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Gromov Hyperbolicity in Mycielskian Graphs
Reprinted from: Symmetry 2017, 9, 131, doi:10.3390/sym9080131 . . . . . . . . . . . . . . . . . . . 25
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This book contains the successful invited submissions [1–10] to a special issue of Symmetry on the
subject area of ‘graph theory’.

Although symmetry has always played an important role in graph theory, in recent years,
this role has increased significantly in several branches of this field, including, but not limited to:
Gromov hyperbolic graphs, metric dimension of graphs, domination theory, and topological indices.
This Special issue invites contributions addressing new results on these topics, both from a theoretical
and an applied point of view.

This special issue includes the novel techniques and tools for graph theory, such as:

• Local metric dimension of graphs [1].
• Gromov hyperbolicity on geometric graphs [2,3,5].
• Beta-differential of graphs [4].
• Path ordinal method [6].
• Neural networks on multi-centrality-index diagrams [7] and complex networks [8].
• Connectivity indices and movement directions at path segments [9].
• Independent (1, 2)-sets in cylindrical networks [10].

The response to our call had the following statistics:

• Submissions (40);
• Publications (10);
• Rejections (30);
• Article types: Research Article (10);

Our authors’ geographical distribution (published papers) is:

• Spain (8)
• Japan (4)
• Mexico (4)
• Austria (2)
• Korea (2)
• Luxembourg (1)
• Poland (1)
• Egypt (1)

Published submissions are related to local metric dimension, Gromov hyperbolicity, differential,
path ordinal method, neural networks, connectivity indices, and independent sets, as well as
their applications.

We found the edition and selections of papers for this book very inspiring and rewarding. We also
thank the editorial staff and reviewers for their efforts and help during the process.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: In a graph G = (V, E), a vertex v ∈ V is said to distinguish two vertices x and y if
dG(v, x) �= dG(v, y). A set S ⊆ V is said to be a local metric generator for G if any pair of adjacent
vertices of G is distinguished by some element of S. A minimum local metric generator is called
a local metric basis and its cardinality the local metric dimension of G. A set S ⊆ V is said to be
a simultaneous local metric generator for a graph family G = {G1, G2, . . . , Gk}, defined on a common
vertex set, if it is a local metric generator for every graph of the family. A minimum simultaneous
local metric generator is called a simultaneous local metric basis and its cardinality the simultaneous
local metric dimension of G. We study the properties of simultaneous local metric generators and
bases, obtain closed formulae or tight bounds for the simultaneous local metric dimension of several
graph families and analyze the complexity of computing this parameter.

Keywords: local metric dimension; simultaneity; corona product; lexicographic product; complexity

1. Introduction

A generator of a metric space is a set S of points in the space with the property that every point
of the space is uniquely determined by its distances from the elements of S. Given a simple and
connected graph G = (V, E), we consider the function dG : V × V → N, where dG(x, y) is the length
of the shortest path between u and v and N is the set of non-negative integers. Clearly, (V, dG) is
a metric space, i.e., dG satisfies dG(x, x) = 0 for all x ∈ V, dG(x, y) = dG(y, x) for all x, y ∈ V and
dG(x, y) ≤ dG(x, z) + dG(z, y) for all x, y, z ∈ V. A vertex v ∈ V is said to distinguish two vertices x
and y if dG(v, x) �= dG(v, y). A set S ⊆ V is said to be a metric generator for G if any pair of vertices of
G is distinguished by some element of S.

Metric generators were introduced by Blumental [1] in the general context of metric spaces. They
were later introduced in the context of graphs by Slater in [2], where metric generators were called
locating sets, and, independently, by Harary and Melter in [3], where metric generators were called
resolving sets. Applications of the metric dimension to the navigation of robots in networks are
discussed in [4] and applications to chemistry in [5,6]. This invariant was studied further in a number
of other papers including, for instance [7–20].

As pointed out by Okamoto et al. in [21], there exist applications where only neighboring vertices
need to be distinguished. Such applications were the basis for the introduction of the local metric
dimension. A set S ⊆ V is said to be a local metric generator for G if any pair of adjacent vertices
of G is distinguished by some element of S. A minimum local metric generator is called a local
metric basis and its cardinality the local metric dimension of G, denoted by diml(G). Additionally,

Symmetry 2017, 9, 132; doi:10.3390/sym9080132 www.mdpi.com/journal/symmetry3



Symmetry 2017, 9, 132

Jannesari and Omoomi [16] introduced the concept of adjacency resolving sets as a result of considering
the two-distance in V(G), which is defined as dG,2(u, v) = min{dG(u, v), 2} for any two vertices
u, v ∈ V(G). A set of vertices S′ such that any pair of vertices of V(G) is distinguished by an element s
in S′ considering the two-distance in V(G) is called an adjacency generator for G. If we only ask S′

to distinguish the pairs of adjacent vertices, we call S′ a local adjacency generator. A minimum local
adjacency generator is called a local adjacency basis, and the cardinality of any such basis is the local
adjacency dimension of G, denoted adiml(G).

The notion of simultaneous metric dimension was introduced in the framework of the navigation
problem proposed in [4], where navigation was studied in a graph-structured framework in which
the navigating agent (which was assumed to be a point robot) moves from node to node of a “graph
space”. The robot can locate itself by the presence of distinctively-labeled “landmark” nodes in the
graph space. On a graph, there is neither the concept of direction, nor that of visibility. Instead,
it was assumed in [4] that a robot navigating on a graph can sense the distances to a set of landmarks.
Evidently, if the robot knows its distances to a sufficiently large set of landmarks, its position on
the graph is uniquely determined. This suggests the following problem: given a graph G, what are
the fewest number of landmarks needed and where should they be located, so that the distances
to the landmarks uniquely determine the robot’s position on G? Indeed, the problem consists of
determining the metric dimension and a metric basis of G. Now, consider the following extension
of this problem, introduced by Ramírez-Cruz, Oellermann and Rodríguez-Velázquez in [22]. Suppose
that the topology of the navigation network may change within a range of possible graphs, say
G1, G2, ..., Gk. This scenario may reflect several situations, for instance the simultaneous use of
technologically-differentiated redundant sets of landmarks, the use of a dynamic network whose
links change over time, etc. In this case, the above-mentioned problem becomes determining the
minimum cardinality of a set S, which must be simultaneously a metric generator for each graph Gi,
i ∈ {1, ..., k}. Therefore, if S is a solution for this problem, then each robot can be uniquely determined
by the distance to the elements of S, regardless of the graph Gi that models the network at each moment.
Such sets we called simultaneous metric generators in [22], where, by analogy, a simultaneous metric
basis was defined as a simultaneous metric generator of minimum cardinality, and this cardinality was
called the simultaneous metric dimension of the graph family G, denoted by Sd(G).

In this paper, we recover Okamoto et al.’s observation that in some applications, it is only
necessary to distinguish neighboring vertices. In particular, we consider the problem of distinguishing
neighboring vertices in a multiple topology scenario, so we deal with the problem of finding the
minimum cardinality of a set S, which must simultaneously be a local metric generator for each graph
Gi, i ∈ {1, ..., k}.

Given a family G = {G1, G2, ..., Gk} of connected graphs Gi = (V, Ei) on a common vertex set V,
we define a simultaneous local metric generator for G as a set S ⊆ V such that S is simultaneously
a local metric generator for each Gi. We say that a minimum simultaneous local metric generator for G
is a simultaneous local metric basis of G and its cardinality the simultaneous local metric dimension of
G, denoted by Sdl(G) or explicitly by Sdl(G1, G2, ..., Gk). An example is shown in Figure 1, where the
set {v3, v4} is a simultaneous local metric basis of {G1, G2, G3}.

It will also be useful to define the simultaneous local adjacency dimension of a family
G = {G1, G2, . . . , Gk} of connected graphs Gi = (V, Ei) on a common vertex set V, as the cardinality
of a minimum set S ⊆ V such that S is simultaneously a local adjacency generator for each Gi.
We denote this parameter as Sadl G.
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v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

G1 G2 G3

Figure 1. The set {v3, v4} is a simultaneous local metric basis of {G1, G2, G3}. Thus, Sdl(G1, G2, G3) = 2.

In what follows, we will use the notation Kn, Kr,s, Cn, Nn and Pn for complete graphs, complete
bipartite graphs, cycle graphs, empty graphs and path graphs of order n, respectively. Given a graph
G = (V, E) and a vertex v ∈ V, the set NG(v) = {u ∈ V : u ∼ v} is the open neighborhood of v, and
the set NG[v] = NG(v) ∪ {v} is the closed neighborhood of v. Two vertices x, y ∈ V(G) are true twins
in G if NG[x] = NG[y], and they are false twins if NG(x) = NG(y). In general, two vertices are said
to be twins if they are true twins or they are false twins. As usual, a set A ⊆ V(G) is a vertex cover
for G if for every uv ∈ E(G), u ∈ A or v ∈ A. The vertex cover number of G, denoted by β(G), is the
minimum cardinality of a vertex cover of G. The remaining definitions will be given the first time that
the concept appears in the text.

The rest of the article is organized as follows. In Section 2, we obtain some general results on
the simultaneous local metric dimension of graph families. Section 3 is devoted to the case of graph
families obtained by small changes on a graph, while in Sections 4 and 5, we study the particular
cases of families of corona graphs and families of lexicographic product graphs, respectively. Finally,
in Section 6, we show that the problem of computing the simultaneous local metric dimension of graph
families is NP-hard, even when restricted to families of graphs that individually have a (small) fixed
local metric dimension.

2. Basic Results

Remark 1. Let G = {G1, . . . , Gk} be a family of connected graphs defined on a common vertex set V, and let
G′ = (V,∪E(Gi)). The following results hold:

1. Sdl(G) ≥ max
i∈{1,...,k}

{diml(Gi)}.

2. Sdl(G) ≤ Sd(G).

3. Sdl(G) ≤ min

{
β(G′),

k

∑
i=1

diml(Gi)

}
.

Proof. (1) is deduced directly from the definition of simultaneous local metric dimension. Let B be
a simultaneous metric basis of G, and let u, v ∈ V − B be two vertices not in B, such that u ∼Gi v in
some Gi. Since in Gi there exists x ∈ B such that dGi (u, x) �= dGi (v, x), B is a simultaneous local metric
generator for G, so (2) holds. Finally, (3) is obtained from the following facts: (a) the union of local
metric generators for all graphs in G is a simultaneous local metric generator for G, which implies that
Sdl(G) ≤ ∑k

i=1 diml(Gi); (b) any vertex cover of G′ is a local metric generator of Gi, for every Gi ∈ G,
which implies that Sdl(G) ≤ β(G′).

The inequalities above are tight. For example, the graph family G shown in Figure 1 satisfies
Sdl(G) = Sd(G), whereas Sdl(G) = 2 = diml(G1) = diml(G2) = max

i∈{1,2,3}
{diml(Gi)}. Moreover,

the family G shown in Figure 2 satisfies Sdl(G) = 3 = |V| − 1 <
6

∑
i=1

diml(Gi) = 12, whereas the family

G = {G1, G2} shown in Figure 3 satisfies Sdl(G) = 4 = diml(G1) + diml(G2) < |V| − 1 = 7.

5
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v4

v3

v1

v2

v4

v2

v1

v3

v2

v3

v1

v4

v4

v1

v2

v3

v1

v3

v2

v4

v1

v2

v3

v4G1 G2 G3 G4 G5 G6

Figure 2. The family G = {G1, . . . , G6} satisfies Sdl(G) = |V| − 1 = 3.

u1

u2

v1 v2 v3 v4

u3

u4

v1

v2

u1 u2 u3 u4

v3

v4G1 G2

Figure 3. The family G = {G1, G2} satisfies Sdl(G) = diml(G1) + diml(G2) = 4.

We now analyze the extreme cases of the bounds given in Remark 1.

Corollary 1. Let G be a family of connected graphs on a common vertex set. If Kn ∈ G, then:

Sdl(G) = n − 1.

As shown in Figure 2, the converse of Corollary 1 does not hold. In general, the cases for which
the upper bound Sdl(G) ≤ |V| − 1 is reached are summarized in the next result.

Theorem 1. Let G be a family of connected graphs on a common vertex set V. Then, Sdl(G) = |V| − 1 if and
only if for every u, v ∈ V, there exists a graph Guv ∈ G such that u and v are true twins in Guv.

Proof. We first note that for any connected graph G = (V, E) and any vertex v ∈ V, it holds that
V − {v} is a local metric generator for G. Therefore, if Sdl(G) = |V| − 1, then for any v ∈ V, the set
V − {v} is a simultaneous local metric basis of G, and as a consequence, for every u ∈ V − {v}, there
exists a graph Guv ∈ G, such that the set V − {u, v} is not a local metric generator for Guv, i.e., u and v
are adjacent in Guv and dGu,v(u, x) = dGu,v(v, x) for every x ∈ V − {u, v}. Therefore, u and v are true
twins in Gu,v.

Conversely, if for every u, v ∈ V there exists a graph Guv ∈ G such that u and v are true twins in
Guv, then for any simultaneous local metric basis B of G, it holds that u ∈ B or v ∈ B. Hence, all but
one element of V must belong to B. Therefore, |B| ≥ |V| − 1, which implies that Sdl G = |V| − 1.

Notice that Corollary 1 is obtained directly from the previous result. Now, the two following
results concern the limit cases of Item (1) of Remark 1.

Theorem 2. A family G of connected graphs on a common vertex set V satisfies Sdl(G) = 1 if and only if
every graph in G is bipartite.

Proof. If every graph in the family is bipartite, then for any v ∈ V, the set {v} is a local metric basis
of every Gi ∈ G, so Sdl(G) = 1.

Let us now consider a family G of connected graphs on a common vertex set V such that
Sdl(G) = 1 and assume that some G ∈ G is not bipartite. It is shown in [21] that diml(G) ≥ 2, so Item
(1) of Remark 1 leads to Sdl(G) ≥ 2, which is a contradiction. Thus, every G ∈ G is bipartite.

6
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Paths, trees and even-order cycles are bipartite. The following result covers the case of families
composed of odd-order cycles.

Theorem 3. Every family G composed of cycle graphs on a common odd-sized vertex set V satisfies Sdl(G) = 2,
and any pair of vertices of V is a simultaneous local metric basis of G.

Proof. For any cycle Ci ∈ G, the set {v}, v ∈ V, is not a local metric generator, as the adjacent vertices
v

j+
⌊ |V|

2

⌋ and v
j−
⌊ |V|

2

⌋ (subscripts taken modulo |V|) are not distinguished by v, so Item (1) of Remark 1

leads to Sdl(G) ≥ max
G∈G

{diml(G)} ≥ 2. Moreover, any set {v, v′} is a local metric generator for every

Ci ∈ G, as the single pair of adjacent vertices not distinguished by v is distinguished by v′, so that
Sdl(G) ≤ 2.

The following result allows us to study the simultaneous local metric dimension of a family G
from the family of graphs composed by all non-bipartite graphs belonging to G.

Theorem 4. Let G be a family of graphs on a common vertex set V, not all of them bipartite. If H is the
subfamily of G composed of all non-bipartite graphs belonging to G, then:

Sdl(G) = Sdl(H).

Proof. Since H is a non-empty subfamily of G, we conclude that Sdl(G) ≥ Sdl(H). Since any vertex
of a bipartite graph G is a local metric generator for G, if B ⊆ V is a simultaneous local metric basis
of H, then B is a simultaneous local metric generator for G and, as a result, Sdl(G) ≤ |B| = Sdl(H).

Some interesting situations may be observed regarding the simultaneous local metric dimension
of some graph families versus its standard counterpart. In particular, the fact that false twin vertices
need not be distinguished in the local variant leads to some cases where both parameters differ greatly.
For instance, consider any family G composed of three or more star graphs having different centers.
It was shown in [22] that any such family satisfies Sd(G) = |V| − 1, yet by Theorem 2, we have that
Sdl(G) = 1.

Given a family G = {G1, G2, . . . , Gk} of graphs Gi = (V, Ei) on a common vertex set V, we define
a simultaneous vertex cover of G as a set S ⊆ V, such that S is simultaneously a vertex cover of each
Gi. The minimum cardinality among all simultaneous vertex covers of G is the simultaneous vertex
cover number of G, denoted by β(G).

Theorem 5. For any family G of connected graphs with common vertex set V,

Sdl(G) ≤ β(G).

Furthermore, if for every uv ∈ ∪G∈GE(G) there exists G′ ∈ G such that u and v are true twins in G′,
then Sdl(G) = β(G).

Proof. Let B ⊆ V be a simultaneous vertex cover of G. Since V − B is a simultaneous independent set
of G, we conclude that Sdl(G) ≤ β(G).

We now assume that for every uv ∈ ∪G∈GE(G), there exists G′ ∈ G, such that u and v are true
twins in G′, and suppose, for the purpose of contradiction, that Sdl(G) < β(G). In such a case, there
exists a simultaneous local metric basis C ⊆ V, which is not a simultaneous vertex cover of G. Hence,
there exist u′, v′ ∈ V − C and G ∈ G such that u′v′ ∈ E(G), ergo u′v′ ∈ ∪G∈GE(G). As a consequence,
u′ and v′ are true twins in some graph G′ ∈ G, which contradicts the fact that C is a simultaneous local
metric basis of G. Therefore, the strict inequality does not hold, hence Sdl(G) = β(G).

7
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3. Families Obtained by Small Changes on a Graph

Consider a graph G whose local metric dimension is known. In this section, we address two
related questions:

• If a series of small changes is repeatedly performed on E(G), thus producing a family G of
consecutive versions of G, what is the behavior of Sdl(G) with respect to diml(G)?

• If several small changes are performed on E(G) in parallel, thus producing a family G of
alternative versions of G, what is the behavior of Sdl(G) with respect to diml(G)?

Addressing this issue in the general case is hard, so we will analyze a number of particular cases.
First, we will specify three operators that describe some types of changes that may be performed on
a graph G:

• Edge addition: We say that a graph G′ is obtained from a graph G by an edge addition if there is
an edge e ∈ E(G) such that G′ = (V(G), E(G) ∪ {e}). We will use the notation G′ = adde(G).

• Edge removal: We say that a graph G′ is obtained from a graph G by an edge removal if there is
an edge e ∈ E(G) such that G′ = (V(G), E(G)− {e}). We will use the notation G′ = rmve(G).

• Edge exchange: We say that a graph G′ is obtained from a graph G by an edge exchange if there
is an edge e ∈ E(G) and an edge f ∈ E(G) such that G′ = (V(G), (E(G)− {e}) ∪ { f }). We will
use the notation G′ = xche, f (G).

Now, consider a graph G and an ordered k-tuple of operations Ok = (op1, op2, . . . , opk), where
opi ∈ {addei , rmvei , xchei , fi

}. We define the class COk (G) containing all graph families of the form
G = {G, G′

1, G′
2, . . . , G′

k}, composed by connected graphs on the common vertex set V(G), where
G′

i = opi(G
′
i−1) for every i ∈ {1, . . . , k}. Likewise, we define the class POk (G) containing all graph

families of the form G = {G′
1, G′

2, . . . , G′
k}, composed by connected graphs on the common vertex

set V(G), where G′
i = opi(G) for every i ∈ {1, . . . , k}. In particular, if opi = addei (opi = rmvei ,

opi = xchei , fi
) for every i ∈ {1, . . . , k}, we will write CAk (G) (CRk (G), CXk (G)) and PAk (G) (PRk (G),

PXk (G)).
We have that performing an edge exchange on any tree T (path graphs included) either produces

another tree or a disconnected graph. Thus, the following result is a direct consequence of this fact
and Theorem 2.

Remark 2. For any tree T, any k ≥ 1 and any graph family T ∈ CXk (T) ∪ PXk (T),

Sdl(T ) = 1.

Our next result covers a large class of families composed by unicyclic graphs that can be obtained
by adding edges, in parallel, to a path graph.

Remark 3. For any path graph Pn, n ≥ 4, any k ≥ 1 and any graph family G ∈ PAk (Pn),

1 ≤ Sdl(G) ≤ 2.

Proof. Every graph G ∈ G is either a cycle or a unicyclic graph. If the cycle subgraphs of every graph
in the family have even order, then Sdl(G) = 1 by Theorem 2. If G contains at least one non-bipartite
graph, then Sdl(G) ≥ 2. We now proceed to show that in this case, Sdl(G) ≤ 2. To this end, we denote
by V = {v1, . . . , vn} the vertex set of Pn, where vi ∼ vi+1 for every i ∈ {1, . . . , n − 1}. We claim
that {v1, vn} is a simultaneous local metric generator for the subfamily G′ ⊂ G composed by all
non-bipartite graphs of G. In order to prove this claim, consider an arbitrary graph G ∈ G′, and let
e = vpvq, 1 ≤ p < q ≤ n be the edge added to E(Pn) to obtain G. We differentiate the following cases:

1. e = v1vn. In this case, G is an odd-order cycle graph, so {v1, vn} is a local metric generator.

8
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2. 1 < p < q = n. In this case, G is a unicyclic graph where vp has degree three, v1 has degree one
and the remaining vertices have degree two. Consider two adjacent vertices u, v ∈ V − {v1, vn}.
If u or v belong to the path from v1 to vp, then v1 distinguishes them. If both, u and v, belong to
the cycle subgraph of G, then d(u, v1) = d(u, vp) + d(vp, v1) and d(v, v1) = d(v, vp) + d(vp, v1).
Thus, if vp distinguishes u and v, so does v1, otherwise vn does.

3. 1 = p < q < n. This case is analogous to Case 2.
4. 1 < p < q < n. In this case, G is a unicyclic graph where vp and vq have degree three, v1 and vn

have degree one and the remaining vertices have degree two. Consider two adjacent vertices
u, v ∈ V − {v1, vn}. If u or v belong to the path from v1 to vp (or to the path from vq to vn), then v1

(or vn) distinguishes them. If both u and v belong to the cycle, then d(u, v1) = d(u, vp) + d(vp, v1),
d(v, v1) = d(v, vp) + d(vp, v1), d(u, vn) = d(u, vq) + d(vq, vn) and d(v, vn) = d(v, vq) + d(vq, vn).
Thus, if vp distinguishes u and v, so does v1, otherwise vq distinguishes them, which means that
vn also does.

According to the four cases above, we conclude that {v1, vn} is a local metric generator for G, so it
is a simultaneous local metric generator for G′. Thus, by Theorem 4, Sdl(G) = Sdl(G′) ≤ 2.

Remark 4. Let Cn, n ≥ 4, be a cycle graph, and let e be an edge of its complement. If n is odd, then

diml(adde(Cn)) = 2.

Otherwise,
1 ≤ diml(adde(Cn)) ≤ 2.

Proof. Consider e = vivj. We have that Cn is bipartite for n even. If, additionally, dCn(vi, vj) is odd, then
the graph adde(Cn) is also bipartite, so diml(adde(Cn)) = 1. For every other case, diml(adde(Cn)) ≥ 2.
From now on, we assume that n ≥ 5 and proceed to show that diml(adde(Cn)) ≤ 2. Note that adde(Cn)

is a bicyclic graph where vi and vj are vertices of degree three and the remaining vertices have degree
two. We denote by Cn1 and Cn−n1+2 the two graphs obtained as induced subgraphs of adde(Cn), which
are isomorphic to a cycle of order n1 and a cycle of order n − n1 + 2, respectively. Since n ≥ 5, we have
that n1 > 3 or n − n1 + 2 > 3. We assume, without loss of generality, that n1 > 3. Let a, b ∈ V(Cn1) are
two vertices such that:

• if n1 is even, ab ∈ E(Cn1) and d(vi, a) = d(vj, b),
• if n1 is odd, ax, xb ∈ E(Cn1), where x ∈ V(Cn1) is the only vertex such that d(x, vi) = d(x, vj).

We claim that {a, b} is a local metric generator for adde(Cn). Consider two adjacent vertices
u, v ∈ V(adde(Cn)) − {a, b}. We differentiate the following cases, where the distances are taken
in adde(Cn):

1. u, v ∈ V(Cn1). It is simple to verify that {a, b} is a local metric generator for Cn1 , hence
d(u, a) �= d(v, a) or d(u, b) �= d(v, b).

