
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

65

IJRITCC | February 2023, Available @ http://www.ijritcc.org

Load Balancing in Distributed Cloud Computing: A

Reinforcement Learning Algorithms in

Heterogeneous Environment

Mrs. Minal Shahakar1, Dr. Surenda Mahajan2, Dr. Lalit Patil3
1Research Scholar

Smt. Kashibai Navale College of Engineering

Savitribai Phule Pune University, India

mhjn.minal@gmail.com
2Assistant Professor, Department of Information Technology

PVG' College of Engg & Tech & GK Pate (Wani) IOM

Savitribai Phule Pune University, India

sa_mahajan@yahoo.com
3Professor, Department of Information Technology

Smt. Kashibai Navale College of Engineering

Savitribai Phule Pune University, India

lalitvpatil@gmail.com

Abstract—Balancing load in cloud based is an important aspect that plays a vital role in order to achieve sharing of load between different

types of resources such as virtual machines that lay on servers, storage in the form of hard drives and servers. Reinforcement learning

approaches can be adopted with cloud computing to achieve quality of service factors such as minimized cost and response time, increased

throughput, fault tolerance and utilization of all available resources in the network, thus increasing system performance. Reinforcement Learning

based approaches result in making effective resource utilization by selecting the best suitable processor for task execution with minimum

makespan. Since in the earlier related work done on sharing of load, there are limited reinforcement learning based approaches. However this

paper, focuses on the importance of RL based approaches for achieving balanced load in the area of distributed cloud computing. A

Reinforcement Learning framework is proposed and implemented for execution of tasks in heterogeneous environments, particularly, Least Load

Balancing (LLB) and Booster Reinforcement Controller (BRC) Load Balancing. With the help of reinforcement learning approaches an optimal

result is achieved for load sharing and task allocation. In this RL based framework processor workload is taken as an input. In this paper, the

results of proposed RL based approaches have been evaluated for cost and makespan and are compared with existing load balancing techniques

for task execution and resource utilization..

Keywords- Cloud Computing, Reinforcement Learning, Load Balancing, Heterogeneous System, Resource Allocation, Task Scheduling.

I. INTRODUCTION

Cloud computing relies on a well-oiled resource

management system, the heart of which is scheduling

resources. This term refers to the process of assigning available

cloud resources to specific applications. Improved response

time and reduced costs are the outcomes of this procedure,

which seeks for the optimum resource and maps it with cloud

workload depending on consumer requirements. The allocation

of resources is a four-stage process. First, workloads are

categorized by their needs and requirements. In the second

stage, we choose out the precise collection of assets we need

from our stockpile. The third phase involves assigning the

proper cloud resources to user-specified cloud workloads in

terms of quality of service. Finally, schedule the available

resources to carry out the workloads, further ensuring that the

QoS requirements will be met as closely as possible to ideal.

Reinforcement learning based existing approaches face few

problems such as complexity that occurs because of the huge

memory space of state and activity. However, to resolve the

problem, reinforcement learning has been combined with

techniques such as deep learning in deep reinforcement

learning. [2].

 Load balancing is a very vital factor in the cloud

environment, as the users have variety in their requirements.

This leads to access use of resources like RAM and CPU usage

leading to less performance. This application adds extra load to

cloud servers and indirectly is responsible for lots of resource

consumption. There are lots of algorithms that mainly deal with

time for allocating connections. Some considering performance

factors are load from the task on the server, waiting time,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

66

IJRITCC | February 2023, Available @ http://www.ijritcc.org

response time, etc. [1]. To achieve reliable resource utilization,

a load balancing method is proposed for allocating dynamically

arriving customer requests that is to allocate connections to the

cloud server regarding load as a parameter over time.

In distributed cloud computing, it is important to consider

various factors of load balancing such as existing load of

processors, memory utilization, resource utilization, etc. Some

heuristic algorithms have been presented to optimize system

performance in the cloud based networks. Since, few existing

heuristics algorithms show deficiency in global and local

search optimization [3]. In a distributed cloud network, a

suitable processor is selected for upcoming tasks and necessary

resources are allocated for its execution in minimum time.

However, congestion in cloud networks can increase when the

server is heavily loaded or tasks are too large and time

consuming and also if required or necessary resources are

unavailable on the server, this may result in increased

makespan. Such problems can cause more energy to be

consumed by the server if it is heavily loaded. To overcome

this problem, in this paper a reinforcement load balancing

method is presented which is based on task scheduling and

resource utilization named as Booster Reinforcement

Controller Load Balancing (BRC). Here we make use of

reinforcement learning and load balancing methods to achieve

optimal results.

However, Least load balancing (LLB) and Booster

Reinforcement Learning (BRC) load balancing, both these

approaches, are used to make a quick process of allocating

available resources in the network to incoming tasks in order to

reduce makespan and achieve maximum system throughput.

Since, it also maintains the backup of existing load of server or

processor before it is allocated with incoming tasks for

execution so that if the task is executed on another processor

with minimum load then the previous processor will be

restored with its earlier load through this backup variable.

Since, this allocation of tasks must be done in a way that no

processor should get overloaded and nor should remain idle. To

achieve optimal results for task allocation LLB and BRC load

balancing techniques schedule the task execution on processor

or server by considering few factors such as utilization of

resources, reduced makespan and cost [3].

