21 research outputs found

    Novel procedures for graph edge-colouring

    Get PDF
    Orientador: Dr. Renato CarmoCoorientador: Dr. André Luiz Pires GuedesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 05/12/2018Inclui referências e índiceÁrea de concentração: Ciência da ComputaçãoResumo: O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo , ou é ? + 1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ?) possuem soma local de graus no máximo ?2 ?? (entendemos por 'soma local de graus' de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe 2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que |V(G1)| _ |V(G2)| e ?(G1) _ ?(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1 ?G2 é Classe 1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total. Palavras-chave: Coloração de grafos e hipergrafos (MSC 05C15). Algoritmos de grafos (MSC 05C85). Teoria dos grafos em relação à Ciência da Computação (MSC 68R10). Graus de vértices (MSC 05C07). Operações de grafos (MSC 05C76).Abstract: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing's Theorem, the chromatic index of any simple graph G is either its maximum degree ? or it is ? + 1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are important NP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ?) have local degree sum at most ?2 ? ? (by 'local degree sum' of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing's in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)| _ |V(G2)| and ?(G1) _ ?(G2), and if the majors of G1 induce an acyclic graph, then the join graph G1 ?G2 is Class 1. Besides these results on edge-colouring, we present partial results on total colouring join graphs, cobipartite graphs, and circular-arc graphs, as well as a discussion on a recolouring procedure for total colouring. Keywords: Colouring of graphs and hypergraphs (MSC 05C15). Graph algorithms (MSC 05C85). Graph theory in relation to Computer Science (MSC 68R10). Vertex degrees (MSC 05C07). Graph operations (MSC 05C76)

    Advances in Discrete Applied Mathematics and Graph Theory

    Get PDF
    The present reprint contains twelve papers published in the Special Issue “Advances in Discrete Applied Mathematics and Graph Theory, 2021” of the MDPI Mathematics journal, which cover a wide range of topics connected to the theory and applications of Graph Theory and Discrete Applied Mathematics. The focus of the majority of papers is on recent advances in graph theory and applications in chemical graph theory. In particular, the topics studied include bipartite and multipartite Ramsey numbers, graph coloring and chromatic numbers, several varieties of domination (Double Roman, Quasi-Total Roman, Total 3-Roman) and two graph indices of interest in chemical graph theory (Sombor index, generalized ABC index), as well as hyperspaces of graphs and local inclusive distance vertex irregular graphs

    Parameters related to fractional domination in graphs.

    Get PDF
    Thesis (M.Sc.)-University of Natal, 1995.The use of characteristic functions to represent well-known sets in graph theory such as dominating, irredundant, independent, covering and packing sets - leads naturally to fractional versions of these sets and corresponding fractional parameters. Let S be a dominating set of a graph G and f : V(G)~{0,1} the characteristic function of that set. By first translating the restrictions which define a dominating set from a set-based to a function-based form, and then allowing the function f to map the vertex set to the unit closed interval, we obtain the fractional generalisation of the dominating set S. In chapter 1, known domination-related parameters and their fractional generalisations are introduced, relations between them are investigated, and Gallai type results are derived. Particular attention is given to graphs with symmetry and to products of graphs. If instead of replacing the function f : V(G)~{0,1} with a function which maps the vertex set to the unit closed interval we introduce a function f' which maps the vertex set to {0, 1, ... ,k} (where k is some fixed, non-negative integer) and a corresponding change in the restrictions on the dominating set, we obtain a k-dominating function. In chapter 2 corresponding k-parameters are considered and are related to the classical and fractional parameters. The calculations of some well known fractional parameters are expressed as optimization problems involving the k- parameters. An e = 1 function is a function f : V(G)~[0,1] which obeys the restrictions that (i) every non-isolated vertex u is adjacent to some vertex v such that f(u)+f(v) = 1, and every isolated vertex w has f(w) = 1. In chapter 3 a theory of e = 1 functions and parameters is developed. Relationships are traced between e = 1 parameters and those previously introduced, some Gallai type results are derived for the e = 1 parameters, and e = 1 parameters are determined for several classes of graphs. The e = 1 theory is applied to derive new results about classical and fractional domination parameters