2. u ∈ V(Cn1) and v ∈ V(Cn−n1+2) − {vi, vj}. In this case, u ∈ {vi, vj} and d(u, a) < d(v, a) or
d(u, b) < d(v, b).

3. u, v ∈ V(Cn−n1+2) − {vi, vj}. In this case, if d(u, a) = d(v, a), then d(u, vi) = d(v, vi),
so d(u, vj) �= d(v, vj) and, consequently, d(u, b) �= d(v, b).

According to the three cases above, {a, b} is a local metric generator for adde(Cn), and as a result,
the proof is complete.

The next result is a direct consequence of Remarks 1 and 4.

Remark 5. Let Cn, n ≥ 4, be a cycle graph. If e, e′ are two different edges of the complement of Cn, then:

1 ≤ Sdl(adde(Cn), adde′(Cn)) = Sdl(Cn, adde(Cn), adde′(Cn)) ≤ 4.

9
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4. Families of Corona Product Graphs

Let G and H be two graphs of order n and n′, respectively. The corona product G  H is defined
as the graph obtained from G and H by taking one copy of G and n copies of H and joining by an edge
each vertex from the i-th copy of H with the i-th vertex of G. Notice that the corona graph K1  H is
isomorphic to the join graph K1 + H. Given a graph family G = {G1, . . . , Gk} on a common vertex set
and a graph H, we define the graph family:

G  H = {G1  H, . . . , Gk  H}.

Several results presented in [23,24] describe the behavior of the local metric dimension on corona
product graphs. We now analyze how this behavior extends to the simultaneous local metric dimension
of families composed by corona product graphs.

Theorem 6. In references [23,25], Let G be a connected graph of order n ≥ 2. For any non-empty graph H,

diml(G  H) = n · adiml(H).

As we can expect, if we review the proof of the result above, we check that if A is a local metric
basis of G  H, then A does not contain elements in V(G). Therefore, any local metric basis of G  H
is a simultaneous local metric basis of G  H. This fact and the result above allow us to state the
following theorem.

Theorem 7. Let G be a family of connected non-trivial graphs on a common vertex set V. For any non-empty
graph H,

Sdl(G  H) = |V| · adiml(H).

Given a graph family G on a common vertex set and a graph family H on a common vertex set,
we define the graph family:

G H = {G  H : G ∈ G and H ∈ H}.

The following result generalizes Theorem 7. In what follows, we will use the notation 〈v〉 for
the graph G = (V, E) where V = {v} and E = ∅.

Theorem 8. For any family G of connected non-trivial graphs on a common vertex set V and any family H
of non-empty graphs on a common vertex set,

Sdl(G H) = |V| · Sadl(H).

Proof. Let n = |V|, and let V′ be the vertex set of the graphs in H, V′
i the copy of V′ corresponding to

vi ∈ V, Hi the i-th copy of H and Hi ∈ Hi the i-th copy of H ∈ H.
We first need to prove that any G ∈ G satisfies Sdl(G H) = n · Sadl(H). For any i ∈ {1, . . . , n},

let Si be a simultaneous local adjacency basis of Hi. In order to show that X =
⋃n

i=1 Si is a simultaneous
local metric generator for G H, we will show that X is a local metric generator for G  H, for any
G ∈ G and H ∈ H. To this end, we differentiate the following four cases for two adjacent vertices
x, y ∈ V(G  H)− X.

1. x, y ∈ V′
i . Since Si is an adjacency generator of Hi, there exists a vertex u ∈ Si such that

|NHi (u) ∩ {x, y}| = 1. Hence,

dGH(x, u) = d〈vi〉+Hi
(x, u) �= d〈vi〉+Hi

(y, u) = dGH(y, u).

10
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2. x ∈ V′
i and y ∈ V. If y = vi, then for u ∈ Sj, j �= i, we have:

dGH(x, u) = dGH(x, y) + dGH(y, u) > dGH(y, u).

Now, if y = vj, j �= i, then we also take u ∈ Sj, and we proceed as above.
3. x = vi and y = vj. For u ∈ Sj, we find that:

dGH(x, u) = dGH(x, y) + dGH(y, u) > dGH(y, u).

4. x ∈ V′
i and y ∈ V′

j , j �= i. In this case, for u ∈ Si, we have:

dGH(x, u) ≤ 2 < 3 ≤ dGH(u, y).

Hence, X is a local metric generator for G  H, and since G ∈ G and H ∈ H are arbitrary graphs,
X is a simultaneous local metric generator for G H, which implies that:

Sdl(G H) ≤
n

∑
i=1

|Si| = n · Sadl(H).

It remains to prove that Sdl(G H) ≥ n · Sadl(H). To do this, let W be a simultaneous local metric
basis of G H, and for any i ∈ {1, . . . , n}, let Wi = V′

i ∩ W. Let us show that Wi is a simultaneous
adjacency generator for Hi. To do this, consider two different vertices x, y ∈ V′

i − Wi, which are
adjacent in G  H, for some H ∈ H. Since no vertex a ∈ V(G  H) − V′

i distinguishes the pair
x, y, there exists some u ∈ Wi, such that dGH(x, u) �= dGH(y, u). Now, since dGH(x, u) ∈ {1, 2}
and dGH(y, u) ∈ {1, 2}, we conclude that |NHi (u) ∩ {x, y}| = 1, and consequently, Wi must be
an adjacency generator for Hi; and since H ∈ H is arbitrary, Wi is a simultaneous local adjacency
generator for Hi. Hence, for any i ∈ {1, . . . , n}, |Wi| ≥ Sadl(Hi). Therefore,

Sdl(G H) = |W| ≥
n

∑
i=1

|Wi| ≥
n

∑
i=1

Sadl(Hi) = n · Sadl(H).

This completes the proof.

The following result is a direct consequence of Theorem 8.

Corollary 2. For any family G of connected non-trivial graphs on a common vertex set V and any family H
of non-empty graphs on a common vertex set,

Sdl(G H) ≥ |V| · Sdl(H).

Furthermore, if every graph in H has diameter two, then:

Sdl(G H) = |V| · Sdl(H).

Now, we give another result, which is a direct consequence of Theorem 8 and shows the general
bounds of Sdl(G H).

Corollary 3. For any family G of connected graphs on a common vertex set V, |V| ≥ 2 and any family H
of non-empty graphs on a common vertex set V′,

|V| ≤ Sdl(G H) ≤ |V|(|V′| − 1).

We now consider the case in which the graph H is empty.

11
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Theorem 9. In reference [24], Let G be a connected non-trivial graph. For any empty graph H,

diml(G  H) = diml(G).

The result above may be extended to the simultaneous scenario.

Theorem 10. Let G be a family of connected non-trivial graphs on a common vertex set. For any empty graph H,

Sdl(G  H) = Sdl(G).

Proof. Let B be a simultaneous local metric basis of G = {G1, G2, . . . , Gk}. Since H is empty, any local
metric generator B′ ⊆ B of Gi is a local metric generator for Gi  H, so B is a simultaneous local metric
generator for G  H. As a consequence, Sdl(G  H) ≤ Sdl(G).

Suppose that A is a simultaneous local metric basis of G  H and |A| < |B|. If there exists
x ∈ A ∩ Vij for the j-th copy of H in any graph Gi  H, then the pairs of vertices of Gi  H that are
distinguished by x can also be distinguished by vi. As a consequence, the set A′ obtained from A by
replacing by vi each vertex x ∈ A ∩ Vij, i ∈ {1, . . . , k}, j ∈ {1, . . . , n} is a simultaneous local metric
generator for G such that |A′| ≤ |A| < Sdl(G), which is a contradiction, so Sdl(G  H) ≥ Sdl(G).

Theorem 11. In reference [24], Let H be a non-empty graph. The following assertions hold.

1. If the vertex of K1 does not belong to any local metric basis of K1 + H, then for any connected graph G
of order n,

diml(G  H) = n · diml(K1 + H).

2. If the vertex of K1 belongs to a local metric basis of K1 + H, then for any connected graph G of order n ≥ 2,

diml(G  H) = n · (diml(K1 + H)− 1) .

As for the previous case, the result above is extensible to the simultaneous setting.

Theorem 12. Let G be a family of connected non-trivial graphs on a common vertex set V, and let H be a family
of non-empty graphs on a common vertex set. The following assertions hold.

1. If the vertex of K1 does not belong to any simultaneous local metric basis of K1 +H, then:

Sdl(G H) = |V| · Sdl(K1 +H).

2. If the vertex of K1 belongs to a simultaneous local metric basis of K1 +H, then:

Sdl(G H) = |V| · (Sdl(K1 +H)− 1) .

Proof. As above, let n = |V|, and let V′ be the vertex set of the graphs in H, V′
i the copy of V′

corresponding to vi ∈ V, Hi the i-th copy of H and Hi ∈ Hi the i-th copy of H ∈ H.
We will apply a reasoning analogous to the one used for the proof of Theorem 11 in [24]. If n = 1,

then G H ∼= K1 +H, so the result holds. Assume that n ≥ 2, Let Si be a simultaneous local metric
basis of 〈vi〉+Hi, and let S′

i = Si − {vi}. Note that S′
i �= ∅ because Hi is the family of non-empty

graphs and vi does not distinguish any pair of adjacent vertices belonging to V′
i . In order to show that

X = ∪n
i=1S′

i is a simultaneous local metric generator for G H, we differentiate the following cases for
two vertices x, y, which are adjacent in an arbitrary graph G  H:

1. x, y ∈ V′
i . Since vi does not distinguish x, y, there exists u ∈ S′

i such that dGH(x, u) =

d〈vi〉+Hi
(x, u) �= d〈vi〉+Hi

(y, u) = dGH(y, u).
2. x ∈ V′

i and y = vi. For u ∈ S′
j, j �= i, we have dGH(x, u) = 1 + dGH(y, u) > dGH(y, u).

3. x = vi and y = vj. For u ∈ S′
j, we have dGH(x, u) = 2 = dGH(x, y) + 1 > 1 = dGH(y, u).

12
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Hence, X is a local metric generator for G  H, and since G ∈ G and H ∈ H are arbitrary graphs,
X is a simultaneous local metric generator for G H.

Now, we shall prove (1). If the vertex of K1 does not belong to any simultaneous local metric basis
of K1 +H, then vi �∈ Si for every i ∈ {1, ..., n}, and as a consequence,

Sdl(G H) ≤ |X| =
n

∑
i=1

|S′
i | =

n

∑
i=1

Sdl(〈vi〉+Hi) = n · Sdl(K1 +H).

Now, we need to prove that Sdl(G  H) ≥ n · Sdl(K1 + H). In order to do this, let W be
a simultaneous local metric basis of G  H, and let Wi = V′

i ∩ W. Consider two adjacent vertices
x, y ∈ V′

i − Wi in G  H. Since no vertex a ∈ W − Wi distinguishes the pair x, y, there exists
u ∈ Wi such that d〈vi〉+Hi

(x, u) = dGH(x, u) �= dGH(y, u) = d〈vi〉+Hi
(y, u). Therefore, we conclude

that Wi ∪ {vi} is a simultaneous local metric generator for 〈vi〉+Hi. Now, since vi does not belong to
any simultaneous local metric basis of 〈vi〉+Hi, we have that |Wi|+ 1 = |Wi ∪ {vi}| > Sdl(〈vi〉+Hi)

and, as a consequence, |Wi| ≥ Sdl(〈vi〉+Hi). Therefore,

Sdl(G H) = |W| ≥
n

∑
i=1

|Wi| ≥
n

∑
i=1

Sdl(〈vi〉+Hi) = n · Sdl(K1 +H),

and the proof of (1) is complete.
Finally, we shall prove (2). If the vertex of K1 belongs to a simultaneous local metric basis

of K1 +H, then we assume that vi ∈ Si for every i ∈ {1, ..., n}. Suppose that there exists B such that B
is a simultaneous local metric basis of G H and |B| < |X|. In such a case, there exists i ∈ {1, ..., n}
such that the set Bi = B ∩ V′

i satisfies |Bi| < |S′
i |. Now, since no vertex of B − Bi distinguishes the pairs

of adjacent vertices belonging to V′
i , the set Bi ∪ {vi} must be a simultaneous local metric generator

for 〈vi〉+Hi. Therefore, Sdl(〈vi〉+Hi) ≤ |Bi| + 1 < |S′
i | + 1 = |Si| = Sdl(〈vi〉+Hi), which is a

contradiction. Hence, X is a simultaneous local metric basis of G H, and as a consequence,

Sdl(G H) = |X| =
n

∑
i=1

|S′
i | =

n

∑
i=1

(Sdl(〈vi〉+Hi)− 1) = n(Sdl(K1 +H)− 1).

The proof of (2) is now complete.

Corollary 4. Let G be a connected graph of order n ≥ 2, and let H = {Kr1,n′−r1
, Kr2,n′−r2

, . . . , Krk ,n′−rk
},

1 ≤ ri ≤ n′ − 1, be a family composed by complete bipartite graphs on a common vertex set V′. Then,

Sdl(G H) = n.

Proof. For every x ∈ V′, the set {v, x} is a simultaneous local metric basis of 〈v〉 + H,
so Sd(G H) = n · (Sd(K1 +H)− 1) = n.

Lemma 1. In reference [24], Let H be a graph of radius r(H). If r(H) ≥ 4, then the vertex of K1 does not
belong to any local metric basis of K1 + H.

Note that an analogous result holds for the simultaneous scenario.

Lemma 2. Let H be a graph family on a common vertex set V, such that r(H) ≥ 4 for every H ∈ H. Then,
the vertex of K1 does not belong to any simultaneous local metric basis of K1 +H.

Proof. Let B be a simultaneous local metric basis of {K1 + H1, . . . , K1 + Hk}. We suppose that the vertex
v of K1 belongs to B. Note that v ∈ B if and only if there exists u ∈ V − B, such that B ⊆ NK1+Hi (u) for
some Hi ∈ H. If r(Hi) ≥ 4, proceeding in a manner analogous to that of the proof of Lemma 1 as given
in [24], we take u′ ∈ V such that dHi (u, u′) = 4 and a shortest path uu1u2u3u′. In such a case, for every
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b ∈ B − {v}, we will have that dK1+Hi (b, u3) = dK1+Hi (b, u′) = 2, which is a contradiction. Hence,
v does not belong to any simultaneous local metric basis of {K1 + H1, K1 + H2, . . . , K1 + Hk}.

As a direct consequence of item (1) of Theorem 12 and Lemma 2, we obtain the following result.

Proposition 1. For any family G of connected graphs on a common vertex set V and any graph family H on
a common vertex set V′ such that r(H) ≥ 4 for every H ∈ H,

Sdl(G H) = |V| · Sdl(K1 +H).

5. Families of Lexicographic Product Graphs

Let G = {G1, . . . , Gr} be a family of connected graphs with common vertex set V = {u1, . . . , un}.
For each ui ∈ V, let Hi = {Hi1, . . . Hisi} be a family of graphs with common vertex set Vi. For each
i = 1, . . . , n, choose Hij ∈ Hi and consider the family Hj = {H1j, H2j, . . . , Hnj}. Notice that the families
Hi can be represented in the following scheme where the columns correspond to the families Hj.

H1 = {H11, . . . H1j, . . . H1s1} defined on V1
...

...
...

...
Hi = {Hi1, . . . Hij, . . . Hisi} defined on Vi

...
...

...
...

Hn = {Hn1, . . . Hnj, . . . Hnsn} defined on Vn

For a graph Gk ∈ G and the family Hj, we define the lexicographic product of Gk and Hj as
the graph Gk ◦ Hj such that V(Gk ◦ Hj) =

⋃
ui∈V({ui} × Vi) and (ui1 , v)(ui2 , w) ∈ E(Gk ◦ Hj) if and

only if ui1 ui2 ∈ E(Gk) or i1 = i2 and vw ∈ E(Hi1 j). Let H = {H1,H2, . . .Hs}. We are interested in
the simultaneous local metric dimension of the family:

G ◦ H = {Gk ◦ Hj : Gk ∈ G,Hj ∈ H}.

The relation between distances in a lexicographic product graph and those in its factors is
presented in the following remark.

Remark 6. If (u, v) and (u′, v′) are vertices of G ◦ H, then:

dG◦H((u, v), (u′, v′)) =

⎧⎪⎨
⎪⎩

dG(u, u′), if u �= u′,

min{dH(v, v′), 2}, if u = u′.

We point out that the remark above was stated in [26,27] for the case where Hij
∼= H for all

Hij ∈ Hj. By Remark 6, we deduce that if u ∈ V − {ui}, then two adjacent vertices (ui, w), (ui, y) are
not distinguished by (u, v) ∈ V(G ◦ H). Therefore, we can state the following remark.

Remark 7. If B is a simultaneous local metric generator for the family of lexicographic product graphs G ◦ H,
then Bi = {v : (ui, v) ∈ B} is a simultaneous local adjacency generator for Hi.

In order to state our main result (Theorem 13), we need to introduce some additional notation.
Let B be a simultaneous local adjacency generator for a family of non-trivial connected graphs
Hi = {Hi1, . . . , His} on a common vertex set Vi, and let G ◦ H be family of lexicographic product
graphs defined as above.

• D[Hi, B] = {v ∈ Vi : B ⊆ NHij(v) for some Hij ∈ Hi}.
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• If D[Hi, B] �= ∅, then we define the graph D[Hi, B] in the following way. The vertex set of D[Hi, B]
is D[Hi, B], and two vertices v, w are adjacent in D[Hi, B] if and only if for for every Hij ∈ Hi,
vw /∈ E(Hij).

• If D[Hi, B] = ∅, then define Ψ(B) = |B|, otherwise Ψ(B) = γ(D[Hi, B]) + |B|, where γ(D[Hi, B])
represents the domination number of D[Hi, B].

• Γ(Hi) = {C ⊆ Vi : C is a simultaneous local adjacency generator forHi}
• Ψ(Hi) = min{Ψ(B) : B ∈ Γ(Hi)}.
• S0 is a family composed by empty graphs.
• Φ(V,H) = {ui ∈ V : Hi ⊆ S0}
• I(V,H) = {ui ∈ V : Ψ(Hi) > Sadl(Hi)}. Notice that Φ(V,H) ⊆ I(V,H).
• Υ(V,H) is the family of subsets of I(V,H) as follows. We say that A ∈ Υ(V,H) if for every

u′, u′′ ∈ I(V,H) − A such that u′u′′ ∈ E(Gk), for some Gk ∈ G, there exists u ∈ (A ∪ (V −
Φ(V,H)))− {u′, u′′} such that dGk (u, u′) �= dGk (u, u′′).

• G(G, I(V,H)) is the graph with vertex set I(V,H) and edge set E such that uiuj ∈ E if and only
if there exists Gk ∈ G such that uiuj ∈ E(Gk).

Remark 8. Ψ(Hi) = 1 if and only if Hi,j
∼= N|Vi | for every Hi,j ∈ Hi.

Proof. If Hi,j
∼= N|Vi | for every Hi,j ∈ Hi, then B = ∅ is the only simultaneous local adjacency basis of

Hi, D[Hi, ∅] ∼= K|Vi |, and then, Ψ(Hi) = γ(K|Vi |) = 1. On the other hand, suppose that Hi,j �∼= N|Vi |
for some Hi,j ∈ Hi. In this case, Sadl(Hi) ≥ 1. If Sadl(Hi) > 1, then we are done. Suppose that
Sadl(Hi) = 1. For any simultaneous local adjacency basis B = {v1} of Hi, there exists v2 ∈ NHij(v1)

for some Hij, which implies that D[Hi, {v2}] �= ∅ and so |γ(D[Hi, {v2}])| ≥ 1. Therefore, Ψ(Hi) ≥ 2,
and the result follows.

As we will show in the next example, in order to get the value of Ψ(Hi), it is interesting to remark
about the necessity of considering the family Γ(Hi) of all simultaneous local adjacency generators and
not just the family of simultaneous local adjacency bases of Hi.

Example 1. Let H1
∼= H2 ∼= P5 be two copies of the path graph on five vertices

such that V(H1) = V(H2) = {v1, v2, . . . , v5}, whereas E(H1) = {v1v2, v2v3, v3v4, v4v5} and
E(H2) = {v2v1, v1v3, v3v5, v5v4}. Consider the family H = {H1, H2}. We have that B1 = {v3} is
a simultaneous local adjacency basis of H and B2 = {v1, v4} is a simultaneous local adjacency generator
for H. Then, D[H, B1] = {v1, v2, v4, v5}, E(D[H, B1]) = {v1v4, v4v2, v2v5, v5v1}, γ(D[G, B1]) = 2,
Ψ(B1) = 2 + 1 = 3. However, D[H, B2] = ∅ and Ψ(B2) = 2.

We define the following graph families.

• S1 is the family of graphs having at least two non-trivial components.
• S2 is the family of graphs having at least one component of radius at least four.
• S3 is the family of graphs having at least one component of girth at least seven.
• S4 is the family of graphs having at least two non-singleton true twin equivalence classes U1, U2

such that d(U1, U2) ≥ 3.

Lemma 3. Let H �⊆ S0 be a family of graphs on a common vertex set V. If H ⊆
4⋃

i=0

Si, then:

Ψ(H) = Sadl(H).

Proof. Let B be a simultaneous local adjacency generator for H and v ∈ V. We claim that B �⊆ NH(v).
To see this, we differentiate the following cases for H ∈ H.

• H has two non-trivial connected components J1, J2. In this case, B ∩ J1 �= ∅ and B ∩ J2 �= ∅, which
implies that B �⊆ NH(v).
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• H has one non-trivial component J such that r(J) ≥ 4. If H has two non-trivial components,
then we are in the first case. Therefore, we can assume that J is the only non-trivial component
of H. Suppose that B ⊆ NH(v), and get v′ ∈ V such that dH(v, v′) = 4. If vv1v2v3v′ is a shortest
path from v to v′, then v3 and v′ are adjacent, and they are not distinguished by the elements in B,
which is a contradiction.

• H has one non-trivial component J of girth g(J) ≥ 7. In this case, if H has two non-trivial
components, then we are in the first case. Therefore, we can assume that H has just one non-trivial
component of girth g(J) ≥ 7. Suppose that B ⊆ NH(v). For each cycle v1v2 . . . vnv1, there exists
vivi+1 ∈ E(J) such that dH(v, vi) ≥ 3 and dH(v, vi+1) ≥ 3; therefore, for each b ∈ B, we have
dH(b, vi) ≥ 2 and dH(b, vi+1) ≥ 2, which is a contradiction.

• H has two non-singleton true twin equivalence classes U1, U2 such that dH(U1, U2) ≥ 3. Since
B ∩ U1 �= ∅ and B ∩ U2 �= ∅, we can conclude that B �⊆ NH(v).

• H ∼= N|V|. Notice that B �= ∅, as H �⊆ S0, so that B �⊆ ∅ = NH(v).

According to the five cases above, H ⊆ ∪4
i=0Si leads to D[H, B] = ∅, for any simultaneous local

adjacency generator, which implies that Ψ(H) = Sadl(H).

Remark 9. If A ∈ Υ(V,H), then A∪ (V −Φ(V,H)) is a simultaneous local metric generator for G . However,
the converse is not true, as we can see in the following example.

Example 2. Consider the family of connected graphs G = {G1, G2, G3} on a common vertex set
V = {u1, . . . , u8} with E(Gi) = {u1u2, u1u2i+1, u2u2i+2, uju2i+1, uju2i+2, for j /∈ {1, 2, 2i + 1, 2i + 2}}.
Let Hi be the family consisting of only one graph Hi, as follows: H1

∼= H2 ∼= K2, H3 ∼= H4
∼= · · · ∼= H8 ∼= N2.