Few hybrid heuristics face challenges for balancing load in

the cloud networks as it allows servers more prone to overload

and so the QoS is not achieved [5]. However for smoother task

execution and to improve the system performance, an optimal

load balancing must be achieved. Thus, in this paper, we focus

on achieving optimal results in allocating best suitable

processors and necessary resources available in the network for

task execution that maximizes throughput such that no

processor should remain idle or overloaded and each processor

is allocated a task with balanced load. However, in this paper

we have implemented Least Load Balancing (LLB) and

Booster Reinforcement Controller (BRC) load balancer

approaches that help in evenly distributing load to processors

across the networks. Both of these methods focus on achieving

optimal throughput and system performance. Task Reallocation

takes place by computing more resources and required time for

task execution whenever server is heavily loaded and whenever

server is lightly loaded with incoming tasks few computations

of resources and required time for task execution are processed

at a distinct time period. [6]. However when there is an increase

in the number of incoming client requests may result in rapid

increase in traffic congestion and also when servers are

overloaded they require more energy. So, managing the

network congestion is challenging in distributed cloud

computing. When there is heavy load during peak hours, the

network congestion not only harms intersections but also it

harms upstream traffic. So, an effective Load Balancing (LB) is

needed which distributes the task evenly among the available

servers. This paper presents reinforcement learning with load

balancing strategies that are more effective to achieve optimal

results by maximizing the computational capacity that

improves both the factors system performance and system

feasibility. [8]. Because of variations in computation of

heterogeneous cloud resources and time required for task

execution in distributed cloud networks, the server load is

extremely time dependent. Resource utilization status can be

known in advance by using least load balancing reinforcement

learning approaches to allocate the best suitable processor for

task execution.

Scheduling cloud resources calls for allocating cloud assets

to cloud tasks. It is possible to improve scheduling outcomes by

treating Quality of Service (QoS) factors as essential

constraints. However, efficient scheduling calls for improved

optimization of QoS parameters, and only a few resource

scheduling algorithms in the available literature do so. The

primary objective of this paper is to provide an effective

method for deploying workloads to cloud infrastructure. To

ensure that workloads are executed efficiently on available

resources, a load balancing method based on reinforcement

learning was developed. The proposed method performance has

been measured in the cloud. The experimental

outcomes demonstrate the effectiveness of the suggested

method in lowering the aforementioned QoS parameters along

with the execution cost, time, and energy consumption.

The main contributions of this paper are summarized as

follows:

● We have proposed RL based dynamic load

balancing for data intensive networks. The

BRCLB has been designed not only to improve

both users satisfaction and fairness but also to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

67

IJRITCC | February 2023, Available @ http://www.ijritcc.org

maximize the long-term average network

throughput

● The LLB Method is proposed to evenly distribute

the task among servers to reduce network traffic

congestion and also to maintain the backup of

load that is present before task allocation of each

server. So that if the server is not allocated with

incoming requests its earlier load value will be

replaced as a current load value of that server.

● The experimental results show that the proposed

solution can achieve much better performance

than existing solutions.

The remaining sections of the paper are organized as

follows. Section II represents the scope of related work. Section

III presents the proposed framework for task & resource

allocation. Section IV describes the RL based booster

reinforcement controller load balancer approach. Section V

shows the experimental results. And section VI concludes the

paper.

II. RELATED WORK

Existing load balancing policies can be roughly classified as

static or dynamic, and as single-, bi-, or multi-objective. These

regulations have centered on ensuring that machines aren’t

overloaded while also considering other load balancing

considerations such make span time, energy usage, and

resource utilisation. [4]. In order to solve this issue, scientists

have created a number of load balancing algorithms for the

cloud that are based on machine learning and RL. algorithms

for optimizing cloud-based scheduling infrastructure. A Deep

Q-network (DQN) is proposed to maximize long-term system

performance by capitalizing on network latency, load

balancing, and system stability; this is part of a Markov

Decision Process (MDP) formulation that is designed to

increase service quality while reducing costs. The results of this

study contrast the optimization that takes into account only the

current system performance when making mapping decisions

for switch controllers with those that generate mapping

decisions based solely on latency or load balancing separately,

demonstrating that the DQN-based algorithm provides the best

stability results while maintaining moderate switch controller

latency and system equilibrium performance [10].

Based on their research in [7], Yu-Chieh Chuang and Wei-

Yu Chiu propose a deep reinforcement learning based pricing

strategy of an aggregator for profit maximization that takes into

account the energy balance and can account for the actions of

competitors as well as the variability of renewable and the

varying bounds of charging and discharging events in a non

stationary environment.

According to the proposal by Eunji Hwang et al. [11], while

dividing up a system’s limited resources among several users,

it’s crucial to keep in mind three factors: user fairness, system

efficiency in terms of throughput, and user satisfaction in terms

of reaction time. To complete the job in the allotted time, a

heterogeneous computing system employs resource allocation

policies tailored to multi-user and multi-application workloads.

There are three distinct policies to choose from here: fairness,

greedy efficiency, and fair efficiency. Based on the simulation

findings, it is clear that the fair efficiency strategy is the

optimal choice for allocating resources since it strikes a good

compromise between justice and customer pleasure.

Weichao Ding et al. [9] introduced a workload predictor

method based on the modified Weighted Moving Average

(WMA) algorithm, which supports dynamic resource

allocation; a cluster controller is proposed based on

reinforcement learning for exploring the optimal matching

relationship between resource requests and host at various PPR

levels; a resource allocator is designed based on a greedy

strategy for achieving the trade-off between energy

consumption and application performance.

