: end for
10: assign task tk to node Ml

11: update load of node Ml as Ll ←− Ll + tkl

12: update Cil for all unallocated task
13: Remove task tk from task list T
14: until T is not empty
15: L←− maxjLj

expected completion time with node Ml. The makespan is computed after the complete

allocation of all of the tasks as L = maxjLj .

3.6.4 MINMAX algorithm

Algorithm 3.7 is composed of two steps. The algorithm operates on the batch of tasks and

the respective ETC matrix. The algorithm computes the expected completion time for all

the tasks on the HDCS. The first step is the selection of the task with minimum expected

completion time in the HDCS with m nodes, Let tk be the task with the minimum

completion time on node Ml. The first step is the same as the MINMIN algorithm. The

second step decides the allocation of the task to a computing node, which can be decided

as follows:

If
tkf

tkl

≥ Ckl then allocate the task tk to node Mf , else assign the task tk to node Ml.

This algorithm is different from the common max-min algorithm defined in [92,

95]. The above four algorithms mainly focus on the makespan for the meta-task. The

makespan, is the total length of the scheduling, or equivalently the time when the first task

starts executing, subtracted from the time when the last task completes the execution.
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Algorithm 3.7 MINMAX
Require: T : set of task,M : set of node, ETC : expected time to compute,HTA :

taskqueue
Ensure: A : Allocation List, L : makespan

1: for all task ti in meta-task T do
2: for all machine Mj in M do
3: Cij ←− tij + Lj

4: end for
5: end for
6: for all task ti in T do
7: find the task with minimum completion time, Let tk be the task with minimum

completion time on node Ml

8: end for
9: repeat

10: if
tkf

tkl

≥ Ckl then

11: assign task tk to node Mf

12: update load of node Mf

13: update Cif for all i
14: else
15: assign task tk to node Ml

16: update load of node Ml as Ll ←− Ll + tkl

17: update Cil for all unallocated task
18: end if
19: Remove task tk from task list T
20: until T is not empty
21: L←− maxjLj

3.7 Results and discussion

We have conducted extensive simulation with the in-house simulator. Queueing model to

simulate the task arrival with the heterogeneous computing nodes. The tasks are arriving

with a rate λ to the central server queue. The queue length of the central server is assumed

to be infinite. We consider only 500 tasks for this experiment that uses consistent and

inconsistent task models as suggested in [24]. We consider four types of heterogeneous

systems. The HDCS are characterized by the service rates of the computing nodes. The

four types of systems used to study the impact of heterogeneity are:

� Type I : All of the computing nodes are homogeneous in the system having similar

architectures with an average processing rate µ.

� Type II : The system has two different types of computing nodes, such that m/2
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number of computing nodes are with a service rate µ and other half of the nodes

are with service rate 2µ.

� Type III : In the third system model half of the computing node are homogeneous

and other half of the computing nodes are heterogeneous with different service rates.

� Type IV : The forth system model includes the computing nodes with different

service rates.

We have also assumed that tasks are independent and can be processed by any com-

puting node in distributed computing environment. For stability, it is also assumed that

tasks must not be generated faster than the HDCS can process, and that the total task

arrival rate at the system must not exceeds its processing rate. Therefore, the stability

equations for four type of HDCS can be stated as follows:

◮ For type-I system, λ ≤ nµ.

◮ For type-II system, λ ≤ Σm/2
j=1µ + Σm/2

j=1 2µ.

◮ For type-III system, λ ≤ Σm/2
j=1µ + Σm/2

j=1µj .

◮ For type-IV system, λ ≤ Σm
j=1µj.

The computing node heterogeneity are managed by varying the values for Rtask and

Rmach while generating the ETC matrix. This is realized through uniform distributions

U(1, Rtask) and U(1, Rmach) applied in Algorithm 3.3. Our experiments uses a fixed value

for Rtask = 500. The distributed systems considered for the experiment uses four

different vales 10, 102, 103 and 105 for Rmach to generate the ETC matrix representing

the four different node heterogeneities. The initiation of dynamic task allocation process

begins when the number of tasks waiting in the queue is grater than or equal to a batch

size. We have considered three different arrival rates of tasks at the central scheduler.

The three scenario are refereed in this chapter as slow arrival, moderate arrival and fast

arrival with mean 0.1, 0.06 and 0.05 respectively. The results are obtained as an average

of ten simulations. The dynamic task allocation is realized with batch mode heuristic.

We have assumed that the number of tasks waiting with the central server are always

greater than the batch size to facilitate discrete event simulation. As computing nodes

are characterized by the processors associated with the nodes, we have assumed that

computing nodes are represented by processors. In this thesis we use the term node and

processor interchangeably. The first set of four experiments are conducted to determine
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Figure 3.2: Makespan according to the number of processors in type-I system
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Figure 3.3: Makespan according to the number of processors in type-II system

the number of nodes or processors for further analysis of greedy heuristic task allocation

algorithms in the HDCS.
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Figure 3.4: Makespan according to the number of processors in type-III system

10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

No of Processors

m
ak

es
pa

n

Heterogeneous Distributed Computing System

 

 

FCFS
Random
MINMIN
MINMAX

Figure 3.5: Makespan according to the number of processors in type-IV system
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The number of node or processor for further experiments have been decided by

analysing the simulation results through the graph. The central scheduler or load bal-

ancing service uses four greedy scheduling algorithms as listed in Section 3.6 for dynamic

allocation of tasks in the batch mode. The simulation uses a consistent heterogeneous

task matrix along with arrival time of each task and varys the number of nodes up to

100 on four different types of HDCSs with increasing heterogeneity of computing nodes.

Figures 3.2, 3.3, 3.4 and 3.5 shows the comparison of the makespan of FCFS, Random,

MINMIN and MINMAX respectively by varying computing nodes from 10 to 100. It is

observed from Figure 3.5 that the makespan value is nearly unchanged after 60 computing

nodes for the best performing MINMIN allocation algorithm; hence, 60 computing nodes

are used to study the performance of resource allocation algorithms on four different

HDCS environment.

3.7.1 Experiments and results with consistent ETC

This section presents the performance of different greedy heuristic resource allocation

algorithms to minimize the makespan to meet the objective of load balancing problem as

discussed in Section 2.6. A series of experiments have been conducted using discrete event

simulation on four different types of distributed computing system models as mentioned in

Section 3.7. For optimal load balancing, the makespan is minimized. Let the computing

node M1 be the fastest computing node and Mm be the slowest computing node in the

HDCS. This results in a consistent ETC matrix for n number tasks on m nodes, so that

tij < tik for task ti on machine Mj and Mk, with µj ≥ µk. Hence for task ti, we have

ti1 < ti2 < . . . < tim. We have presented the performance of heuristic algorithms on four

different types of HDCSs in term of machine heterogeneity. The work load parameter is

the arrival rate λ of the task to the central scheduler and the expected time to compute

the task on different computing nodes. The system was evaluated with slow, medium and

fast loads. The arrival rate of tasks are assumed to be 10, 20 and 30 for slow, medium,

and fast arrivals respectively.

3.7.1.1 Greedy heuristic algorithms on type-I system

Figures 3.6, 3.7 and 3.8 shows the performance of heuristic algorithms on the HDCS with

all computing nodes having identical service rates. The resource allocation heuristics has

no significant impact on the task arrival rate when all of the nodes in the distributed

computing system are homogeneous. The plotted makespan value indicates in favour of
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Figure 3.6: Makespan with varying number of tasks in type-I system for slow arrival
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Figure 3.7: Makespan with varying number of tasks in type-I system for medium arrival

the MINMAX heuristic. However, the dependency of makespan on the number of tasks

is clearly indicated by the results.
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Figure 3.8: Makespan with varying number of tasks in type-I system for fast arrival

3.7.1.2 Greedy heuristic algorithms on type-II systems

These experiments are based on the model of distributed computing environments with

two types of computing nodes. We have taken half of the computing nodes with a service

rate µ, and the other nodes with a service rate 2µ. Figures 3.9, 3.10 and 3.11 shows the

performance of heuristic algorithms on a type-II system. The performance of heuristic

algorithms are very much similar to that observed with type-I systems. Plotted values of

makespan show that the MINMAX heuristic has a better performance compared to the

other schemes. It is also observed that the task arrival rate does not have a significant

impact.

3.7.1.3 Greedy heuristic algorithms on type-III systems

The type-III HDCS model is for a system with equal number of homogeneous and het-

erogeneous computing nodes. The dependency of different load balancing heuristics on

the task arrival are shown in Figures 3.12, 3.13 and3.14. Moreover, results indicate in

favour of MIMMIN. The performance of the MINMIN heuristic shows improvement with

a higher task arrival rate. The results obtained also indicates that FCFS and Randomized

algorithms exhibit similar performance.
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Figure 3.9: Makespan with varying number of tasks in type-II system for slow arrival
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Figure 3.10: Makespan with varying number of tasks in type-II system for medium arrival
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Figure 3.11: Makespan with varying number of tasks in type-II system for fast arrival
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Figure 3.12: Makespan with varying number of tasks in type-III system for slow arrival
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Figure 3.13: Makespan with varying number of tasks in type-III system for medium arrival
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Figure 3.14: Makespan with varying number of tasks in type-III system for fast arrival

3.7.1.4 Greedy heuristic algorithms on type-IV system

This HDCS models are with heterogeneous computing nodes. Figures 3.15, 3.16 and

3.17 shows experimental results of four heuristic-based algorithms on a heterogeneous
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Figure 3.15: Makespan with varying number of tasks in type-IV system for slow arrival

system with 60 nodes. It is observed that the MINMIN algorithm significantly minimizes

makespan over the three alternatives. Similar performance of makespan is observed for

both FCFS and Randomized algorithms.

—————————————————————-

Simulation experiment were conducted with batch mode scheduler MINMIN and MIN-

MAX separately for type-I and type-IV systems to study the impact of heterogeneity with

60 nodes An interesting observation made from Figure 3.18 is that the MINMIN algo-

rithm shows about 56% lower makespan while balancing the load on 60 heterogeneous

computing nodes. The simulation is conducted by varying the number of tasks. Depen-

dency of makespan on the number of tasks can also be seen from Figure 3.19. It has

been shown that the MINMAX algorithm on heterogeneous computing systems produces

better results in comparison homogeneous computing systems with identical comput-

ing nodes with approximately 30% lower makespan value. MINMIN produces optimal

performance with the heterogeneity of computing resources.
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Figure 3.16: Makespan with varying number of tasks in type-IV system for medium arrival
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Figure 3.17: Makespan with varying number of tasks in type-IV system for fast arrival
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Figure 3.18: Impact of system heterogeneity using MINMIN algorithm

3.7.2 Experiments and results with an inconsistent ETC ma-

trix

We have used an inconsistent ETC matrix to study the impact of heterogeneity in the

HDCS. The simulation process is similar to that discussed in Section 3.7.1.

—————————————————————-

3.7.2.1 Greedy heuristic algorithms on type-I system with an inconsistent

ETC matrix

Figures 3.20, 3.21, and 3.22 give a pictorial representation of the assignments made for 500

tasks on 60 computing nodes with a task arrival rate equal to 0.1. The MINMAX heuristic

shows a better performance for minimizing the makespan in systems with homogeneous

nodes.
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Figure 3.19: Impact of system heterogeneity using MINMAX algorithm

3.7.2.2 Greedy heuristic algorithms on type-II system with an inconsistent

ETC matrix

Figures 3.23, 3.24 and 3.25 show the performance of heuristic algorithms on type-II sys-

tems using an inconsistent matrix. Plotted makespan values show the better performance

for diffident arrival rates. A clear difference in performance of MINMIN and MINMAX

can be observed. Also, it observed that task arrival rate has no significant impact on task

allocation ability of the algorithms.

3.7.2.3 Greedy heuristic algorithms on type-III system with an inconsistent

ETC matrix

The impact of an inconsistent ETC matrix are shown in Figures 3.26, 3.27 and 3.28. The

graphs shows the impact of heterogeneity on resource allocation algorithms. The MIN-

MIN heuristic performs better with more number of tasks in the system at a particular
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Figure 3.20: Makespan with varying number of tasks in type-I system with slow arrival
of inconsistent task
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Figure 3.21: Makespan with varying number of tasks in type-I system with medium arrival
of inconsistent task
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Figure 3.22: Makespan with varying number of tasks in type-I system with fast arrival of
inconsistent task
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Figure 3.23: Makespan with varying number of tasks in type-II system with slow arrival
of inconsistent task
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Figure 3.24: Makespan with varying number of tasks in type-II system with medium
arrival of inconsistent task
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Figure 3.25: Makespan with varying number of tasks in type-II system with fast arrival
of inconsistent task
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time instant. The results obtained also indicate that FCFS and Randomized algorithms

exhibit similar performance on allocating the tasks for an inconsistent task model.

50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

No of tasks

m
ak

es
pa

n
Performance of Task Allocation Algorithms for Slow Arrival Tasks

 

 

FCFS
Random
MINMIN
MINMAX,

Figure 3.26: Makespan with varying number of tasks in type-III system with slow arrival
of inconsistent task

3.7.2.4 Greedy heuristic algorithms on type-IV system with inconsistent

ETC matrix

Simulation results on the HDCS with heterogeneous computing nodes are shown in Fig-

ures 3.29, 3.30 and 3.31. The simulation results with 60 nodes clearly indicate the better

performance of the MINMIN algorithm. Moreover, in three alternatives, both FCFS and

Randomized algorithms exhibit similar performance in terms of makespan. The highest

makespan, average makespan and minimum makespan value are indicated against varying

task size.
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Figure 3.27: Makespan with varying number of tasks in type-III system with medium
arrival of inconsistent task
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Figure 3.28: Makespan with varying number of tasks in type-III system with fast arrival
of inconsistent task
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Figure 3.29: Makespan with varying number of tasks in type-IV system with slow arrival
of inconsistent task
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Figure 3.30: Makespan with varying number of tasks in type-IV system with moderate
arrival of inconsistent task
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Figure 3.31: Makespan with varying number of tasks in type-IV system with first arrival
of inconsistent task

3.8 Conclusion

A number of experiments are conducted to examine the performance of greedy resource al-

location algorithms against makespan to study the task and node heterogeneity in HDCS

by considering three different arrival rates for the tasks. Greedy algorithm paradigm

used for load balancing performs better as it uses simple heuristics for task allocation.

An average case analysis is presented in this chapter through simulation. The experiments

conducted assuming with inconsistent and consistent ETC matrix both lead to conclusive

observations on task and machine heterogeneity. Analytical models and simulation stud-

ies demonstrates the performance of the load balancing algorithms, and these results have

been confirmed in different distributed systems models. In the batch mode, the central

scheduler considers a meta-task for matching and scheduling at each mapping event. We

have been able to establish that the batch mode mapping heuristics make better decisions,

because the heuristics have the resource requirement information for the meta-task, and

know the actual execution time of a larger number of tasks (with higher arrival rate). It is

observed that the performance of the greedy scheduling algorithm is also affected by the

rate of heterogeneity of the task and computing nodes as well as consistency of the tasks.