We have that G ◦ H = {Gi ◦ {H1, . . . , H8}, i = 1, 2, 3} and I(V,H) = V. If we take A = ∅,
then A ∪ (V − Φ(V,H)) = {u1, u2} ⊆ I(V,H) is a simultaneous local metric basis of G. However,
∅ /∈ Υ(V,H) because u1 is adjacent to u2 in Gi, i ∈ {1, 2, 3}, and (V − Φ(V,H))− {u1, u2} = ∅.

Lemma 4. Let G ◦ H be a family of lexicographic product graphs. Let B ⊆ V be a simultaneous local metric
generator for G. Then, B ∩ I(V,H) ∈ Υ(V,H).

Proof. Let A = B ∩ I(V,H) and ui, uj ∈ I(V,H)− A = I(V,H)− B. Since B ⊆ V is a simultaneous
local metric generator for G, for each Gk ∈ G, there exists b ∈ B such that dGk (b, ui) �= dGk (b, uj).
If b /∈ I(V,H), then necessarily b ∈ (V − I(V,H)) ⊆ ((V − Φ(V,H))− {ui, uj}), and if b ∈ I(V,H),
then b ∈ A − {ui, uj}; and we are done.

Corollary 5. If there exists a simultaneous local metric generator B for G such that B ⊆ V − I(V,H) or the
graph G(G, I(V,H)) is empty, then ∅ ∈ Υ(V,H).

Remark 10. If B is a vertex cover of G(G, I(V,H), then B ∈ Υ(V,H).

Lemma 5. Let G ◦H be a family of lexicographic product graphs. For each ui ∈ V, let Bi ⊆ Vi be a simultaneous
local adjacency generator for Hi, and let Ci ⊆ Vi be a dominating set of D[Hi, Bi]. Then, for any A ∈ Υ(V,H),
the set B = (∪ui∈A{ui} × (Bi ∪ Ci))

⋃
(∪ui /∈A{ui} × Bi) is a local metric generator for G ◦ H.

Proof. In order to prove the lemma, let Gk ∈ G, Hj ∈ H, and let (ui1 , v1), (ui2 , v2) be a pair of adjacent
vertices of Gk ◦ Hj. If i1 = i2, then there exists v ∈ Bi1 such that (ui1 , v) distinguishes the pair.
Otherwise, i1 �= i2, and we consider the following cases:

1. |{ui1 , ui2} ∩ I(V,H)| ≤ 1, say ui1 /∈ I(V,H). In this case, there exists v ∈ Bi1 such that vv1 /∈
E(Hi1 j), and then, (ui1 , v) distinguishes the pair.
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2. ui1 , ui2 ∈ I(V,H) and {ui1 , ui2} ∩ A = ∅. In this case, by definition of A,
there exists ui3 ∈ (A ∪ (V − Φ(V,H)))− {ui1 , ui2} such that dGk (ui3 , ui1) �= dGk (ui3 , ui2).
For any v ∈ Bi3 ∪ Ci3 ,

dGk◦Hj((ui3 , v), (ui1 , v1)) = dGk (ui3 , ui1) �=

dGk (ui3 , ui2) = dGk◦Hj((ui3 , v), (ui2 , v2)).

3. ui1 , ui2 ∈ I(V,H) and |{ui1 , ui2} ∩ A| ≥ 1, say ui1 ∈ A. In this case, if there exists v ∈ Bi1 such
that vv1 /∈ E(Hi1 j), then (ui1 , v) distinguishes the pair. Otherwise, v1 is a vertex of D[Hi1 , Bi1 ],
and either v1 ∈ Ci1 and (ui1 , v1) ∈ B distinguishes the pair or there exists v ∈ Ci1 , such that
vv1 ∈ E(D[Hi1 , Bi1 ]), which means vv1 /∈ E(Hi1 j); then, (ui1 , v) distinguishes the pair.

Corollary 6. Let G ◦ H be a family of lexicographic product graphs. Then:

Sdl(G ◦ H) ≤ min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}
.

Proof. Let A ∈ Υ(V,H). For each ui /∈ A, let Bi ⊆ Vi be a simultaneous local adjacency basis of Hi.
For each ui ∈ A, let Bi be a local adjacency generator for Hi and Ci ⊆ Vi a dominating set of D(Hi, Bi)

such that |Bi ∪ Ci| = Ψ(Hi). Let:

B = (∪uj∈A{uj} × (Bj ∪ Cj))
⋃
(∪ui /∈A{ui} × Bi)

then, by Lemma 5, B is a simultaneous local metric generator for G ◦ H, and:

Sdl(G ◦ H) ≤ |B| = ∑
ui∈A

Ψ(Hi) + ∑
ui /∈A

Sadl(Hi)

As A ∈ Υ(V,H) is arbitrary:

Sdl(G ◦ H) ≤ min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}

and the result follows.

Lemma 6. Let F be a simultaneous local metric basis of G ◦ H. Let Fi = {v ∈ Vi : (ui, v) ∈ F} and
XF = {ui ∈ I(V,H) : |Fi| ≥ Ψ(Hi)}. Then, XF ∈ Υ(V,H).

Proof. Suppose, for the purpose of contradiction, that XF /∈ Υ(V,H). That means that there exist
ui1 , ui2 ∈ I(V,H)− XF and Gk ∈ G such that ui1 ui2 ∈ E(Gk), and dGk (u, ui1) = dGk (u, ui2) for every
u ∈ (XF ∪ (V − Φ(V,H)))− {ui1 , ui2}. As ui1 , ui2 ∈ I(V,H)− XF, |Fi1 | < Ψ(Hi1) and |Fi2 | < Ψ(Hi2),
so that there exist Hi1 j1 ∈ Hi1 and Hi2 j2 ∈ Hi2 such that for some v1 ∈ Vi1 , v2 ∈ Vi2 , Fi1 ⊆ NHi1 j1

(v1) and
Fi2 ⊆ NHi2 j2

(v2). Let Hj be such that Hi1 j1 , Hi2 j2 ∈ Hj. Consider the pair of vertices (ui1 , v1), (ui2 , v2)

adjacent in Gk ◦ Hj. As F is a simultaneous local metric generator, there exists (ui3 , v) ∈ F that
resolves the pair, which implies that Fi3 �= ∅. By hypothesis ui3 ∈ (Φ(V,H)− XF) ∪ {ui1 , ui2}, and so,
ui3 ∈ {ui1 , ui2}. Without loss of generality, we assume that ui3 = ui1 and, in this case,

dGk◦Hj((ui3 , v), (ui1 , v1)) = dHi1 j1
,2(v, v1)

= dGk (ui3 , ui2)

= dGk◦Hj((ui3 , v), (ui2 , v2)),

which is a contradiction. Therefore, XF ∈ Υ(V,H).
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Theorem 13. Let G ◦ H be a family of lexicographic product graphs.

Sdl(G ◦ H) = min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}

Proof. Let B be a simultaneous local metric basis of G ◦ H. Let Bi = {v ∈ Vi : (ui, v) ∈ B} and
XB = {ui ∈ I(V,H) : |Bi| ≥ Ψ(Hi)}. By Remark 7, |Bi| ≥ Sadl(Hi) for every ui ∈ V, so that Lemma 6
leads to:

min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}
≤ ∑

ui∈XB

Ψ(Hi) + ∑
ui /∈XB

Sadl(Hi) ≤ |B|

and the result follows by Corollary 6.

Now, we will show some cases where the calculation of Sdl(G ◦ H) is easy. At first glance, we
have two main types of simplification: first, to simplify the calculation of Ψ(Hi) and, second, the
calculation of the A ∈ Υ(V,H) that makes the sum achieves its minimum.

For the first type of simplification, we can apply Lemma 3 to deduce the following corollary.

Corollary 7. If for each i, Hi �⊆ S0 and Hi ⊆
4⋃

j=0

Sj, then:

Sdl(G ◦ H) = ∑ Sadl(Hi).

Given a family G of graphs on a common vertex set V and a graph H, we define the family
of lexicographic product graphs:

G ◦ H = {G ◦ H : G ∈ G}.

By Theorem 13, we deduce the following result.

Corollary 8. Let G be a family of graphs on a common vertex set V, and let H be a graph. If for every local
adjacency basis B of H, B �⊆ NH(v) for every v ∈ V(H)− B, then:

Sdl(G ◦ H) = |V| adiml(H).

By Corollary 5 and Theorem 13, we have the following result.

Proposition 2. If V − I(V,H) is a simultaneous local metric generator for G or the graph G(G, I(V,H)) is
empty, then:

Sdl(G ◦ H) = ∑ Sadl(Hi)

For the second type of simplification, we have the following remark.

Remark 11. As Sadl(Hi) ≤ Ψ(Hi), if A ⊆ B ⊆ V, then:

∑
ui∈A

Ψ(Hi) + ∑
ui /∈A

Sadl(Hi) ≤ ∑
ui∈B

Ψ(Hi) + ∑
ui /∈B

Sadl(Hi)

From Remark 11, we can get some consequences of Theorem 13.

Proposition 3. Let G ◦H be a family of lexicographic product graphs. For any vertex cover B of G(G , I(V,H)),

Sdl(G ◦ H) ≤ ∑
ui∈B

Ψ(Hi) + ∑
ui /∈B

Sadl(Hi)
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Proposition 4. Let G be a family of connected graphs with common vertex set V, and let G ◦ H be a family
of lexicographic product graphs. The following statements hold.

1. If the subgraph of Gj induced by I(V,H) is empty for every Gj ∈ G, then:

Sdl(G ◦ H) = ∑
ui∈V

Sadl(Hi).

2. Let ui0 ∈ I(V,H) be such that Ψ(Hi0) = max{Ψ(ui) : ui ∈ I(V,H)}. If Sdl(G) = |V| − 1 and
|I(V,H)| ≥ 2, then:

Sdl(G ◦ H) = ∑
ui /∈I(V,H)

Sadl(Hi) + ∑
ui∈I(V,H)−{ui0}

Ψ(Hi) + Sadl(Hi0)

Proof. It is clear that if the subgraph of Gj induced by I(V,H) is empty for every Gj ∈ G,
then ∅ ∈ Υ(V,H), so that Theorem 13 leads to (1). On the other hand, let G be a family of connected
graphs with common vertex set V such that Sdl(G) = |V| − 1 and |I(V,H)| ≥ 2. By Lemma 1,
for every ui, uj ∈ I(V,H), there exists Gij ∈ G such that ui, uj are true twins in Gij. Hence, no vertex
u /∈ {ui, uj} resolves ui and uj. Therefore, A ∈ Υ(V,H) implies |A| = |I(V,H)| − 1, and (2) follows
from Theorem 13 and Remark 11.

Proposition 5. Let G be a family of non-trivial connected graphs with common vertex set V. For any family
of lexicographic product graphs G ◦ H,

Sdl(G ◦ H) ≥ Sdl(G).

Furthermore, if H = {N|V1|, . . . , N|Vn |}, then:

Sdl(G ◦ H) = Sdl(G).

Proof. Let W be a simultaneous local metric basis of G ◦ H and WV = {u ∈ V : (u, v) ∈ W}.
We suppose that WV is not a simultaneous local metric generator for G. Let ui, uj �∈ WV and G ∈ G
such that uiuj ∈ E(G) and dG(ui, u) = dG(uj, u) for every u ∈ WV . Thus, for any v ∈ Vi, v′ ∈ Vj and
(x, y) ∈ W, we have:

dG◦Hi ((x, y), (ui, v)) = dG(x, ui) = dG(x, uj) = dG◦Hi ((x, y), (uj, v′)),

which is a contradiction. Therefore, WV is a simultaneous local metric generator for G and, as a result,
Sdl(G) ≤ |WV | ≤ |W| = Sdl(G ◦ H).

On the other hand, if H = {N|V1|, . . . , N|Vn |}, then V = I(V,H) = Φ(V,H). Let B ⊆ V be
a simultaneous local metric basis of G. Now, for each ui ∈ B, we choose vi ∈ Vi, and by Remark 9,
we claim that B′ = {(ui, vi) : ui ∈ B} is a simultaneous local metric generator for G ◦ H. Thus,
Sdl(G ◦ H) ≤ |B′| = |B| = Sdl(G).

Proposition 6. Let G �= {K2} be a family of non-trivial connected bipartite graphs with common vertex set
V and H �= {H1, . . . ,Hn} such that Hj �⊆ S0, for some j. If V = I(V,H) and there exist u1, u2 ∈ V and
Gk ∈ G such that V − Φ(V,H) = {u1, u2} and u1u2 ∈ E(Gk), then:

Sdl(G ◦ H) = ∑ Sadl(Hi) + 1,

otherwise,
Sdl(G ◦ H) = ∑ Sadl(Hi).

19



Symmetry 2017, 9, 132

Proof. If V = I(V,H) and there exist u1, u2 ∈ V and Gk ∈ G such that V − Φ(V,H) = {u1, u2} and
u1u2 ∈ E(Gk), then ∅ /∈ Υ(V,H) because no vertex in (V − Φ(V,H))− {u1, u2} = ∅ distinguishes u1

and u2. Let x, y ∈ I(V,H) such that xy ∈ ∪G∈GE(G). Since any ui ∈ Φ(V,H) distinguishes x and y,
we can conclude that {ui} ∈ Υ(V,H), and by Remark 8, Ψ(Hi) = 1. Therefore, Theorem 13 leads to
Sdl(G ◦ H) = ∑ Sadl(Hi) + 1.

Assume that there exists ui ∈ V − I(V,H), or V − Φ(V,H) = {ui}, or V − Φ(V,H) = {ui, uj}
and, for every Gk ∈ G, uiuj /∈ E(Gk) or {ui, uj, uk} ⊆ V − Φ(V,H). In any one of these cases {ui} is
a simultaneous local metric basis of G and, for every pair u1, u2 of adjacent vertices in some Gk ∈ G such
that ui /∈ {u1, u2}, ui distinguishes the pair. Since ui ∈ V − Φ(V,H), we can claim that ∅ ∈ Υ(V,H),
and by Theorem 13, Sdl(G ◦ H) = ∑ Sadl(Hi).

5.1. Families of Join Graphs

For two graph families G = {G1, . . . , Gk1} and H = {H1, . . . , Hk2}, defined on common vertex
sets V1 and V2, respectively, such that V1 ∩ V2 = ∅, we define the family:

G +H = {Gi + Hj : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}.

Notice that, since for any Gi ∈ G and Hj ∈ H the graph Gi + Hj has diameter two,

Sdl(G +H) = Sadl(G +H).

The following result is a direct consequence of Theorem 13.

Corollary 9. For any pair of families G and H of non-trivial graphs on common vertex sets V1 and V2,
respectively,

Sdl(G +H) = min{SdA,l(G) + Ψ(H), SdA,l(H) + Ψ(G)}

Remark 12. Let G be a family of graphs defined on a common vertex set V1. If there exists B a simultaneous
local adjacency basis of G such that D[G , B] = ∅, then for every H family of graphs defined on a common vertex
set V2, we have:

Sdl(G +H) = Sadl(G) + Sadl(H)

By Lemma 3 and Remark 12, we deduce the following result.

Proposition 7. Let G and H be two families of non-trivial connected graphs on a common vertex set V1 and
V2, respectively. If G ⊆ ∪4

i=1Si, then:

Sdl(G +H) = Sadl(G) + Sadl(H).

6. Computability of the Simultaneous Local Metric Dimension

In previous sections, we have seen that there is a large number of classes of graph families
for which the simultaneous local metric dimension is well determined. This includes some cases
of graph families whose simultaneous metric dimension is hard to compute, e.g., families composed
by trees [22], yet the simultaneous local metric dimension is constant. However, as proven in [23],
the problem of finding the local metric dimension of a graph is NP-hard in the general case, which
trivially leads to the fact that finding the simultaneous local metric dimension of a graph family is also
NP-hard in the general case.

Here, we will focus on a different aspect, namely that of showing that the requirement
of simultaneity adds to the computational difficulty of the original problem. To that end, we will show
that there exist families composed by graphs whose individual local metric dimensions are constant,
yet it is hard to compute their simultaneous local metric dimension.
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To begin with, we will formally define the decision problems associated with the computation
of the local metric dimension of one graph and the simultaneous local metric dimension
of a graph family.

Local metric Dimension (LDIM)
Instance: A graph G = (V, E) and an integer p, 1 ≤ p ≤ |V(G)| − 1.
Question: Is diml(G) ≤ p?

Simultaneous Local metric Dimension (SLD)
Instance: A graph family G = {G1, G2, . . . , Gk} on a common vertex set V and an integer p, 1 ≤ p ≤
|V| − 1.
Question: Is Sdl(G) ≤ p?

As we mentioned above, LDIM was proven to be NP-complete in [23]. Moreover, it is simple to
see that determining whether a vertex set S ⊆ V, |S| ≤ p, is a simultaneous local metric generator can
be done in polynomial time, so SLD is in NP. In fact, SLD can be easily shown to be NP-complete, since
for any graph G = (V, E) and any integer 1 ≤ p ≤ |V(G)| − 1, the corresponding instance of LDIM
can be trivially transformed into an instance of SLD by making G = {G}.

For the remainder of this section, we will address the issue of the complexity added by the
requirement of simultaneity. To this end, we will consider families composed by the so-called tadpole
graphs [28]. An (h, t)-tadpole graph (or (h, t)-tadpole for short) is the graph obtained from a cycle
graph Ch and a path graph Pt by joining with an edge a leaf of Pt to an arbitrary vertex of Ch.
We will use the notation Th,t for (h, t)-tadpoles. Since (2q, t)-tadpoles are bipartite, we have that
diml(T2q,t) = 1. In the case of (2q + 1, t)-tadpoles, we have that diml(T2q+1,t) = 2, as they are not
bipartite (so, diml(T2q+1,t) ≥ 2), and any set composed by two vertices of the subgraph C2q+1 is a local
metric generator (so, diml(T2q+1,t) ≤ 2). Additionally, consider the sole vertex v of degree three in
T2q+1,t and a local metric generator for T2q+1,t of the form {v, x}, x ∈ V(C2q+1)− {v}. It is simple to
verify that for any vertex y ∈ V(Pt), the set {y, x} is also a local metric generator for T2q+1,t.

Consider a family T = {Th1,t1 , Th2,t2 , . . . , Thk ,tk
} composed by tadpole graphs on a common vertex

set V. By Theorem 4, we have that Sdl(T ) = Sdl(T ′), where T ′ is composed by (2q + 1, t)-tadpoles.
As we discussed previously, diml(T2q+1,t) = 2. However, by Remark 1 and Theorem 1, we have that
2 ≤ Sdl(T ′) ≤ |V| − 1. In fact, both bounds are tight, since the lower bound is trivially satisfied
by unitary families, whereas the upper bound is reached, for instance, by any family composed by
all different labeled graphs isomorphic to an arbitrary (3, t)-tadpole, as it satisfies the premises of
Theorem 1. Moreover, as we will show, the problem of computing Sdl(T ′) is NP-hard, as its associated
decision problem is NP-complete. We will do so by showing a transformation from the hitting set
problem, which was shown to be NP-complete by Karp [29]. The hitting set problem is defined as
follows:

Hitting Set Problem (HSP)
Instance: A collection C = {C1, C2, . . . , Ck} of non-empty subsets of a finite set S and a positive integer
p ≤ |S|.
Question: Is there a subset S′ ⊆ S with |S′| ≤ p such that S′ contains at least one element from each
subset in C?

Theorem 14. The Simultaneous Local metric Dimension problem (SLD) is NP-complete for families
of (2q + 1, t)-tadpoles.

Proof. As we discussed previously, determining whether a vertex set S ⊆ V, |S| ≤ p, is a simultaneous
local metric generator for a graph family G can be done in polynomial time, so SLD is in NP.

Now, we will show a polynomial time transformation of HSP into SLD. Let S = {v1, v2, . . . , vn}
be a finite set, and let C = {C1, C2, . . . , Ck}, where every Ci ∈ C satisfies Ci ⊆ S. Let p be a positive
integer such that p ≤ |S|. Let A = {w1, w2, . . . , wk} such that A ∩ S = ∅. We construct the family
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T = {T2q1+1,t1 , T2q2+1,t2 , . . . , T2qk+1,tk} composed by (2q + 1, t)-tadpoles on the common vertex set
V = S ∪ A ∪ {u}, u /∈ S ∪ A, by performing one of the two following actions, as appropriate, for every
r ∈ {1, . . . , k}:

• If |Cr| is even, let C2qr+1 be a cycle graph on the vertices of Cr ∪ {u}; let Ptr be a path graph on
the vertices of (S − Cr) ∪ A; and let T2qr+1,tr be the tadpole graph obtained from C2qr+1 and Ptr by
joining with an edge a leaf of Ptr to a vertex of C2qr+1 different from u.

• If |Cr| is odd, let C2qr+1 be a cycle graph on the vertices of Cr ∪ {u, wr}; let Ptr be a path graph on
the vertices of (S − Cr) ∪ (A − {wr}); and let T2qr+1,tr be the tadpole graph obtained from C2qr+1

and Ptr by joining with an edge the vertex wr to a leaf of Ptr .

Figure 4 shows an example of this construction.

v5w3w2w1v4

u
v1

v2

v3

T(1)
5,4

v3v1w2w1w3

u
v2

v4

v5

T(3)
5,4

v4v2v1w3w2w1v5

u

v3

T(2)
3,6

Figure 4. The family T = {T(1)
5,4 , T(2)

3,6 , T(3)
5,4 } is constructed for transforming an instance of the Hitting

Set Problem (HSP), where S = {v1, v2, v3, v4, v5} and C = {{v1, v2, v3, v4}, {v3, v5}, {v2, v4, v5}}, into
an instance of Simultaneous Local metric Dimension (SLD) for families of (2q + 1, t)-tadpoles.

In order to prove the validity of this transformation, we claim that there exists a subset S′′ ⊆ S
of cardinality |S′′| ≤ p that contains at least one element from each Cr ∈ C if and only if Sdl(T ) ≤ p+ 1.

To prove this claim, first assume that there exists a set S′′ ⊆ S, which contains at least one element
from each Cr ∈ C and satisfies |S′′| ≤ p. Recall that any set composed by two vertices of C2qr+1 is
a local metric generator for T2qr+1,tr , so S′′ ∪ {u} is a simultaneous local metric generator for T . Thus,
Sdl(T ) ≤ p + 1.

Now, assume that Sdl(T ) ≤ p + 1, and let W be a simultaneous local metric generator for T
such that |W| = p + 1. For every T2qr+1,tr ∈ T , we have that u ∈ V(C2qr+1) and δT2qr+1,tr

(u) = 2,
so | ((W − {x}) ∪ {u}) ∩ V(C2qr+1)| ≥ |W ∩ V(C2qr+1)| for any x ∈ W. As a consequence, if u /∈ W,
any set (W − {x}) ∪ {u}, x ∈ W, is also a simultaneous local metric generator for T , so we can
assume that u ∈ W. Moreover, applying an analogous reasoning for every set Cr ∈ C such that
W ∩ Cr = ∅, we have that, firstly, there is at least one vertex vri ∈ Cr such that vri ∈ V(C2qr+1)− {u}
and δT2qr+1,tr

(vri ) = 2, and secondly, there is at least one vertex xr ∈ W ∩ ({wr} ∪ V(Ptr )), which can
be replaced by vri . Then, the set:

W ′ =
⋃

W∩Cr=∅
((W − {xr}) ∪ {vri})

is also a simultaneous local metric generator for T of cardinality |W ′| = p + 1 such that u ∈ W ′ and
(W ′ − {u}) ∩ Cr �= ∅ for every Cr ∈ C. Thus, the set S′′ = W ′ − {u} satisfies |S′′| ≤ p and contains at
least one element from each Cr ∈ C.
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To conclude our proof, it is simple to verify that the transformation of HSP into SLD described
above can be done in polynomial time.