Computing load Aware and Long-View load balancing was

proposed by Guoxin Liu et al. [6]. CALV selects the blocks

that add the most workload during the server’s busiest times

and the least during the server’;s least busy times. CALVuses a

slow data block transfer mechanism to boost load balancing

performance. It schedules data transfers to avoid taxing

destination servers and make use of off-peak network

bandwidth for reallocation. In comparison to other approaches,

CALV is superior at increasing data locality and decreasing

task delay, network load, and reallocation overhead.

To zero in on the network dynamics, the authors of [12]

presented a deep reinforcement learning technique. To optimize

the total payoff for automobiles, selfishness, a distributed

coalition-based algorithm and an incentive system based on

deep reinforcement learning are presented. To further lessen the

computational load, a tailored transmit power adjustment

approach is implemented. However, a feedback control

mechanism driven by reinforcement learning (RL) is proposed

for cooperative load balancing, which can help with a few job

allocation issues (RF-CLB). To begin, by using RL and

machine learning algorithms together, each edge can plan jobs

and distribute them among neighboring edges based on its own

local knowledge. The objective multiedge load balancing

strategy for the Industrial Internet of Things can be launched

with the help of feedback control and multiedge collaboration.

[13].

To queue computational data packets that are being

processed in chunks at one of the IoT nodes, and therefore

distribute the data while making advantage of the unused

bandwidth of local network links. While the ordered packets

are being carried out one by one on the intended IoT device, the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

68

IJRITCC | February 2023, Available @ http://www.ijritcc.org

remaining packets that are not being processed at the moment

are dispersed and kept looping across the network links [17]

Transferring and re-using data packets, is handled via a

time- synchronized packet deflection system on each node.

This method ensures scalability of the temporary storage

capacity of the connected IoT devices, necessitating data rates

of 6 Mbps, while using only 45 Kb of primary storage systems

even for big data.

Load balancing algorithms [18–21], reinforcement learning

algorithms [22–25], and other methods have all been proposed

to fix the scheduling and load issues plaguing cloud computing.

Hypergraph Partition-based Scheduling was extended using a

novel resource allocation technique provided by Laiping Zhao

et al. HPS+ is an enhanced hypergraph partition technique to

reduce WAN traffic by modeling the interdependencies

between tasks and data as well as between data centers. To

further reduce the makespan, it employs a coordinating system

to distribute network resources in accordance with the

principles of job needs. When compared to other algorithms,

HPS+ speeds up production by up to 39% and reduces data

transfer times by up to 53%, according to an evaluation

conducted across the genuine China-Astronomy-Cloud model

and the Google data center model.

Both the layered batch allocation by Jiuchuan Jiang et al.

[27] and the core-based batch allocation by selecting core tasks

to form batches can achieve suboptimal performance with

lower complexity and significantly reduced computational cost.

The former approach primarily uses the hierarchy pattern to

form all possible batches, which can achieve better

performance but may require higher computational cost since

all possible batches are formed and observed. Better results can

be achieved with these methods, both in terms of the overall

amount paid by requesters and the average amount earned by

employees, and in terms of the success rate at which tasks are

completed and the amount of time spent allocating them.

Researchers Yinghao Yu et al. [28] have proposed creating

chunks with storage codes and making several clones of hot

files, also called hotspots, are examples of selective partitioning

strategies that can be used to manage load imbalance. This

method is inefficient because of the extra space it requires in

memory to store the redundant data or the complexity of the

encoding and decoding processes. SP-Cache is a cluster

caching system for data-parallel clusters that uses load

balancing and no redundancy. By carefully dividing popular

files into numerous divisions, their read requests can be

distributed among multiple servers. SP-Cache is able to

efficiently reduce hotspots while minimizing the effects of

laggards thanks to its periodic load balancing, but it is unable to

respond quickly enough to short-term changes in popularity,

such as sudden spikes in the number of requests for specific

files.

It was determined that in dispersed cloud computing

settings, it is crucial to build efficient load balancing algorithms

for picking the correct resources and task scheduling.

Scheduling approaches including single objective, bi-objective,

and multi-objective scheduling have been the subject of

extensive study because of their potential to improve resource

allocation and job organization.

Since prior research has mostly concentrated on the

objectives of processing time and cost or makespan, this work

proposes the Least Load Balancing and (RL) Reinforcement

learning approach for the task scheduling problem. However, in

order to function in decentralized cloud computing, it is

necessary to take into account a number of goals or

requirements. Load balancing and reinforcement learning in a

cloud-based distributed environment also needs to be taken into

account. Improved cloud system performance can be achieved

with the use of the Booster Reinforcement Controller method.

While many algorithms excel in global search optimization,

several of them struggle when it comes to local search.

Since the LLB method exhibits exploratory behavior, it has

been shown in related research to be particularly useful in

figuring out the task allocation problem. Booster RL can aid in

this situation since learning can lead to better solutions.

Therefore, we propose a method that can solve the task

scheduling problem by employing the BRCLB algorithm and

the LLB least load balancing algorithm to determine the tasks

order for right resources that are available in environments and

to find the most appropriate task or resource allocation

solution. Since neither of these approaches leaves any CPU in

the cloud system idle or overworked, throughput is maximized.

III. PROPOSED FRAMEWORK FOR TASK AND

RESOURCE ALLOCATION

First, A crucial part of extending the life of a network is

load balancing [18]. When nodes are overworked due to an

ineffective task allocation strategy, the networks suffer.