Chapter 4

Stochastic Iterative Algorithms for

Load Balancing

Genetic algorithms and simulated annealing are search techniques that can be applied to

produce sub-optimal solutions for various NP-complete problems. These two algorithms

are used to solve the load balancing problem, which is the optimal dynamic allocation of

tasks on distributed computing system. A new codification scheme suitable to simulated

annealing and genetic algorithm has been introduced to design dynamic load balancing al-

gorithms for an HDCS. The resource allocation algorithms use sliding window techniques

to select the tasks to be allocated to computing nodes in each iteration. Simulated an-

nealing and genetic algorithm frameworks for dynamic load balancing are explained along

with implementation details. The task model used is based on Expected Time to Compute

matrix. The effect of genetic algorithm based dynamic load balancing scheme has been

compared with first-fit, randomized heuristic and simulated annealing through simulation.

4.1 Introduction

Distributed heterogeneous computing is being widely applied to a variety of large sized

computational problems. This computational environments consist of multiple heteroge-

neous computing modules, which interact with each other to solve the problem. In an

HDCS, processing loads arrive from many users at random time instants in the form of

task. A proper scheduling policy attempts to assign these tasks to available computing

nodes so as to complete the execution of all the tasks in the shortest possible time. Ge-

netic Algorithms (GAs) and Simulated Annealing (SA) are used as alternative approaches

67
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to perform exhaustive search in exponentially large solution spaces and are found to be

efficient for various intractable problems. Dynamic load balancing is a classical opti-

mization problem as defined in Equation 2.3 and aims to minimize the makespan. Algo-

rithm paradigms, like branch-and-bound techniques and dynamic programming are quite

effective but their time-complexity is often too high and unacceptable for NP-complete

problems [127]. Very often greedy algorithms are successfully used for NP-complete prob-

lems, but the solution is sub-optimal and of low quality. Heuristic algorithms are used

to overcome these disadvantages. GAs are among such techniques; they are stochastic

algorithms whose search methods model some natural phenomena [128]. Jong and Spears

[129] have demonstrated the application of Genetic Algorithm (GA) to solve NP-complete

problems. Simulated annealing is a heuristic method that has been applied to obtain good

solutions for a defined objective function through local search [107].

Dynamic load balancing algorithms operates in batch mode, by selecting a subset

of the unscheduled task, called a batch. At each iteration, a batch of task is allocated

among the computing nodes of the HDCS. The batch size is fixed and is to be decided

by considering task and machine heterogeneity [106]. We have used an inconsistent ETC

matrix to study the performance of schedulers based on GA and SA with the objective

of minimizing the makespan. A genetic algorithm performs a multi-directional search by

maintaining a population of potential solutions and an objective(fitness) function that

plays the role of an environment [103, 128]. Dynamic load-balancing mechanisms devel-

oped using GA and SA have been compared with the first-fit(FF), and the randomized

heuristic algorithm.

It is assumed that a computing node is a machine with a single processor or processing

element or computing element. Hence, the performance of dynamic resource allocation

algorithms in this chapter have been studied using processor utilization as the performance

metric, which also indicates the performance of the computing node. To improve the

utilization of the processors, the tasks are distributed among the processors in such

a way that the computational load is spread evenly among the processors. We have

used a centralized load balancing algorithm framework as it imposes fewer overheads on

the system than the decentralized algorithm. This chapter demonstrate the use of the

common coding scheme and iterative algorithmic structure with GA and SA for allocating

the tasks among the computing nodes to optimize processor utilization and completion

time.
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4.2 Related work

The complexity of dynamic load balancing increases with the size of the HDCS and

becomes difficult to solve effectively. The exponential solution space of the load balancing

problem can be searched using heuristic techniques based on GA and SA to obtained sub-

optimal solutions in acceptable time [6, 17, 92, 95]. These artificial intelligence techniques

have been used by researchers and proven to be effective in solving many optimization

problems. A review of theoretical foundation of genetic algorithms along with canonical

GA and experimental forms of genetic algorithms are presented in the tutorial by Whitley

[130]. GAs have been used by various researchers to obtain sub-optimal solutions to

the load balancing problem in distributed systems [6, 17, 22, 57, 131, 132, 133, 134].

The SA approach, proposed by Kirkpatrick et al. [34, 101], has been used as a popular

heuristic to solve several optimization problems to obtain sub-optimal solutions. SA is

a heuristic method that performs local search in an exponential solution space to obtain

good solution for discrete optimization problems. The search process is analogous to the

annealing process of metals, that stabilizes to a low energy configuration when cooled

with an appropriate cooling schedule [107, 135]. Abraham et al. [136] demonstrated

the application of SA and the hybrid of GA and SA for job scheduling on large scale

distributed systems. A load balancing scenario based on genetic algorithm has been

presented by Shan and Zhou [137].

Kim and Kim [138] presented methods to solve scheduling problem in a manufac-

turing system by applying simulated annealing and genetic algorithms with the finite

loading method. A comparative analysis of GAs, SA and hill-climbing algorithms to

solve the dynamic mapping problem was addressed in [139]. A hybrid load balancing

strategy using the first-come-first-served and the GA has been designed by Li et. al [60].

This algorithm uses the centralized scheduler model in a grid computing environment

to schedule sequential tasks to achieve minimum execution time, maximum node utiliza-

tion and load balancing across all the nodes. Researchers have examined eleven different

heuristics, namely opportunistic load balancing, minimum execution time, minimum com-

pletion time, minmin, maxmin, duplex, genetic algorithm, simulated annealing, genetic

simulated annealing, tabu search, and A* on mixed-machine heterogeneous computing

environments to minimize the total execution time of the metatask [92, 95]. Rahmani

and Rezvani [140] presented a GA for static scheduling, which is again improved by SA

to obtain an improved solution.
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4.2.1 Genetic algorithms in load balancing

Zomaya and Teh [6] proposed a dynamic load balancing framework using GA. The pro-

posed GA load balancer uses a centralized approach to handle the load balancing de-

cisions. Effectiveness of a central server in load balancing has been demonstrated for

homogeneous distributed computing systems. A batch-mode genetic scheduler has been

used by Page and Naughton [106, 141] and the performance has been compared with the

immediate-mode schedulers on an HDCS. Li et al. [60] presented a GA based hybrid load

balancing strategy considering sequential tasks for grid computing. Aggarwal et al. [142]

have designed and tested a GA based scheduler to schedule multiple jobs with quality-

of-service constraints for tasks represented as a directed acyclic graph (DAG). Genetic

algorithm based scheduler for grid computing systems can also be found in [143]. Ahmad

et al. [144] introduced a technique based on the problem-space GA for static task as-

signment in heterogeneous distributed systems. An evolution-based dynamic scheduling

algorithm that utilizes the GA is proposed by Yu et al. [145] to schedule heterogeneous

tasks to appropriate computing nodes in a grid computing environment. Dynamic load

balancing using GA can be found in [133, 134, 146] for the tasks represented as task

interaction graph. Greene [131] has designed a GA scheduling routine that produces low

cost, well balanced schedules for the incoming tasks.

The use of GA and Tabu search are used to solve load balancing problem in distributed

computing infrastructures called computational grids are presented in [17]. The use of

GA for static mapping of tasks on heterogeneous computing environments with deadlines,

priorities, and multiple versions with subtasks has been discussed by Braun et al. [111].

Greene [131] presented a dynamic load balancing genetic algorithm with three variations,

i.e., number of processors, number of tasks to be scheduled, and distribution duration of

tasks, to minimize the makespan on multiple machines. Hybrid crossover and incremental

mutation operations are implemented with the simple GA framework to obtain near

optimal solutions. Tripathi et al. [22] presented GA based task allocation methods

for multiple disjoint tasks in distributed computing systems. Maximizing the reliability

of a distributed computing system with GA-based task allocation using GA, with the

task represented as task graph, was discussed by Vidyarthi and Tripathi [134]. Lee and

Hwang [147] have proposed a GA-based method for improved sender-initiated dynamic

load balancing in distributed systems. GA-based generalized dimension exchange method

has been discussed by Cheong and Ramachandran [148]. Page et al. [132] have presented a

multi-heuristic evolutionary dynamic task allocation algorithm to map tasks to processors

in a heterogeneous distributed system. Yu and Chen [145] have proposed an algorithm

that uses the GA as a search technique for efficient scheduling in a grid computing
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environment considering the heterogeneity of computing nodes.

4.2.2 Simulated annealing algorithm in load balancing

Simulated annealing has been used to solve unconstrained and bound constrained opti-

mization problems. SA proposed by Kirkpatrick et al.[101] has been used as a popular

heuristic to solve optimization problems. Theys et al. [92] has used the SA approach

to solve the static load balancing problem in an HDCS. A comparative study of the

three algorithms Hill-climbing, SA and GA for static placement of communicating pro-

cess on the processors of a distributed memory parallel machine has been presented by

Talbi and Muntean [139]. A heuristic algorithm based on SA is discussed in [149], which

guarantees good load balancing in a grid environment. A classification of iterative dy-

namic load balancing techniques can also be found in [149]. Makespan minimization of

scheduling problem on identical parallel machines using SA has been presented by Lee

et al. [34]. Grid Computing is one of heterogeneous distributed computing systems, in

which several entities are geographically dispersed. Fidanova [107] used SA to obtain

near optimal solutions for scheduling problem in a large grid. Suman and Kumar [150]

presented a survey of simulated annealing based optimization algorithms to solve single

and multiobjective optimization problems. Distributed SA algorithms for job scheduling

in distributed systems has been presented by Krishna et al. [151]. Attiya at el. [45]

proposed a simulated annealing approach to maximize the reliability of the distributed

system. A heuristic framework using SA for solving resource allocation and scheduling

problem with precedence constraints is presented by Zhang et al.[152].

Several researchers used SA and GA for load balancing in a distributed computing

system; however, majority of the work have no specific representation for simulated an-

nealing algorithms for load balancing. It is also observed that dynamic task allocation

algorithms are used to schedule the tasks in small batches. This chapter presents detail

schemes suitable for designing dynamic load balancing algorithms using the GA and SA.

The resource allocation decisions for n tasks on m computing nodes are realized using

batch mode heuristics, with the ETC matrix representing task and machine heterogeneity.

4.3 System model

HDCS environments are well suited to meet the computational demands of large, diverse

groups of tasks. We have considered the centralized HDCS model with m computing

nodes under the supervision of a serial scheduler or central scheduler. The computing

power of a node is with the processor associated with the node. For simplicity it has been
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assumed that each computing node has a single processor. Without loss of generality, we

have used the term node and processor interchangeably. The tasks on arrival are placed

in the queue at the central scheduler. On each invocation of the scheduler a batch of

tasks are selected and allocated to the computing nodes. In this chapter a batch of tasks

is selected with a sliding window. The maximum number of task that can be selected

once represents the size of the sliding window.

We have assumed that all computational tasks are capable of being executed on

any of the computing nodes of the HDCS. A single computing node acts as a central

scheduler or resource manager of the HDCS and collects the global load information of

other computing nodes. Resource management sub systems of the HDCS are designated

to schedule the execution of the tasks dynamically in a batch mode, as they arrives for

the service. The system and task models are the same as discussed in Section 3.4. The

HDCS is modelled as an M/M/m queuing system. In particular, tasks arrive randomly

to the central scheduler following a Poisson distribution with expected time of the task

following a uniform distribution [91, 153]. The queue of unscheduled task with central

scheduler can accommodate a large number of tasks and if all are to be assigned to

the computing nodes at once, the scheduler could take a long time to find the efficient

schedule. To speed-up the scheduler, and reduce the chance of a processor becoming idle,

tasks are selected in a batch that matches with the window size [106]. This also refers to

the current load of the computing nodes before the allocation of next batch of task.

The centralized load balancing algorithms requires the global information on comput-

ing nodes at a single location and the load balancing policy is initiated from the central

location by the central scheduler. We have adopted the task model introduced by Ali

et. al [24] to analyse the performance of stochastic iterative task allocation algorithms.

In particular, the task pool is represented by an ETC matrix model as discussed in Sec-

tion 2.5. The tasks are assumed to be CPU bound hence the communication overhead

between central scheduler and computing nodes are negligible in comparison with the

expected computation time [60]. The tasks arrive at the central scheduler following a

Poisson distribution. It is also assumed that tasks are mutually independent and can

be executed in any computing node. Each computing node is modeled as an M/M/1

non pre-emptive queue so that an executing task can not be interrupted or migrated to

another computing node. Each computing node can execute one task at a time. The

communication between the central scheduler and the nodes are assumed to be through

message passing without any communication overhead.

The random generation of the ETC matrix are supported by researchers, as determin-

ing a representative set of HDCS task benchmarks remains a challenge for the research
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Table 4.1: ETC matrix for 10 tasks on five node

Node Task M1 M2 M3 M4 M5
t1 22 21 6 16 15
t2 7 46 5 28 45
t3 64 83 45 23 58
t4 53 56 26 42 53
t5 11 12 14 7 8
t6 33 31 46 25 23
t7 24 11 17 14 25
t8 20 17 23 4 3
t9 13 28 14 7 34
t10 2 5 7 7 6

community [92]. We have generated an inconsistent ETC matrix for 10 tasks on 5 ma-

chines with the expected computation time uniformly distributed in the interval (1, 100)

as shown in Table 4.1. This ETC matrix is used to explain various operations used for

GA and SA.

The dynamic resource allocation routines assumes the load of the individual node Lj

to be initialized to zero for all of the computing nodes in the HDCS. In the context of

dynamic load allocation, the stochastic iterative algorithms operates in a batch-mode.

After a batch of tasks is allocated to the computing nodes, the load of the computing

nodes are updated. The expected completion time of all of the unallocated tasks are to

be computed with reference to the ETC matrix as Cij ←− Lj + tij after each batch of

allocation. As the current load of the nodes are reflected in expected completion time of

each unallocated task, this dynamic resource allocation.