7. Conclusions

In this paper we introduced the notion of simultaneous local dimension of graph families. We
studied the properties of this new parameter in order to obtain its exact value, or sharp bounds, on
several graph families. In particular, we focused on families obtained as the result of small changes in
an initial graph and families composed by graphs obtained through well-known operations such as
the corona and lexicographic products, as well as the join operation (viewed as a particular case of the
lexicographic product). Finally, we analysed the computational complexity of the new problem, and
showed that computing the simultaneous local metric dimension is computationally difficult even
for families composed by graphs whose (individual) local metric dimensions are constant and well
known.
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every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM). Furthermore,
we study the extremal problems of finding the smallest and largest hyperbolicity constants of such
graphs; in fact, it is shown that 5/4 ≤ δ(GM) ≤ 5/2. Graphs G whose Mycielskian have hyperbolicity
constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle,
complete and complete bipartite graphs are calculated explicitly. Finally, information on δ(G) just in
terms of δ(GM) is obtained.
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1. Introduction

Hyperbolic spaces (see Section 2 for definitions) were introduced by Mikhail Gromov in the
1980s in the context of geometric group theory (see [1–4]). Classical Riemannian geometry states
that negatively-curved spaces possess an interesting property known as geodesic stability. Namely,
near-optimal paths (quasi-geodesics) remain in a neighborhood of the optimal path (geodesic).
When Mario Bonk proved in 1996 that geodesic stability was, in fact, equivalent to Gromov
hyperbolicity (see [5]), the theory of hyperbolic spaces became a way to grasp the essence of
negatively-curved spaces and to translate it to the simpler and more general setting of metric spaces.
In this way, a simple concept led to a very rich general theory (see [1–4]) and, in particular, made
hyperbolic spaces applicable to graphs. The theory has also been extensively used in discrete spaces
like trees, the Cayley graphs of many finitely-generated groups and random graphs (see, e.g., [6–9]).

Hyperbolic spaces were initially applied to the study of automatic groups in the science of
computation (see, e.g., [10]); indeed, it was proven that hyperbolic groups are strongly geodesically
automatic, i.e., there is an automatic structure on the group [11]. The concept of hyperbolicity appears
also in discrete mathematics, algorithms and networking [12]. For example, it has been shown
empirically in [13] that the Internet topology embeds with better accuracy into a hyperbolic space
than into a Euclidean space of comparable dimension (formal proofs that the distortion is related
to the hyperbolicity can be found in [14]); furthermore, it is evidenced that many real networks are
hyperbolic (see, e.g., [15–19]). Recently, among the practical network applications, hyperbolic spaces
were used to study secure transmission of information on the Internet or the way viruses are spread
through the network (see [20,21]); also to traffic flow and effective resistance of networks [22–24].

In fact, there is a new and growing interest for graph theorists in the study of the mathematical
properties of Gromov hyperbolic spaces. (see, for example, [6–9,14,18–21,25–35]).

Symmetry 2017, 9, 131; doi:10.3390/sym9080131 www.mdpi.com/journal/symmetry25
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Several researchers have shown interest in proving that the metrics used in geometric function
theory are Gromov hyperbolic. For instance, the Kobayashi and Klein–Hilbert metrics are Gromov
hyperbolic (under certain conditions on the domain of definition; see [36–38]), the Gehring–Osgood
j-metric is Gromov hyperbolic but the Vuorinen j-metric is not Gromov hyperbolic, except in the
punctured space (see [39]). Furthermore, in [40], the hyperbolicity of the conformal modulus metric μ

and the related so-called Ferrand metric λ∗ have been studied. Gromov hyperbolicity of the Poincaré
and the quasi-hyperbolic metrics is also the subject of [34,41–46].

Mycielskian graphs (see Section 2 for definitions) are a construction for embedding any undirected
graph into a larger graph with higher chromatic number, but avoiding the creation of additional
triangles. For example, the simple path graph with two vertices and one edge has chromatic number
two, but its Mycielskian graph (which is the cycle graph with five vertices) raises that number to
three. Actually, Jan Mycielski proved that there exist triangle-free graphs with an arbitrarily large
chromatic number by applying this construction repeatedly to a starting triangle-free graph (see [47]).
This means that, on the one hand, this construction enlarges small graphs in order to increase their
chromatic number, but on the other hand (as we prove in the present paper), the resulting graph is
Gromov hyperbolic; furthermore, its hyperbolicity constant is strongly constrained to a small interval.
In this work, we also characterize which graphs yield Mycielskian graphs with hyperbolicity constant
in the boundary cases. Note that a constraint value of the hyperbolicity constant is relevant, since it
gives an idea of the tree-likeness of the space in question (see [35]).

Computing the hyperbolicity constant of a space is a difficult goal: For any arbitrary geodesic
triangle T, the minimum distance from any point p of T to the union of the other two sides of the
triangle to which p does not belong to must be calculated. Then, the hyperbolicity constant is the
supremum over all the minimum distances of possible choices for p and then over all of the possible
choices for T in that space. Anyhow, notice that in general, the main obstacle is locating the geodesics in
the space. In [2], the equivalence of the hyperbolicity of any geodesic metric space and the hyperbolicity
of a graph associated with it are proven; similar results for Riemannian surfaces (with a very simple
graph) can be found in [34,44–46]; hence, it is very useful to know hyperbolicity criteria for graphs. It is
possible to compute the hyperbolicity constant of a finite graph with n vertices in time O(n3.69) [48]
(this result is improved in [17,49]). There is an algorithm that allows to decide if a Cayley graph (of
a presentation with a solvable word problem) is hyperbolic [50]. However, there is no easy method to
decide if a general infinite graph is hyperbolic or not.

Thus, a way to approach the problem is to study the hyperbolicity for particular types of graphs.
For example, some other authors have obtained results on hyperbolicity for the complement of
graphs, chordal graphs, vertex-symmetric graphs, lexicographic product graphs, corona and join
of graphs, line graphs, bipartite and intersection graphs, bridged graphs, expanders and median
graphs [24,27,28,32,33,35,51–56].

If G is a graph, GM denotes its Mycielskian graph (see Section 2 for definitions), and δ(GM) stands
for its hyperbolicity constant. As usual, we denote by V(G) and E(G) as the set of vertices and edges
of G, respectively. Let us also denote by J(G) the union of the set V(G) and the midpoints of the edges
of G. The diameter of a graph G (the maximum distance between any two points of G) will be denoted
by diam(G) and the diameter of the set of vertices V(G) of G by diam V(G).

The main results of this work deal with the hyperbolicity constant of Mycielskian graphs, as said
above. The first of them states that Mycielskian graphs are always hyperbolic and solves the extremal
problems of finding the smallest and largest hyperbolicity constants of such graphs. The second
and third ones characterize graphs with hyperbolicity constants 5/2 and 5/4, the maximum and the
minimum values, respectively. The fourth result gives an accurate estimate of δ(GM), and the fifth one
allows us to obtain information on δ(G) just in terms of δ(GM).

Theorem 1. Let G be any graph. Then, GM is hyperbolic, 2 ≤ diam V(GM) ≤ 4 and 5/2 ≤ diam(GM) ≤ 5.
Furthermore, if G is a complete graph, then δ(GM) = 5/4; otherwise:
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5
4
≤ δ(GM) ≤ min

{5
2

,
1 + diam V(G)

2

}
and both bounds of δ(GM) are sharp.

Theorem 2. Let G be any graph. Then, δ(GM) = 5/2 if and only if there exists a geodesic triangle
T := {x, y, z} in G and GM with:

x, y ∈ J(G) \ V(G), z ∈ J(G), (1)

dG(x, y) = 5, dG(x, z) ≤ 5, dG(y, z) ≤ 5, (2)

the midpoint p in [xy] is a vertex of G and dG(p, [xz] ∪ [yz]) = 5/2. (3)

Theorem 10 characterizes the graphs G with δ(GM) = 5/4. Since this characterization is not easy
to state briefly, we present here nice necessary and sufficient conditions on G for δ(GM) = 5/4.

Theorem 3. Let G be any graph:

If diam(G) ≤ 2, then δ(GM) = 5/4, (4)

If δ(GM) = 5/4, then diam(G) ≤ 5/2. (5)

Furthermore, the converses of (4) and (5) do not hold.

The hyperbolicity of a metric space is at most half of its diameter. The following result states
an unexpected fact: δ(GM) is not only upper bounded by 1

2 diam(GM); in this case, that upper bound
is close to the actual value of the hyperbolicity constant.

Theorem 4. Let G be any graph. Then:

1
2

diam V(GM) ≤ δ(GM) ≤ 1
2

diam(GM).

So far, our main results have obtained information about GM in terms of G. However, it is also
interesting to consider what can be said about δ(G) in terms of δ(GM). Our next theorem gives a partial
answer to this question.

Theorem 5. If δ(GM) ≤ 3/2, then δ(G) ≤ δ(GM).

The outline of the paper will be as follows. In Section 2, some definitions and previous results
will be stated. Section 3 contains the proof of the main parts of Theorem 1. Sections 4 and 5 will
present the proofs of Theorem 2 and Theorem 3, respectively. In Section 6, the hyperbolicity constants
of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly.
Apart from the intrinsic interest of these results, they are also employed in the proofs of some of the
main results of the paper. Furthermore, it contains the proofs of Theorems 1, 4 and 5. Finally, in
Section 7, a characterization for graphs with δ(GM) = 5/4 is given.

Since the hypotheses in most theorems are simple to check, the main results in this paper can
be applied to every graph. An exception is Theorem 10, but even in this case, a rough algorithm is
provided, which allows one to check the hypotheses in polynomial time. Furthermore, information on
δ(GM) from G and on δ(G) in terms of GM is found. The main inequalities obtained in this work are
applied in Section 6 in order to compute explicitly the hyperbolicity constants of the Mycielskian of
some classical examples, such as path, cycle, complete and complete bipartite graphs. Finally, note that
Mycielskian graphs are not difficult to identify computationally.

27



Symmetry 2017, 9, 131

2. Definitions and Background

If γ : [a, b] −→ X is a continuous curve in a metric space (X, d), we can define the length of γ as:

l(γ) := sup
{ n

∑
i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b
}

.

The curve γ is a geodesic if we have l(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every s, t ∈ [a, b] (then γ

is equipped with an arc-length parametrization). The metric space X is said to be geodesic if for every
couple of points in X, there exists a geodesic joining them; we denote by [xy] any geodesic joining
x and y; this notation is ambiguous, since in general we do not have the uniqueness of geodesics,
but it is very convenient. Consequently, any geodesic metric space is connected. The graph G consists
of a collection of vertices, denoted by V(G) = {vi} and a collection of edges joining vertices, E(G);
the edge joining vertices vi and vj will be denoted by {vi, vj}. Furthermore, NG(vi) will stand for
the set of neighbors of (or adjacent to) the vertex vi, that is the set of all vertices v ∈ V(G) for which
{v, vi} ∈ E(G). All throughout this paper, the metric space X considered is a graph with every edge of
length one. In order to consider a graph G as a geodesic metric space, we identify (by an isometry)
any edge {vi, vj} ∈ E(G) with the interval [0, 1] in the real line. Thus, the points in Gare the vertices
and the points in the interiors of the edges of G. In this way, any connected graph G has a natural
distance defined on its points, induced by taking the shortest paths in G, and we can see G as a metric
graph. Such a distance will be denoted by dG. Throughout this paper, G denotes a connected (finite or
infinite) simple (i.e., without loops and multiple edges) graph such that every edge has length one
and E(G) �= ∅. These properties guarantee that G is a geodesic metric space and that GM can be
defined. Note that excluding multiple edges and loops is not an important loss of generality, since
([57], Theorems 8 and 10) they reduce the problem of computing the hyperbolicity constant of graphs
with multiple edges and/or loops to the study of simple graphs.

A cycle in G is a simple closed curve containing adjacent vertices v1, . . . , vn. It will be denoted by
[v1, v2, . . . , vn, v1]. The notation a ∼ b means that the vertices a and b are adjacent.

Given a graph G with V(G) = {v1, . . . , vn}, the Mycielskian graph GM of G contains G itself as
a subgraph, together with n + 1 additional vertices {u1, . . . , un, w}, where each vertex ui is the mirror
of the vertex vi of G and w is the supervertex. Each vertex ui is connected by an edge to w. In addition,
for each edge {vi, vj} of G, the Mycielskian graph includes two edges, {ui, vj} and {vi, uj} (in Figure 1,
the process of the construction of the Mycielskian graph for the path graph P3 is shown). Thus, if G
has n vertices and m edges, then GM has 2n + 1 vertices and 3m + n edges.

v1 v2 v3

v1 v2 v3

u1 u2 u3

v1 v2 v3

u1 u2 u3

w

Figure 1. Construction of the Mycielskian graph of P3.

Trivially, for all i, j, dGM (w, vi) = dGM (ui, uj) = 2 and dGM (w, ui) = 1; also dGM (vi, vj) =

min{dG(vi, vj), 4} and for any point a ∈ GM, dGM (w, a) ≤ 5/2. Note that a can be either a vertex of the
graph or any other point belonging to an edge of it. Moreover, the definition of GM makes sense also if
n = ∞, i.e., if G is an infinite graph. Since GM is always connected, it would be possible to consider
disconnected graphs G, but Theorem 9 shows that, in order to study δ(GM), it suffices to consider just
connected graphs.
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Finally, let us recall the definition of Gromov hyperbolicity that we will use (we use the notations
of [3]).

If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three geodesics [x1x2], [x2x3] and
[x3x1] is a geodesic triangle that will be denoted by T = {x1, x2, x3}, and we will say that x1, x2 and
x3 are the vertices of T; it is usual to write also T = {[x1x2], [x2x3], [x3x1]}. We say that T is δ-thin
if any side of T is contained in the δ-neighborhood of the union of the two other sides. We denote
by δ(T) the sharp thin constant of T, i.e., δ(T) := inf{δ ≥ 0 : T is δ-thin } . Given a constant δ ≥ 0,
the space X is δ-hyperbolic if every geodesic triangle in X is δ-thin. We denote by δ(X) the sharp
hyperbolicity constant of X, i.e., δ(X) := sup{δ(T) : T is a geodesic triangle in X } ∈ [0, ∞]. We say
that X is hyperbolic if X is δ-hyperbolic for some constant δ ≥ 0, i.e., δ(X) < ∞. If we have a geodesic
triangle with two identical vertices, we call it a bigon. Obviously, every bigon in a δ-hyperbolic space
is δ-thin. In the classical references on this subject (see, e.g., [2,3]) appear several different definitions
of Gromov hyperbolicity, which are equivalent in the sense that if X is δ-hyperbolic with respect to one
definition, then it is δ′-hyperbolic with respect to another definition (for some δ′ related to δ). We have
chosen this definition by its deep geometric meaning [3].

Trivially, any bounded metric space X is (diam X)-hyperbolic. A normed real linear space is
hyperbolic if and only if it has dimension one. A geodesic space is zero-hyperbolic if and only
if it is a metric tree. The hyperbolic plane (with curvature −1) is log(1 +

√
2 )-hyperbolic. Every

simply-connected complete Riemannian manifold with sectional curvature verifying K ≤ −k2, for
some positive constant k, is hyperbolic. See the classical [1,3] in order to find more examples and
further results.

Trees are one of the main examples of hyperbolic graphs. Metric trees are precisely those spaces
X with δ(X) = 0. Therefore, the hyperbolicity constant of a geodesic metric space can be seen as a
measure of how “tree-like” that space is. This alternative view of the hyperbolicity constant is an
interesting subject since the tractability of a problem in many applications is related to the tree-like
degree of the space under investigation. (see, e.g., [58]). Furthermore, it is well known that any Gromov
hyperbolic space with n points embeds into a tree metric with distortion O(δ log n) (see, e.g., [3], p. 33).

If G1 and G2 are isomorphic, we write G1 � G2. It is clear that if G1 � G2, then δ(G1) = δ(G2).
The following well-known result will be used throughout the paper (see, e.g., ([59], Theorem 8)

for a proof).

Lemma 1. Let G be any graph. Then, δ(G) ≤ diam(G)/2.

Consider the set T1 of geodesic triangles T in G that are cycles and such that the three vertices
of the triangle T belong to J(G), and denote by δ1(G) the infimum of the constants λ such that every
triangle in T1 is λ-thin.

The following results, which appear in [60] (Theorems 2.5, 2.7 and 2.6), will be used throughout
the paper.

Lemma 2. For every graph G, we have δ1(G) = δ(G).

Lemma 3. For any hyperbolic graph G, there exists a geodesic triangle T ∈ T1 such that δ(T) = δ(G).

The next result will narrow the possible values for the hyperbolicity constant δ.

Lemma 4. Let G be any graph. Then, δ(G) is always a multiple of 1/4.

The following results deal with isometric subgraphs and how the hyperbolicity constant behaves.
A subgraph G0 of the graph G is an isometric subgraph if for all x, y ∈ G0, we have

dG0(x, y) = dG(x, y). This is equivalent to the fact that dG0(u, v) = dG(u, v) for every u, v ∈ V(G0). It is
known that isometric subgraphs have a lesser hyperbolicity constant (see [57], Lemma 7):
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Lemma 5. Let G0 be an isometric subgraph of G. Then, δ(G0) ≤ δ(G).

The coming lemma states that the Mycielskians preserve isometric subgraphs, and a nice
corollary follows.

Lemma 6. If G0 is an isometric subgraph of G, then GM
0 is an isometric subgraph of GM.

Proof. Let x, y ∈ V(GM
0 ). Throughout the proof, V(G0) = {v1, . . . , vn}, W = {u1, . . . , un} and

V(GM
0 ) = V(G0) ∪ W ∪ {w} = {v1, . . . , vn, u1, . . . , un, w} with w being the supervertex.
Without loss of generality, x, y ∈ V(G0) or x ∈ V(G0) and y ∈ W. Otherwise, trivially,

if x, y ∈ {u1, . . . , un} or if x = w and y ∈ V(G0), then dGM
0
(x, y) = dGM (x, y) = 2; also trivially, if

x = w and y ∈ W, then dGM
0
(x, y) = dGM (x, y) = 1.

First, let x = vi and y = vj. If dG0(vi, vj) = dG(vi, vj) = 1, trivially, dGM
0
(vi, vj) = dGM (vi, vj) = 1.

If dG0(vi, vj) = dG(vi, vj) = 2, there exists vr ∈ V(G0) so that {vi, vr}, {vr, vj} ∈ E(G0). Notice
also that dGM

0
(vi, vj) ≤ dGM

0
(vi, ur)+ dGM

0
(ur, vj). Suppose there is a path γ ⊂ GM from vi to vj such that

l(γ) = 1; then, {vi, vj}] ∈ E(GM), and thus, {vi, vj} ∈ E(G), giving dG(vi, vj) = 1, which contradicts
dG(vi, vj) = 2.

Additionally, if dG0(vi, vj) = dG(vi, vj) > 2, then there is a geodesic path γ in G0 and
vk �= vl ∈ V(G0) with {vi, vk}, {vl , vj} ∈ E(G0) and vi, vk, vl , vj ∈ γ. Clearly, uk �= ul . By the
triangle inequality, dGM

0
(vi, vj) ≤ dGM

0
(vi, uk) + dGM

0
(uk, w) + dGM

0
(ul , w) + dGM

0
(ul , vj) ≤ 4. Suppose

there is a path γ̃ ⊂ GM from vi to vj such that l(γ̃) ≤ 3, then w /∈ γ̃, and there exists ur ∈ V(MG0)

with {vi, ur}, {ur, vj} ∈ E(GM); thus, {vi, vr}, {vr, vj} ∈ E(G), giving dG(vi, vj) = 2, which is
a contradiction.

Next, let x = vi ∈ V(G0) and y = uj ∈ W. Notice that dGM
0
(vi, uj) ≤ dGM

0
(vi, w) + dGM

0
(w, uj) = 3.

If {vi, uj} ∈ E(GM
0 ), then the result trivially holds. If dGM

0
(vi, uj) = 2, then there exists vr ∈ V(G0)

with {vi, vr} ∈ E(G0) and {vr, uj} ∈ E(GM
0 ), and thus, dGM (vi, uj) = 2. Finally, if dGM

0
(vi, uj) = 3, then

there is a geodesic γ both in GM
0 an GM, which contains w.

This result has a straightforward consequence.

Corollary 1. If G0 is an isometric subgraph of G, then δ(GM) ≥ δ(GM
0 ).

Denote by G′ the subgraph of GM induced by V(GM) \ {w}. The following result is elementary.

Proposition 1. Let G be any graph. Then, G is an isometric subgraph of G′.

Proof. Consider the vertices vi, vj ∈ V(G) and a geodesic γ in G′ from vi to vj, say, γ = ∪s
k=1{xrk , xrk+1}

with x = v or x = u, r1 = i and rs = j. It suffices to find a curve γ0 in G from vi to vj with
l(γ) = l(γ0). Since, by construction, if {xrk , xrk+1} ∈ E(G′), then {vrk , vrk+1} ∈ E(G), we have that
γ0 = ∪s

k=1{vrk , vrk+1} joins vi and vj with l(γ) = l(γ0).

3. Proof of the Main Parts of Theorem 1

In order to prove the main parts of Theorem 1, consider first the following weaker version:

Theorem 6. Let G be any graph. Then, GM is hyperbolic, 2 ≤ diam V(GM) ≤ 4, 5/2 ≤ diam(GM) ≤ 5 and:

5
4
≤ δ(GM) ≤ 5

2
.

Proof. For the upper bounds, notice that for any two vertices u, v ∈ GM, dGM (u, v) ≤ 4, therefore
diam V(GM) ≤ 4, diam(GM) ≤ 5, and thus, δ(GM) ≤ 5/2 by Lemma 1.
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For the lower bounds, recall that dGM (u, w) = 2 for every u ∈ V(G), and thus, diam V(GM) ≥ 2.
If {v1, v2} ∈ E(G) and p is the midpoint of {v1, v2}, then dGM (p, w) = 5/2 and diam(GM) ≥ 5/2.

For δ(GM), observe that, since E(G) �= ∅, there exists {v1, v2} ∈ E(G), and thus, GM always
contains a cycle of length of five, namely C := [v1, u2, w, u1, v2, v1]. Let x be the midpoint of
{v1, v2} and consider the geodesic bigon T = {x, w} with geodesics γ1 := [xv1] ∪ {v1, u2} ∪ {u2, w}
and γ2 := [xv2] ∪ {v2, u1} ∪ {u1, w}. If p is the midpoint of the geodesic γ1, then one gets
δ(GM) ≥ dGM (p, γ2) ≥ 5/4.

The following lemmas relate diam V(GM) with diam V(G) for small diameters.

Lemma 7. Let G be any graph. Then:

(i) If x, y ∈ G and dG(x, y) ≤ 9/2, then dGM (x, y) = dG(x, y).
(ii) If x, y ∈ J(G) \ V(G) and dG(x, y) ≤ 5, then dGM (x, y) = dG(x, y).

Proof. Since G is a subgraph of GM, we have dGM (x, y) ≤ dG(x, y).
Assume that x, y ∈ G and dG(x, y) ≤ 9/2, and let γ be a geodesic γ = [xy] in G. Define x0

(respectively, y0) as the closest vertex to x (respectively, y) from γ ∩ V(G) (it is possible to have x = x0

and/or y = y0). Since dG(x0, y0) is an integer number and dG(x, y) ≤ 9/2 by hypothesis, we have that:
(1) dG(x, x0) + dG(y, y0) ≤ 1/2 and dG(x0, y0) ≤ 4,

or
(2) dG(x, x0) + dG(y, y0) ≤ 3/2 and dG(x0, y0) ≤ 3.
Seeking for a contradiction, assume that dGM (x, y) < dG(x, y). Thus, there exists a geodesic γM

joining x and y in GM with l(γM) < l(γ), and w ∈ γM by Proposition 1. Define xM
0 (respectively, yM

0 )
as the closest vertex to x (respectively, y) from γM ∩ V(GM).

Since (1) or (2) holds, we have dG(x, xM
0 ) + dG(y, yM

0 ) ≥ 1/2. Since w ∈ γM, dGM (xM
0 , yM

0 ) = 4 and:

l(γM) = dGM (x, y) = dG(x, xM
0 ) + dGM (xM

0 , yM
0 ) + dG(yM

0 , y)

≥ 1
2
+ 4 ≥ dG(x, y) = l(γ),

which is a contradiction. Then, dGM (x, y) = dG(x, y) and i) holds.