Furthermore, in a dispersed cloud network, each processor will

work independently without an appropriate job allocation

technique, which prevents all processors from cooperating in an

energy-efficient manner. More vulnerabilities and uncertainties

exist for real-time applications in cloud networks due to

demanding features and constraints, such as environmental

limits, the dynamic topology, and the instability of wireless

link. The basic framework of cloud reinforcement learning is

shown in Fig. 1, which contains three layers. These layers store

the data related to load on each processor and give server

statistics accordingly. The ability to send packets per minute to

the same server known as per connection consistency. If not

done, can lead packets to go to the wrong server that may lead

to reset and timeout. However, our objective is to reduce fault

tolerance and maximize resource utilization throughput. We

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

69

IJRITCC | February 2023, Available @ http://www.ijritcc.org

need to ensure that servers get more, less or the same load, to

implement uniform load balancing, as load balancing may

receive millions of requests. However, the load balancer must

be able to do end corrections on the server, and add additional

servers if required. (Efficiency & Dynamicity). Based on each

objective we found the proposed BRC load balancing algorithm

helps us to achieve best optimization and throughput of the

system.

The bottom layer represents the clients and the server

clusters. Client generates a tcp packet to establish a connection,

so the request goes to BRC load balancer, wherein proposed

load balancer algorithm is used to allocate the task and

resources. At the top layer, Once the server is selected, the

packet is forwarded to the selected server, the response packet

is sent and the data is encoded into a temp file that is done at

the middle layer. Further, the temp file is sent to the client so

when the client generates a new packet, a temp file is received

through which, server id is extracted. This temp file contains

server id as represented in (1).

 temp=id xor hash(4 tuple) (1)

The server id details are essential to identify server status so

once the temp file is set with server id, this id is extracted from

the file as represented in (2).

id=temp xor hash(4 tuple) (2)

Once the id details are stored in a file it can be directly

connected to the server, which allows packets not proceed

through load balancer; so that task will be allocated to the same

server for further processing, that is known as direct server

return process. This entire concept is stateless, that can be made

stateful (keep per connection on load balancer) and is

applicable for developing NAT on load balancer, statistics, rate

limiter.

Figure 1. Cloud Reinforcement Learning Framework.

The main challenge in distributed cloud computing is

balancing load equally among the available processors. Less

response time, high throughput, improved fault tolerance,

scalability, high user satisfaction, less heat generation,

optimum power consumption and less operational cost can be

achieved by optimal utilization of resources. [1]. Terms and

meanings used in the proposed algorithm are shown in Table 1.

TABLE I. TEARMS AND ITS MEANING

Terms Meaning

𝜙𝑐𝑎𝑝 Capacity of Processor

𝜙𝑏 Bandwidth of Processor

𝜙𝑝𝑟 Rate of Processing

𝜙𝑙 Load of Processor

𝜙𝑡𝑙 Total load of Processor

𝜙𝑎𝑣𝑔𝑙 Average load of Processor

𝑇𝑛 Number of task incoming

𝑇𝑙 Length of task

𝑇𝑠 Size of task

𝐿𝐵𝑐𝑝𝑢 Load Balancer Processor

𝑇𝑚𝑖𝑛 Minimum Threshold

𝑇𝑚𝑎𝑥 Maximum Threshold

𝜙𝑐𝑢𝑟𝑟 Current Processor

𝑏𝑘𝑛 Backup load variable

𝜙𝑎𝑚 Allocated Processor

𝐿𝑡 Total Load

𝑆𝑏 Bandwidth of server

𝐿𝑢 Memory in use

T[] Array of task

𝑡𝑙 Tasl load

𝑇𝑒𝑠𝑡 Estimated Time

A. Changeover Mecahanism of Load Balancer

Static load balancing algorithms and dynamic load

balancing algorithms are the two primary classifications of load

balancing algorithms. Static Load Balancing allocates work to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

70

IJRITCC | February 2023, Available @ http://www.ijritcc.org

processing elements ahead of time, while dynamic Load

Balancing allocates work as needed when an algorithm is

running [8]. It is possible that a static mapping is the best

option if the task’s computing requirements are known in

advance and do not vary during the computation. However, a

static mapping might lead to a significant imbalance, making

dynamic load balancing more effective [8] if the computing

requirements are unknown before execution and can alter at

run-time. The parallel with dynamic load balancing is simple:

just as avalanches disperse sand across a lattice, so too may

they balance the workload of queued activities in a distributed

system. [29]. Static scheduling techniques are non-preemptive.

The changeover mechanism for Load Balancer (LB) is

shown in Fig. 2. It shows that when a LB performs any action,

it may switch to a different state. Now the states may vary

depending on the possible outcomes. If LB receives any user

request in the form of task for allocating it to server, then in the

form of response LB calculates the current load of server in

order to check the server status whether it is overutilized,

underutilized so that task execution can be done faster within

minimum time and also available resource will get fully

utilized. Once the server load is calculated, LB sends load

transfer instructions such as by which processor which task

should be executed. However, if any request is not received by

LB, it will go into a sleeping state triggering timeout. This

mechanism explains the working of LB in order to check load

status of different servers in distributed cloud networks. The

changeover mechanism for load balancing where the

applications can be dynamically tuned according to several

objectives such as time, energy, communications, or their

combinations. It adopts the method to the objective that

provides a better use of the resources at any moment through a

dynamic objective function, which can change over time [30]. It

discusses where the workload is regular in between iterations;

energy metrics are proven to be very useful and where the

workload is irregular in between iterations.

B. Capacity and Load of Processor

In distributed cloud computing, all the incoming requests in

the form of tasks are assigned to a suitable Processor for

execution within a short time period. Our proposed approach

BRC Load balancer selects the best processor to execute the

incoming request, that is dependent on the task length,

processor capacity, and previous load of the processor. The

bandwidth, CPU, memory and processing speed of a processor

represents its capacity in (3). The load of the processor (𝜙) is

determined by the task length and total number of tasks that

processor already holds with respect to its capacity. The

processor load is calculated in (4). The average load of all

processors on a server is represented in (5) and (6),

respectively.