4.4 Encoding mechanism

The genetic algorithms and the simulated annealing algorithm requires a suitable rep-

resentation and evaluation mechanism for finding a solution. At each of the iterations,

scheduling of tasks to the different processors, are made in such away that the loads of the

computing nodes are balanced. A task schedule (TS) is the linear representation of nodes

on which the tasks are to be executed in order. We have used the structure as shown in

Figure 4.1 to represent the task schedule TS = (ts1, ts2, . . . , tsW inSize), where WinSize

is the fixed length of the execution window. In TS, the integer value assigned to individual

element of the array indicates the computing node number in the HDCS. At each of the

steps, the number of tasks to be allocated to the computing node is determined by using
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either the GA or the SA dynamic scheduling routine. At the time of allocation, there may

be a large number of tasks are with the central scheduler. The sliding window technique

is used to select a batch of tasks that fit to the window for subsequent allocation. After

allocating each batch tasks, the expected completion time for all of the unallocated tasks

are calculated. This represents the dynamic allocation process. Figure 4.1 represents 10

tasks and their respective allocation to five computing nodes M1,M2, . . . ,M5. Figure 4.2

shows the structure of an individual, that indicates the computing node as a gene in the

GA terminology. We have assumed that the current workload is represented as dedicated

tasks for each of the nodes, so that the calculation of makespan is carried out from the

time the sliding window is selected. Figure 4.2 represents ten tasks and their respective

Figure 4.1: Allocation of 10 task to 5 node

Figure 4.2: Individual

allocation to five computing nodes M1,M2,M3,M4,M5. Allocation list for the ten tasks

is created by including the node number to which the respective tasks are allocated. The

allocation list represents the structure of a chromosome or individual, and a gene is rep-

resented by the computing node number. The chromosome structure, shown in Figure

4.1, is used to design the GA-based load balancer for task allocation.

Table 4.2: Makespan of the system with 5 node

Node A(i) Li Average utilisation
1 t(9,1)=13 t(10,1)= 02 15 0.2054
2 t(5,2)=12 t(6,2)= 31 43 0.5890
3 t(2,3)=05 t(4,3)= 26 31 0.4246
4 t(7,4)=14 t(8,4)= 04 28 0.3835
5 t(1,5)=15 t(3,5)= 58 73 1.0000
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Table 4.3: Makespan of the system with 5 node with initial load

Node Initial Load A(i) Li Average utilisation
1 09 t(9,1) = 13 t(10,1) = 02 24 0.3076
2 11 t(5,2) = 12 t(6,2) = 31 54 0.6923
3 07 t(2,3) = 05 t(4,3) = 26 38 0.4871
4 15 t(7,4) = 14 t(8,4) = 04 43 0.5512
5 05 t(1,5) = 15 t(3,5) = 78 78 1.0000

The average utilization for a computing node Mj is calculated as :

Average utilization of node Mj =
makespan

Lj
(4.1)

We have assumed that, current work load as dedicated tasks for each node, so that

the calculation of makespan is carried out from the time point when sliding window

is selected. Table 4.2 shows that the makespan is 73 for the individual in Figure 4.2

with corresponding average utilisation of the HDCS with five computing nodes. Table

4.3 shows that the makespan is found to be 78 for the individual in Figure 4.2 with

corresponding average utilization (AU) for five computing nodes considering the current

system load as the initial load.

Every iteration generates an allocation list for the batch of tasks selected using the

window. The overloading nodes are prevented by the threshold. Threshold is a value

that is used to indicate whether a processor is heavily or lightly loaded and a threshold

policy in the load-balancing algorithm reduces the traffic overhead significantly [6]. The

central scheduler is updates load information of each computing node. We have used a

fixed threshold policy for task allocation to a node. The tasks are assigned to the node

only if the threshold has not reached. The threshold for each node is calculated as follows:

Threshold =
Number of acceptable nodes

Total number of nodes in the system
(4.2)

4.5 Load balancing using simulated annealing

Simulated annealing is a heuristic method that has been implemented to obtain good so-

lutions for a number of discrete optimization problem [92, 149]. The simulated annealing

method mimics the physical process of heating a material and then slowly lowering the
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temperature (cooling) to decrease defects so as to minimize the system energy [45, 95].

SA-based scheduling is implemented using an iterative algorithm that only considers one

possible solution for each task window at a time. The solution uses similar representation

as the fixed window size denoted as WinSize. Each iteration selects a batch of tasks

from the set of n tasks. Hence the dynamic simulated annealing scheduler operates in

batch mode for
n

WinSize
number of times to allocate n tasks. In the first iteration the

scheduler operates on a randomly generated initial solution representing an allocation of

a batch of tasks. A new solution is generated based upon the neighbourhood structure

[93]. Temperature is used as a control parameter in SA and from a high value decreases

gradually with each iteration. This decides the probability of accepting a worse solution

at any step and is commonly used as a stopping criterion. The initial temperature used

is an integer value and decreased by a rate called the annealing schedule [104, 107].

Simulated annealing requires an appropriate representation to find the optimal solu-

tion. We have used the fixed length window structure as shown in Figure 4.2. The size

of the batch is the maximum number of tasks in the window, also termed as WinSize

[6, 150]. The use of a linear array helps the index to be used as the task number in the

window so that an one dimensional list representation is possible for the solution. The

individual element indicates the node number on which the corresponding task is to be

executed. Each window shows a possible allocation of computing nodes for which the

makespan can be calculated from the ETC matrix and current load of the nodes in the

HDCS. The simulated annealing framework in Algorithm 4.1 uses a fixed number of iter-

ations ξ. Let F (S) be the objective function that computes a fitness value for the initial

solution S. Starting from the initial solution, the algorithm computes a new solution

S ′ on each iteration from the neighborhood of the current solution S. The value of the

objective function for the two solutions are compared to select the solution to be used for

the next iteration. If the current computed solution is worse than the previous solution,

it can be accepted with a certain probability with reference to the current temperature.

At each of the iterations, the central scheduler selects a batch of tasks from a task set

and allocates it to different computing node, such that the loads of the assigned computing

nodes is balanced. This is a well known instance of combinatorial optimization, which

is tackled using Algorithm 4.1. With n task to be scheduled on m computing nodes,

dynamic SA scheduling routine operates in batch mode with a sliding window of size

WinSize to select a batch of tasks from the task queue with the central scheduler. The

cooling schedule starts with an initial temperature, T0, and decreases by a factor δ ∈ (0, 1)

and takes a constant value for a fixed number of iterations. At the kth iteration, the

temperature is set to Tk ←− T0δ
k. The cooling process continues for k = 1, 2, 3, · · · ξ to
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Algorithm 4.1 A template for classic simulated annealing algorithm
Require: initial temperature, temperature cooling schedule, repetition schedul
Ensure: the best computed solution

1: generate initial solution S
2: initialize T0

3: k ←− 0.
4: repeat
5: for all i = 1, 2, . . . , ξ do
6: generate a solution S

′

with equal distribution over all possible neighbours
7: if

(

F (S
′

)− F (S)
)

≤ 0 then

8: S ←− S
′

9: else
10: u←− (random number from[0, 1])
11: Tk ←− T0δ

k

12: if u < exp

(

F (S
′

)− F (S)
)

Tk

then

13: S ←− S
′

14: end if
15: end if
16: end for
17: k ←− k + 1
18: until some stopping criterion is met.

meet the termination condition. The task schedule TS is generated randomly to allocate

the batch of tasks to m machines. In the next iteration a new task schedule TS
′

can be

generated using the move set representation.

4.5.1 Move set generation algorithms

We are presenting algorithms to generate three move set representations namely:(i) in-

version, (ii) translation and (iii) switching, for SA. The details of these algorithms are

presented as Algorithms 4.2, 4.3 and 4.4 respectively. These are used to produce a new

solution S ′ on each iteration from the neighbourhood of a current solution S.

• Inversion

The inversion process is applied to a task schedule to creates a new task schedule by

swapping few positions. Figure 4.3 illustrates the process of inversion of allocation

list of 10 tasks on 5 nodes with a makespan equal to 109. In this process, we

have selected four randomly chosen consecutive positions and replaced them by the
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Figure 4.3: The inversion operation

Algorithm 4.2 INVERSION (TS, WinSize)

Require: TS = (ts1, ts2, ts3, . . . , ts10) : task schedule
WinSize = Size of the TS

Ensure: TS∗ = (ts1, ts2, ts3, . . . , ts10) new task schedule
1: generate a random number S1 to represent the starting point and another random

number L1 for the length of the substring.
2: let SS = StringReverse(SubString(TS, S1, L1));
3: for i = 1 to WinSize do
4: if i < S1 or (i > S1 and i ≥ S1 + L1 ) then
5: S = concat(S, TS(i));
6: end if
7: if i == S1 then
8: S = concat (S, SS);
9: end if

10: end for
11: return (TS);

reverse order of the patterns. This results in a schedule with a makespan equal to

82.

• Translation

Translation is a transformation functions that removes two or more consecutive

nodes from the schedule and places it in between any two randomly selected con-

secutive nodes. The translation action performed by Algorithm 4.3 is shown in

Figure 4.4. The new schedule also a makespan equals to 109.

• Switching

Move set can be constructed for the schedules using a switching function as discussed
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Figure 4.4: The translation operation

Algorithm 4.3 TRANSLATION (TS, WinSize)

Require: TS = (ts1, ts2, ts3, . . . , ts10) : task schedule
WinSize = size of the TS

Ensure: TS∗ = (ts1, ts2, ts3, . . . , ts10) new task schedule
1: generate a random number S1 to represent the starting point and another random

number L1 for the length of the substring.
2: generate a random number I1 for the insertion point;
3: let SS = SubString(TS, S1, L1);
4: for i = 1 to WinSize do
5: if (i < I1) or (i > S1 or ( i > S1 and i ≥ S1 + L1 )) then
6: S = concat(S, TS(i));
7: end if
8: if i == S1 then
9: S = concat (TS, SS);

10: end if
11: if (i > I1) and ((i < S1 or ( i > S1 and i >= S1 + L1 )) ) then
12: S = concat(S, TS(i));
13: end if
14: end for
15: return (TS);

in Algorithm 4.4, which randomly selects two nodes and switches them in a schedule.

Generally speaking, the switching move set tends to rupture the original schedule

and results in an allocation that has a makespan significantly different from that of

the original allocation. Application of Algorithm 4.4 is shown in Figure 4.5. Starting

with an initial schedule with a makespan of 109, the new schedule generated after

switching is 95.
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Figure 4.5: The switching operation

Algorithm 4.4 SWITCHING (TS, WinSize)

Require: TS = (ts1, ts2, ts3, . . . , ts10) : task schedule
WinSize = Size of the TS

Ensure: TS∗ = (ts1, ts2, ts3, . . . , ts10) new task schedule
1: generate a random number i to represent the task 1 and another random number j

to represent task 2.
2: swap(TS(i), TS(j));
3: return (TS);

4.5.2 Simulated annealing framework

The dynamic SA-based load balancer operates in a batch mode to assign n tasks. The

ithbatch of tasks is denoted as B[i] and the number of tasks in a batch is |B[i]| = WinSize.

It is assumed that the number of tasks n is integer multiple of WinSize. The simulated

annealing framework to find the optimal schedule TS for a batch of tasks B[i] is illustrated

in Algorithm 4.6. Simulated annealing based dynamic scheduler in Algorithm 4.5 operates

in batch mode and selects a batch of tasks B[i] in every iteration. Algorithm 4.6 is

executed to produce an optimal schedule for the selected batch of tasks B[i] in a fixed

number of iterations. From an initial schedule TS, the simulated annealing approach

produces a new schedule using the move set. The move set can be created for an initial

schedule, by any one of the three different methods: Inversion, Translation, Switching,

through random selection. Four common approaches used as the stopping criteria in

simulated annealing algorithm are to use, (i) a given number of iterations, (ii) a time

limit, (iii) a given number of iteration withouts any improvement in the objective function

value, (iv) limit on the value of the objective function set by the user [128, 154]. Our study

uses the first approach of fixing the maximum number of iteration as stopping criteria.

The implementation of Algorithm 4.6 is based on deciding the values of various param-
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Algorithm 4.5 Simulated Annealing Scheduler
Require: n : number of task,m : number of computing node, batch size : WinSize
Ensure: L : makespan

1: Lj ←− 0 for all nodes
2: for i = 1 to n/WinSize do
3: select a batch of task B[i]
4: call Algorithm 4.6: SADLB(B[i],WinSize)
5: assign tasks in B[i] to computing nodes as per TS
6: update load of the assigned computing node
7: update expected completion time of unallocated tasks
8: end for
9: L←− maxjLj

10: return makespan: L

eters such as initial temperature, cooling factor, cooling schedule, and stopping criterion.

The simulated annealing scheduler iterates n/WinSize times to allocate n tasks dynam-

ically to m computing nodes in the batch mode. Each iteration invokes Algorithm 4.6

to allocate a batch of tasks to the computing nodes of the system. The major annealing

parameter, on which the quality of the final solution depends are the choice of an initial

temperature and the choice of a cooling factor. These factors along with the stopping

criterion contribute to the success of the SA algorithm [45]. These parameters depends

on the application or the problem domain to which it applied. The initial temperature

T0 is set to five to start Algorithm 4.6. The cooling factor δ is a uniform random number

selected from the interval (0, 1). Fixed number of iteration is used as the stop criterion

for the Algorithm 4.6. We have used a maximum of 40 iteration as stopping criterion.

The resulting schedules are used to allocate a batch of tasks to computing nodes. On

every invocation, Algorithm 4.6 computes a new schedule for the batch of tasks selected

and also computes its corresponding makespan. The complete execution of Algorithm

4.5 assigns all of the n tasks to the computing nodes and computes the makespan. The

makespan is presented as the completion time and the corresponding average processor

utilization is computed using Equation 4.1.

4.5.3 Simulation environment and results

The proposed algorithms are coded in Matlab (R2008a) and tested by varying the task

pool size from 10 to 1000 on 60 computing nodes. We have compared the SA-based

dynamic load balancer (Algorithm 4.5) with immediate mode heuristic load balancing.

A randomized resource allocation algorithm has been selected because, randomized al-

gorithms are known to give efficient approximate solutions to intractable problems with
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Algorithm 4.6 SADLB (B[i], WinSize)

Require: initial temperature, temperature cooling schedule, repetition schedul
Ensure: TS with minimum makespan, makespan

1: randomly generate initial solution TS for a batch of task B[i]
2: initialize T0

3: k ←− 0.
4: repeat
5: for all i = 1, 2, . . . , ξ do
6: generate a random integer m from the set 1, 2, 3
7: if m = 1 then
8: TS

′

←− INV ERSION(TS,WinSize)
9: end if

10: if m = 2 then
11: TS

′

←− TRANSLATION(TS,WinSize)
12: end if
13: if m = 3 then
14: TS

′

←− SWITCHING(TS,WinSize)
15: end if
16: if

(

makespan(TS
′

)−makespan(TS)
)

≤ 0 then

17: TS ←− TS
′

18: else
19: u←− (random number from[0, 1])
20: Tk ←− T0δ

k

21: if u < exp

(

makespan(TS
′

)−makespan(TS)
)

Tk
then

22: TS ←− TS
′

23: end if
24: end if
25: end for
26: k ←− k + 1
27: until some termination criterion is met.
28: return TS and makespan(TS)

better complexity bounds. Moreover, randomized algorithms are selected for performance

comparison as these are simple to describe and implement than the deterministic algo-

rithms. We have used immediate mode scheduling algorithms in Section 3.6.1 and 3.6.2,

with the task queue as a linear list with the central scheduler. To differentiate with the

immediate mode schedulers with priority queue in Algorithm 3.4 and 3.5, we rename the

immediate mode scheduler in Algorithm 3.4 and 3.5 with linear queue as FF and RAND

respectively.