Assume now that x, y ∈ J(G) \ V(G) and dG(x, y) ≤ 5. If dG(x, y) ≤ 9/2, then i) gives the result.
If dG(x, y) > 9/2, then dG(x, y) = 5. The argument in the proof of i) gives:

dG(x, x0) = dG(y, y0) =
1
2

, dGM (x, xM
0 ) = dGM (y, yM

0 ) =
1
2

,

and:

dGM (x, y) = dG(x, xM
0 ) + dGM (xM

0 , yM
0 ) + dG(yM

0 , y) =
1
2
+ 4 +

1
2
= 5 = dG(x, y).

Therefore, ii) holds.

Lemma 8. Let G be any graph. Then:

2 ≤ diam V(G) ≤ 4 iff diam V(GM) = diam V(G).

Proof. Assume first that 2 ≤ diam V(G) ≤ 4.
Let k := diam V(G). Thus:

1. If vi, vj ∈ V(G), then clearly dG(vi, vj) ≤ diam V(G) ≤ 4, and by Lemma 7, we conclude
dGM (vi, vj) = dG(vi, vj).

2. If ui, uj ∈ V(G′) \ V(G), then dGM (ui, uj) = 2 ≤ k.
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3. If vi ∈ V(G) and uj ∈ V(G′) \ V(G), then dGM (vi, ui) = 2 ≤ k and dGM (vi, uj) ≤ dG(vi, vj) ≤ k
(if i �= j).

4. If α ∈ V(G′), then dGM (α, w) ≤ 2 ≤ k.

Therefore, diam V(GM) ≤ diam V(G).
For the other direction, let vi, vj ∈ V(G) be so that dG(vi, vj) ≤ 4. By Lemma 7, we have

dGM (vi, vj) = dG(vi, vj), and thus, diam V(GM) ≥ diam V(G).
Assume now that diam V(GM) = diam V(G). Theorem 6 gives 2 ≤ diam V(GM) ≤ 4, and then,

2 ≤ diam V(G) ≤ 4.

We can prove now the main parts of Theorem 1.

Theorem 7. Let G be any graph. Then, GM is hyperbolic, 2 ≤ diam V(GM) ≤ 4 and 5/2 ≤ diam(GM) ≤ 5.
Furthermore, if G is not a complete graph, then:

5
4
≤ δ(GM) ≤ min

{5
2

,
1 + diam V(G)

2

}
. (6)

Proof. Theorem 6 proves all of the statements of Theorem 7 except for the upper bound for δ(GM) in
the case where diam V(G) < 4.

However, if diam V(G) < 4, then either diam V(G) = 1, in which case G would be isomorphic
to a complete graph, or 2 ≤ diam V(G) < 4, in which case δ(GM) ≤ diam(GM)/2 ≤ (1 +

diam V(GM))/2 = (1 + diam V(G))/2, where the last equality follows from the above result,
Lemma 8.

As a consequence of Lemma 8, we obtain the following result.

Corollary 2. If G is not a complete graph, then diam V(GM) ≤ diam V(G).

The following result provides information about δ(G) in terms of δ(GM).

Theorem 8. Let G be any graph. If diam V(G) ≤ 4, then δ(G) ≤ δ(GM).

Proof. By Lemma 3, there is a geodesic triangle T = {x1, x2, x3} in G (with geodesics γij joining xi and
xj in G) and p ∈ γ12 with dG(p, γ13 ∪γ23) = δ(G) and T ∈ T1. If l(γij) ≤ 9/2, then γij is also a geodesic
in GM by Lemma 7. If l(γij) > 9/2, then l(γij) = 5 and xi, xj ∈ J(G) \ V(G); hence, Lemma 7 gives
that γij is a geodesic in GM. Therefore, T is also a geodesic triangle in GM. Since dG(p, γ13 ∪ γ23) ≤
dG(p, {x1, x2}) ≤ l(γ12)/2 ≤ 5/2, then δ(GM) ≥ dGM (p, γ13 ∪ γ23) = dG(p, γ13 ∪ γ23) = δ(G) by
Lemma 7.

We say that a vertex v of a (connected) graph Γ is a cut-vertex if Γ \ {v} is not connected. A graph
is bi-connected if it does not contain cut-vertices. Given any edge in Γ, we consider the maximal
bi-connected subgraph containing it.

Finally, we have the following result regarding disconnected graphs. Even though in order to
study Gromov hyperbolicity, connected graphs are needed, since GM is always connected, the original
graph G does not need to be:

Theorem 9. Let G be any disconnected graph with connected components {Gj}j. Then:

δ(GM) = max
j

δ(GM
j ).

Proof. It is well known that the hyperbolicity constant of a graph is the maximum value of the
hyperbolicity constant of its maximal bi-connected components. Since G is not connected, the
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supervertex is the unique cut-vertex in GM, and the subgraphs {GM
j }j are the maximal bi-connected

components of GM. Hence, the equality holds.

Note that, in order to study δ(GM), it suffices to consider just (connected) graphs G by Theorem 9.

4. Proof of Theorem 2

The next lemma will be a key tool:

Lemma 9. Let G be any graph. If δ(GM) = 5/2, TM := {x0, y0, z0} is a geodesic triangle in GM, such that
δ(TM) = 5/2 and p ∈ [x0y0] with dGM (p, [x0z0] ∪ [y0z0]) = 5/2, then dGM (x0, y0) = 5, dGM (p, x0) =

dGM (p, y0) = 5/2, x0, y0 ∈ J(G) \ V(G) and p ∈ V(GM).

Proof. Since dGM (p, {x0, y0}) ≥ dGM (p, [x0z0] ∪ [y0z0]) = 5/2, and p ∈ [x0y0], dGM (x0, y0) =

dGM (x0, p) + dGM (p, y0) ≥ 5, then dGM (x0, y0) = 5 by Theorem 6. Thus, dGM (p, x0) = dGM (p, y0) =

5/2. The equality dGM (x0, y0) = 5 and the fact that diam V(GM) ≤ 4, guarantee that x0, y0 ∈
J(GM) \ V(GM). In fact, x0 ∈ G for otherwise dGM (x0, w) ≤ 3/2, and since dGM (y0, w) ≤ 5/2, the
triangle inequality would give dGM (x0, y0) ≤ (3/2) + (5/2) = 4 < 5. Therefore, x0, y0 ∈ J(G) \ V(G).
This in turn implies that p ∈ V(GM).

When comparing hyperbolicity constants of G and GM, it is useful to compare triangles in those
graphs. A useful tool will be a projection, which allows one to associate triangles T ⊂ G with given
triangles TM ⊂ GM, which do not contain the supervertex, that is TM ⊂ G′. Namely:

Definition 1. The projection Π : G′ → G is defined as follows:
For a point a ∈ G′, if a ∈ G, then Π(a) = a. If a = ui ∈ V(G′) \ V(G), then Π(a) = Π(ui) = vi ∈

V(G). If a ∈ G′ \ {G ∪ V(G′)}, then a lies on an edge, say a ∈ {vm, uk}; then, Π(a) ∈ {vm, Π(uk)} ⊂ G,
so that dG(Π(a), vm) = dGM (a, vm).

Remark 1. Observe the following:

1. If γ = [xy] is a geodesic in GM and γ ⊂ G′, there exists a geodesic [Π(x)Π(y)] ⊆ Π([xy]); in general,
equality does not hold, since two different edges in γ might project onto the same edge in E(G) (for instance,
if γ = {vi, vj} ∪ {vj, ui}, then Π(γ) = {vi, vj}; note that l(γ) = 2); therefore, l(Π(γ)) ≤ l(γ).

2. If l([xy]) ≤ 1 and x ∈ V(G), then [Π(x)Π(y)] = Π([xy]).
3. If TM is a geodesic triangle in GM and Π(TM) is a geodesic triangle in G and GM, then Π(TM) does not

need to be a cycle even if TM is. For instance, if γ1 = {vi, vj} ∪ {vj, vk} and γ2 = {vi, uj} ∪ {uj, vk},
then TM = {γ1, γ2} is a geodesic bigon in GM, Π(γ1) = Π(γ2) = γ1 are geodesics in G, but Π(TM) is
not a cycle, although TM is; note that l(TM) = 4 (see Figure 2).

vi vj vk

uj

TM
vi vj vk

Π(TM )

Figure 2. Projection of a cycle in G′ of length four onto a path in G of length two.
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However, the following holds:

Lemma 10. Let G be any graph and Π the projection in Definition 1. If [xy] ⊂ G′ and l([xy]) > 2, then
Π([xy]) is a geodesic in G joining Π(x) and Π(y). Furthermore, if u ∈

(
V(G′) \ V(G)

)
∩ [xy], then

Π(u) /∈ [xy].

Proof. The statement is trivial if [xy] ⊂ G. Otherwise, it is a consequence of the following fact: If
l([xy]) > 2, then we have either {ui, vj} ⊂ [xy] or {vi, vj} ⊂ [xy] for some ui ∈ V(G′) \ V(G) and
vi, vj ∈ V(G). If {ui, vj} ⊂ [xy], then {vi, vj}∩ [xy] = vj; if {vi, vj} ⊂ [xy], then {ui, vj}∩ [xy] = vj.

Proof of Theorem 2. Assume first that δ(GM) = 5/2.
By Lemma 3, there is a geodesic triangle TM := {x0, y0, z0} ⊂ GM that is a cycle with x0, y0, z0 ∈

J(GM) and p ∈ [x0y0], so that dGM (p, [x0z0] ∪ [y0z0]) = 5/2. Then, by Lemma 9, x0, y0 ∈ J(G) \ V(G),
p ∈ V(GM), p is the midpoint in [x0y0], and dGM (x0, y0) = 5.

The goal is to produce a triangle T from this TM, which is geodesic both in G and GM.
To this end, it will be first shown that the supervertex w /∈ TM.
Clearly, w �= p for dGM (w, [x0z0] ∪ [y0z0]) ≤ 2 < 5/2, since dGM (w, v) ≤ 2 for all v ∈ V(GM).

For this same reason, w /∈ [x0z0]∪ [y0z0], for dGM (p, [x0z0]∪ [y0z0]) ≤ dGM (p, w) ≤ 2, since p ∈ V(GM).
Finally, w /∈ [x0y0], since w, p ∈ V(GM) and x0, y0 ∈ J(G) \ V(G), gives dGM (w, x0) = dGM (w, y0) =

5/2 = dGM (x0, y0)/2, which would mean that w = p, which is a contradiction.
Therefore, w /∈ TM, TM ⊂ G′, and dG′(x0, y0) = dGM (x0, y0) = 5, dG′(x0, z0) = dGM (x0, z0) ≤ 5

and dG′(y0, z0) = dGM (y0, z0) ≤ 5.
If we define x := Π(x0) = x0, y := Π(y0) = y0, z := Π(z0), then (1) stated in Theorem 2 holds,

and Lemma 7 gives dG(x, y) = dGM (x0, y0) = 5, dG(x, z) = dGM (x0, z0) ≤ 5, dG(y, z) = dGM (y0, z0) ≤
5. If l([x0z0]) > 2 and l([y0z0]) > 2, then Π([x0y0]) = [xy], Π([x0z0]) = [xz] and Π([y0z0]) = [yz]
are geodesics in G by Lemma 10. Otherwise, [x0z0] or [y0z0] have length at most two. By symmetry,
we can assume that l([y0z0]) ≤ 2; since dGM (x0, y0) = 5, we have l([x0z0]) ≥ 3, and Lemma 10 gives
that Π([x0y0]) = [xy] and Π([x0z0]) = [xz] are geodesics in G. Furthermore, Π([y0z0]) contains a
geodesic [yz] in G. This gives the existence of the geodesic triangle T of Theorem 2 and (2) stated in
this same Theorem.

Next, let us show that dGM(Π(p), [x0z0] ∪ [y0z0]) = dGM(p, [x0z0] ∪ [y0z0]) = 5/2. If p ∈ G,
then Π(p) = p, and the statement trivially holds. Assume that p /∈ G (thus, p ∈ V(G′) \ V(G)).
Since l([x0y0]) = 5 > 2 and p ∈ [x0y0], Lemma 10 gives that Π(p) /∈ [x0y0]. Since dGM(p, [x0z0]∪ [y0z0]) =

5/2, we have Π(p) /∈ [x0z0] ∪ [y0z0], and we conclude Π(p) /∈ TM.
Let η be a geodesic joining Π(p) and [x0z0]∪ [y0z0] in GM with l(η) = dGM (Π(p), [x0z0]∪ [y0z0]),

and let q1 ∈ V(GM)∩ η, so that q1 is adjacent to Π(p) ∈ V(G) (so q1 �= w). We have dGM (Π(p), [x0z0]∪
[y0z0]) ≤ dGM (Π(p), x0) = dGM (p, x0) = 5/2.

If q1 ∈ V(G), then {p, q1} ∈ E(G′), and take η′ to be the curve (not necessarily geodesic)
(η \ {Π(p), q1}) ∪ {p, q1}; then l(η) = l(η′) ≥ dGM (p, [x0z0] ∪ [y0z0]) = 5/2, and we conclude
dGM (Π(p), [x0z0] ∪ [y0z0]) = dGM (p, [x0z0] ∪ [y0z0]) = 5/2, the desired result.

If q1 ∈ V(G′) \ V(G), let q2 ∈ (V(GM) ∩ η) \ {Π(p)} so that q2 is adjacent to q1. Notice that q2

cannot be the supervertex, for then l(η) ≥ 3 > 5/2, and it would not be a geodesic; thus, q2 ∈ V(G).
Moreover, q2 /∈ [x0z0]∪ [y0z0] since dGM (Π(p), q2) = dGM (p, q2) = 2 and dGM (p, [x0z0]∪ [y0z0]) = 5/2.
Since dGM (q2, J(GM) \ {q2}) = 1/2, one gets l(η) ≥ 5/2, and we conclude l(η) = 5/2.

Therefore, dGM (Π(p), [x0z0] ∪ [y0z0]) = 5/2. Thus, in order to finish the proof of (3), one must
show that dG(Π(p), [xz] ∩ [yz]) = 5/2.

Since T = {x, y, z} := {[xy], [xz], [yz]} is a geodesic triangle in G and GM, δ(T) ≤ δ(GM) = 5/2.
Let us show that δ(T) ≥ 5/2, thus finishing the proof.

Let D0 := dG(Π(p), [xz] ∪ [yz]). Seeking for a contradiction, assume D0 < 5/2, then, in fact,
D0 ≤ 2 and D0 ∈ {0, 1, 2}.
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If D0 = 0, then Π(p) ∈ [xz] ∪ [yz] ⊂ G. Since p /∈ [x0z0] ∪ [y0z0] and Π(p) /∈ [x0z0] ∪ [y0z0], we
have p = Π(p) ∈ G. Let p′ be the mirror vertex of p. Since p /∈ [x0z0] ∪ [y0z0], then p′ ∈ [x0z0] ∪ [y0z0].
There is v ∈ V(G), with {v, p} ⊂ E(G), and so, dGM (p, [x0z0] ∪ [y0z0]) ≤ dGM (p, p′) = dGM (p, v) +
dGM (v, p′) = 2 < 5/2, a contradiction.

If D0 = 1 and v ∈ [xz] ∪ [yz] satisfies dG(Π(p), v) = 1, then Π(p) and v are adjacent. Let u be
a vertex with Π(u) = v and u ∈ [x0z0] ∪ [y0z0]; so 5/2 = dGM (p, [x0z0] ∪ [y0z0]) ≤ dGM (p, u) ≤ 2,
which is a contradiction.

Finally, if D0 = 2, then the vertex v ∈ [x0z0] ∪ [y0z0], which gives the minimum distance to p,
either belongs to the mirror vertices or to G, but in any case, it is adjacent to an adjacent vertex of p;
thus, dGM (p, [x0z0] ∪ [y0z0]) = 2, which is a contradiction.

In summary, dGM (p, [xz] ∪ [yz]) = dGM (p, [x0z0] ∪ [y0z0]) = 5/2.

Let us show the other implication to conclude that δ(GM) = 5/2.
By Theorem 6, δ(GM) ≤ 5/2.
Let T := {x, y, z} be the geodesic triangle in G in the hypothesis. Properties (1) and (2) stated in

Theorem 2 and Lemma 7 give that T is also a geodesic triangle in GM. Since dG(p, [xz] ∪ [yz]) = 5/2,
Lemma 7 gives δ(GM) ≥ dGM (p, [xz] ∪ [yz]) = dG(p, [xz] ∪ [yz]) = 5/2, finishing the proof.

The proof of Theorem 2 has the following consequence.

Corollary 3. If the geodesic triangle T in G satisfies (1), (2) and (3) stated in Theorem 2, then T is also a geodesic
triangle in GM.

We also have the following corollaries of Theorem 2.

Corollary 4. If G is a graph with diam V(G) = 4 and δ(G) = 5/2, then δ(GM) = 5/2.

Corollary 5. If G is a graph such that it does not contain a cycle σ satisfying 10 ≤ l(σ) ≤ 15, then:

5/4 ≤ δ(GM) ≤ 9/4.

Remark 2. If G contains a cycle σ with 10 ≤ l(σ) ≤ 15, one cannot say anything more precise about
δ(GM) apart from the bounds obtained in Theorem 6, which are applicable to all Mycielskian graphs, i.e.,
5/4 ≤ δ(GM) ≤ 5/2. In the particular case when G is the cycle graph Cn, with 10 ≤ n ≤ 15, then Proposition 4
gives δ(GM) = 5/2; and if G is the complete graph Kn, with n ≥ 10, then δ(GM) = 5/4 by Proposition 5.

Given a graph G, we define its circumference as:

c(G) := sup{l(σ) | σ is a cycle in G}. (7)

Proposition 2. If G is a graph with c(G) < 10, then:

max{5/4, δ(G)} ≤ δ(GM) ≤ 9/4.

Proof. By Corollary 5, it suffices to show δ(G) ≤ δ(GM). By Lemma 3, there is a
geodesic triangle T in G that is a cycle with δ(T) = δ(G). Since l(T) ≤ c(G) ≤ 9,
if a, b ∈ T, then dG(a, b) ≤ l(T)/2 ≤ 9/2 and dGM (a, b) = dG(a, b) by Lemma 7.
Therefore, T is a geodesic triangle in GM and δ(GM) ≥ δ(T) = δ(G).

Remark 3. If c(G) ≥ 10, one cannot say anything more precise about δ(GM) apart from the bounds obtained
in Theorem 6, which are applicable to all Mycielskian graphs, i.e., 5/4 ≤ δ(GM) ≤ 5/2. In particular, if
v1 ∈ V(C10), v2 ∈ V(Cn) with n ≥ 10, and G is the graph obtained from C10 and Cn by identifying the
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vertices v1 and v2, then Corollary 1, Theorem 6 and Proposition 4 give 5/2 = δ(CM
10) ≤ δ(GM) ≤ 5/2 and

δ(GM) = 5/2; if G is the complete graph Kn, with n ≥ 10, then δ(GM) = 5/4 by Proposition 5.

5. Proof of Theorem 3

Proof. Assume first that diam(G) ≤ 2. In order to prove δ(GM) = 5/4, it will be enough to show that
diam(GM) ≤ 5/2, by Lemma 1.

Note that since diam V(G) ≤ 2, then diam V(GM) = 2. Consider x, y ∈ J(GM). If x or y is a vertex,
then dGM (x, y) ≤ 5/2. Without loss of generality, x, y ∈ J(GM) \ V(GM). Note that dG(z, v) ≤ 3/2 for
every z ∈ J(G) \ V(G) and v ∈ V(G), since diam(G) ≤ 2.

Trivially, for x, y ∈ G, or x, y ∈ GM \ G′, or x ∈ G′ and y ∈ GM \ G′, one gets dGM (x, y) ≤ 2.
When x ∈ G and y ∈ G′ \ G, since dG(x, v) ≤ 3/2 for all vertices v in G, we have dGM (x, y) ≤ 2.
Assume that x, y ∈ G′ \ G. Let a, b ∈ V(G), u, v ∈ V(G′) \ V(G) be so that x and y are the

midpoints of the edges {u, a} and {v, b}, respectively. It is enough to consider the case where
dGM (a, b) = 2 and dGM (a, y) = 5/2. Since diam(G) ≤ 2, we have dG({a, Π(u)}, b) = 1; since
dG(a, b) = 2, we deduce dG(Π(u), b) = 1, and then, {u, b} ∈ E(GM). Thus, dGM (x, y) ≤ 2.

Finally, consider x ∈ G and y ∈ GM \ G′. Let a, b ∈ V(G) so that x ∈ {a, b}, and let y ∈
{w, u} for some u vertex in the mirror of G. Since diam(G) ≤ 2, dG(x, Π(u)) ≤ 3/2, and thus,
dGM (Π(u), {a, b}) = 1. By symmetry, one can assume that dGM (Π(u), b) = 1, and so, dGM (u, b) = 1
and dGM (x, y) ≤ dGM (x, b) + dGM (b, u) + dGM (u, y) = 1/2 + 1 + 1/2 = 2. This gives the statement (4).

Next, let us show that diam(G) > 5/2 implies δ(GM) > 5/4, proving statement (5) of the
Theorem. To this end, we shall construct a geodesic bigon with sides of length three.

Let a, b ∈ J(G) be so that dG(a, b) = 3. If a, b ∈ V(G), then diam V(G) ≥ 3, and Proposition 3 and
Corollary 6 give δ(GM) ≥ 3/2 (of course, Theorem 3 is not used in the proofs of Proposition 3 and
Corollary 6). Therefore, one can assume that a, b ∈ J(G) \ V(G).

Let vi, vi+1, vj, vj+1 ∈ V(G) with a ∈ {vi, vi+1} and b ∈ {vj, vj+1}; note that
dG({vi, vi+1}, {vj, vj+1}) = 2. By symmetry, we can assume that dG(vi+1, vj) = 2. Let x, y ∈
J(G) \ V(G) with x ∈ [uivi+1] and y ∈ [vjuj+1]. Consider the geodesic bigon T := γ1 ∪ γ2 where
γ1 := [xui] ∪ [uiw] ∪ [wuj+1] ∪ [uj+1y], and γ2 := [xvi+1] ∪ [vi+1vj] ∪ [vjy]. Therefore, taking p = w,
dGM (p, γ2) = 3/2, and thus, δ(GM) ≥ δ(T) ≥ 3/2.

This finishes the proof of both statements.
To show that the converse of (4) does not hold, consider the graph G with four vertices {vi}3

i=0 and
edges {v0, v1}, {v1, v2}, {v2, v3}, {v3, v1}. Then, diam(G) = 5/2 and diam(GM) = 3, where the only
two points x, y ∈ GM that realize the diameter are x ∈ {v2, v3} and y ∈ {u0, w}. Consider the geodesic
bigon T = {γ1, γ2} given by γ1 := [xv2] ∪ [v2v1] ∪ [v1u0] ∪ [u0y] and γ2 := [yw] ∪ [wu2] ∪ [u2v3] ∪
[v3x]; let p ∈ γ1 be so that dGM (p, v1) = 1/4. Then, dGM (p, γ2) = dGM (p, v1) + dGM (v1, u2) = 1/4 + 1,
and this bigon has δ(T) = 5/4.

Since diam(GM) = 3, we have δ(GM) ≤ 3/2. Notice that in order to have a geodesic triangle T
with δ(T) = 3/2, one of its sides must have length three and, therefore, must have x, y as its endpoints.
As in the case of the bigon above, for any of these triangles, every vertex in [xy] is at a distance at most
one of the other two sides. Therefore, all of these triangles satisfy δ(T) = 5/4. Therefore, δ(GM) = 5/4.

Proposition 4 gives δ(CM
5 ) = 3/2. Since diam(C5) = 5/2, the converse of (5) does not hold.