 𝜙𝑐𝑎𝑝 = 𝜙𝑏 + 𝜙𝑝𝑟 (3)

 𝜙𝑙 = 𝑇𝑛 × 𝑇𝑙 × 𝑇𝑠
𝜙𝑐𝑎𝑝

 (4)

Figure 2. Changeover Mechanism of Load Balancer

 𝜙𝑡𝑙 = ∑ 𝜙𝑙
0
𝑝=1 (5)

 𝜙𝑎𝑣𝑔𝑙 = 𝜙𝑡𝑙
𝜙𝑝

 (6)

C. Finding Over-Utilized, Normal - Utilized And Under-

Utilized LB

The cloud computing environment is a network of

distributed datacenters, wherein it consists of hundreds of

servers. So, when a user submits a task, the datacenter

controller handles it and makes use of load balancer. Further

load balancer determines which machine should be allocated to

the next upcoming request for processing [1]. The pseudo code

of Over-Utilized, Normal - Utilized and Under-Utilized LB is

described in Algorithm 1. It is used for balancing and

distributing load equally among the available servers in

distributed cloud networks. The LB Controller uses this

algorithm to gather the data related to current load status of

CPU before and after allocation of tasks for achieving better

system throughput and response time. Total CPU Utilization

can be calculated based on comparing it with minimum

Threshold and maximum threshold values. Nonetheless, in

order to decentralize the data and make use of the unused

bandwidth of local network lines, packets of computational

data that are being processed in chunks at one of the IoT nodes

must be queued sequentially. While the ordered packets are

being carried out one by one on the intended IoT device, the

remaining packets that are not being processed now are

dispersed and kept looping across the network links [17].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

71

IJRITCC | February 2023, Available @ http://www.ijritcc.org

Algorithm 1. Over-Utilized, Normal-Utilized And Under-Utilized

LB

IV. LOAD BALANCING ALGORITHMS

In the Least Load Balancer algorithm, every processor

reports its current status of load to the load balancer. Each

processor gives current load details that are utilized at the time

of allocating requests to the best selected processor. If any

processor fails then that task is allocated to the next suitable

processor for processing so again changes in the task

distribution process occurs.

A. LLB Algorithm

If all servers are running a given client IP address will

always go to the same processor [1]. Through communication

among active resource agents the load balancing is

accomplished. Given that the set of processors ϕ, if no tasks are

waiting in queue to be executed then processor Load ϕld is by

default set to null. However, when no tasks are running, it

needs to calculate the load on the servers for further task

allocation processes. [1]. The pseudo code for LLB Algorithm

is described in Algorithm 2. However, if a task is allocated to n

th processor then Processor load will be summation of current

load and average load of that task, and if load condition is

satisfied the best suitable processor will be selected and

assigned for processing of task. But if the same task is allocated

to another processor with minimum load as compared to the

previous processor, then, this task Tm is assigned to that new

processor. And, the previous processor will be restored with its

earlier load that was there before calculation which is stored in

backup variable bkn , thus allowing task allocation to be done

efficiently.

B. BRC Load Balancer Algorithm

To process the tasks, it is necessary to select the relevant

processor to maximize the throughput of the system that is the

primary goal of finding the optimal policy in distributed cloud

computing.

Algorithm 2. LLB Algorithm

The load value depends on the selection of action in the

state. Given the load value of each processor and available

processors in the network for task execution, the algorithm is

expected to select the best suitable processor and achieve

maximum throughput. For every new request state of load will

be initialized with a new value, as task processing is done

continuously on each server. However simply doing this is not

sufficient, to achieve the best throughput we need to do task

allocation efficiently with reduced makespan and energy

consumption, this is achieved by our proposed Boost

Reinforcement Controller Load Balancer algorithm. The

pseudo code for BRC Load Balancer Algorithm is described in

Algorithm 3. To ensure that workloads are executed efficiently

on available resources, a load balancing method based on

reinforcement learning was developed. The proposed method

performance has been measured in the cloud. The experimental

outcomes demonstrate the effectiveness of the suggested

method in lowering the aforementioned QoS parameters along

with the execution cost, time, and energy consumption.

The first objective proposed algorithm is to identify the

time required to execute the task that is makespan. The task

execution time is the time that the CPU needs to complete the

decided set of tasks. Another objective includes to reduce the

task completion time by selecting the most configured and

optimized fastest processor for the task. In Algorithm 3, we

represent the processor controller as LB, and the environment

under which servers are running is termed as environment. LB

1. Begin

2. For each Load Balancer LB do

3. get LBcpu utilization

4. initialize Tmin

5. initialize Tmax

6. if LBcpu < Tmin then

7. LBcpu under-utilized

8. else

9. LBcpu rejected

10. End if

11. if Tmin < LBcpu < Tmax then

12. LBcpu normal-utilized

13. End if

14. if LBcpu > Tmax then

15. LBcpu is over-utilized

16. End if

17. End For

18. Return new LB

19. End

1. Begin

2. For each task Tm do
3. min = ∞

4. For each Processor 𝛟 do
5. Initialize Backup load bkn

6. if 𝛟ldn + Tm < min then

7. 𝛟ldn = 𝛟ldn + Tm

8. min = 𝛟ldn

9. 𝛟am = n
10. Else

11. current processor 𝛟curr do

12. 𝛟curr = bkn
13. End if

14. End For

15. End For

16. Return Current load status

17. End

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

72

IJRITCC | February 2023, Available @ http://www.ijritcc.org

performs task allocation and depending on the condition the

best selected processor is assigned with further task processing.