    Polynomial growth of concept lattices, canonical bases and generators:: extremal set theory in Formal Concept Analysis

    Get PDF
    We prove that there exist three distinct, comprehensive classes of (formal) contexts with polynomially many concepts. Namely: contexts which are nowhere dense, of bounded breadth or highly convex. Already present in G. Birkhoff's classic monograph is the notion of breadth of a lattice; it equals the number of atoms of a largest boolean suborder. Even though it is natural to define the breadth of a context as being that of its concept lattice, this idea had not been exploited before. We do this and establish many equivalences. Amongst them, it is shown that the breadth of a context equals the size of its largest minimal generator, its largest contranominal-scale subcontext, as well as the Vapnik-Chervonenkis dimension of both its system of extents and of intents. The polynomiality of the aforementioned classes is proven via upper bounds (also known as majorants) for the number of maximal bipartite cliques in bipartite graphs. These are results obtained by various authors in the last decades. The fact that they yield statements about formal contexts is a reward for investigating how two established fields interact, specifically Formal Concept Analysis (FCA) and graph theory. We improve considerably the breadth bound. Such improvement is twofold: besides giving a much tighter expression, we prove that it limits the number of minimal generators. This is strictly more general than upper bounding the quantity of concepts. Indeed, it automatically implies a bound on these, as well as on the number of proper premises. A corollary is that this improved result is a bound for the number of implications in the canonical basis too. With respect to the quantity of concepts, this sharper majorant is shown to be best possible. Such fact is established by constructing contexts whose concept lattices exhibit exactly that many elements. These structures are termed, respectively, extremal contexts and extremal lattices. The usual procedure of taking the standard context allows one to work interchangeably with either one of these two extremal structures. Extremal lattices are equivalently defined as finite lattices which have as many elements as possible, under the condition that they obey two upper limits: one for its number of join-irreducibles, other for its breadth. Subsequently, these structures are characterized in two ways. Our first characterization is done using the lattice perspective. Initially, we construct extremal lattices by the iterated operation of finding smaller, extremal subsemilattices and duplicating their elements. Then, it is shown that every extremal lattice must be obtained through a recursive application of this construction principle. A byproduct of this contribution is that extremal lattices are always meet-distributive. Despite the fact that this approach is revealing, the vicinity of its findings contains unanswered combinatorial questions which are relevant. Most notably, the number of meet-irreducibles of extremal lattices escapes from control when this construction is conducted. Aiming to get a grip on the number of meet-irreducibles, we succeed at proving an alternative characterization of these structures. This second approach is based on implication logic, and exposes an interesting link between number of proper premises, pseudo-extents and concepts. A guiding idea in this scenario is to use implications to construct lattices. It turns out that constructing extremal structures with this method is simpler, in the sense that a recursive application of the construction principle is not needed. Moreover, we obtain with ease a general, explicit formula for the Whitney numbers of extremal lattices. This reveals that they are unimodal, too. Like the first, this second construction method is shown to be characteristic. A particular case of the construction is able to force - with precision - a high number of (in the sense of "exponentially many'') meet-irreducibles. Such occasional explosion of meet-irreducibles motivates a generalization of the notion of extremal lattices. This is done by means of considering a more refined partition of the class of all finite lattices. In this finer-grained setting, each extremal class consists of lattices with bounded breadth, number of join irreducibles and meet-irreducibles as well. The generalized problem of finding the maximum number of concepts reveals itself to be challenging. Instead of attempting to classify these structures completely, we pose questions inspired by Turán's seminal result in extremal combinatorics. Most prominently: do extremal lattices (in this more general sense) have the maximum permitted breadth? We show a general statement in this setting: for every choice of limits (breadth, number of join-irreducibles and meet-irreducibles), we produce some extremal lattice with the maximum permitted breadth. The tools which underpin all the intuitions in this scenario are hypergraphs and exact set covers. In a rather unexpected, but interesting turn of events, we obtain for free a simple and interesting theorem about the general existence of "rich'' subcontexts. Precisely: every context contains an object/attribute pair which, after removed, results in a context with at least half the original number of concepts