6. Hyperbolicity Constant for Some Particular Mycielskian Graphs and the Proof of Theorems 1,
4 and 5

Computing the hyperbolicity constant of some graphs turns out to be specially useful. Namely,
many graphs contain path graphs as isomorphic subgraphs; the cycle graph appeared naturally as
a boundary situation for hyperbolicity constant of 5/2; and finally, graphs isomorphic to the complete
one were of interest. In this section, the precise hyperbolicity constants of the Mycielskian graphs for
such graphs is calculated.
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Proposition 3. Let Pn be the path graph with n vertices. Then:

δ(PM
n ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

5/4 , if n = 2, 3 ,

3/2 , if n = 4 ,

2 , if n = 5, 6, 7 ,

9/4 , if n ≥ 8 .

Proof. Denote by v1, . . . , vn the vertices of Pn with {vi, vi+1} ∈ E(Pn) for i = 1, . . . , n − 1. One can
easily check that diam(PM

3 ) = 5/2 (see Figure 3). Since diam(PM
2 ) = diam(PM

3 ) = 5/2, Lemma 1
gives δ(PM

n ) ≤ 5/4 for n = 2, 3. Then, Theorem 6 let us get the desired result for n = 2, 3.

v1 v2 v3

u1 u2 u3

w

v1

v2

v3

u1

u2

u3

w

Figure 3. PM
3 has diameter 5/2.

For PM
4 and PM

5 , a similar argument will be used. First, a triangle T with the desired δ will be
constructed, giving the lower bound; then, the diameter of the Mycielskian will give the upper bound.

In PM
4 , consider the triangle T := {x, y, z}, where x = v1, y = v4, z = w, and take p as the

midpoint of [v2v3]. Here, dGM (p, [xz] ∪ [yz]) = 3/2. One can check that diam(PM
4 ) = 3. Therefore,

Lemma 1 gives 3/2 ≤ δ(T) ≤ δ(PM
4 ) ≤ 1/2 diam(PM

4 ) = 3/2.
A similar argument works for PM

5 .
A simple argument will give the result for n ≥ 8.
For n ≥ 8, Theorems 2, 6 and Lemma 4 give δ(PM

n ) ≤ 9/4. Consider the geodesic triangle
T := {x, y, z} with x = v2, y the midpoint in {v6, v7} and z = w, and take p the midpoint in [xy] ⊂ Pn

(see Figure 4). Then, δ(PM
n ) = 9/4, since δ(PM

n ) ≥ dPM
n
(p, [xz] ∪ [yz]) = 9/4.

v1 v2 v3 v4 v5 v6 v7 v8

u1 u2 u3 u4 u5 u6 u7 u8

w

x y

z

p

Figure 4. For n = 8, a geodesic triangle T = {x, y, z} in PM
n with δ(T) = 9/4.

All that is left is to prove that δ(PM
7 ) = 2, which will automatically imply δ(PM

6 ) = 2 as well by
Corollary 1, since P5 ⊂ P6 ⊂ P7.

By Lemma 3, let T := {x, y, z} ⊂ PM
7 be a geodesic triangle, so that x, y, z ∈ J(PM

7 ), and let
p ∈ [xy] be so that dPM

7
(p, [xz] ∪ [yz]) = δ(T) = δ(PM

7 ). Seeking for a contradiction, assume that
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δ(PM
7 ) > 2. This would mean δ(PM

7 ) ∈ {9/4, 5/2} by Lemma 4 and Theorem 6. However, by Theorem
2, δ(PM

7 ) �= 5/2, since every geodesic triangle in P7 has a hyperbolicity constant equal to zero, like any
geodesic triangle in any tree. That is:

δ(PM
7 ) =

9
4

, dPM
7
(p, {x, y}) = 9

4
, (8)

dPM
7
(x, y) ∈

{9
2

, 5
}

. (9)

Some observations: x, y ∈ P7 for otherwise dPM
7
(x, y) ≤ 4 (via w), contradicting (9). Moreover,

without loss of generality, we can assume that x ∈ J(P7) \ V(P7) always and y ∈ J(P7) \ V(P7) if
dPM

7
(x, y) = 5 and y ∈ V(P7) if dPM

7
(x, y) = 9/4. Last, w ∈ T for otherwise T would be a cycle of

diameter two, and thus, δ(T) = 1.
Suppose that w ∈ [xy]. By (8) and (9), dPM

7
(p, w) ≤ 1/4. It is easy to check that [xz] ∪ [yz] ⊂ P7.

Thus, we deduce dPM
7
(w, [xz] ∪ [yz]) = 2.

Since x ∈ J(P7) \ V(P7), we have p ∈ [xw]. Since dPM
7
(w, [xz] ∪ [yz]) = 2, (8) and (9) give

dPM
7
(p, w) = 1/4. By symmetry, we can assume that x is the midpoint of either {v1, v2} or {v2, v3}.

Assume that x ∈ {v1, v2} (the case x ∈ {v2, v3} is similar). Since T is a cycle and [xz] ∪ [yz] ⊂ P7,
we have v3 ∈ [xz] ∪ [yz] ⊂ P7, [xv1] ∪ {v1, u2} ∪ {u2, w} ⊂ [zy] and p ∈ {u2, w}. Then, 9/4 =

dPM
7
(p, [xz] ∪ [yz]) ≤ dPM

7
(p, v3) ≤ dPM

7
(p, u2) + dPM

7
(u2, v3) = 7/4, a contradiction. Hence, w /∈ [xy].

A similar argument shows that w /∈ [xz] ∪ [yz], which contradicts the fact that w ∈ T. One
concludes that δ(PM

7 ) ≤ 2, which together with the fact that δ(PM
7 ) ≥ δ(PM

5 ) = 2 gives the
desired result. �

Remark 4. There are several definitions of Gromov hyperbolicity. They are all equivalent in the sense that if X
is δ-hyperbolic with respect to the definition A, then it is δ′-hyperbolic with respect to the definition B, for some
δ′ (see, e.g., [2,3]).

The definition that we have chosen in the present paper is known as the Rips condition. We decided to select
it among others due to its deep geometric meaning (see, e.g., [3]). As an example, the simplest existing proof
of the invariance of hyperbolicity by quasi-isometries uses the Rips condition (see [3]) and so does the proof for
geodesic stability (see [5]). Furthermore, some results that employ a different definition (such as the four-point
condition) also require the Rips condition in their proofs (see, e.g., [27]). The Rips condition also comes up in a
natural way when graphs with arbitrarily large edges are considered.

Experience has shown that, although the definitions of hyperbolicity are equivalent, the values of
the hyperbolicity constants of a space obtained when different definitions are considered have different
behaviors actually.

As an example, the analogue of Proposition 3 for the hyperbolicity constant obtained applying the four-point
condition (that we shall denote by δ4PC) says that δ4PC(PM

2 ) = 1/2 and δ4PC(PM
n ) = 1 for every n ≥ 3.

The following corollary is straightforward, but it is presented here because it is used to simplify
the arguments in some other proofs in the paper.

Corollary 6. Let G be any graph. Then, δ(GM) ≥ δ
(

PM
diamV(G)+1

)
.

Observe that this follows from Corollary 1, since if diam V(G) = r, then there exists a geodesic
g0 ⊆ G joining two vertices with length r. That is, Pr+1 is isomorphic to g0, and besides, g0 is an
isometric subgraph.

Proposition 3 and Corollaries 5 and 6 have the following consequence.
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Corollary 7. If G is a graph with diam V(G) ≥ 7 such that it does not contain a cycle σ satisfying 10 ≤
l(σ) ≤ 15, then δ(GM) = 9/4.

By Lemmas 1 and 8, Proposition 3 and Corollary 6, we obtain the following result.

Corollary 8. Let G be any graph. Then:

(i) If diam V(G) = 2, then 5/4 ≤ δ(GM) ≤ 3/2.
(ii) If diam V(G) = 3, then 3/2 ≤ δ(GM) ≤ 2.

The next proposition deals with cycle graphs, which illustrate well the result of Theorem 2.

Proposition 4. Let Cn be the cycle graph with n vertices. Then:

δ(CM
n ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5/4 , if n = 3, 4 ,

3/2 , if n = 5, 6 ,

7/4 , if n = 7 ,

2 , if n = 8 ,

9/4 , if n = 9 or n ≥ 16 ,

5/2 , if 10 ≤ n ≤ 15 .

Proof. Denote by v1, . . . , vn the vertices of Cn with edges {vn, v1} ∪
(
∪n−1

i=1 {vi, vi+1}
)

. With the usual
notation, ui is the mirror vertex of vi, and w is the supervertex.

For n = 3, 4, diam(CM
n ) = 5/2, and thus, δ(CM

n ) ≤ 5/4. On the other hand, Theorem 6 gives
δ(CM

n ) ≥ 5/4.
For n = 5, diam(CM

5 ) = 3, giving 3/2 as an upper bound for the hyperbolicity constant. On the
other hand, consider the bigon T = {x, y} with x the midpoint of {v2, v3} and y the midpoint of
{u1, w}. Denote by [xy] the geodesic in T with v1 /∈ [xy]; thus, δ(CM

5 ) ≥ dCM
5
(v1, [xy]) = 3/2.

For n ∈ {6, 7, 8, 9}, diam(CM
n ) = n/2; thus, the upper bound is n/4. Consider the bigon T of

antipodal vertices x, y in Cn, with T ⊂ Cn. Let p be the midpoint of [xy]; then, δ(T) = n/4 and thus
δ(CM

n ) ≥ n/4, which together with the upper bound, gives δ(CM
n ) = n/4.

The range n ∈ {10, 11, 12, 13, 14, 15} automatically follows from Theorem 2.
Finally, if n ≥ 16, then diam V(Cn) ≥ 8, and Corollary 7 gives the result.

Remark 5. The analogue of Proposition 4 for the hyperbolicity constant of the four-point condition says that
δ4PC(CM

n ) = 1 for 3 ≤ n ≤ 7, δ4PC(CM
8 ) = 2, δ4PC(CM

n ) = 3/2 for 9 ≤ n ≤ 10 and δ4PC(CM
n ) = 1 for

every n ≥ 11.

The complete graph has a very constant behavior.

Proposition 5. Let Kn be the complete graph with n vertices. Then:

diam(KM
n ) =

5
2

, δ(KM
n ) =

5
4

, ∀ n ≥ 2.

Proof. Since K2 = P2 and K3 = C3, by Propositions 3 and 4, one gets the result if n < 4.
For n ≥ 4, Theorem 6 already gives δ(KM

n ) ≥ 5/4, so it suffices to estimate the diameter of KM
n .

Notice diam V(KM
n ) = 2. Without loss of generality, take x, y ∈ J(KM

n ); clearly, if y = v ∈ V(KM
n ),

then dKM
n
(x, v) ≤ 5/2 with equality if x ∈ J(Kn) \ V(Kn) and v = w; if x, y ∈ J(KM

n ) \ V(KM
n ),

then dKM
n
(x, v) ≤ 2 with equality if x ∈ {vi, vj}, y ∈ {uk, w}.
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Summing up, diam(KM
n ) = 5/2; thus, δ(KM

n ) ≤ 5/4, which together with Theorem 6 prove
the result.

Remark 6. The analogue of Proposition 5 for the hyperbolicity constant of the four-point condition says that
δ4PC(KM

2 ) = 1/2 and δ4PC(KM
n ) = 1 for every n ≥ 3.

The argument in the proof of Proposition 5 also gives the following result.

Corollary 9. If diam(GM) ≤ 5/2, then δ(GM) = 5/4.

We can now finish the proof of Theorem 1.
Proof of Theorem 1: The main part follows from Theorem 7 for non-complete graphs. If G is

a complete graph, Proposition 5 gives that δ(GM) = 5/4
For the sharpness of δ(GM) ≤ 5/2, consider the graphs P2 and C10, where P2 stands for the path

graph of vertices {v0, v1, v2, v3} and edges {v0, v1}, {v1, v2}, {v2, v3}, and C10 is the the cyclic graph
with 10 vertices. From Propositions 3 and 4, we get δ(PM

2 ) = 5/4 and δ(CM
10) = 5/2. �

Proof of Theorem 4. Lemma 1 gives the upper bound. If diam V(GM) ≤ 2, then Theorem 6 gives
δ(GM) ≥ 5/4 > 1 ≥ 1

2 diam V(GM). If diam V(GM) > 2, then Theorem 6 gives 3 ≤ diam V(GM) ≤ 4.
Therefore, G is not a complete graph by Proposition 5. Thus, Theorem 8, Proposition 3 and
Corollary 6 give δ(GM) ≥ δ

(
PM

diamV(G)+1

)
≥ δ

(
PM

diamV(GM)+1

)
. Hence, if diam V(GM) = 3,

then we have δ(GM) ≥ 3/2 = 1
2 diam V(GM) by Proposition 3. If diam V(GM) = 4, then we have

δ(GM) ≥ 2 = 1
2 diam V(GM) by Proposition 3.

Proof of Theorem 5. By Theorem 4, we have diam V(GM) ≤ 3. One can check that diam V(G) ≤ 3,
and Theorem 8 gives δ(G) ≤ δ(GM).

Proposition 6. Let Kn,m be the complete bipartite graph with n + m vertices. Then:

δ
(

KM
n,m

)
=

5
4

, ∀n, m ≥ 2.

Proof. As in the proof of Proposition 5, it suffices to show that diam(KM
n,m) = 5/2.

One can check that diam V(KM
n,m) = 2, and for every x ∈ J(KM

n,m) \ V(KM
n,m), we have

maxy∈KM
n,m

d(x, y) = 5/2 (see Figure 5); then, diam(KM
n,m) = 5/2.

v1 v2 v3

v4 v5

u4 u5

u1 u2 u3

w

x =

y

Figure 5. x and y are two points furthest apart in KM
3,2.
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7. The Case of 5/4

In order to characterize the Mycielskian graphs with hyperbolicity constant 5/4, we define some
families of graphs.

Denote by Cn the cycle graph with n ≥ 3 vertices and by V(Cn) := {v(n)1 , . . . , v(n)n } the set of

their vertices, such that {v(n)n , v(n)1 } ∈ E(Cn) and {v(n)i , v(n)i+1} ∈ E(Cn) for 1 ≤ i ≤ n − 1. Let C6 be the

set of graphs obtained from C6 by adding a (proper or not) subset of the set of edges
{
{v(6)2 , v(6)6 },

{v(6)4 , v(6)6 }
}

. Let us define the set of graphs:

F6 :={graphs containing, as the induced subgraph, an isomorphic graph to

some element of C6}.

Let C7 be the set of graphs obtained from C7 by adding a (proper or not) subset of the set of edges{
{v(7)2 , v(7)6 }, {v(7)2 , v(7)7 }, {v(7)4 , v(7)6 }, {v(7)4 , v(7)7 }

}
. Define:

F7 :={graphs containing, as the induced subgraph, an isomorphic graph to

some element of C7}.

Let C8 be the set of graphs obtained from C8 by adding a (proper or not) subset of the set{
{v(8)2 , v(8)6 }, {v(8)2 , v(8)8 }, {v(8)4 , v(8)6 }, {v(8)4 , v(8)8 }

}
. Furthermore, let C′

8 be the set of graphs obtained

from C8 by adding a (proper or not) subset of
{
{v(8)2 , v(8)8 }, {v(8)4 , v(8)6 }, {v(8)4 , v(8)7 }, {v(8)4 , v(8)8 }

}
. Define:

F8 :={graphs containing, as the induced subgraph, an isomorphic graph to

some element of C8 ∪ C′
8}.

Let C9 be the set of graphs obtained from C9 by adding a (proper or not) subset of the set of edges{
{v(9)2 , v(9)6 }, {v(9)2 , v(9)9 }, {v(9)4 , v(9)6 }, {v(9)4 , v(9)9 }

}
. Define:

F9 :={graphs containing, as the induced subgraph, an isomorphic graph to

some element of C9}.

Finally, we define the set F by:

F := F6 ∪ F7 ∪ F8 ∪ F9.

In [53] (Lemma 3.21) appears the following result.

Lemma 11. Let G be any graph. Then, G ∈ F if and only if there is a geodesic triangle T = {x, y, z} in G that
is a cycle with x, y, z ∈ J(G), L([xy]), L([yz]), L([zx]) ≤ 3 and δ(T) = 3/2 = d(p, [yz] ∪ [zx]) for some
p ∈ [xy] ∩ V(G).

Finally, we obtain a simple characterization of the Mycielskian graphs with hyperbolicity
constant 5/4.

Theorem 10. Let G be any graph. Then, δ(GM) = 5/4 if and only if diam V(G) ≤ 2 and GM /∈ F .

Proof. If δ(GM) = 5/4, then GM /∈ F . If diam V(G) > 2, then Proposition 3 and Corollary 6 give
δ(GM) ≥ 3/2.

Assume now diam V(G) ≤ 2 and GM /∈ F .
If diam V(G) = 1, then G is a complete graph, and Proposition 5 gives δ(GM) = 5/4.
If diam V(G) = 2, then Lemma 8 gives diam V(GM) = 2, and thus, diam(GM) ≤ 3.
If diam(GM) ≤ 5/2, then Lemma 1 gives δ(GM) ≤ 5/4, and we conclude δ(GM) = 5/4 by

Theorem 1.
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If diam(GM) = 3, then δ(GM) ≤ 3/2 by Lemma 1. Besides, δ(GM) ≥ 5/4 by Theorem 1. Hence,
Lemma 4 implies δ(GM) ∈

{
5/4, 3/2

}
. Seeking for a contradiction, assume that δ(GM) = 3/2.

By Lemma 3, there exists a geodesic triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(GM) and
δ(T) = 3/2 = d(p, [yz] ∪ [zx]) for some p ∈ [xy]. Then, dGM (p, {x, y}) ≥ dGM (p, [yz] ∪ [zx]) = 3/2
and dGM (x, y) ≥ 3. Since diam(GM) = 3 and T is a cycle, we have L([xy]) = 3, L([yz]), L([zx]) ≤ 3.
Since diam V(GM) = 2, x, y ∈ J(GM) \ V(GM), p is the midpoint of [xy], and it is a vertex of GM.
Thus, Lemma 11 gives G ∈ F , which is the contradiction we were looking for. Hence, δ(GM) �= 3/2,
and we conclude δ(GM) = 5/4.

We finish this work with a computational remark about Theorem 10.
Let us consider a graph Γ with m edges, a vertex with degree Δ and the other vertices with degree

at most Δ0 ≤ Δ. By choosing an edge {vi1 , vi2} ∈ E(Γ), an edge {vi2 , vi3} ∈ E(Γ),..., and an edge
{via−1 , via} ∈ E(Γ), we can obtain the set of all paths of length a − 1 in time O(mΔΔa−3

0 ); hence, we can
compute all cycles with length a in time O(mΔΔa−3

0 ). Therefore, it is possible to find a subgraph
isomorphic to a fixed graph in Ca (or in C′

a) in time O(mΔΔa−3
0 ). Note that there are 4, 16, 16, 16 and 16

graphs in C6, C7, C8, C′
8 and C9, respectively. Hence, we can find every subgraph of Γ isomorphic to

a graph in C6 ∪ C7 ∪ C8 ∪ C′
8 ∪ C9 in time O(mΔΔ6

0).
If G is a graph with n vertices, m edges and maximum degree Δ, then GM is a graph with 3m + n

edges, a vertex with degree n and the other vertices with degree at most 2Δ. Since Δ ≤ n − 1, we
can know if either GM ∈ F or GM /∈ F in time O((3m + n)max{2Δ, n}(2Δ)6) = O(nmΔ6). Hence, to
check the hypothesis GM /∈ F is a tractable problem from a computational viewpoint, by using the
algorithm sketched before.
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Abstract: A graph is chordal if every induced cycle has exactly three edges. A vertex separator
set in a graph is a set of vertices that disconnects two vertices. A graph is δ-hyperbolic if every
geodesic triangle is δ-thin. In this paper, we study the relation between vertex separator sets, certain
chordality properties that generalize being chordal and the hyperbolicity of the graph. We also give a
characterization of being quasi-isometric to a tree in terms of chordality and prove that this condition
also characterizes being hyperbolic, when restricted to triangles, and having stable geodesics, when
restricted to bigons.

Keywords: infinite graph; geodesic; Gromov hyperbolic; chordal; bottleneck property; vertex separator

1. Introduction

M. Gromov defined in [1] his notion of hyperbolicity for the study of finitely-generated groups.
Since then, Gromov hyperbolic spaces have been studied from a geometric point of view providing a
wide variety of results and making them an important subclass of metric spaces [2–6]. In particular,
Gromov hyperbolicity is an important property to be studied in graphs [7–25]. Gromov hyperbolicity
has found also interesting applications in phylogenetics [26,27], complex networks [28–31], virus
propagation and secure transmission of information [32,33] and congestion in hyperbolic networks [34].

Given a metric space (X, d) and two points x, y ∈ X, a geodesic from x to y is an isometry,
γ : [0, l] → X, from a closed interval [0, l] of the real line to X such that γ(0) = x and γ(l) = y. We will
make no distinction between the geodesic and its image. X is a geodesic metric space if for every pair
of points x, y ∈ X, there is some geodesic joining x to y. Although geodesics need not be unique, for
convenience, [xy] will denote any such geodesic.

Herein, we consider the graphs always endowed with the usual length metric where every edge
has length one. Thus, for any pair of points in G, the distance between them will be the length of the
shortest path in G joining them. Notice that we are considering also the interior points of the edges as
points in G. Therefore, G with the length metric is a geodesic metric space. Let us also assume that the
graphs are connected.

Gromov hyperbolicity, in the context of geodesic metric spaces, can be characterized by the Rips
condition as follows. If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three geodesics
[x1x2], [x2x3] and [x3x1] is called a geodesic triangle and will be denoted by T = {x1, x2, x3}. If two
vertices are identical then it is called a bigon. A triangle T is δ-thin if any side of T is contained in
the δ-neighborhood of the union of the two other sides. A geodesic metric space X is δ-hyperbolic if
every geodesic triangle is δ-thin. By δ(X), we denote the sharp hyperbolicity constant of X, this is,
δ(X) := inf{δ | every triangle in X is δ-thin}. A metric space X is hyperbolic if it is δ-hyperbolic for
some δ ≥ 0. There exist other equivalent definitions of Gromov hyperbolicity. See [4].

A graph G is said to be chordal if every induced cycle has exactly three edges. Chordal graphs
form an important subclass of perfect graphs, and as is pointed out in [35] (see the further references

Symmetry 2017, 9, 199; doi:10.3390/sym9100199 www.mdpi.com/journal/symmetry45
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therein), they have applications in scheduling, Gaussian elimination on sparse matrices and relational
database systems. Furthermore, chordal graphs have applications in computer science; see [36]. In
[37], it is proved that chordal graphs are hyperbolic. Wu and Zhang extended this result in [38]
proving that k-chordal graphs are hyperbolic where a graph is k-chordal if induced cycles have at
most k edges. In [39], the authors defined some more natural generalizations of being chordal as being
(k, m)-edge-chordal and (k, k

2 )-path-chordal proving that (k, m)-edge-chordal graphs are hyperbolic
and that hyperbolic graphs are (k, k

2 )-path-chordal. In [40], we continue this work and define being
ε-densely (k, m)-path-chordal and ε-densely k-path-chordal. In [39,40], edges were allowed to have
any finite length, but in this work, we assume that all edges have length one. Therefore, the distinction
between edge and path is unnecessary, and these properties are referred as (k, m)-chordal and ε-densely
k-chordal. The main results in [40] (with this simplified notation) state that:

(k, 1)-chordal ⇒ ε-densely (k, m)-chordal ⇒ δ-hyperbolic

and:
δ-hyperbolic ⇒ ε-densely k-chordal ⇒ k-chordal.

We also proved that the converse is false for all these implications, giving counterexamples, and
that a graph is hyperbolic if and only if certain chordality property is satisfied on the triangles.