The simulation results are presented in Figures 4.6 and 4.7 with completion time and
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Figure 4.6: Completion Time varying number of task on 60 node

processor utilization respectively. The FF and RAND algorithms for resource allocation

can make instantaneous decisions in allocation of a task to the computing nodes, which

results in shorter makespan. The SA-based load balancing algorithm shows very much

similar performance to that of FF in both average processor utilization and completion

time or makespan.

4.6 Load balancing using genetic algorithm

The genetic algorithm is an intelligent optimization and search technique based on the

principles of genetics and natural selection [155]. It consists of four main steps, namely

initialization, evaluation, exploitation, and exploration [103, 128, 156]. In GA a popu-

lation is composed of many individuals to evolve under a specified selection rule. Every

individual of the population is a solution with its fitness corresponding to the objective

function. At each step (iteration) the GA selects individuals at random from the current

population to become parents, and uses them to produce their children with the help of

genetic operators. Over successive generations, this process evolves toward an optimal

solution [128, 154]. The next generation can be created from the current population using
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Figure 4.7: Average Processor Utilization varying number of task on 60 node

three main types of rules. These are:

• The selection rules selects the individuals, called parents from the mating pool or

current population.

• The crossover rules combines two individuals otherwise called parents to form the

children for the next generation.

• The mutation rules makes random changes to the genes of individual parent to form

children.

The general template of a simple genetic algorithm consists of abstract steps and is

shown as Algorithm 4.7 [103].

The number of genes and their values in each individual are specific to the problem.

We have used chromosomes of length equal to the window size, which represents the

maximum number of task that fits to the window . The genes in the individual are the

node numbers on which the respective tasks to be executed. The initial population is

generated randomly corresponding to the batch of tasks selected. The GA operates on

a fixed number of tasks and each task is characterized by the task model discussed in
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Algorithm 4.7 Simple Genetic Algorithm
Require: population size, cross over probability,mutation probability
Ensure: thefittest individual

1: generate initial population
2: calculate the fitness of each individual
3: while fitness value , Optimal value do
4: Selection; {natural selection, survival of fittest}
5: Crossover; {reproduction, propagate favourable characteristics}
6: Mutation; {apply mutation}
7: end while
8: calculate fitness of individuals
9: return fittest individual

Section 2.5 with an integer value to representing the expected computation time. The

construction of genetic algorithm for load balancing problem can be divided into four

parts: the representation of individuals in the population ( also termed as the chromosome

structure), the determination of fitness function, the design of genetic operators and the

fixing of probabilities to control genetic operators. The genetic scheduler operates in

an environment where the load status of the computing nodes changes dynamically. It

operates in a batch fashion and utilises a GA to minimise the total execution time. Our

GA based dynamic load balancing algorithm has been realized using the batch mode

heuristic. We have proposed a new codification scheme to represent a task allocation list

for a batch of tasks as an individual. We have also introduced different genetic operators

that are suitable to this coding scheme. Our proposed GA load balancer operates for a

fixed number of iterations to allocate n tasks to m computing nodes.

4.6.1 Chromosome structure

Genetic algorithms require a suitable representation and evaluation mechanism. The

proposed GA load balancer are based on fixed length chromosome structure, with integer

value assigned to individual genes as the node number. We have used the chromosome

structure as shown in Figure 4.2, the length of a chromosome is the maximum number

of task in the window and represented as WinSize in this thesis [6, 57]. Hence the

number of elements in the window is fixed and the length of chromosome is equal to

the WinSize. The linear array helps to use the index as task number in the window

so that an one dimensional chromosome representation is resulted. The individual gene

on chromosome indicates the machine on which the corresponding task to be executed.

Each chromosome shows a possible allocation of computing nodes for which the makespan
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can be calculated from the ETC matrix and current load on the computing node. The

makespan for individual in Figure 4.2 found to be 73 as shown in Table 4.2 along with

corresponding average utilization. We have simulated the proposed GA load balancer

with individual of size 10, however an analysis is also presented to study the performance

of proposed GA load balancing scheme by varying length of individual that corresponds

to window size.

4.6.2 Fitness function

In genetic algorithm literature, the term evaluation and fitness are sometimes used inter-

changeably. In this chapter, the evaluation function, or objective function provides the

measure of makespan with respect to dynamic load balancing problem as define in Equa-

tion 2.3. The fitness function transforms that measure of performance into an allocation

of reproductive opportunities [130]. The evaluation of an individual representing a set

of parameters is independent of the evaluation of any other individual. The fitness of

that individual, however, is always defined with respect to other members of the current

population. The fitness function used is based on three performance metric i) makespan,

(ii) average utilization, and (iii) acceptable queue size. The GA scheduler proposed in

this chapter uses fitness function to evaluate the quality of the task assignment for the

individual has been adapted from [6],and defined by Equation 4.3.

Fitness =
1

makespan
× AU ×

# acceptable queues

# computing nodes
, (4.3)

where AU is average utilisation. This fitness function is used by Algorithm 4.9 to measure

the quality of the task allocation for a selected batch of task on each iteration.

4.6.3 Genetic operators

The basic implementation of GA load balancer follows the Simple Genetic Algorithm(SGA)

framework suggested by Goldberg [103, 128]. The execution of GA load balancer is a two

stage process. The process begins with the randomly generated initial population or

current population. The selection process is applied to the initial population to create a

mating pool or intermediate population. Then the members of intermediate population are

subjected to recombination and mutation to create the next population. This process of

transforming current population to next population constitutes one generation. GAs are

blind search techniques and hence require problem-specific genetic operators to get the

good solutions. The genetic operator used by us to design genetic algorithm scheduler

are explained details in subsequent subsections.
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4.6.3.1 Selection for reproduction

The reproduction process is used to create a new population of individuals from old pop-

ulation by selecting individuals from old population based on their fitness values. The

most common selection schemes used in GAs are (i) rank selection, and (ii) roulette wheel

selection [103, 128, 157]. The reproduction process forms new population, by selecting

individuals from the old population based upon their fitness value that optimizes the

objective function. Starting with the initial population, parent chromosomes are selected

to form a mating pool via proportional selection process, also termed as ”roulette wheel

selection” [104, 128]. This process can view the population as mapping onto a roulette

wheel, where each individual is represented by a space that proportionally corresponds

to its fitness. By repeatedly spinning the roulette wheel, individuals are chosen using

stochastic sampling with replacement to fill the intermediate population [130]. The pro-

posed GA load balancer uses roulette wheel selection to design new population from a

current population.

4.6.3.2 Crossover

Creation of new individuals are performed through crossover and mutation. The crossover

operator is mainly responsible for search aspect of genetic algorithms [135]. On comple-

tion of the construction of mating pool are subjected to recombination that creates the

next population. The recombination can occur with the application of crossover to ran-

domly paired individuals with a probability namely cross over probability denoted as pc.

Crossover operation selects a pair of individual from the mating pool, then randomly se-

lects two points to apply standard two point crossover, and produces two offspring. GA

load balancer in this chapter operates with crossover probability; pc = 0.7. Example in

Figure 4.8 depicts two point crossover processes with P1 and P2 as parent.

In this example two parents P1 and P2 are selected randomly with makespan value as

109 and 80 respectively based on ETC matrix given in Table 4.1. Two crossover points

are randomly selected as 2 and 6 to produce upspring C1 and C2 with makespan equals

to 60 and 103 respectively. The load balancing problem being the minimization problem,

two individuals with higher makespan are discarded to maintain a constant population

size throughout the solution finding process using GA.

4.6.3.3 Mutation

In the process of mutation, the individual is changed by swapping two genes position

randomly with a small probability. After crossover, we can apply a mutation operator.
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Figure 4.8: Results of two point crossover

Figure 4.9: Results of mutation on chromosome

For each bit in the individual mutate with some probability known as mutation probability

and denoted as pm. Typically the mutation rate is applied with less than 0.15 probability

[130]. The mutation probability is used to select the individual that is subjected to
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mutation process. The Figure 4.9 depicts the mutation process. Two random positions

are selected to exchange their values that designate the node or processor number. This

mutation process produces a chromosome with makespan as 95 from the chromosome

with makespan equal to 109 as depicted in Figure 4.9. In a single generation the process

of selection, crossover and mutation are applied to the initial population to create the

next population.

4.6.4 Generational changes

The process of evaluation, selection, recombination and mutation forms one generation

in the execution of a genetic algorithm. As we are working on a minimization problem

the value of makespan in current generation must be less than the makespan obtained in

previous generation. A generational change must be as per the objective function. An

average makespan can also be used to justify the progress of iteration to optimize the

objective function.

4.6.5 Stopping conditions

Stopping conditions are used to halt the evolution of population. Task is to be assigned

on the fly, and the search on the solution space is carried out in random, hence we have

to accept the suboptimal solution which can be found at the earliest. The GA evolves the

population until it meets one or more stopping conditions. For dynamic load balancing

problem we can use two stopping criteria, first the individual with the lowest makespan is

selected after each generation and if it is greater than a specified minimum or makespan

computed previous generation. Second for a maximum number of generation fixed as per

the number of task to be allocated to HDCS. In our approach, the individual with the

smallest makespan is selected after each generation. If the makespan value of current

generation is less than the previous generation, the iteration continues till the maximum

generation [141]. If the makespan value found to be higher then the GA stops evolving.

4.6.6 Genetic algorithm framework

The dynamic load balancing algorithm for HDCS uses the state-of-art homogeneous GA

scheduler by Zomaya et al. [6]. The queue with central scheduler contains n number

of unscheduled task. A batch of task from the waiting queue with central scheduler is

selected in each iteration. The best possible allocation of the batch of task can be found

using the Algorithm 4.8. The resulted task schedule by Algorithm 4.8 is used to allocate

this batch of task to different computing nodes in the system.
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Algorithm 4.8 GADLB (TS, WinSize)

Require: population size, crossover probability, mutation probability, batch

size:WinSize, ETC: expected time to compute

Ensure: individual with minimum makespan: TS

1: random generation of initial population for batch of task B[i]

2: for i = 1 to maximum generation do

3: evaluation of fitness of individuals (i.e. makespan of each chromosome) of the

current population

4: select the new population using roulette wheel method

5: select individuals with crossover probability to apply two point crossover

6: select individuals with mutation probability to apply mutation

7: end for

8: return individual with minimum makespan as TS

Algorithm 4.9 Genetic Algorithm Scheduler
Require: n : numberoftask,m : numberofcomputingnode, L : makespan,WinSize :

batchsize

Ensure: L : makespan

1: Lj ←− 0 for all nodes

2: for i = 1 to n/WinSize do

3: select a batch of task B[i]

4: call Algorithm 4.8: GADLB(B[i],WinSize)

5: assign tasks in B[i] to computing nodes as per TS

6: update load of the assigned computing node

7: update expected completion time of unallocated tasks

8: end for

9: L←− maxjLj

10: return makespan: L

The heterogeneous GA scheduler in Algorithm 4.9 operates for fixed number of iter-

ation to allocate n task in batch mode using Algorithm 4.8. The number of task to be

allocated are assumed to be integer multiple of batch size (WinSize). The Algorithm

4.9 stops after
n

WinSize
and computes makespan for n tasks. The GA load balancer

operates on the finite population of chromosomes. The initial population in this problem

is based upon the chromosome structure depicted in Figure 4.2. A population size of 20

is used for the fixed window size 10 for maximum number of 40 generation.
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Table 4.4: The Process of designing mating pool from initial population

Sl.No Initial Population Load on machine Max load: makespan Li/
∑

L Li

AverageLoad
Mating pool Individual

1 2123134342 (18,109,95,21,0) 109 0.114 0.919 2123134342 I1
2 4141553132 (80,5,31,39,31) 80 0.084 0.674 4141553132 I2
3 3322122524 (11,209,11,7,3) 209 0.220 1.762 4141553132 I3
4 3435423531 (2,31,82,35,56) 82 0.086 0.691 3435423531 I4
5 5522423311 (15,170,40,7,60) 170 0.179 1.433 3435423531 I5
6 2234421355 (24,98,68,49,40) 98 0.103 0.826 2234421355 I6
7 4323142254 (11,111,31,48,34) 111 0.116 0.935 4323142254 I7
8 4345331554 (24,0,65,46,90) 90 0.094 0.758 4345331554 I8

Sum 949 0.996 7.998
Minimum 80 0.084 0.691
Average 118.6≈119 0.124 0.999≈1
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Table 4.5: Parameters used in GA for load balancing

Parameters of GA value
Number of task 1000
Number of node 60
Max. generation 40
Population size 20

Multi point Crossover Rate 0.7
Mutation Rate 0.05
Window size 10

Let us assume that expected completion time of task uniformly distributed in the in-

terval of [mintime,maxtime]. WinSize represents maximum number of task or genes in

the chromosome. The inipopsize is the size of initial population representing chromosomes

of equal length. We have used fixed population size for all the iteration with maximum

number of generation as stopping criteria. Initial Population (IP) can be generated as an

array of size = inipopsize using the following formula:

IP = mintime + (maxtime − mintime) ∗ rand(inipopsize, winSize = maxtask)

(4.4)

The procedure to create mating pool from a initial population is presented as an

example in Table 4.4, where an initial population of size 8 is created using Equation 4.4.

The makespan for each member of initial population are computed using ETC matrix

shown as Table 4.1. Roulette wheel selection procedure is used to weight the individuals.

As load balancing problem is a minimization problem, third and fifth individual with

higher makespan are replaced with second and fourth individual to create the mating

pool. The mating pool is also knows as intermediate population. Through the above

process initial population are subjected for evaluation and selects chromosomes to design

intermediate population. The proposed GA load balancer uses fitness function defined

in Equation 4.3. Dynamic GA load balancer operates in batch mode to assign n tasks.

The ithbatch of task is denoted as B[i] and the number of task in a batch is |B[i]| =

WinSize. GA based dynamic resource allocation, Algorithm 4.9 starts with generating

initial schedule TS randomly for a batch of task B[i]. Algorithm 4.8 is executed to

produce an optimal schedule for the selected B[i] in fixed number of iteration using simple

GA. A final allocation list for the batch of task B[i] is obtained after the 40 generation.

Our implementation uses a batch of size 10. A batch of task allocation to computing nodes

are followed by the load update for every computing node. Hence expected completion

time for all unallocated tasks are computed, and the GA load balancer uses these updated

expected completion time values for unallocated task. We simulated the performance of
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Figure 4.10: Completion time varying task size with central scheduler

our GA and SA scheduler against two immediate mode scheduler.