Important parameters of the algorithm are described as:

1) Server parameters Lt, Sb, Lu

The necessary parameters of the server such

as total load bearing memory, bandwidth, and

memory in use. C={Lt, Sb, Lu}

2) Load on CPU's Environment T[], tl, Test

This section contains all the information about

how many tasks the processor is handling, whether it

is underload or overload or balance. So here task

count, task lengths and estimated time for task is

Algorithm 3. LLB Algorithm

maintained. The task estimation may vary with

processors due to different processing power.

L={T[], tl, Test}

3) Changeover mechanism

It shows that when a LB performs any action, it

may switch to a different state. Now the states may

vary depending on the possible outcomes. Fig. 2

explains the states.

V. EXPERIMENTAL EVALUATION

Our new LLB and BRC Load Balancer algorithm is

compared to four other algorithms in this section: MOCS,

FCFS, minmin, and maxmin. Our simulation findings suggest

that our proposed approach outperforms state-of- the-art

alternatives. Minimizing Load Balancer settings and effectively

managing processor load are two of its main features. The LLB

algorithm’s outputs are fast and accurate, too, which improves

the efficiency of our system.

Figure 3. Comparison of makespan for different task

The result displayed in Fig. 3 is obtained by different types

of algorithms with different numbers of tasks assigned to

available processors. From this figure, compared to the other

four algorithms our proposed algorithm takes less computation

time.

Figure 4. Memory Utilization for different set of tasks

Memory utilization is shown in Fig. 4 for different sets of

tasks assigned to best suitable processors for execution with the

BRC Load Balancer algorithm. Our proposed BRC Load

Balancer algorithm makes use of minimum resources for

processing the task execution. From the figure, when the

number of processors increases, the processing speed also

increases. BRC Load Balancer shows a great improvement in

speedup as compared to other existing methods, as BRC Load

balancer makes use of minimum resources for task execution

so more number of task processing can be done effectively.

This proves that BRC Load Balancer is very suitable to be

implemented in distributed cloud computing.

VI. CONCLUSION

The Booster Reinforcement Controller Load Balancer task

scheduling algorithm is a distributed cloud computing load

1. Initialize Server parameters Lt, Sb, Lu

2. Initialize Processor load 𝞥ld
3. Begin

4. For each new task Tn do

5. Initialize load balancer state lbs

6. For each task Tn in queue do
7. execute LLB algorithm

8. if 𝞥 == underload

9. allocate task T to 𝞥
10. End if

11. Update Load parameters T[], tl, Test

12. Update Server parameters Lt, Sb, Lu

13. Change Load Balancer State

14. Generate temporary file F

15. End For

16. End For

17. Return F

18. End

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

73

IJRITCC | February 2023, Available @ http://www.ijritcc.org

balancing algorithm that is presented in this paper. This

algorithm is based on both the multiple load balancer PSO

algorithm and the LLB algorithm. When the next task is

assigned, the processor can be brought back to its prior state

thanks to the LLB Backup of load, which is kept. Finding

the Over-Utilized, Normal-Utilized, and Under-Utilized loads

of the various processors that are available reduces the overall

processing time needed to complete a task. In a distributed

cloud setting, this load balancing algorithm is suggested to

optimize various load balancing parameters with the least

amount of time required as compared to other existing load

balancing algorithms. The local environment aids in the

completion of our simulation experiment. Two distinct

experiments are run in the simulation to determine percentage,

accuracy, and process speedup. When the multiple task set is

distributed to different processors, the LLB & BRC Load

Balancer method enhances server settings when compared to

other load balancing techniques now in use. This information

leads to the conclusion that our suggested approach performs

better even when a large number of tasks are brought into the

datacenter. We will contrast our suggested approach with other

meta-reinforcement learning techniques in the future. A hybrid

approach that combines swarm optimization and machine

learning techniques has also been presented to enhance the

ideas of resource management and resource allocation. Real-

time analytics on the intricate and dynamic cloud network will

be provided by this algorithm.

REFERENCES

[1] Mrs. Minal Shahakar, Dr. S. A. Mahajan, Dr. Lalit Patil,

“Assignment Of Independent Tasks Based on Load

Balancing in Distributed Cloud Systems”, J. Harbin Inst of

Tech., vol. 54, pp. 301-311, 2022.

[2] Sunghwan Kim, Seunghyun Yoon, and Hyuk Lim, “Deep

Reinforcement Learning-Based Traffic Sampling for

Multiple Traffic Analyzers on Software-Defined Networks”,

IEEE Access, vol. 9, pp. 47815-47827, 2021.

[3] Warangkhana Kimpan, “Multi-Objective Task Scheduling

Optimization for Load Balancing in Cloud Computing

Environment Using Hybrid Artificial Bee Colony Algorithm

With Reinforcement Learning”, IEEE Access, vol. 10, pp.

17803-17818, 2022.

[4] Arabinda Pradhan, Sukant Kishoro Bisoy, Sandeep Kautish,

Muhammed Basheer Jasser, And Ali Wagdy Mohamed,

“Intelligent Decision-Making of Load Balancing Using Deep

Reinforcement Learning and Parallel PSO in Cloud

Environment”, IEEE Access, vol. 10, pp. 76939-76952,

2022.