Herein, we continue this study analyzing some relations between these properties and vertex
separators. There are some well-known relations between chordality and vertex separators.
For example, Dirac proved in [41] that a graph is chordal if and only if every minimal vertex separator
is complete. Furthermore, the set of minimal vertex separators of a chordal graph allows one to
decompose the graph into subgraphs that are again chordal, and the process can be continued until
the subgraphs are cliques [35]. Generalized versions of chordality are also related to minimal vertex
separator [42]. For further results about chordality and vertex separators, see also [36] and the
references therein. For an important application of minimal vertex separators in machine learning,
see [43]. Our main results are the following.

In Section 2, we prove that being (k, 1)-chordal implies that every minimal vertex separator
has a uniformly-bounded diameter. We also obtain that, for uniform graphs, if every minimal
vertex separator has a uniformly-bounded diameter, then the graph is ε-densely (k, m)-chordal
and therefore hyperbolic.

Section 3 studies the relation between generalized chordality and the bottleneck property, which
is an important property on hyperbolic geodesic spaces. J. Manning defined it in [44] and proved that
a geodesic metric space satisfies bottleneck property, (BP), if and only if it is quasi-isometric to a tree.
This characterization has proven to be very useful; see for example [45]. For some other relations with
(BP), see [46,47] and the references therein.

Here, we prove that a graph satisfies (BP) if and only if it is ε-densely (k, m)-chordal, providing
a characterization of being quasi-isometric to a tree in terms of chordality. Furthermore, the
characterization of hyperbolicity from [40] is re-written obtaining that a graph is hyperbolic if and only
if it is ε-densely (k, m)-chordal on the cycles that are geodesic triangles.

Furthermore, we prove that if G is a uniform graph and every minimal vertex separator has a
uniformly-bounded diameter, then the graph satisfies (BP), and therefore, it is quasi-isometric to a tree.
Finally, we prove directly that being (k, 1)-chordal implies (BP) .

In Section 4, we generalize the concept of vertex separators defining vertex r-separators. It is
proven that if, in a uniform graph, all minimal vertex r-separators have a uniformly-bounded diameter,
then the graph is ε-densely (k, m)-chordal and, therefore, quasi-isometric to a tree.

Section 5 introduces neighbor separators, generalizing also vertex separators. This concept allows
one to characterize (BP) in terms of having a neighbor-separator vertex.

In Section 6, we define neighbor obstructors. We use them to characterize the graphs where
geodesics between vertices are stable and to prove that geodesics between vertices are stable if and
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only if the graph is ε-densely (k, m)-chordal on the bigons defined by two vertices. We also prove that,
in general, geodesics are stable if and only if the graph is ε-densely (k, m)-chordal on the bigons.

2. Generalized Chordality and Minimal Vertex Separators

We are assuming that every path is finite and simple, that is, it has finite length and distinct
vertices. By a cycle, we mean a simple closed curve, that is, a path where all the vertices are different
except from the first one and the last one, which are the same.

Let γ be a path or a cycle. A shortcut in γ is a path σ joining two vertices p, q in γ such that
L(σ) < dγ(p, q) where L(σ) denotes the length of the path σ and dγ denotes the length metric on γ.
A shortcut σ in γ is strict if σ ∩ γ = {p, q}. In this case, we say that p, q are shortcut vertices in γ

associated with σ. A shortcut with length k is called a k-shortcut.

Remark 1. Suppose σ is a k-shortcut in a cycle C joining two vertices, p, q. Then, σ contains a strict shortcut,
and there are two shortcut vertices p′, q′ such that dC(p, p′), dC(q, q′) < k.

Definition 1. A metric graph G is k-chordal if for any cycle C in G with L(C) ≥ k, there exists a shortcut
σ of C.

Definition 2. A metric graph G is (k, m)-chordal if for any cycle C in G with L(C) ≥ k, there exists a shortcut
σ of C such that L(σ) ≤ m. Notice that being chordal is equivalent to being (4, 1)-chordal.

Remark 2. Notice that in the definitions of k-chordal and (k, m)-chordal, it makes no sense to consider k ≤ 3
nor k < 2m. Therefore, let us assume always that k ≥ 4 and k ≥ 2m.

Definition 3. A subset S ⊂ V(G) is a separator if G \ S has at least two connected components. Two vertices
a and b are separated by S if they are in different connected components of G \ S. If a and b are two vertices
separated by S, then S is said to be an ab-separator.

Let us call a path joining the vertices a, b an ab-path.

Definition 4. S is a minimal separator if no proper subset of S is a separator. Similarly, S is a minimal
ab-separator if no proper subset of S separates a and b. Finally, S is a minimal vertex separator if it is a minimal
separator for some pair of vertices.

Note that being a minimal vertex separator does not imply being a minimal separator. See Figure 1.

ba

d

e

c

f

Figure 1. The set {d, e} is a minimal ab-separator, but it is not a minimal separator.

Remark 3. Let S be a minimal ab-separator, and let Ga, Gb be the connected components of G \ S containing a
and b, respectively. Then, notice that every vertex v in S is adjacent to both Ga and Gb. Otherwise, S \ {v} is
an ab-separator.
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Proposition 1. If G is (k, 1)-chordal, then every minimal vertex separator has a diameter less than k
2 .

Proof. Let S be a minimal ab-separator, and suppose that diam(S) ≥ k
2 . Let x, y ∈ S such that

d(x, y) ≥ k
2 . Then, there are vertices a1, an in Ga adjacent to x and y respectively, and since Ga is

connected, there is a path γ1 = {x, a1, ..., an, y} with ai ∈ Ga ∀1 ≤ i ≤ n. Similarly, there exist vertices
b1, bm in Gb adjacent to y and x respectively and a path γ2 = {y, b1, ..., bm, x} with bi ∈ Gb ∀1 ≤ i ≤ m.
Moreover, let us assume that γ1, γ2 have minimal length. Then, C = γ1 ∪ γ2 defines a cycle in G, and
since d(x, y) ≥ k

2 , L(C) ≥ k. Then, since G is (k, 1)-chordal, there is a shortcut σ in C with L(σ) = 1.
However, since S is an ab-separator, vertices in Ga and Gb cannot be adjacent, and since γ1, γ2 are
supposed minimal, there is no possible one-shortcut on γi for i = 1, 2. Thus, x, y need to be adjacent,
leading to a contradiction.

The converse is not true.

Example 1. Consider the graph G0 whose vertices are V(G0) = {n ∈ N | n ≥ 3} and edges joining consecutive
numbers. Now, let us define the graph G such that for every n ≥ 3, there is cycle Cn whose vertices are all
adjacent to the vertex n in G0. See Figure 2.

4 5 63

Figure 2. Every minimal vertex separator has diameter at most two, but the graph is not (k, 1)-chordal
for any k > 0.

It is trivial to check that G is not (k, 1)-chordal for any k > 0 since the cycles Cn have no one-shortcut
in G.

Let us see that every minimal vertex separator has diameter at most two. Consider any pair of non-adjacent
vertices a, b in G.

If a, b ∈ Cn for some n, then every vertex separator S must contain the vertex n and at least two vertices
x1, x2 in Cn. If S is minimal, then S = {n, x1, x2} and diam(S) = 2.

If a, b /∈ Cn for any n, then the geodesic [ab] is contained in G0. Therefore, any ab-separator must contain
some vertex m ∈ [ab] and m separates a and b. Thus, if S is minimal, then S is just a vertex and diam(S) = 0.

Remark 4. Given two vertices a, b, a path γ joining them and a vertex v ∈ γ distinct from a, b, there may not
exist a minimal ab-separator containing {v}. Consider, for example four vertices x0, x1, x2, x3 with edges xi−1xi
for every 1 ≤ i ≤ 3 and an edge x0x2. Then, there is no minimal x0x3-separator containing x1.

Given a graph G and a subgraph, A ⊂ G, let us denote V(A) the vertices in A.

Definition 5. A graph Γ is said to be μ-uniform if each vertex p of V has at most μ neighbors, i.e.,

sup
{
|N(p)|

∣∣ p ∈ V(Γ)
}
≤ μ.

If a graph Γ is μ-uniform for some constant μ, we say that Γ is uniform.

For any vertex v ∈ V(G) and any constant ε > 0, let us denote:

Sε(v) := {w ∈ V(G) | d(v, w) = ε},

Bε(v) := {w ∈ V(G) | d(v, w) < ε},
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Nε(v) := {w ∈ V(G) | d(v, w) ≤ ε}.

Lemma 1. Let G be a uniform graph. Given two vertices a, b, a geodesic [ab] joining them and a vertex
v0 ∈ [ab] distinct from a, b, then there is a minimal ab-separator containing {v0}.

Proof. Suppose any geodesic [ab] and v0 ∈ [ab] with 0 < d(a, v0) < d(a, b), and define ε = d(a, v0).
Since G is uniform, for every vertex v ∈ G, the set S0 := S(v, ε) is finite for every ε ∈ N. It is immediate
to check that S0 is an ab-separator and [ab] ∩ S0 = {v0}. Since S0 is finite, then there is a minimal
subset S ⊂ S0 that is also an ab-separator. Finally, since [ab] ∩ S0 = {v0}, v0 ∈ S.

Let us recall that a graph Γ is countable if |V(Γ)| ≤ ℵ0, i.e., if it has a countable number of vertices.

Remark 5. In the case of countable graphs and using the axiom of choice, Lemma 1 can be slightly improved.
See Lemma 2 below.

Lemma 2. Let G be a uniform countable graph. Given two vertices a, b, a path γ0 joining them and a
vertex v0 ∈ γ0 distinct from a, b, then either there is a one-shortcut in γ0 or there is a minimal ab-separator
containing {v0}.

Proof. If there is no ab-path in G \ {v0}, it suffices to consider S := {v0}. If there is an ab-path γ1

in G \ {v0} such that V(γ1) ⊂ V(γ0), then there is a one-shortcut in γ0. Thus, let us suppose that
every ab-path γ in G \ {v0} contains a vertex, which is not in γ0, and that there is at least one of these
ab-paths.

Since |V(G)| is countable and G is uniform, there exist at most ℵk
0 ab-paths of length k.

Then, there exists at most a countable number (a countable union of countable sets) of ab-paths,
{γi}i∈I⊂N in G \ {v0} where I = {1, . . . , m} if there exist exactly m such paths or I = N if the number
of those paths is not finite.

For every i ∈ I, consider some vertex xi in V(γi) \ V(γ0), and let X = {xi}i∈I . Now, let S0 := X,
and for every 0 < i ∈ I, define:

Si =

⎧⎨
⎩ Si−1 \ {xi} if V(γj) ∩

(
Si−1 \ {xi}

)
�= ∅ for every j ≤ i,

Si−1 if V(γj) ∩
(

Si−1 \ {xi}
)
= ∅ for some j ≤ i.

Notice that for every i, Si ⊂ Si−1, and let S := ∩i∈ISi.

Claim: S is a minimal ab-separator containing v0.

First, let us see that S is an ab-separator. Consider any ab-path, γj. Suppose V(γj) ∩ X =

{xj1 , xj2 , ..., xjk}, and assume jl < jk for every l < k. Then, it is trivial to check that there exist some
vertex xjr ∈ Sjk ∩ V(γj) and, by construction, xjr ∈ S.

To check that S is minimal, first notice that, since xi /∈ V(γ0) for every i ∈ I, V(γ0)∩ (S\{v0}) = ∅
and S\{v0} is not an ab-separator. Now, suppose that there is some vertex xj ∈ S with j ∈ I
such that S \ {xj} is also an ab-separator. Since xj ∈ S ⊂ Sj, there is some k ≤ j such that

V(γk) ∩
(

Sj−1 \ {xj}
)
= ∅ and, in particular, V(γk) ∩

(
S \ {xj}

)
= ∅, leading to a contradiction.

Thus, S is a minimal ab-separator containing v0.

Given a metric space (X, d) and any ε > 0, a subset A ⊂ X is ε-dense if for every x ∈ X, there
exists some a ∈ A such that d(a, x) < ε.

Definition 6. A metric graph (G, d) is ε-densely k-chordal if for every cycle C with length L(C) ≥ k, there exist
strict shortcuts σ1, ..., σr such that their associated shortcut vertices define an ε-dense subset in (C, dC).
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Definition 7. A graph (G, d) is ε-densely (k, m)-chordal if for every cycle C with length L(C) ≥ k, there exist
strict shortcuts σ1, ..., σr with L(σi) ≤ m ∀ i and such that their associated shortcut vertices define an ε-dense
subset in (C, dC).

Theorem 1. Let G be a uniform graph. If every minimal vertex separator in G has diameter at most m, then G
is (m + ε)-densely (4m, 2m − 1)-chordal for any ε > 1

2 .

Proof. Let C be any cycle with L(C) ≥ 4m. Let v be any vertex in C, and let a, b be the two vertices
in C such that dC(a, v) = m = dC(v, b). Let γ0 be the ab-path in C containing v. Then, by Lemma 1,
either there is a shortcut in γ0 or there is a minimal ab-separator containing v.

If there is a shortcut in γ0, then it has length at most 2m − 1. Therefore, it defines a shortcut in C
with an associated shortcut vertex v′ such that dC(v, v′) ≤ m. Suppose, otherwise, that S is a minimal
ab-separator containing v. By hypothesis, diam(S) ≤ m. Let γ1 be the ab-path in C not containing v.
Since S is an ab-separator, there is some vertex w ∈ S ∩ V(γ1) and d(v, w) ≤ m < dC(v, w). Hence,
there is an m-shortcut in C joining v to w and, by Remark 1, an associated shortcut vertex v′ such that
dC(v, v′) < m.

Thus, for every vertex v, there is a shortcut vertex v′ such that dC(v, v′) ≤ m, and therefore,
shortcut vertices define a (m + ε)-dense subset in C for any ε > 1

2 .

If the graph is countable, then we can improve quantitatively this result.

Theorem 2. Let G be a uniform countable graph. If every minimal vertex separator in G has diameter at
most m, then G is (m + ε)-densely (2m + 2, m)-chordal for any ε > 1

2 .

Proof. Let C be any cycle with L(C) ≥ 2m + 2. Let v be any vertex in C, and let a, b be the two vertices
in C such that dC(a, v) = m = dC(v, b). Let γ0 be the ab-path in C containing v. Then, by Lemma 2,
either there is a one-shortcut in γ0 or there is a minimal ab-separator containing v.

If there is a one-shortcut in γ0, then, in particular, there is an associated shortcut vertex v′ such
that dC(v, v′) ≤ m. Suppose, otherwise, that S is a minimal ab-separator containing v. By hypothesis,
diam(S) ≤ m. Let γ1 be the ab-path in C not containing v. Since S is an ab-separator, there is some
vertex w ∈ S ∩ V(γ1) and d(v, w) ≤ m < dC(v, w). Hence, there is an m-shortcut in C joining v to w
and, by Remark 1, an associated shortcut vertex v′ such that dC(v, v′) < m.

Thus, for every vertex v, there is a shortcut vertex v′ such that dC(v, v′) ≤ m, and therefore,
shortcut vertices define a (m + ε)-dense subset in C for any ε > 1

2 .

Let us recall the following result:

Theorem 3. (Theorem 4 [40]). If G is ε-densely (k, m)-chordal, then G is hyperbolic. Moreover,
δ(G) ≤ max{ k

4 , ε + m}.

Therefore, from Theorems 1–3, we obtain:

Corollary 1. Let G be a uniform graph. If every minimal vertex separator in G has diameter at most m, then G
is hyperbolic. Moreover, δ(G) ≤ 3m − 1

2 .

Corollary 2. Let G be a uniform countable graph. If every minimal vertex separator in G has diameter at
most m, then G is hyperbolic. Moreover, δ(G) ≤ 2m + 1

2 .

3. Bottleneck Property

Let us recall the following definition from [44]:
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Definition 8. A geodesic metric space (X, d) satisfies the bottleneck property (BP) if there exists some constant
Δ > 0 so that given any two distinct points x, y ∈ X and a midpoint z such that d(x, z) = d(z, y) = 1

2 d(x, y),
then every xy-path intersects NΔ(z).

Remark 6. This definition, although not being exactly the same, is equivalent to Manning’s. In the original
definition, J. Manning asked only for the existence of such a midpoint for any pair of points x, y. However,
by Theorem 4 below, (BP) implies that the space is quasi-isometric to a tree and therefore δ-hyperbolic. Hence,
it is an easy exercise in hyperbolic spaces to prove that if there is always a midpoint z such that every xy-path
intersects NΔ(z), then this condition holds in general for any midpoint, possibly with a different constant
depending only on Δ and δ. See, for example, Chapter 2, Proposition 25 in [5].

Definition 9. A graph G satisfies (BP) on the vertices if there exists some constant Δ′ > 0 so that given
any two distinct vertices v, w ∈ V(G) and a midpoint c such that d(v, c) = d(c, w) = 1

2 d(v, w), then every
vw-path intersects NΔ′(c).

Proposition 2. A graph G satisfies (BP) if and only if it satisfies (BP) on the vertices. Moreover, if G satisfies
(BP) on the vertices with constant Δ′, it satisfies (BP) with Δ = Δ′ + 3

2 .

Proof. The only if condition is trivial. Let us see that it suffices to check the property on the pairs
of vertices.

Consider any pair of points x, y ∈ G, and let z be a midpoint of a geodesic [xy]. If d(x, y) ≤ 2,
then (BP) is trivial with Δ = 1. Suppose d(x, y) > 2. Then, the geodesic [xy] is a path
xv1 ∪ v1v2 ∪ · · · ∪ vky with v1, . . . , vk ∈ V(G) and k ≥ 2. Let v = x if x is a vertex and v = v1

otherwise, and let w = y if y is a vertex and w = vk otherwise. Then, there is a geodesic [vw] ⊂ [xy]
(possibly equal), and its midpoint, c, satisfies that d(c, z) ≤ 1

2 .
Consider any xy-path γ, and let us define a vw-path γ′ as follows: First, if v ∈ γ, let γ0 := γ \ [xv]

and if v /∈ γ, let γ0 := [vx] ∪ γ.
Then, if y �= w and w ∈ γ, let γ′ := γ0 \ [yw] and if y �= w and w /∈ γ, let γ′ := [wy] ∪ γ0.

By hypothesis, γ′ passes through NΔ′(c). Since d(a, v), d(b, w) ≤ 1 and d(c, z) ≤ 1
2 , it is immediate to

check that γ passes through NΔ′+ 3
2
(z).

A map between metric spaces, f : (X, dX) → (Y, dY), is said to be a quasi-isometric embedding if
there are constants λ ≥ 1 and C > 0 such that ∀x, x′ ∈ X,

1
λ

dX(x, x′)− C ≤ dY( f (x), f (x′)) ≤ λdX(x, x′) + C.

If there is a constant D > 0 such that ∀y ∈ Y, d(y, f (X)) ≤ D, then f is a quasi-isometry, and X, Y
are quasi-isometric.

Theorem 4. (Theorem 4.6 [44]). A geodesic metric space (X, d) is quasi-isometric to a tree if and only if it
satisfies (BP).

Theorem 5. A graph G satisfies (BP) if and only if it is ε-densely (k, m)-chordal.

Proof. Suppose that G satisfies (BP) with parameter Δ and consider any cycle C with L(C) ≥ 2Δ + 4.
Consider any vertex x ∈ C and the two vertices a, b such that dC(a, x) = dC(x, b) = Δ + 1.
Thus, C defines two ab-paths, γ1, γ2. Let us assume that x ∈ γ1. If γ1 is not geodesic, then there is
a shortcut with length at most 2Δ + 1 and a shortcut vertex in NΔ+1(x). Otherwise, since G satisfies
(BP) with parameter Δ, there is a vertex y in γ2 such that d(x, y) ≤ Δ. Since dC(x, y) > Δ and by
Remark 1, there is a shortcut vertex z such that dC(x, z) < Δ. Therefore, G is (Δ + 1 + ε)-densely
(4Δ + 4, 2Δ + 1)-chordal for any ε > 1

2 .
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Suppose that G is ε-densely (k, m)-chordal and it does not satisfy (BP) with parameter
Δ = max{ k

4 , ε + m}. Then, there are two points, a, b, a geodesic [ab] with midpoint c and a path γ

such that γ ∩ NΔ(c) = ∅. Then, it is immediate to check that there exist two points a′, b′ ∈ γ ∩ [ab]
such that the restriction of [ab], [a′b′], and the restriction of γ, γ′, joining a′ to b′ define a cycle C
with L(C) > k. Since G is ε-densely (k, m)-chordal, there is a strict shortcut σ with L(σ) ≤ m with
an associated shortcut vertex w such that dC(c, w) < ε < Δ. Therefore, w ∈ [a′b′], and since [a′b′] is
geodesic, the shortcut must join w to a vertex z in γ′ ⊂ γ. Hence, d(z, c) < ε + m and γ ∩ NΔ(c) �= ∅,
leading to a contradiction.

Corollary 3. A graph G is quasi-isometric to a tree if and only if it is ε-densely (k, m)-chordal.

Definition 10. Given any family F of cycles, a metric graph (G, d) is ε-densely (k, m)-chordal on F if for
every C ∈ F with length L(C) ≥ k, there exist strict shortcuts σ1, ..., σr with L(σi) ≤ m ∀ i and such that their
associated shortcut vertices define an ε-dense subset in (C, dC).

Let us recall the following:

Lemma 3. (Lemma 2.1 [48]). Let X be a geodesic metric space. If every geodesic triangle in X which is a cycle
is δ-thin, then X is δ-hyperbolic.

Let T be the family of cycles that are geodesic triangles. It is immediate to check that, using
Lemma 3, the proof of Theorem 13 in [40] can be trivially re-written (we include it for completeness) to
obtain the following:

Theorem 6. G is δ-hyperbolic if and only if G is ε-densely (k, m)-chordal on T .

Proof. Suppose that G is ε-densely (k, m)-path-chordal on T . Let us see that δ(G) ≤ max{ k
4 , ε + m}.

Consider any cycle that is a geodesic triangle T = {x, y, z}. If L(T) < k, it follows that every side of
the triangle has length at most k

2 . Therefore, the hyperbolic constant is at most k
4 . Then, let L(T) ≥ k,

and let us prove that T is (ε + m)-thin. Consider any point p ∈ T, and let us assume that p ∈ [xy].
If d(p, x) < ε + m or d(p, y) < ε + m, we are done. Otherwise, there is a shortcut vertex xi such that
d(xi, p) < ε and a shortcut σi, with xi ∈ σi and L(σi) ≤ m. Since [xy] is a geodesic, σi does not connect
two points in [xy] and d(p, [xz] ∪ [yz]) < ε + m. Then, by Lemma 3, δ(G) ≤ max{ k

4 , ε + m}.
Suppose that G is δ-hyperbolic, and consider any cycle that is a geodesic triangle T = {x, y, z}

with L(T) ≥ 9δ. Let p ∈ T, and let us assume, with no loss of generality, that p ∈ [xy]. Since G is
δ-hyperbolic, d(p, [xz] ∪ [yz]) ≤ δ. If d(p, x), d(p, y) > δ, then there is a path γ with L(γ) ≤ δ joining
p to [xz] ∪ [yz]. In particular, there is a shortcut σ ⊂ γ with L(σ) ≤ L(γ) ≤ δ joining some shortcut
vertex p′ ∈ [xy] with d(p, p′) < δ to [xz] ∪ [yz]. Therefore, if L([xy]) > 2δ, for every point q ∈ [xy],
there is a shortcut vertex q′ ∈ [xy] such that dT(q, q′) < 2δ + 1 associated with a shortcut with length at
most δ. Since L(T) ≥ 9δ, by triangle inequality, there is at most one side of the triangle with length at
most 2δ. Then, for every point p in the triangle, there is a shortcut vertex p′ such that dT(p, p′) < 3δ + 1
associated with a shortcut with length at most δ. Thus, it suffices to consider ε = 3δ + 1, k = 9δ

and m = δ.

Remark 7. Notice that in Corollary 3, we obtain that a graph G is quasi-isometric to a tree if and only if all the
cycles satisfy a certain property, and Theorem 6 states that the same property, restricted to the cycles that are
geodesic triangles, characterizes being hyperbolic.