4.6.7 Experiments and results

The proposed algorithms are coded in Matlab(R2008a) and tested using different set of

task pool of size from 100 to 1000. In particular the genetic algorithm for load balancing

uses parameters as listed in Table 4.5. We have simulated twenty times for an instance of

task size to compute the completion time or makespan for a fixed size of task pool. Tasks

are submitted to central scheduler using Poisson distribution with arrival rate λ equals to

10. The parameters in Table 4.5 are used to realized simulation using genetic algorithm.

For performance analysis four algorithms are considered: proposed algorithm using GA

and SA, First Fit(FF) and Radomized(RAND) algorithm. Each iteration selects a set of

10 tasks using a sliding window technique [6]. Iteration updates the window by selecting

new tasks from the task queue of central scheduler. These new set of tasks are to be
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Figure 4.11: Average Processor Utilization varying task size with central scheduler

assigned to the computing nodes in the iteration. These processes are repeated for a

fixed number of iteration for GA and SA. Finally an individual with minimum makespan

is selected as solution and tasks in the window allocated to the computing nodes for

execution. We have compared batch mode resource allocation Algorithms 4.9 and 4.5 with

immediate mode heuristic load balancing Algorithms 3.4 and 3.5 as discussed in Chapter

3. The immediate mode task allocation algorithms considers single task for scheduling.

We refer the FCFS heuristic Algorithm 3.4 as FF and random task allocation Algorithm

3.5 as RAND.

Performance of genetic algorithm based load balancing scheme is studied by varying

the window size from 10 to 50 on fixed number computing nodes m = 60 for 100 task.

The simulation result presented in Figure 4.12 indicates a decrease in completion time

for larger window size. These findings can be useful in selecting appropriate window size

for the task pool to meet specific performance requirement. Further simulation study

for average processor utilization is depicted in Figure 4.13 by varying the window size.
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Figure 4.12: Completion time as a function of window size.
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Figure 4.13: Average processor utilization as a function of window size.
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Figure 4.14: Task completion time as function of generation.
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Figure 4.15: Average processor utilization as a function of generation.
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Figure 4.16: Completion time as a function of Population size.
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Figure 4.17: Average processor utilization as a function of population size.
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The simulation output shows that average processor utilization deteriorates with the

increase in window size. Fixed number of generation is being used as one of the stopping

criteria for genetic algorithms. The total completion time decreases significantly with

the increase in the number of generation from 5 to 60 in Figure 4.14. However after

30 generation no significant performance improvement has been observed. Figure 4.15

shows the average processor utilization with varying number of generation. The result

presented also indicates the optimum value of processor utilization for the generation.

Different population size has been selected to study the performance of genetic algo-

rithm for load balancing. The Figure 4.16 indicates a decrease in completion time for the

tasks with the increase in population size. This study may be use to fine tune the genetic

algorithm for a desired performance.

The average processor utilization with changing population size is shown in Figure

4.17. The result shows the optimum processor utilization, but the performance decreases

with increase in population size. The simulation results presented here are for the ran-

domly generated ETC matrix.

4.7 Conclusion

We have designed and tested schedulers based on the GA and SA. We have introduced a

suitable codification for GA and SA for dynamic load balancing on the HDCS. The Fast

come first served or the first fit (FF) and randomized algorithms for resource allocation

can make an instantaneous decision to allocate tasks to computing nodes, which results

in a shorter makespan. The proposed dynamic task allocation algorithms use the sliding

window techniques to select a batch of tasks, and allocates them to the computing nodes in

the HDCS. The proposed GA-based dynamic load balancer has been found to be effective,

especially in the case of a large number of tasks. This load balancer worked rather well in

terms of achieving the goals of minimum total completion time and maximum processor

utilization.



Chapter 5

Approximation Algorithms for Load

Balancing

Approximation algorithms have been used to design polynomial time algorithms for in-

tractable problems that provide solutions within the bounded proximity of the optimal

solution. Load balancing algorithms attempt to compute the task assignment with the

smallest possible makespan. This chapter presents an analysis and design of approxima-

tion algorithms based on task and machine heterogeneity through the ETC matrix on an

HDCS with makespan as the performance metric. The proposed approximation scheme

has been compared with an optimal solution computed as a lower bound.

5.1 Introduction

It is unlikely to have exact algorithms for NP-hard problems. One has to agree for sub-

optimal solutions that can be found out in polynomial time [33, 86]. The load balancing

problem is a minimization problem, with the objective of minimizing the makespan of n

tasks on m computing nodes [6, 86, 87]. The problem of finding a solution to the load

balancing problem, defined in Equation 2.3, is NP-hard [33]. An optimization problem is

NP-hard, if the associated decision problem is NP-complete. The load balancing problem

can be proved to be NP-hard by reduction from the partition problem [86]. NP-hard

problems are intractable, which means that there does not exist an efficient algorithm that

is guaranteed to find an optimal solution for such problems. Approximation algorithms

find solutions that are guaranteed to be close to optimal or sub-optimal in polynomial

time. The solution produced by approximation algorithms are to be compared with the

99
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optimal solution of the problem. The optimal solution to minimization problems can

derived as a lower bound and for maximization problems it is an upper bound. Load

balancing problems are presented in this thesis as minimization problems; hence defining

optimal solutions to the problem can found out theoretically with the help of lower bound

theory [86, 158].

Many real world optimization problems are NP-hard, and it is desirable to solve

large instances of these problems in a reasonable amount of time [110]. Sometimes, we

have a polynomial time algorithm for a problem P ; however, the time complexity of

this algorithm becomes super polynomial while solving problems with large instances.

In practice, it is desirable to have an algorithm with polynomial time complexity to

deal with large instances. The most common approach used by the researchers to find

solutions to NP-hard problems were treating them with integer programming tools or

heuristics or approximation algorithms [86, 87]. Heuristic algorithms can produce the

result quickly on a large instance provided the heuristic is able to deal with that instance.

In general, heuristics based approaches do not work effectively on all problem instances

[110]. Heuristic algorithms may produce good solutions against the quality of the solution.

Whereas approximation algorithms have the capability to produce solutions, which are

guaranteed to be within some constant bound of the optimal solution.

Approximation algorithms generally have two properties [159]. They provides a feasi-

ble solution to a problem instance in polynomial time, and also ensures some quality of the

solution. The quality of an approximation algorithm is the maximum distance between

its solution and the optimal solution, evaluated for all possible instances of the problem.

An approximation algorithm is characterised by a factor ρ called the approximation factor

or approximation ratio; for some ρ < 1 and it is named as a ρ−approximation algorithm

[100, 160].

Let A be an polynomial time algorithm that produces a feasible solution to every

instance I of a problem P . Let the value of the optimal solution to the problem instance

I be denoted as FO(I) and let the FA(I) be the feasible solution produced by an Algo-

rithm A on the same instance I. Then, the following definitions are used to characterize

approximation algorithms:

Definition 5.1 (Approximation algorithm). An approximation algorithm for a problem

P is an algorithm that produces approximate solutions for P.

Definition 5.2 (Absolute approximation algorithm). An algorithm A is said to be an

absolute approximation algorithm for a problem P if and only if, for every instance I of

P,
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|FO(I)− FA(I)| ≤ k, for some constant k.

Definition 5.3 (ρ− approximation algorithm). A is ρ − approximation algorithm if

and only if, for every instance I of size n,

|FO(I)− FA(I) | /FO(I) ≤ ρ

for some constant ρ. FO(I) is assumed to be greater than zero.

A ρ − approximation algorithm is guaranteed to produce a solution with objective

function value at most ρ times the optimal solution [161]. The most desirable kind of

approximation algorithms are absolute approximation algorithms [110]. The approxima-

tion algorithms for dynamic load balancing discussed in this chapter are proved to be

absolute approximation algorithms.

To prove an algorithm to be a ρ − approximation algorithm for the problem P, it

is required to know the optimal solution to the problem P. Since the optimal solution to

the load balancing problem in an HDCS is not known, lower bound of the problem is to

be used to characterize the proposed approximation algorithms. Here, load balancing is

a job scheduling policy which takes a job as a whole and assign it to the computing node

[5].

5.2 Related work

An algorithmic approach to the load balancing problem is presented in [86]. The algo-

rithmic approaches used for solving load balancing problem are roughly classified as (i)

exact algorithms, (ii) heuristic algorithms, and (iii) approximation algorithm [87, 99].

Fundamental load balancing problem is used by Kleinberg and Tardos [86] to illustrate

some of the basic issues related to the design of approximation algorithms.

A simple family of approximation algorithms for solving the generalized assignment

problem has been presented by Cohen et al. [162] using ”local-ratio technique”. A review

is presented in [163] considering the ten most open questions in the area of polyno-

mial time approximation algorithms for NP-hard scheduling problems. Approximation

algorithm for scheduling of n jobs on m identical machines has been presented by Gra-

ham [87]. A polynomial-time 2-approximation algorithm was presented by Shmoys and

Tardos [164], that minimized the makespan of the schedule and the mean job completion

time for the generalized assignment problem for n independent tasks on m heterogeneous

machines. A polynomial time 2-approximation algorithm for the single criterion prob-

lem of minimizing the makespan was given by Lenstra et al. [161]. Fast approximation
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algorithms for resource allocation is suggested in [165] and applied to large linear pro-

gramming problems with packing and covering constraints. Alon et al. [166] presented an

ε−approximation scheme for the general load balancing problem on m identical machines.

An efficient approximation algorithm for solving the generalized assignment problems pre-

sented in [162] with a (1+α) approximation ratio, where α is the approximation ratio for

the knapsack algorithm. Chen and Choi [167] presented a 2-approximation algorithm for

data distribution with load balancing in web servers. An improved (1/3)-approximation

algorithm for resource allocation is presented in [168] for reusable resources for the set of

n tasks. An efficient approximation algorithm for load balancing with resource migration

in distributed systems is suggested in [169], by partitioning the system into regions. Chu-

dak and Shmoys [170] presented an ©(log m) approximation algorithm for n jobs on m

heterogeneous machines. They have also formulated a linear programming problem using

the speed at which a job is to be processed on the computing nodes.

5.3 Proposed approximation schemes

Approximation algorithms are being used to tackle NP-hard optimization problems.

Commonly four general techniques are used to design approximation algorithms: (i)

Greedy algorithms, (ii)Primal-dual technique, (iii)Linear programming and rounding, and

(iv)Dynamic programming [86, 160]. Algorithms for optimization problems typically go

through a sequence of steps, with a fixed set of choices for each step. A greedy algorithm

always makes a choice that is locally optimal in the hope that it will lead to a globally

optimal solution. The proposed approximation algorithms are based on the HDCS model

presented in Chapter 2. We have considered a heterogeneous distributed computing sys-

tem with a set of M = {M1,M2, ...,Mm}, of m independent heterogeneous computing

nodes as shown in Figure 2.1. The dynamic load balancing problem, presented as a linear

programming problem (LPP) in Section 2.6, is restated below for ready reference.

MinimizeL =
m
∑

j=1

xij = tij , ∀ ti ∈ T (5.1)

subjected to:
n
∑

j=1

xij ≤ L, ∀Mj ∈M

where xij ∈ {0, tij}, ∀ti ∈ T, and Mj ∈M

xij = 0, ∀ ti < A(j)
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The approximation algorithm design is concerned with allocating a set of n tasks to

these computing nodes. Let T be the set of tasks; that is, T = {t1, t2, ..., tn}. Each task

ti has an expected time to compute denoted as tij on node Mj . The tasks are arriving

from different nodes to the central scheduler or serial scheduler. The tasks have an equal

probability of being allocated to any of the m computing nodes.

Let MaxTask be the maximum number of task in the HDCS. Let MaxNode be the

number of computing nodes in the HDCS. The task to be executed on the HDCS can be

represented as an ETC matrix of dimension MaxTask × MaxNode. This matrix rep-

resentation is also known as consistent ETC matrix as discussed in Section 2.5. A simple

load balancing approximation algorithm for the HDCS based on the greedy paradigm is

shown in Algorithm 5.1. The tasks are assigned one by one, to the computing nodes by

selecting the node with the minimum load at each step. Selection of the minimum load

from the m nodes can be done in ©(1) time by using a binary min-heap. A min-heap

with m nodes can be used to maintain the current load of m computing nodes in the

HDCS. The heap can be updated in ©(log m) time for each Tj with machine Mj . The

running time of Algorithm 5.1 is ©(n log m) for assignment of n number of tasks.

Algorithm 5.1 Greedy resource allocation

Require: ETC(MaxTask,MaxNode)
Ensure: T : makespan

1: Tj ←− 0 forall node Mj

2: A(j)←− φ forall node Mj

3: for i = 1 to MaxTask do
4: Let Mj be a node with minimum Tj

5: Allocate task ti to Node Mj

6: A(j)←− A(j) ∪ {ti}
7: Tj ←− Tj + tij
8: end for
9: T ←− maxjTj

This algorithm assumes the initial load of the node(machines) to be zero. The algo-

rithm stops only when all tasks are assigned and complete their execution on the m com-

puting nodes. The solution to the load balancing problem is reported as the makespan,

which has been calculated from a valid allocation of tasks to different computing nodes.

A lower bound has been used as an estimate of the minimum amount of work needed

to solve a given problem. Deriving good lower bounds is often more difficult than de-

vising efficient algorithms, because it is not possible to analyze and enumerate all the
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possible algorithms. The lower bound can be established in four different way: (i) trivial

lower bounds, (ii) information-theoretic arguments (decision trees), (iii) adversary argu-

ments, and (iv) problem reduction [158]. The lower bound to dynamic load balancing

problem is obtained through trivial lower bound . The lower bound of the minimization

problem in Equation 5.1 can be calculated with the observation that, if it is possible

to allocate the tasks over all the m computing nodes equally, the load on each node

will be (
∑

1≤j≤m Lj)/m. Moreover, if a task is assigned to the slowest machine Mm, the

completion time of that task can be decisive for the lower bound. The lower bound can

be obtained as, the maximum time taken by a task to complete the processing on node

Mm and computed as max1≤ i≤ ntim. Let Lmax denotes the optimal solution for the load

balancing problem, then the following equation holds for the HDCS with m computing

nodes:

Lmax ≥ max ( (
∑

1≤j≤m

Lj)/m, max1≤ i≤ ntim) (5.2)

Hence, the lower bound for the load balancing problem, denoted as Lmin, is defined

as

Lmin = max ( (
∑

1≤j≤m

Lj)/m, max1≤ i≤ ntim) (5.3)

This lower bound computed for the task allocation on the HDCS is used to charac-

terize the proposed approximation algorithms in Section 5.3.1 and 5.3.2.

5.3.1 2-approximation algorithm for load balancing

Theorem 5.3.1. The Greedy resource allocation is a 2-approximation algorithm.

Proof. Let Lmax be the optimal solution to the load balancing problem on the HDCS.

It is to be proved that Greedy resource allocation always completes an assignment of n

tasks to the computing nodes such that the makespan T is less than or equal to Lmax.