[5] Rizwana Ahmad (Member, Ieee), And Anand Srivastava

(Member, Ieee), “Sequential Load Balancing for Link

Aggregation Enabled Heterogeneous LiFi WiFi Network”, J.

Vehicular Technology, vol. 3, pp. 138-148, 2022.

[6] Guoxin Liu, Student Member, IEEE, Haiying Shen, Senior

Member, IEEE, and Haoyu Wang, Student Member, IEEE,

“Towards Long-View Computing Load Balancing in Cluster

Storage Systems”, Ieee Transactions On Parallel And

Distributed Systems, VOL. 28, pp. 1770-1784, 2017.

[7] Yu-Chieh Chuang and Wei-Yu Chiu , Member, IEEE,

“Deep Reinforcement Learning Based Pricing Strategy of

Aggregators Considering Renewable Energy”, Ieee

Transactions On Emerging Topics In Computational

Intelligence, VOL. 6, pp. 499-508, 2022.

[8] Andrea Giordano, Alessio De Rango, Rocco Rongo, Donato

D’Ambrosio, and William Spataro, “Dynamic Load

Balancing in Parallel Execution of Cellular Automata”,

IEEE Transactions on Parallel and Distributed Systems,

Vol. 32, No. 2, 2021.

[9] Weichao Ding , Fei Luo , Chunhua Gu, Haifeng Lu, And

Qin Zhou, “Performance-to-Power Ratio Aware Resource

Consolidation Framework Based on Reinforcement

Learning in Cloud Data Centers”, IEEE Access, vol. 8, pp.

15472-15483, 2020.

[10] Jia Chen, (Member, Ieee), Shihua Chen, Xin Chengand Jing

Chen, (Graduate Student Member, Ieee), “A Deep

Reinforcement Learning Based Switch Controller Mapping

Strategy in Software Defined Network”, IEEE Access, vol.

8, pp. 221553-221567, 2020.

[11] Eunji Hwang, Suntae Kim, Tae-kyungYoo, Jik-Soo Kim,

Soonwook Hwang, and Young-ri Choi, “Resource

Allocation Policies for Loosely Coupled Applications in

Heterogeneous Computing Systems”, Ieee Transactions On

Parallel And Distributed Systems, Vol. 27, pp. 2349-2362,

2016.

[12] Yalan Wu , Jigang Wu , Member, IEEE, Long Chen , Jiaquan

Yan, and Yinhe Han, “Load Balance Guaranteed Vehicle-to-

Vehicle Computation Offloading for Min-Max Fairness in

VANETs”, Ieee Transactions On Intelligent Transportation

Systems, VOL. 23, pp. 11994-12013, 2022.

[13] Xing Chen , Member, IEEE, Junqin Hu, Zheyi Chen , Bing

Lin, Naixue Xiong , Senior Member, IEEE, and Geyong Min

, Member, IEEE, “A Reinforcement Learning-Empowered

Feedback Control System for Industrial Internet of Things”,

Ieee Transactions On Industrial Informatics, VOL. 18, pp.

2724-2733, 2022.

[14] Li Shi, Zhemin Zhang, and Thomas Robertazzi, “Energy-

Aware Scheduling of Embarrassingly Parallel Jobs and

Resource Allocation in Cloud”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 28, 2017.

[15] Dazhao Cheng, Jia Rao, Yanfei Guo, Changjun Jiang, and

Xiaobo Zhou, “Improving Performance of Heterogeneous

MapReduce Clusters with Adaptive Task Tuning”, IEEE

Transactions On Parallel And Distributed Systems, Vol. 28,

2017.

[16] Zhiyao Hu , Dongsheng Li, Dongxiang Zhang , Yiming

Zhang , and Baoyun Peng “Optimizing Resource Allocation

for Data-Parallel Jobs Via GCN-Based Prediction”, IEEE

Transactions On Parallel And Distributed Systems, Vol. 32,

2021.

[17] Anandarup Mukherjee, Pallav Kumar Deb, and Sudip Misra,

“Timed Loops for Distributed Storage in Wireless

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6130

Article Received: 20 December 2022 Revised: 10 January 2023 Accepted: 20 January 2023

74

IJRITCC | February 2023, Available @ http://www.ijritcc.org

Networks”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 33, 2022.

[18] Wenzhong Guo, Jie Li, Guolong Chen, Yuzhen Niu, and

Chengyu Chen, “A PSO-Optimized Real-Time Fault-

Tolerant Task Allocation Algorithm in Wireless Sensor

Networks”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 26, 2015.

[19] Dazhao Cheng, Xiaobo Zhou, Yu Wang and Changjun

Jiang, “Adaptive Scheduling Parallel Jobs with Dynamic

Batching in Spark Streaming”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 29, 2018.

[20] Myeonggyun Han , Jinsu Park , and Woongki Baek, “Design

and Implementation of a Criticality and Heterogeneity-

Aware Runtime System for Task-Parallel Applications”,

IEEE Transactions on Parallel and Distributed Systems,

Vol. 32, 2021.

[21] Renyu Yang, Chunming Hu, Xiaoyang Sun, Peter Garraghan

, Tianyu Wo, Zhenyu Wen, Hao Peng , Jie Xu,

“Performance-Aware Speculative Resource

Oversubscription for Large-Scale Clusters”, IEEE

Transactions On Parallel And Distributed Systems, Vol. 31,

2020.