    Symmetry in Graph Theory

    Get PDF
    This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of ""Graph Theory"". Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view

    Stratification and domination in graphs.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.In a recent manuscript (Stratification and domination in graphs. Discrete Math. 272 (2003), 171-185) a new mathematical framework for studying domination is presented. It is shown that the domination number and many domination related parameters can be interpreted as restricted 2-stratifications or 2-colorings. This framework places the domination number in a new perspective and suggests many other parameters of a graph which are related in some way to the domination number. In this thesis, we continue this study of domination and stratification in graphs. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at the blue vertex v. An F-coloring of a graph G is a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F (not necessarily induced in G) rooted at v. The F-domination number yF(GQ of G is the minimum number of red vertices of G in an F-coloring of G. Chapter 1 is an introduction to the chapters that follow. In Chapter 2, we investigate the X-domination number of prisms when X is a 2-stratified 4-cycle rooted at a blue vertex where a prism is the cartesian product Cn x K2, n > 3, of a cycle Cn and a K2. In Chapter 3 we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the F3 and is adjacent to a blue vertex and with the remaining vertex colored red. In particular, we show that for a tree of diameter at least three this parameter is at most two-thirds its order and we characterize the trees attaining this bound. (ii) We also investigate the F-domination number when F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex. We show that if G is a connected graph of order n in which every edge is in a triangle, then for n sufficiently large this parameter is at most (n — /n)/2 and this bound is sharp. In Chapter 4, we further investigate the F-domination number when F is a 2- stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the P3 and is adjacent to a blue vertex with the remaining vertex colored red. We show that for a connected graph of order n with minimum degree at least two this parameter is bounded above by (n —1)/2 with the exception of five graphs (one each of orders four, five and six and two of order eight). For n > 9, we characterize those graphs that achieve the upper bound of (n — l)/2. In Chapter 5, we define an f-coloring of a graph to be a red-blue coloring of the vertices such that every blue vertex is adjacent to a blue vertex and to a red vertex, with the red vertex itself adjacent to some other red vertex. The f-domination number yz{G) of a graph G is the minimum number of red vertices of G in an f-coloring of G. Let G be a connected graph of order n > 4 with minimum degree at least 2. We prove that (i) if G has maximum degree A where A 4 with maximum degree A where A 5 with maximum degree A where

    On the integrity of domination in graphs.

    Get PDF
    Thesis (M.Sc.)-University of Natal, 1993.This thesis deals with an investigation of the integrity of domination in a.graph, i.e., the extent to which domination properties of a graph are preserved if the graph is altered by the deletion of vertices or edges or by the insertion of new edges. A brief historical introduction and motivation are provided in Chapter 1. Chapter 2 deals with kedge-( domination-)critical graphs, i.e., graphsG such that )'(G) = k and )'(G+e) < k for all e E E(G). We explore fundamental properties of such graphs and their characterization for small values of k. Particular attention is devoted to 3-edge-critical graphs. In Chapter 3, the changes in domination number brought aboutby vertex removal are investigated. \ Parameters )'+'(G) (and "((G)), denoting the smallest number of vertices of G in a set 5 such that )'(G-5) > )'(G) ()'(G -5) < )'(G), respectively), are investigated, as are'k-vertex-critical graphs G (with )'(G) = k and )'(G-v) < k for all v E V(O)). The existence of smallest'domination-forcing sets of vertices of graphs is considered. The bondage number 'Y+'(G), i.e., the smallest number of edges of a graph G in a set F such that )'(G- F) > )'(0), is investigated in Chapter 4, as are associated extremal graphs. Graphs with dominating sets or domination numbers that are insensitive to the removal of an arbitrary edge are considered, with particular reference to such graphs of minimum size. Finally, in Chapter 5, we-discuss n-dominating setsD of a graph G (such that each vertex in G-D is adjacent to at least n vertices in D) and associated parameters. All chapters but the first and fourth contain a listing of unsolved problems and conjectures
    corecore