Let Mk be the machine with load A(k) that determines the makespan for the set of task

represented as ETC matrix using Algorithm 5.1 on m computing nodes. On successful

execution of Algorithm 5.1, we have Tk = max1≤ j≤ mTj . Let ti∗ be the last task that is

assigned to node Mk, where at the time of assignment of ti∗, the computing node Mk is

with minimum load among all of the m nodes. Let T
′

k be the load of machine Mk just

before the assignment of task ti∗, then Tk = T
′

k + ti∗k and T
′

k ≤ T
′

j for all 1 ≤ j ≤ m .

This leads to the following equation:
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mT
′

k ≤
∑

1 ≤ j ≤ m

T
′

j =
∑

1 ≤ i < i∗

tik <
∑

1 ≤ i ≤ n

tik ≤ mLmin (5.4)

As T
′

k < Lmin, we can have

Tk = T
′

k + ti∗k ≤ Lmin + ti∗k

As ti∗k ≤ max1≤ i≤ ntim

Tk ≤ Lmin +max1≤ i≤ ntim

Using Equation 5.2

Tk ≤ 2.Lmax

�

The greedy resource allocation is never more than a factor 2 from optimal solution

for load balancing problem as proved in Theorem 5.3.1. This resource allocation leads to

a larger makespan, when we have a large number of tasks, each with a small expected

time to compute, followed by a single very large task. Then Algorithm 5.1 will assign

small tasks evenly on the computing nodes followed by the large task to one of the nodes.

A better allocation is possible by assigning the large task to the machine with the least

ETC value, followed by allocation of small tasks among the rest m− 1 nodes. Hence, a

better greedy algorithm is possible by using the ETC matrix, where the tasks are arranged

according to increasing value of the expected time to compute on the m computing nodes.

5.3.2 3/2-approximation algorithm for load balancing

Let the computing node M1 be the fastest computing node and Mm be the slowest

computing node in the HDCS. We assume that the service times follow exponential

distribution with node Mj having service rate µj. Let the computing nodes be arranged

in descending order of their service rates. This results in a consistent ETC matrix for

the n number tasks on m nodes, so that tij ≤ tik for task ti on machine Mj and Mk, with
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Table 5.1: Sorted Expected Time to Compute:SETC

Task/Node Mm Mm−1 · · · M1

t1 t1m t1(m−1) · · · t11

t2 t2m t2(m−1) · · · t21

...
...

...
...

...
tn tnm tn(m−1) · · · tn1

µj ≥ µk. The resulting ETC matrix, denoted as SETC is shown in Table 5.1. For an

arbitrary task ti, we have ti1 ≤ ti2 ≤ . . . ≤ tim.

Lemma 5.3.2. Let T = {t1, t2, ..., tn} be the set of n tasks with each task ti having an

expected time to compute tij on node Mj. If T can be scheduled on m machines, where

tim ≥ ti(m−1) ≥ · · · ≥ ti1, then Lmax ≥ tm1 + t(m+1)1.

Proof. Suppose there are m+ 1 tasks to be assigned to m heterogeneous machines, then

at least two of the task from t1, t2, ..., tm, tm+1 are to be assigned to the same machine.

As M1 is the fastest machine, if those two task are to be assigned to the fastest machine,

then load of the machine can be at least tm1 + t(m+1)1. Hence, the makespan of the system

be Lmax ≥ tm1 + t(m+1)1. �

Algorithm 5.2 Sorted Greedy resource allocation

Require: SETC(MaxTask,MaxNode)
Ensure: T : makespan

1: Tj ←− 0 forall node Mj

2: A(j)←− φ forall node Mj

3: for i = 1 to MaxTask do
4: Let Mj be a node with maximum tij ;max1≤ j≤ m(tij)
5: Allocate task ti to Node Mj

6: A(j)←− A(j) ∪ {ti}
7: Tj ←− Tj + tij
8: end for
9: T ←− maxjTj

A greedy algorithm that computes the makespan using a sorted or consistent ETC ma-

trix is presented in Algorithm 5.2. The algorithm terminates exactly in n = MaxTask

steps.

Theorem 5.3.3. sorted greedy resource allocation algorithm is a 3/2 approximation al-

gorithm.
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Proof. Let machine Mk be the machine with the maximum load, on allocation of the first

m tasks to the different machines in the HDCS. When we are to assign the next task

tm+1, we have already the information about the node, that has the maximum load. We

have assumed that the task ti∗ is allotted to the node Mk. If i∗ ≤ m, then ti∗ is the

only task to be assigned to Mk. This is feasible because the first m tasks are assigned to

the different nodes using the greedy resource allocation algorithm. Hence, the allocation

algorithm is optimal as every node gets a single task. If i∗ > m , then by using Theo-

rem 5.3.1, we can have

Tk ≤ ti∗k +
1
m

∑

1 ≤ j ≤ m

Lj (5.5)

where Lj is the total load on node Mj and
1
m

∑

1 ≤ j ≤ m Lj is the average load of the

system. Using Equation 5.2, we have

1
m

∑

1 ≤ j ≤ m

Lj ≤ max(max1 ≤ j ≤ mLj ,
1
m

∑

1≤ j ≤ m

Lj) ≤ Lmax (5.6)

or,
1
m

∑

1 ≤ j ≤ m

Lj ≤ Lmax (5.7)

The tasks are appearing in the SETC matrix in the order of t1j ≥ t2j ≥ · · · ≥ tnj for

node Mj . If i∗ > m, for any arbitrary computing node Mj, we have ti∗j ≤ t(m+1)j ≤ tmj .

Then by using Lemma 5.3.2 we have

ti∗j ≤ (tmj + t(m+1)j)/2 ≤ Lmax/2 (5.8)

Using Equations 5.7 and 5.8 on Equation 5.5 we have:

Tk ≤ Lmax/2 + Lmax

or,

Tk ≤ (3/2)Lmax

Hence the total load on node Mk is at most (3/2)Lmax �
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Greedy algorithms are natural choices for heuristics and support the design of very

fast approximation algorithms. We are able to established the performance guarantee of

Algorithm 5.1 and 5.2 with approximation ratios of 2 and 3/2 respectively. So, Algorithm

5.2 is a polynomial time 3/2−approximation algorithm for the minimization problem

defined in 5.1 and always returns a solution whose value is at most 1.5 times of optimal

value.

5.4 Conclusion

Approximation algorithms finds reasonably good solutions in run time bounds. This

chapter presented ρ− approximation algorithm to solve load balancing problems on the

HDCSs with a central scheduler. The algorithms were proved to be absolute approxima-

tion algorithms with defined lower bound for n tasks on m machines. The approximation

schemes are applied to the ETC matrix considering both task and machine heterogene-

ity. Both the algorithms are with polynomial time complexities and produces sub-optimal

solutions for the load balancing problem.



Chapter 6

Decentralized Load Balancing

Algorithm using Game theory

Decentralized resource allocation algorithms have been used to design polynomial time al-

gorithms for intractable problems that provide solutions within the bounded proximity of

the optimal solution. The load balancing problem in heterogeneous distributed system is

modelled as a multi-player non-cooperative game with Nash equilibrium. The decision to

allocate the resources in an HDCS are based upon the pricing model of computing resources

using a bargaining game theory. In the process prior to executing a task, the heteroge-

neous computing nodes are participate in a non-cooperative game to reach an equilibrium.

The non-cooperative framework adopted to allocate tasks by m servers is modelled as an

m − player game. We have evaluated the performance of two existing price-based job

allocation schemes, namely the Global Optimal Scheme with Pricing (GOSP) and Nash

Scheme with Pricing (NASHP). A modified version of each of theses schemes has been

introduced to analyze the performance by considering the effect of pricing on system uti-

lization.

6.1 Introduction

Distributed systems provides support for powerful computing infrastructures to solve

computationally demanding problems. These computing resources are spread over the

globe with different independent administrative domains, where the ownership of comput-

ing nodes are with individuals or organizations. Grids and clouds are such systems with

109
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highly scalable computing infrastructures, which are regularly increasing with an increase

in the user base. The ownership from distinct individuals or organizations requires a de-

centralized resource management system. Problems with high computing requirements

are most suitable to use a distributed computing infrastructure [171].

In the decentralized approach of load balancing, all of the computing nodes in the

HDCS are involved in taking the load balancing decision. The load balancing decisions

are based on the dynamic state of information of the whole system. Game theory has

been used by the researchers to model a situation where at least two interactive decision

makers with diverging interests are involved [172]. Interactive decision making involves

players (nodes) as the decision makers. In particular, the node Mj has a goal to minimize

its load Aj by transferring a part of the load to the other computing nodes in the HDCS.

This load transfer process may lead to a situation where loads on the nodes are balanced.

This results in equilibrium when the node has any incentive to transfer its load to the

other nodes. The state at which load exchange between any two of the computing nodes

stops and tasks are executed without interruption at arriving nodes is termed as the

Nash equilibrium state[171].

Classical game theory is a normative theory, in the sense that it expects players

or agents to be perfectly rational and behave accordingly. In classical game theory,

interactions between rational agents are modeled as games of two or more players that

can choose from a set of strategies and the corresponding preferences [173]. The game

theory assumes that players will compute Nash equilibrium and choose to play one such

strategy. Application of algorithmic game theory can be found in [174], which lists several

applications including networking and artificial intelligence along with basics of game

theory. Resource allocation problems can be modelled as cooperative or non-cooperative

games in heterogeneous environments as suggested in [172].

Cooperative game theory offers formal models to provide axiomatic solutions through

a situation where an enforceable binding agreements between each pair of decision mak-

ers (players) are possible[175]. Game theoretic algorithms are designed to achieve conver-

gence to the Nash equilibrium by modelling the related information. They assume that

the players can observe the actions of the other players. Moreover, the decision makers

have complete freedom of preplay communication to make joint agreements about their

operating points [76].

Non-cooperative game theory is applicable to the interactive decision making process

where the decision makers act individually without involving others in the negotiation pro-

cess [176]. Dynamic load balancing on an HDCS can be formulated as a non-cooperative

game among the m computing nodes (players) who act as the decision maker to distribute
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the tasks among them. The non-cooperative or strategic game theory is being used to

model the interactive decision making process by the multiple players. The process of

independent decision making by schedulers with computing node leads to an equilibrium.

The two different equilibrium condition possible are the Wardrop equilibrium and Nash

equilibrium [76]. For an infinite number of tasks the Wardrop equilibrium results, when

a task ti cannot receive any further benefit by changing the allocation decision by the

local scheduler. If the task ti is allocated to node Mj by the node Mi then the earli-

est completion time of task ti on Mj denoted as cij , such that Cij = min{Cik}; for

k = 1, · · · , m. When we have a finite number of tasks to be executed on an HDCS, the

Wardrop equilibrium reduces to Nash equilibrium.

The dynamic load balancing problem is formulated as a non-cooperative game among

computing nodes when tasks arrive with them for execution. The non-cooperative ap-

proach in this chapter considers computing nodes as decision makers. However, the nodes

that are not allowed to cooperate during the decision making process. Each of the com-

puting nodes optimizes locally to minimize the response time for the task arriving at

the node. In this chapter dynamic load balancing problem has been investigated as a

non-cooperative game, also established the Nash equilibrium under general assumption

on the cost. We have proposed two dynamic load balancing schemes namely Global Op-

timal Scheme with Pricing Binary (GOSP binary) and Nash Scheme with Pricing Binary

(NASHP binary) and evaluated their performance through simulation.

6.2 Related work

In an HDCS, the computational resources are distributed and used for variety of appli-

cations having different resource requirements. These requirements are from the users,

who are likely to behave in a selfish manner and their behavior cannot be characterized

using conventional techniques [177]. The idea of using game theory in load balancing

is not completely novel. Game theory decision making models are used in two different

forms i.e., as cooperative games and as non-cooperative games among the tasks or users

in distributed computing systems. Grosu et al.[178] formulated the static load balancing

problem in single class job distributed systems as a cooperative game among computers

and presentd the structure of the bargaining solution that provides a Pareto optimal al-

location to all of the jobs. Evendar et al. [179] studied the load balancing problem in

unrelated parallel machines as a generalized ordinal potential game. A truthful mecha-

nism for solving the static load balancing problem in distributed systems is addressed in

[76, 177]. The effectiveness of the truthful mechanism had been ascertained on a hetero-
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geneous system consisting of 16 computers with four different processing rates. A game

theoretic pricing strategy for efficient job allocation in mobile grids has been presented

in [180] to obtain the Nash bargaining solution. A cooperative game based capacity

allocation scheme for utility computing environments can be found in [181], where the

system converges to a unique equilibrium point if the users iteratively makes best response

updates to their bids.

John Nash [182] has proposed a theory on non-cooperative games by contradicting

the n-person game model of Von Neumann and Morgenstern. The contradiction is based

on the absence of coalitions between each pair of participants. They acts independently,

without collaboration or communication with each other. The notion of an equilibrium

point is the basic ingredient of the theory proposed by Nash. It is established in [182] that

a finite non-cooperative game always has at least one equilibrium point. A ”dynamical”

approach to the study of cooperative games based upon reduction to non-cooperative

forms was discussed in [183] by Dechert. Further, the non-cooperative dynamic game

was presented as a control problem. The Nash equilibrium solution found by this method

is not only an open loop solution but it is also a feedback solution.

Most of the algorithms designed for decentralized load balancing in HDCSs were

converged to Nash equilibrium. A non-cooperative game theoretic framework has been

formulated by Grosu and Chronopoulos [184] for static load balancing problems in het-

erogeneous distributed systems. The concept of Nash equilibrium is used to design a new

distributed load balancing algorithm. Penmatsa and Chronopoulos [185] studied a coop-

erative game theoretic model to solve a static load balancing problem for heterogeneous

distributed systems. The cooperative game model is used with the solution based on the

Nash bargaining model to provide Pareto optimality. Altman et al. [186] have investi-

gated optimal load balancing strategies for a multi-class multi-server processor-sharing

system with heterogeneous service capacities. The two different approaches namely, the

centralized setting; and the decentralized, distributed non-cooperative setting have been

presented to minimize its weighted mean sojourn time in the system. Paul et al. [187]

introduced a non-model based approach for locally stable convergence to Nash equilib-

rium for static non-cooperative games with N players. In this non-model based approach

players determine their actions by using only their own measured pay-off values. The

players attain their Nash equilibrium without the need of model information by utilizing

deterministic extremum seeking with sinusoidal perturbations. Khan and Ahmad [188]

experimentally evaluated three game theocratic resource allocation mechanisms on a grid

computing system by considering task and machine heterogeneity.

Most of the decentralized approaches use the partial information available with the
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individual computing nodes to make suboptimal decisions [172]. The scope of applying

game theoretic techniques to load balancing in distributed computer systems has been

analysed in the context of Nash equilibrium by a majority of the researchers. To facilitate

a game theoretic approach, the HDCS is viewed as the collection of computing resources

that are under the supervision of the server with each node. The scheduler or load

balancer is available as a component of the server to facilitate the task allocation. This

chapter presents a non-cooperative game theoretic framework for dynamic load balancing

in heterogeneous distributed systems with the goal of achieving Nash equilibrium.