[22] Minghao Ye , Yang Hu , Junjie Zhang , Member, IEEE,

Zehua Guo , Senior Member, IEEE, and H. Jonathan Chao ,

Life Fellow, IEEE, “Mitigating Routing Update Overhead

for Traffic Engineering by Combining Destination-Based

Routing With Reinforcement Learning”, Ieee Journal On

Selected Areas In Communications, vol. 40, 2022.

[23] Rizwana Ahmad, (Student Member, Ieee), Mohammad

Dehghani Soltani, Majid Safari, (Member, Ieee), Anand

Srivastava, (Member, Ieee), And Abir Das, “Reinforcement

Learning Based Load Balancing For Hybrid LiFi WiFi

Networks”, IEEE Access, vol. 8, pp. 132273-132284, 2020.

[24] Ankit Shah , Rajesh Ganesan , Sushil Jajodia , Fellow,

IEEE, Pierangela Samarati , Fellow, IEEE, and Hasan Cam,

Senior Member, IEEE, “Adaptive Alert Management for

Balancing Optimal Performance among Distributed CSOCs

using Reinforcement Learning”, Ieee Transactions On

Parallel And Distributed Systems, Vol. 31, pp. 16-33, 2020.

[25] Qingzhi Liu , Tiancong Xia, Long Cheng , Senior Member,

IEEE, Merijn van Eijk, Tanir Ozcelebi , and Ying Mao ,

Member, IEEE, “Deep Reinforcement Learning for Load-

Balancing Aware Network Control in IoT Edge Systems”,

Ieee Transactions On Parallel And Distributed Systems, Vol.

33, pp. 1491-1502, 2022.

[26] Laiping Zhao, Yanan Yang, Ali Munir, Alex X. Liu, Yue Li,

and Wenyu Qu, “Optimizing Geo-Distributed Data

Analytics with Coordinated Task Scheduling and Routing”,

IEEE Transactions On Parallel And Distributed Systems,

Vol. 31, pp. 279-293, 2020.

[27] Jiuchuan Jiang, Bo An, Yichuan Jiang, Senior Member,

IEEE, Peng Shi, Zhan Bu, and Jie Cao, “Batch Allocation

for Tasks with Overlapping Skill Requirements in

Crowdsourcing”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 30, pp.1722-1737, 2019.

[28] Yinghao Yu , Wei Wang , Renfei Huang , Jun Zhang , and

Khaled Ben Letaief, “Achieving Load-Balanced,

Redundancy-Free Cluster Caching with Selective Partition”,

IEEE Transactions On Parallel And Distributed Systems,

Vol. 31, pp. 439-454, 2020.

[29] Juan Luis Jimenez Laredo, Frederic Guinand, Damien

Olivier, and Pascal Bouvry, “Load Balancing at the Edge of

Chaos: How Self-Organized Criticality Can Lead to Energy-

Efficient Computing”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 28, pp. 517-529, 2017.

[30] Alberto Cabrera, Alejandro Acosta, Francisco Almeida, and

Vicente Blanco, “A Dynamic Multi–Objective Approach for

Dynamic Load Balancing in Heterogeneous Systems”, IEEE

Transactions On Parallel And Distributed Systems, Vol. 31,

No. 10, October 2020.

[31] YuAng Chen and Yeh-Ching Chung, “Workload Balancing

via Graph Reordering on Multicore Systems”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 33,

pp. 1231-1245, 2022.

[32] Mahdi Jafari Siavoshani , Farzad Parvaresh , Ali Pourmiri ,

and Seyed Pooya Shariatpanahi, “Coded Load Balancing in

Cache Networks”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 31, pp. 347-358, 2020.

[33] Jonatha Anselmi and Josu Doncel, “Asymptotically Optimal

Size-Interval Task Assignments”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 30, pp. 2422-2433,

2019.

[34] Qiong Chen, Zimu Zheng, Chuang Hu, Dan Wang, and

Fangming Liu, “On-Edge Multi-Task Transfer Learning:

Model and Practice With Data-Driven Task Allocation”,

IEEE Transactions On Parallel And Distributed Systems,

Vol. 31, pp. 1357-1371, 2020.

[35] Ashraf Suyyagh and Zeljko Zilic, “Energy and Task-Aware

Partitioning on Single-ISA Clustered Heterogeneous

Processors”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 31, pp. 306-317, 2020.

[36] Pingpeng Yuan, Changfeng Xie, Ling Liu, and Hai Jin,

“PathGraph: A Path Centric Graph Processing System”,

IEEE Transactions On Parallel And Distributed Systems,

Vol. 27, pp. 2998-3012, 2016.

[37] Lazaros Papadopoulos, Dimitrios Soudris, Christoph

Kessler, August Ernstsson, Johan Ahlqvist, Nikos Vasilas,

Athanasios I. Papadopoulos, Panos Seferlis, Charles

Prouveur, Matthieu Haefele, Samuel Thibault, Athanasios

Salamanis, Theodoros Ioakimidis, and Dionysios Kehagias,

“EXA2PRO: A Framework for High Development

Productivity on Heterogeneous Computing Systems”, IEEE

Transactions On Parallel And Distributed Systems, Vol. 33,

pp. 792-804, 2022.

[38] Weng Chon Ao and Konstantinos Psounis, “Resource-

Constrained Replication Strategies for Hierarchical and

Heterogeneous Tasks”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 31, pp. 793-804, 2020.

[39] Umar Ibrahim Minhas, Roger Woods, Dimitrios S.

Nikolopoulos, and Georgios Karakonstantis, “Efficient

Dynamic Multi-Task Execution on FPGA-Based Computing

Systems”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 33, pp. 710-722, 2022.

http://www.ijritcc.org/