6.3 Distributed system model

We consider a distributed computing system with distributed dynamic load balancing

based on a heterogeneous distributed system model that consists of a set of m computing

nodes (resources), connected by a communication network as shown in Figure 6.1. We

have assumed that the jobs are atomic and can not be further subdivided, hence each

is treated as a single task. Let there be a set of n independent tasks each with the

expected time to compute on m machines represented by the ETC matrix given in Table

2.1. These tasks are to be assigned to any computing node Mj ∈ M . An assignment

A : T −→ M implies that every task ti is to be assigned to a machine Mj with an

expected time to compute tij. A task arriving at the node Mj may be executed at node

Mj or transferred to another node Ml through the communication network by message

passing. The task transformed from node Mj to node Ml receives its services at node Ml,

no further migration for that task is permitted. The following assumptions are used to

define decentralized dynamic load balancing in distributed systems:

• Tasks arrive in a single queue at each of the computing nodes.

• Task migrate within the HDCS takes place without any centralised control and only

each of the tasks has a local view of the system on which it resides.

• All of the tasks know how many resources (machines) are available.

• The task transferred from the node Mi to node Mj is served at node Mj and is not

transferred to any other node for execution.

• Each assigned task to the node resides in a queue that is processed in an FCFS

order.
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Figure 6.1: Decentralized Heterogeneous Distributed Computing System nodes

We model an HDCS with m heterogeneous computing nodes. Each computing node

Mj has a scheduler known as the local scheduler, denoted as sj . The local scheduler is

responsible for load balancing decisions. Let Qj be the queue associated with comput-

ing node Mj as shown in Figure 6.2. The local scheduler receives the tasks from the

users through the queue and assigns them to the nodes of the HDCS or executes them

locally. Processor(s) with the computing node is/are the principal computing element(s)

of the node that executes and process the task assigned to it. We have assumed that all

computational tasks can be executed on any computing nodes of the HDCS.

A task arriving at node Mj may be processed at node Mj or the scheduler sj trans-

fers the task to another node Ml through the communication network. Selection of the

destination node is the decision of the scheduler sj based upon the present state of the

information on the HDCS. Let tasks arrive at node Mj following Poisson distribution

with a mean arrival rate of λj. Expected times to compute the task ti are represented

as ETC matrix. The total task arrival rate to the system is denoted as λ, and defined as

λ =
∑m

i=1 λi. The computational power of each computing node is denoted as µj (tasks
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Figure 6.2: Node of decentralized Heterogeneous Distributed Computing System

per second). For stability, it is assumed that

m
∑

i=1

λi <
m
∑

j=1

µj

Each scheduler sj keeps track of the price per unit of resource available for computing

in a node Mj , denoted as pji. A separate price vectors are maintain by schedulers sj on

behalf of the task with node Mi. So we have a price vector corresponding to each task

on m computing node. Let rij > 0 be the fraction of task with Qi, that are migrated

to other nodes for execution. Hence
∑m

j=1 rij = 1. Moreover the task assign to node

Mj must not exceed the rate at which Mj operates. So for stability it should satisfy the

following:
m
∑

i=1

rijλi < µj

Let Rj be the vector that represents load balancing strategy for scheduler sj and

defined as Rj = (rj1, rj2, · · · , rjm). We can define R = (R1, R2, · · · , Rm) as the load

allocation vector for HDCS, also known as strategy profile of load balancing game [184].

We consider a heterogeneous distributed system with m computing nodes(or comput-

ers) connected through a communication network as shown in Figure 6.3. Each computing

node with communication link is modelled as M/M/1 queuing system. We have the sim-

ilar assumptions on computing nodes as described in Section 2.3. However in the context

of decentralized load balancing there is no interaction between global scheduler with the

scheduler of other nodes in order to perform load distribution in HDCS.
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Figure 6.3: M/M/n queueing model of decentralized Heterogeneous Distributed Comput-
ing System

Let Qj is the queue associated with the nodeMj and represents number of task waiting

to be served. If all the nodes are busy in executing task with them, then the total task

n with the system is given as

n =
m
∑

j=1

Qj + m (6.1)

Hence the expected response time at computing node Mj is given by

Tj(R) =
1

µj −
∑m

k=1 rkjλk

(6.2)

The overall expected response time of scheduler sj on node Mj in the system denoted as

Dj(R), and defined as

Dj(R) =
m
∑

i=1

rjiTi(R) =
m
∑

i=1

rji

µi −
∑m

k=1 rkiλk

(6.3)

Hence load balancing in this context is to find a feasible load balancing Rj by the

scheduler Sj such that Dj(R) will be minimized. The load balancing is dynamic because,
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the decision by scheduler sj depends on the load balancing information of other schedulers

as Dj(R) is the function of R.

Let ψj(R) be the expected cost of computing node Mj , and can be computed as

follows:

ψj(R) =
m
∑

i=1

kipjirjiTi(R) =
m
∑

i=1

kipjirji

µi −
∑m

k=1 rkiλk
, (6.4)

where ki is assumed to be constant that maps the amount of computing resources at node

Mi for a task tj . Again pji be the agreed price obtained as a result of bargaining game

between scheduler sj and computing node Mi. The expected cost of the HDCS with m

computing nodes can be given as:

ψ(R) =
1
λ

m
∑

j=1

λjψj(R) (6.5)

6.4 Load balancing problem as a dynamic game

Strategic decision making is often based on conceptual and quantitative model of the

problem domain. Game theory is becoming more important and widely used as a tool

to select quantitative strategies [189]. The tasks arrive to the system through the in-

dependent Poisson process are stored in the queue of different computing nodes. The

non-cooperative load balancing game between the schedulers in a HDCS can be defined

with three attributes [184]:

• Players: The scheduler with m computing node of HDCS.

• Strategies: Each scheduler sj formulates a feasible load balancing strategy Rj.

• Preference: Each scheduler sj preferences are defined as expected response time of

scheduler Dj . Each player sj prefers the strategy profile R over the strategy profile

R′ if and only if Dj(R) < Dj(R′)

A solution to the above non-cooperative game is the optimal strategy for dynamic

load balancing problem.

6.4.1 Nash equilibrium

In our model a computing node Mj tries to minimize its load Lj by sending part of the

load to the other computing nodes in HDCS. To define load balancing an assumption

is that the difference of the load of any two arbitrary node is to satisfy |Lj − Li| < θ,

where θ is a small positive constant and less than the expected time to compute the
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smallest task on fastest node in HDCS. In the context of load balancing, it is the state in

which all nodes are satisfied. Hence the load exchange among the computing nodes are

stopped when they are satisfied and the load can process without interruption from load

arriving or finishing execution at a node. When all nodes are satisfied the system said to

be in Nash equilibrium [171]. Otherwise a Nash equilibrium for this resource allocation

m-player game is a sequence of action that generates allocation list or assignment Aj for

each computing node Mj . Let A be an assignment or allocation of n task to m computing

node, defined as A = {A(1), A(2), · · · , A(m)}, where A(j) is the set of task allocated to

node Mj . Every task ti may be allocated to a unique node. Load Lj on a node Mj , also

corresponds to the assignment A(j), such that Lj =
∑

ti∈A(j) tij . Hence the response

time of nodeMj is the function of total load Lj and denoted as Tj as defined in Section 2.6.

With the view the scheduler as independent selfish player seeking to minimize response

time of their tasks, leads to design a game-theoretic model for load balancing problem.

A feasible assignment A is a Nash equilibrium if and only if for all task ti allocated

to node Mj is in A, and for all Mk ∈ M

Tj ≤ Tk + tik

Using load balancing strategy Rj the Nash equilibrium for load balancing problem

[184] can be defined.

Definition 6.1 (Nash equilibrium). A Nash equilibrium in load balancing game among

m schedulers can be defined as the strategy R such that

Rj ∈ minimum
Rj

Dj(R); forRj = (rj1, rj2, · · · , rjm)

The decentralize dynamic load balancing problem on HDCS using a non-cooperative

approach can be presented as an minimization problem to minimize Dj(R) for all com-

puting node Mj with a feasible load balancing strategy Rj , for all j = 1, ..., m. Hence the

linear programming problem for load balancing can be stated as

minimize
Rj

Dj(R) (6.6)

subjected to:

rji ≥ 0, for i = 1, . . . , m. (6.7)
m
∑

i=1

rji = 1, (6.8)

m
∑

k=1

rkjλk < µj, for i = 1, . . . , m. (6.9)



6.4. LOAD BALANCING PROBLEM AS A DYNAMIC GAME 119

Considering price agreed between scheduler and computing nodes, load balancing problem

can be formulated as

minimize
Rj

ψj(R) (6.10)

subjected to:

rji ≥ 0, for i = 1, . . . , m. (6.11)
m
∑

i=1

rji = 1, (6.12)

m
∑

k=1

rkjλk < µj , for i = 1, . . . , m. (6.13)

6.4.2 Computation of optimal load fraction

The load fraction R of the system can be computed by calculating Ri = (ri1, ri2, · · · , rim)

for each computing node Mi. The load fraction of each computing node Mi can be

calculated by considering the amount of load assigned to Mi by other computing nodes

in HDCS. Let µi is the processing rate of the node Mi, then available processing rate of

computing node Mi as seen by scheduler sj is defined as

µj
i = µi −

m
∑

k=1,k,1

rkiλk

The tasks arrives independently to m computing nodes. It is assumed that estimated

time of computation of each tasks are know in advance and can be represented by ETC

matrix as discussed in Section 2.5. The system utilization denoted as ρ is computed as

the ratio of total task arrival rate λ to the aggregate processing rate of the computing

nodes in HDCS and defined as

ρ =
λ

∑m
i=1 µi

(6.14)

The system utilization or system utility is assumed to be fixed form 0.2 to 0.9 to carry

out the simulation. Algorithm 6.1 calculate the optimal load fraction for scheduler sj

running on Mj and has been adapted from [190].

6.4.3 Modified decentralized non-cooperative global optimal scheme

The optimal load fractions for all the computing nodes of HDCS can be computed with

some communication between the schedulers of each computing node. In distributed com-
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Algorithm 6.1 Best fractions

Require: Available processing rate : µj
1, µ

j
2, · · · , µ

j
m,Total arrival rate : λj ,

Price perunit vecotor : pj1, pj2, · · · , pjm, The constant vector : k1, k2, · · · , km

Ensure: Load fractions : rj1, rj2, · · · , rjm

1: Sort the computing nodes in decreasing order of




µj
1

√

µ1k1pj1

≥,
µj

2
√

µ2k2pj2

≥ · · · ≥
µj

m
√

µmkmpjm





2: t←−

∑m
i=1 µ

j
i − λj

∑m
i=1

√

µikipji

3: while t ≥
µj

m
√

µmkmpjm

do

4: rjm ←− 0
5: m←− m− 1

6: t←−

∑m
i=1 µ

j
i − λj

∑m
i=1

√

µikipji

7: end while
8: for i = 1, · · · , m do

9: rjm ←−
1
λj

(

µj
i − t

√

µikipji

)

10: end for

puting system each scheduler sj are the process running on respective computing node

Mj . The process execution and message transfer are assumed to be asynchronous. It is

also assumed that the message transmission delay is finite and unpredictable. Scheduler

process consists of a sequential execution of its actions. These actions are atomic and

the actions of a scheduler process are modeled as three types of events, namely, internal

events, message send events, and message receive events [191]. A typical job allocation

schemes executed by the scheduler is also consists of these three different events. For a

message msg, let Send(msg) and Recv(msg) denote its send and receive events, respec-

tively.

The proposed GOSP Binary job allocation Algorithm 6.2 is an iterative algorithm

adopted from original GOSP algorithm of Penmatsa and Chronopoulos [190] but uses

the algorithm Best Fractions Binary given in Algorithm 6.2. The Table 6.1 lists the

notations that are used in Algorithm 6.3.

The time complexity of the Algorithm 6.2 can be computed as follows:

• The contribution of the sorting process in Step 1 is ©(m log m).

• The domain of the while loop from Step 4 to 16 is of ©(m log m).
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Algorithm 6.2 Best Fractions Binary

Require: Available processing rate : µj
1, µ

j
2, · · · , µ

j
m,Total arrival rate : λj ,

Price perunit vecotor : pj1, pj2, · · · , pjm, The constant vector : k1, k2, · · · , km

Ensure: Load fractions : rj1, rj2, · · · , rjm

1: Sort the computing nodes in decreasing order of




µj
1

√

µ1k1pj1

≥,
µj

2
√

µ2k2pj2

≥ · · · ≥
µj

m
√

µmkmpjm





2: t←−

∑m
i=1 µ

j
i − λj

∑m
i=1

√

µikipji

3: low ←− 1, high←− m, temp = 1
4: while low ≤ high do

5: temp =
(low + high)

2

6: if t ≥
µj

m
√

µmkmpjm

then

7: high←− temp− 1
8: else
9: low ←− temp− 1

10: end if
11: for i = temp, · · · , m do
12: rjm ←− 0
13: m←− temp

14: t←−

∑m
i=1 µ

j
i − λj

∑m
i=1

√

µikipji

15: end for
16: end while
17: for i = 1, · · · , m do

18: rjm ←−
1
λj

(

µj
i − t

√

µikipji

)

19: end for

• The for loop in the Step 17 contributes ©(m).

Therefore the time complexity of the Algorithm 6.2 is ©(m log m).

Every scheduler sj executes global job allocation routine using Algorithm 6.3 inde-

pendently on respective computing node. Once the load fraction is computed on a node,

the computing nodes uses Rj to take allocation decision for the tasks with queue Qj .

This algorithm can be used periodically or when the system parameters are changed to

recalculate Rj. The objective of GOSP Binary algorithm is to minimize the expected

cost of all the tasks that are executed in HDCS. The experiments are conducted with
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Table 6.1: GOSP Binary algorithm parameters

Notation Description
j Computing node number
l Iteration number

Rl
j Load fractions of node Mj at iteration number l

Dl
j Expected execution time of node Mj at iteration number l
ε Tolerance limit

Send(j,(p, l, action)) Send message (p, l, action) to node Mj

Recv(j,(p, l, action)) Receive message (p, l, action) from node Mj

action specific action the computing node has to perform
p is a real number variable

norm Ll norm at iteration l, defined as: norm =
∑m

j=1 |D
(l−1)
j −D

(l)
j |

three different cost model of computing nodes namely random, ascending and descending

by arranging computing nodes according to their processing rate.
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Figure 6.4: Expected price as function of system utilization based on GOSP
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Algorithm 6.3 GOSP Binary
Require: None. {The routine to be executed by each server on respective node}
Ensure: Updated load fraction.

1: Initialize: R(0)
j ←− 0;D(0)

j ←− 0; l ←− 0;norm←− 1; sum←− 0;
tag ←− CONTINUE; left←− [(j − 2) mod m] + 1; right←− [j mod m] + 1

2: while (1) do
3: if (j = 1) : for computing node 1 then
4: if (l , 0) then
5: Recv(left, (norm, l, tag))
6: if norm < ε then
7: Send(right, (norm, l, STOP ))
8: exit
9: end if

10: sum←− 0
11: l ←− l + 1
12: end if
13: else
14: Recv(left, (sum, l, tag))
15: if tag = STOP then
16: if (j , m) then
17: Send(right, (sum, l, STOP ))
18: exit
19: end if
20: end if
21: end if
22: for i = 1, . . . , m do
23: Compute µj

i for each node : µj
i ←− µi −

∑m
k=1,k rkiλk

24: end for
25: R

(l)
j ←− Best Fractions Binary(µj

1, µ
j
2, · · · , µ

j
m, λj , pj1, pj2, · · · , pjm, k1, k2, · · · , km)

26: ComputeD
(l)
j

27: sum←− sum+ |D(l−1)
j −D

(l)
j |

28: Send (right, (sum, l, CONTINUE))
29: end while
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Figure 6.5: Expected price as function of system utilization based on GOSP Binary

6.4.4 Modified decentralized non-cooperative Nash scheme

In general, a Nash equilibrium with different computing node, is a state in which no node

has the incentive to change her current decision[192]. In particular the computing nodes

have no incentive to reallocate their task to other nodes of the HDCS. Let Li and Lj be

the load with computing node Mi and Mj respectively. If Lj < Li, then migrate task

from Mi to Mj . We have modified the Best Reply algorithm given in [184] to design a

new Algorithm 6.4 called Best Reply Binary . The complexity of the Algorithm 6.4 is

©(m log m). The available processing rates can be calculated from the queuing theory

models for a specific total arrival rate λ against a fixed system utility ρ.

The Nash algorithm for load balancing are designed to attain Nash equilibrium that

provides a scheduler optimal operation point for the HDCS. The Nash scheme has been

designed using Algorithm 6.4 and designated as Best Reply Binary. The Nash algo-

rithm for resource allocation is called NASHP Binary and listed as Algorithm 6.5. This

is identical to the Algorithm 6.3, with the procedure Best Fractions Binary replaced

by Best Reply Binary at step number 25 to compute Rj for every computing node Mj .

The scheduler with the computing nodes are responsible for execution of the Nash scheme

periodically. The task arrival rates at different computing node at fixed intervals of time

is considered to facilitate discrete event simulation. The computation of Nash equilib-
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Algorithm 6.4 Best Reply Binary

Require: Available processing rate : µj
1, µ

j
2, · · · , µ

j
m,Total arrival rate : λj

Ensure: Load fractions : rj1, rj2, · · · , rjm

1: Sort the computing nodes in decreasing order of their available processing rate
(

µj
1 ≥, µ

j
2 ≥ · · · ≥ µj

m

)

2: t←−

∑m
i=1 µ

j
i − λj

∑m
i=1

√

µj
i

3: low ←− 1, high←− m, temp = 1
4: while low ≤ high do

5: temp =
(low + high)

2
6: if t ≥

√

µj
m then

7: high←− temp− 1
8: else
9: low ←− temp− 1

10: end if
11: for i = temp, · · · , m do
12: rjm ←− 0
13: m←− temp

14: t←−

∑m
i=1 µ

j
i − λj

∑m
i=1

√

µj
i

15: end for
16: end while
17: for i = 1, · · · , m do

18: rjm ←−
1
λj

(

µj
i − t

√

µj
i

)

19: end for

rium requires some communication between computing nodes. The algorithm operates

in a round-robin fashion to obtain load balancing strategies for the nodes in HDCS.

6.5 Experiments and results

The system has been implemented in Matlab(R2008a) environment and simulation have

been performed to analyse the non-cooperative load balancing through the computation

of workload fractions for every computing node Mj . The HDCS system assumed for

simulation are with 60 heterogeneous computing nodes. Let pj be the price associated

with node Mj obtained through bargain game by severs associated with each computing

node. The relative processing rate of computing node Mj denoted as αj and defined as

the ratio of the processing rate of node µj to the minimum of µ1, µ2, . . ., µm. Let µmin be
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Algorithm 6.5 NASHP Binary
Require: None. {The routine to be executed by each server on respective node}
Ensure: Updated load fraction.

1: Initialize: R(0)
j ←− 0;D(0)

j ←− 0; l ←− 0;norm←− 1; sum←− 0;
tag ←− CONTINUE; left←− [(j − 2) mod m] + 1; right←− [j mod m] + 1

2: while (1) do
3: if (j = 1) : for computing node 1 then
4: if (l , 0) then
5: Recv(left, (norm, l, tag))
6: if norm < ε then
7: Send(right, (norm, l, STOP ))
8: exit
9: end if

10: sum←− 0
11: l ←− l + 1
12: end if
13: else
14: Recv(left, (sum, l, tag))
15: if tag = STOP then
16: if (j , m) then
17: Send(right, (sum, l, STOP ))
18: exit
19: end if
20: end if
21: end if
22: for i = 1, . . . , m do
23: Compute µj

i for each node : µj
i ←− µi −

∑m
k=1,k rkiλk

24: end for
25: R

(l)
j ←− Best Reply Binary(µj

1, µ
j
2, · · · , µ

j
m, λj, pj1, pj2, · · · , pjm, k1, k2, · · · , km)

26: ComputeD
(l)
j

27: sum←− sum+ |D(l−1)
j −D

(l)
j |

28: Send (right, (sum, l, CONTINUE))
29: end while
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Figure 6.6: System utility vs expected response time on GOSP and GOSP Binary

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

System Utility

F
ai

rn
es

s 
In

de
x

System utility vs Fairness Index

 

 
GOSP
GOSP_Binary

Figure 6.7: System utility vs fairness index on GOSP and GOSP Binary
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Figure 6.8: Expected price as a function of system utility on NASHP
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Figure 6.9: Expected price as a function of system utility on NASHP Binary
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the processing rate of the slowest computing node. Hence relative processing rate defined

as
µj

µmin
. For every experiment the total task arrival rate λ can be obtained from the

Equation 6.14. We have conducted simulation experiment by varying system utilization

ρ from 0.2 to 0.9 with the interval of 0.1.

Each computing nodes have been modelled as M/M/1 queueing system. Three dif-

ferent scenario for the experiments have been designed by considering the arrangement

of the computing nodes in the order of their service rate µj . The different scenario of

HDCS can be obtained by arranging computing nodes in decreasing order, increasing

order and random order of their service rate. Then the ETC matrix corresponding to

random order of the node are defined as inconsistent ETC matrix given in Section 2.5.

The ordering of computing node represents the expected time to compute the task at

consistent ETC matrix [24]. The pricing vector considered for simulation also follows

the similar consideration for these three scenario. Figure 6.4 represents performance of

GOSP algorithm [190] using average of 10 simulation. The result indicates total price

charged by the system as a function of system utilization. We can have more load on

computing system leads to the higher expected response time. Figure 6.5 indicates the

performance of our proposed algorithm GOSP Binary. The result obtained in Figure

6.5 are the average of 10 simulation run to study the performance of Algorithm 6.3.

To compare the performance of our proposed scheme, we have used two performance

metric, fairness index, and response time. The fairness index of the HDCS with m

heterogeneous computing nodes can be computed as

I(D) =
[
∑m

j=1Dj]2

m
∑m

j=1D
2
j

, (6.15)

where Dj is the expected execution time of node Mj and can be computed using Equa-

tion 6.3 and D is the total expected response time of the HDCS. Figure 6.6 shows the

performance comparison between GOSP and GOSP Binary. The proposed algorithm

GOSP Binary shows the better expected response time for the system. Figure 6.7

presents the fairness index for the HDCS with different value of system utilization raging

from 0.2 to 0.9. The proposed algorithm GOSP Binary shows remarkable improvement

in fairness index.

The Nash schemes are designed to minimize the cost of individual computing nodes.

Figure 6.8 shows the performance of NASHP algorithm [184] by varying system utilization

raging from 0.2 to 0.9 for the three different scenario of computing nodes. The result

obtained are the average of 10 simulation run. Figure 6.9 shows the performance of our

proposed algorithm NASHP Binary by varying system utilization, and found to be
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more effective in terms of total cost of the system with three different price vector for

higher system utilization. The expected price performance of the ascending price vector

lies below the descending and random price vector corresponding to the processing rate

of the computing nodes. Hence better performance can be obtained with arranging

computing nodes in ascending order of processing rate.

6.6 Conclusion

Decentralize decision making by finite heterogeneous computing nodes have been mod-

elled as non-cooperative game between the heterogeneous computing node. A non-

cooperative decentralized game-theoretic framework has been presented for HDCS. The

simulation excrements are based upon the mathematical model discussed in this chapter

uses the performance metric price, response time, and fairness index. We have proposed

two algorithm GOSP Binary and NASHP Binary to compute load fractions to allo-

cate the tasks to the computing nodes of HDCS. It has been observed that, the algorithm

GOSP Binary further minimizes the cost of the entire computing system and so is ad-

vantageous when the system optimum is required. Hence, it is also fair to the schedulers

and so as to the users. The scheme NASHP Binary also further minimizes the cost

for each computing nodes in the system by computing a feasible assignment that results

load balancing strategy.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Load balancing problem in a Heterogeneous Distributed Computing System deals with

allocation of tasks to the computing nodes, so that nodes are evenly loaded. In a hetero-

geneous distributed computing system the computational power of the computing entities

are possibly different for each processor or node. The complexity of dynamic load bal-

ancing increases with the size of the HDCS and becomes difficult to solve effectively.

This thesis presents dynamic load allocation strategies for n independent tasks and m

computing nodes in a heterogeneous distributed computing system through centralized

or decentralized control. The load balancing strategies in HDCS aims to maintain a bal-

anced execution of tasks while using the computational resources with computing node.

The load balancing problem using centralized approach has been formulated consider-

ing task and machine heterogeneity as a linear programming problem to minimize the

time by which all complete their execution. The load balancing strategies have been de-

signed for dynamic load balancing with three different algorithm paradigms as (i) greedy

algorithms,(ii) iterative heuristic algorithms,and (iii) approximation algorithm.

The system and task heterogeneity are modelled with expected time to compute(ETC)

matrix. A batch mode heuristic has been used to design dynamic load balancing algo-

rithm for heterogeneous distributed computing system with four different type of machine

heterogeneity. A number of experiments has been conducted to study the performance of

greedy load balancing algorithms with three different arrival rate for the task. A better

performance of the algorithms are observed with higher degree of heterogeneity in HDCS

with consistent and inconsistent task matrix.

131
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A new codification scheme suitable to simulated annealing and genetic algorithm has

been introduced to design dynamic load balancing algorithms for HDCS. These stochastic

iterative load balancing algorithms uses sliding window techniques to select a batch of

tasks, and allocates them to the computing nodes in HDCS. The effect of genetic algo-

rithm and simulated annealing based dynamic load balancing scheme has been compared

with load balancing strategies based on first-fit and randomized heuristic. The proposed

dynamic genetic algorithm based load balancer has been found to be effective, especially

in the case of a large number of tasks.

An analysis and design of two approximation algorithms for load balancing is pre-

sented with reference to ETC matrix for heterogeneous distributed computing systems

with makespan as performance metric. The two proposed approximation schemes has

been compared with an optimal solution computed as lower bound and proved to be

2-approximation and 3/2 approximation algorithm.

The decentralize load balancing problem in heterogeneous distributed system is mod-

elled as multi player non-cooperative game with Nash equilibrium. In the process prior to

execute a task, the heterogeneous computing nodes are participate in a non-cooperative

game to reach an equilibrium. Two different types of decentralize load balancing problem

has been presented in this thesis as minimization problems with price, response time, and

fairness index. Two algorithms have been proposed to compute load fraction. These al-

gorithms are used to design decentralized load balancing strategies to minimize the cost

of the entire computing system leading to load balanced. It has been found that, the

modified algorithms GOSP Binary and NASHP Binary further minimizes the expected

response time of scheduler and the cost for each computing nodes respectively.

7.2 Limitations and Future work

The simulations studies with computers are subjected to some assumptions that leads to

design of feasible simulation model to carry out experimentation. The simulation study

of load balancing algorithms assumed that in a HDCS, if all the computing nodes are

busy then a assigned task will keep on waiting in the waiting queue with central scheduler

which is of infinite length. The task model used in this thesis are assumed the rate of

arrival of the task to be Poisson distribution with arrival rate λ. However there are few

instances where the task arrival follows different distributions. The task models used in

this thesis are expressed as ETC matrix, where as researchers are also using task model

as DAG. All the simulation experiments are assumed that the estimation of the execution

time for each task on different computing nodes is know in advance and follows a uniform
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distribution. The communication cost has not been featured is the system model of

HDCS, hence this limits the scope of the effectiveness of load balancing algorithms for

large HDCS.

As distributed systems continue to grow in scale, in heterogeneity, and in diverse net-

working technology, they are presenting challenges that need to be addressed to meet the

increasing demands of better performance and services for various distributed applica-

tion. For future research, the design of dynamic load balancing strategy can be sought

for the HDCS that uses different class of task with specific resource requirements.

The performance degradation of HDCS are mostly due to the failure of one or more

computing nodes. However many high-performance application requires high availabil-

ity. Some high availability applications on distributed computing platform are military

applications, 24× 7 healthcare applications, international business applications etc. One

of such application is multi-class applications that requires high availability on HDCS.

In particular the multi-class application are consists of tasks of multiple classes that are

characterized by their distinctive arrival rates, execution time distributions, and avail-

ability requirements. This becomes the basis of a new research domain to design dynamic

resource allocation algorithms for high-performance applications with high availability.

Power management in distributed computing system is widely recognized to be an

important research problem. The energy consumed by the distributed computing system

can be conceptualized as the sum of energy consumed by the system components over

time period while executing tasks until the complete execution of the tasks. Growing de-

mand energy-efficient resource allocation in distributed computing needs the modelling

of dynamic load balancing problem for HDCS with additional energy constraint for un-

certain task execution times and communication times. Further study can be made on

dynamic energy efficient resource allocation strategy by considering the architecture of

computing nodes and power requirement by computing resources. Parallel I/O has been

an active research area in High Performance Computing(HPC) for over two decades. En-

ergy efficient and parallel I/O performance are two critical measures in HPC. Scope of

further research can be carried out on energy efficient dynamic allocation of I/O intensive

tasks on HPC.

A highly heterogeneous computing environment systems are becoming popular with the

scalability of multi-core CPUs, graphics processing unit, distributed file systems that

supported distributed computing. Some of the computing applications requires the task

in the form of divisible load. This leads to the problem of resource allocation of divisible

load and load scheduling in highly heterogeneous distributed system. Research is also

required to study and design inter and intra-node load balancing using divisible load.
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