The following theorem can be also obtained as a corollary of Theorems 1 and 5. However,
the direct proof provides a better bound for the parameter Δ.
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Theorem 7. Given a uniform graph G, if every minimal vertex separator has diameter at most m, then G
satisfies (BP) (i.e., G is quasi-isometric to a tree). Moreover, it suffices to take Δ = m + 2.

Proof. If m = 0, it is trivial to see that G is a tree, and it satisfies (BP) with Δ = 0. Assume m ≥ 1.
By Proposition 2, it suffices to check the property for pairs of vertices. Thus, consider any pair of
vertices a, b ∈ V(G), and let c be a midpoint of a geodesic [ab].

If d(a, b) ≤ 2, then (BP) is trivial with Δ′ = 1. Suppose d(a, b) ≥ 3. Then, there is some vertex v0

in the interior of [ab] with d(v0, c) ≤ 1
2 . By Lemma 1, since [ab] is a geodesic, there exists a minimal

ab-separator S containing v0. Thus, every ab-path contains a vertex in S, and since diam(S) ≤ m,
every ab-path passes through Nm(v0) ⊂ Nm+ 1

2
(c). Hence, (BP) is satisfied on the vertices with

Δ′ = m + 1
2 , and by Proposition 2, G satisfies (BP) with Δ = m + 2.

The following example shows that the converse is not true.

Example 2. Let G be the graph whose vertices are all the pairs (a, b) with either a ∈ N and b = 0 or
4n + 1 ≤ a ≤ 4n + 3 and 1 ≤ b ≤ n for every n ∈ N, and such that (a, b) is adjacent to (a′, b′) if and only if
either b = b′ and |a′ − a| = 1 or a = a′ and |b′ − b| = 1. See Figure 3.

Now, notice that Sn = {4n + 2, j}0≤j≤n defines a minimal (4n, 0)(4n + 4, 0)-separator with diameter
n for every n ∈ N. Therefore, G has minimal ab-separators arbitrarily big. However, to see that G satisfies
(BP), consider the map f : V(G) → V(G) such that f (i, j) = (4n + 2, j) for every 4n + 1 ≤ i ≤ 4n + 3 and
1 ≤ j ≤ n and the identity on the rest of the vertices. It is trivial to check that f extends to a (1, 2)-quasi-isometry
on G where the image is a tree. Therefore, G is quasi-isometric to a tree and satisfies (BP) (and it is ε-densely
(k, m)-chordal).

(4n+1,n)

(4n+5,n+1)

(4n+3,n)

Sn
(4n+7,n+1)

Sn+1

(4n+4,0)(4n,0) (4n+8,0)

Figure 3. Satisfying the bottleneck property does not imply the existence of minimal vertex separators
with uniformly-bounded diameters.

Remark 8. In the case of uniform graphs, the following theorem can also be obtained as a corollary of
Proposition 1 and Theorem 7. Furthermore, it follows from Theorem 3 in [40] and Theorem 5. However,
the direct proof provides a better bound for the parameter.

Theorem 8. If G is (k, 1)-chordal, then G satisfies (BP). Moreover, it suffices to take Δ = k
4 + 5

2 .

Proof. Consider any pair of vertices a, b, any geodesic [ab] in G and the midpoint c in [ab].
If d(a, b) ≤ k

2 + 2, then (BP) is trivially satisfied for Δ′ = k
4 + 1. Suppose d(a, b) > k

2 + 2 and
that there is an ab-path γ not intersecting Nk/4+1(c). Let a′ ∈ [ac] ⊂ [ab] and b′ ∈ [cb] ⊂ [ab] such
that d(a′, c) = d(c, b′) = k

4 . Then, since γ does not intersect Nk/4+1(c), there is a cycle C contained in
[ab] ∪ γ such that [a′b′] ⊂ C and L(C) ≥ k.

Claim: there is a one-shortcut in C joining a vertex in the interior of [a′b′] to a vertex in γ. Since G
is (k, 1)-chordal, there is a one-shortcut, σ1, in C. If σ1 joins a vertex in the interior of [a′b′] to a vertex in
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γ, we are done. Otherwise, we obtain a new cycle, C1, such that [a′b′] ⊂ C1 and, therefore, L(C1) ≥ k.
Repeating the process, we finally obtain a one-shortcut joining a vertex z1 in the interior of [a′b′] to a
vertex z2 in γ.

Therefore, d(c, z2) ≤ d(c, z1) + 1 < k
4 + 1 and z2 ∈ Nk/4+1(c), leading to a contradiction.

Thus, G satisfies (BP) on the vertices with Δ = k
4 + 1, and by Proposition 2, G satisfies (BP) with

Δ = k
4 + 5

2 .

Corollary 4. If G is (k, 1)-chordal, then G is quasi-isometric to a tree.

Remark 9. Corollary 4 follows also from Proposition 1 and Corollary 1 in the case of uniform graphs.

Remark 10. The converse to Theorem 8 or Corollary 4 is not true. It is immediate to check that the graph from
Example 1 is quasi-isometric to a tree through the map sending every cycle Cn to the vertex n.

Remark 11. Herein, the gap between being hyperbolic and being quasi-isometric to a tree is shown to depend
on which cycles are ε-densely (k, m)-chordal, only geodesic triangles or all of them. Furthermore, we have seen
that (BP) characterizes geodesic spaces quasi-isometric to trees. There exist also properties that characterize
when a hyperbolic space is quasi-isometric to a tree. Corollary 1.9 in [49] states that two visual hyperbolic
geodesic spaces X, Y are quasi-isometric if and only if there is a PQ-symmetric homeomorphism f (where ’PQ’
stands for ’power quasi’) with respect to any visual metrics between their boundaries (The property of being
visual has different names in the literature. For example, it is called “having a pole” in [50,51] or being “almost
geodesically complete” in [52].).

Furthermore, there is a one-to-one correspondence between rooted trees and bounded ultrametric spaces
where every tree induces a bounded ultrametric space, and for every bounded ultrametric space X there is a tree
whose boundary is X. See [53] or [54].

Thus, a visual hyperbolic space is quasi-isometric to a tree if and only if its boundary is PQ-symmetric
homeomorphic to an ultrametric space.

Furthermore, Theorem 1 in [47] states that given a complete geodesic space X with H1(X) uniformly
generated, then X is quasi-isometric to a tree if and only if there is a function f : X → R such that f is
bornologous and metrically proper on the connected components.

Since any hyperbolic space has uniformly generated H1, then it follows that for any hyperbolic graph G, G
is quasi-isometric to a tree if and only if there is a function f : G → R such that f is bornologous and metrically
proper on the connected components.

4. Minimal Vertex r-Separators

Definition 11. Given r ∈ N, two vertices a and b are r-separated by a subset S ⊂ V(G) if considering the
connected components of G \ S, Ga and Gb containing a and b respectively, for every pair of vertices v ∈ Ga and
w ∈ Gb, d(v, w) > r. If a and b are two vertices r-separated by S, then S is said to be an ab-r-separator.

Remark 12. Notice that separated means one-separated.

Definition 12. S is a minimal ab-r-separator if no proper subset of S r-separates a and b. Finally, S is a
minimal vertex r-separator if it is a minimal r-separator for some pair of vertices.

Remark 13. Given any minimal ab-r-separator S, every vertex in S is either adjacent to Ga or Gb. Moreover,
if r ≥ 2, then there are two disjoint subsets Sa and Sb such that S = Sa ∪ Sb where the vertices in Sa are adjacent
to Ga and the vertices in Sb are adjacent to Gb. Furthermore, for every vertex v in Sa, d(v, Sb) = r − 1.

Lemma 4. Let G be a uniform graph and r ≥ 2. Given any geodesic [ab] with d(a, b) > r and two
vertices v1, v2 ∈ [ab] distinct from a, b with d(v1, v2) = r − 1, then there is a minimal ab-r-separator
containing {v1, v2}.
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Proof. Suppose [ab] is a geodesic with d(a, b) > r. Let us assume that d(a, v1) < d(a, v2), and define
ε1 = d(a, v1) and ε2 = d(v2, b). Since G is uniform, for every vertex v ∈ G the set S(v, ε) is finite
for every ε ∈ N. Let S0 := S(a, ε1) ∪ S(b, ε2). It is immediate to check that S0 is an ab-r-separator
and [ab] ∩ S0 = {v1, v2}. Since S0 is finite, then there is a minimal subset S ⊂ S0 which is also an
ab-r-separator. Finally, since [ab] ∩ S0 = {v1, v2}, vi ∈ S for i = 1, 2.

Theorem 9. Let G be a uniform graph and r ≥ 2. If every minimal vertex r-separator has diameter at most m
with m ≤ r, then G is (r + 1

2 )-densely (2r + 2, r)-chordal.

Proof. Let C be any cycle with L(C) ≥ 2r + 2, and let x1 be any vertex in C. Then, consider two
vertices a, b in C such that dC(a, b) = r + 1, dC(a, x1) = 1 and dC(x1, b) = r. Let γ1 and γ2 be the
two independent paths joining a and b defined by C, and assume x1 ∈ γ1. Consider x2 ∈ γ1 with x2

between x1 and b such that dC(x1, x2) = r − 1 (and dC(x2, b) = 1).
If γ1 is not a geodesic, then there is a shortcut with length at most r and a shortcut vertex v such

that dC(x1, v) < r.
If γ1 is a geodesic, by Lemma 4, there exists a minimal ab-r-separator S containing x1, x2.

Then, there exist y1, y2 ∈ γ2 ∩ S, with y1 between a and y2, such that dC(y1, y2) ≥ r − 1, dC(a, y1) ≥ 1
and dC(y2, b) ≥ 1. Since diam(S) ≤ m, then d(x1, y2) ≤ m. Since dC(x1, y2) ≥ r + 1 ≥ m + 1, there is a
shortcut σ in C joining x1 and y2 with L(σ) ≤ m ≤ r and with an associated shortcut vertex v such that
dC(x1, v) < m ≤ r.

Thus, for every vertex x1, there is a shortcut vertex v such that dC(x1, v) < r, and therefore,
shortcut vertices define a (r + 1

2 )-dense subset in C.

Theorem 10. Let G be a uniform graph and r ≥ 2. If for every minimal ab-r-separator S either Sa or Sb has
diameter at most m, then G is ε-densely (k, k

2 )-chordal with k = 2m + 2r + 2 and ε = max{m+1
2 + r, m + 1

2}.

Proof. Let C be any cycle with L(C) ≥ 2m + 2r + 2 and x1 be any vertex in C. Then, consider two
vertices a, b in C such that dC(a, b) = m + r + 1, dC(a, x1) =

m+1
2 and dC(x1, b) = m+1

2 + r if m is odd,
and dC(a, x1) =

m
2 + 1 and dC(x1, b) = m

2 + r if m is even. Let γ1 and γ2 be the two independent paths
joining a and b defined by C, and assume x1 ∈ γ1. Consider x2 ∈ γ1 with x2 between x1 and b such
that dC(x1, x2) = r − 1 (and therefore, dC(x2, b) ≥ m

2 + 1 > m
2 ).

If γ1 is not a geodesic, then there is a shortcut with length at most m+ r + 1 and a shortcut vertex v
such that dC(x1, v) < m

2 + r.
If γ1 is a geodesic, consider S the minimal ab-r-separator containing x1, x2 built in the proof

of Lemma 4, and let us assume, without loss of generality, that Sa has diameter at most m.
Then, by construction, there exists y1 ∈ γ2 ∩ S such that dγ2(a, y1) ≥ d(a, y1) = d(a, x1) ≥ m+1

2 .
Since diam(Sa) ≤ m, then d(x1, y1) ≤ m. However, dC(x1, y1) ≥ min{m + 1, dγ1(x1, b) + d(b, y1)} =

m + 1, and therefore, there is a shortcut σ in C joining x1 and y1 with L(σ) ≤ m. Moreover, there is a
shortcut vertex v such that dC(x1, v) < m.

Thus, for every vertex x1, there is a shortcut vertex v with dC(x1, v) < min{m
2 + r, m}, and

therefore, shortcut vertices define an ε-dense subset in C with ε = max{m+1
2 + r, m + 1

2}.

Then, from Theorems 5 and 10, we can obtain immediately the following:

Corollary 5. Let G be a uniform graph and r ≥ 2. If for every minimal ab-r-separator S either Sa or Sb has
diameter at most m, then G satisfies (BP), i.e.„ G is quasi-isometric to a tree.

Furthermore, from Theorems 3, 9 and 10, we obtain:

Corollary 6. Let G be a uniform graph and r ≥ 2. If every minimal vertex r-separator has diameter at most m
with m ≤ r, then G is δ-hyperbolic. Moreover, δ(G) ≤ 2r + 1

2 .
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Corollary 7. Let G be a uniform graph and r ≥ 2. If for every minimal ab-r-separator S either Sa or Sb has
diameter at most m, then G is δ-hyperbolic. Moreover, δ(G) ≤ max{ 3m+3

2 + 2r, 2m + r + 3
2}}.

5. Neighbor Separators

Given a set S in a graph G, let Nr(S) := {x ∈ G | d(x, S) ≤ r}.

Definition 13. Given two vertices a, b in a graph G = (V, E) and some r ∈ N, a set S ⊂ V is an
ab-Nr-separator if a and b are in different components of G \ Nr(S). S is an ab-neighbor separator if it is
an ab-Nr-separator for some r.

Notice that an ab-separator is just an ab-N0-separator.

Theorem 11. G satisfies (BP) if and only if there is a constant Δ′′ > 0 such that for every pair of vertices a, b
with d(a, b) ≥ 2Δ′′ + 2 and any geodesic [ab], there exists a vertex c ∈ [ab] that is an ab-NΔ′′ -separator.

Proof. The only if part follows trivially from Proposition 2.
Suppose that for every pair of vertices a, b with d(a, b) ≥ 2Δ′′+ 2 and any geodesic [ab], there exists

a point c ∈ [ab] that is an ab-NΔ′′ -separator. Consider any pair of vertices x, y in G, any geodesic [xy]
and the midpoint z in [xy].

If d(x, y) ≤ 2Δ′′ + 1, then (BP) is trivially satisfied on x, y for any Δ′ ≥ Δ′′ + 1
2 .

If d(x, y) ≥ 2Δ′′ + 2, by hypothesis, there is some vertex z1 ∈ [xy] such that NΔ′′(z1) is an
xy-NΔ′′ -separator. If d(z, z1) ≤ Δ′′, then it follows that every xy-path intersects NΔ′′(z1) ⊂ N2Δ′′(z) and
G satisfies (BP) on the vertices for Δ′ = 2Δ′′. If d(z, z1) > Δ′′, then we repeat the process with the part
of the geodesic, [xz1] or [z1y], containing z. Let us assume, without loss of generality, that z ∈ [xz1].
Since d(z, z1) > Δ′′ and d(x, z) > Δ′′, there is some point z2 ∈ [xz1] that is an xz1-NΔ′′ -separator.
Since there is a z1y-path in G \ NΔ′′(z2), z2 is also an xy-NΔ′′ -separator. If d(z, z2) ≤ Δ′′, we are done.
Otherwise, we repeat the process until we obtain some point zk ∈ [xy] that is an xy-NΔ′′ -separator and
such that d(z, zk) ≤ Δ′′. Therefore, G satisfies (BP) on the vertices for Δ′ = 2Δ′′.

Thus, by Proposition 2, G satisfies (BP) with Δ = 2Δ′′ + 3
2 .

Corollary 8. G is quasi-isometric to a tree if and only if there is a constant Δ′′ > 0 such that for every pair of
vertices a, b with d(a, b) > Δ′′ and any geodesic [ab], there exists a vertex c ∈ [ab] that is an ab-NΔ′′ -separator.

Proposition 3. If G is (k, 1)-chordal, then for every pair of vertices a, b, any geodesic [ab] with d(a, b) ≥ k
2 + 2

and every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ 2 and such that d(a′, b′) ≥ k
2 − 2, [a′b′] ⊂ [ab]

is an ab-N1-separator. In particular, for every pair of vertices a, b in G with d(a, b) ≥ k
2 + 2, there is a geodesic

σ of length k
2 − 2 or k−3

2 such that σ is an ab-N1-separator.

Proof. Consider any geodesic [ab] in G with d(a, b) ≥ k
2 + 2 and any pair of vertices a′, b′ ∈ [ab] with

d({a′, b′}, {a, b}) ≥ 2 such that d(a′, b′) ≥ k
2 − 2. Let a′′ be the vertex in [aa′] ⊂ [ab] adjacent to a′

and b′′ be the vertex in [b′b] ⊂ [ab] adjacent to b′. Therefore, d(a′′, b′′) ≥ k
2 . Suppose that a and b are

in the same connected component, A, of G \ N1([a′b′]). Clearly, a′′ and b′′ are adjacent to A. Let γ

be a path of minimal length joining a′′ and b′′ in the subgraph induced by A ∪ {a′′, b′′}. Therefore,
[a′′b′′] ∪ γ defines a cycle, C, of length at least k. Since G is (k, 1)-chordal, then there is an edge joining
two non-adjacent vertices in C. Since [a′′b′′] is geodesic and γ has minimal length, the edge must join a
vertex, v ∈ γ to a vertex in [a′b′]. Therefore, v ∈ N1([a′b′]) ∩ A leading to a contradiction.

Definition 14. A path γ in a graph G is chordal if it has no one-shortcuts in G.

Proposition 4. If G is (k, 1)-chordal, then for every chordal ab-path σ with L(σ) ≥ k and every pair of vertices
a′, b′ ∈ σ with dσ({a′, b′}, {a, b}) ≥ 2 and such that dσ(a′, b′) ≥ k − 4, then the restriction of σ joining a′
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and b′, σ′, is an ab-N1-separator. In particular, for every pair of vertices a, b in G joined by a chordal path with
length at least k there is a chordal path γ′ of length k − 4 such that γ′ is an ab-N1-separator.

Proof. Consider any chordal path σ in G with endpoints a, b and L(σ) ≥ k. Consider any pair of
vertices a′, b′ ∈ [ab] with dσ({a′, b′}, {a, b}) ≥ 2 such that dσ(a′, b′) ≥ k − 4, and let σ′ = [a′b′] ⊂ [ab].
Let a′′ be the vertex in σ adjacent to a′ closer in σ to a and b′′ be the vertex in σ adjacent to b′ closer in σ

to b. Therefore, if σ′′ is the restriction of σ joining a′′ and b′′, then L(σ′′) ≥ k − 2. Suppose that a and
b are in the same connected component, A, of G \ N1(σ

′). Clearly, a′′ and b′′ are adjacent to A. Let γ

be a path of minimal length joining a′′ and b′′ in the subgraph induced by A ∪ {a′′, b′′}. Therefore,
σ′′ ∪ γ defines a cycle, C, of length at least k. Since G is (k, 1)-chordal, then there is an edge joining two
non-adjacent vertices in C. Since σ′′ is chordal and γ has minimal length, the edge must join a vertex
v ∈ γ to a vertex in σ′. Therefore, v ∈ N1(σ

′) ∩ A, leading to a contradiction.

Proposition 5. If a graph G satisfies that for some k, m ∈ N with k ≥ 4m, for every geodesic [ab] with
d(a, b) ≥ k + 2 and for every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ m + 1 and such that
d(a′, b′) ≥ k − 2m, [a′b′] ⊂ [ab] is an ab-Nm-separator, then G is ( k

2 + 2)-densely (2k + 4, k + 1)-chordal.

Proof. Let C be any cycle with L(C) ≥ 2k + 4. Let v by any vertex in C and a, b two vertices in C such
that dC(a, v) =

⌊
k
2

⌋
+ 1 and dC(v, b) =

⌈
k
2

⌉
+ 1, and therefore, dC(a, b) = k + 2. Let γ1, γ2 be the two

ab-paths defined by the cycle, and let us assume that v ∈ γ1 (and therefore, L(γ1) ≤ L(γ2)). If there
is a shortcut in γ1, then there is a shortcut in C with length at most k + 1 and with a shortcut vertex
z such that dC(v, z) < k

2 + 2. If there is no shortcut in γ1, then γ1 is a geodesic with d(a, b) = k + 2.
Thus, let a′, b′ ∈ γ1 with d(a, a′) = m + 1 = d(b′, b) and d(a′, b′) = k − 2m. Therefore, [a′b′] ⊂ γ1 is an
ab-Nm-separator. In particular, there is some vertex w in γ2 \ {a, b} such that w ∈ Nm([a′b′]), defining
a shortcut in C with length at most m and with a shortcut vertex z such that dC(v, z) < k

2 + 1.

Corollary 9. If a graph G satisfies that for some k, m ∈ N with k ≥ 4m, for every geodesic [ab] with
d(a, b) ≥ k + 2 and for every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ m + 1 and such that
d(a′, b′) ≥ k − 2m, [a′b′] ⊂ [ab] is an ab-Nm-separator, then G is quasi-isometric to a tree.

6. Neighbor Obstructors

Definition 15. Given two vertices a, b in a graph G = (V, E) and some r ∈ N, a set S ⊂ V is
ab-Nr-obstructing if for every geodesic γ joining a and b, γ ∩ Nr(S) �= ∅.

Given any metric space (X, d) and any pair of subsets A, B ⊂ X, let us recall that the Hausdorff
metric, dH , induced by d is:

dH(A1, A2) := max{ sup
x∈A1

{d(x, A2)}, sup
y∈A2

{d(y, A1)}},

or equivalently,
dH(A1, A2) := inf{ε > 0 | A1 ⊂ B(A2, ε) y A2 ⊂ B(A1, ε)}.

Definition 16. In a geodesic metric space (X, d), we say that geodesics are stable if and only if there is a
constant R ≥ 0 such that given two points x, y ∈ X and any geodesic [xy], then every geodesic σ joining x to y
satisfies that dH(σ, [xy]) ≤ R.

It is well known that if X is a hyperbolic space, then quasi-geodesics are stable. See, for example,
Theorem III.1.7 in [2]. In particular, geodesics are stable in hyperbolic geodesic spaces.

Let B be the family of cycles that are bigons.
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Theorem 12. Given a graph G, geodesics are stable if and only if there exist constants ε > 0 and k, m ∈ N such
that G is ε-densely (k, m)-chordal on B.

Proof. Suppose that G is ε-densely (k, m)-chordal on B. Consider any pair of points x, y and any pair
of geodesics, σ1, σ2, joining them. Then, for any point z ∈ σ1, either z ∈ σ1 ∩ σ2 or there is a cycle
C ⊂ σ1 ∪ σ2 with z ∈ C. If L(C) < k, then d(z, σ2) < k

2 . If L(C) ≥ k, then either dC(z, σ2) < ε or
there is an m-shortcut in C with a shortcut vertex v such that dC(z, v) < ε, and since σ1 is geodesic,
d(v, σ2) ≤ m. Thus, if R = max{ k

2 , ε + m}, d(z, σ2) < R in any case. Hence, σ1 ⊂ NR(σ2). The same
argument proves that σ2 ⊂ NR(σ1), and therefore, dH(σ1, σ2) ≤ R.

Suppose that geodesics are stable with constant R. Consider any pair of points x, y with
d(x, y) ≥ 2R + 2 and two xy-geodesics σ1, σ2 such that σ1 ∪ σ2 defines a cycle C. Then, for any point
z ∈ σ1 (respectively with σ2) such that dC(z, σ2) > R (resp. dC(z, σ1) > R), since dH(σ1, σ2) ≤ R,
d(z, σ2) ≤ R (resp. d(z, σ1) ≤ R), and there is a strict R-shortcut in C with a shortcut vertex v
such that dC(v, z) < R. Thus, shortcut vertices are (2R + 1)-dense in C and G is (2R + 1)-densely
(4R + 4, R)-chordal on B.

Definition 17. In a graph G, we say that geodesics between vertices are stable if and only if there is a constant
R ≥ 0 such that given two vertices a, b ∈ G and any geodesic [ab], then every geodesic σ joining a to b satisfies
that dH(σ, [ab]) ≤ R.

Proposition 6. Given a graph G, geodesics between vertices are stable if and only if there is some constant
k ∈ N so that for every pair of vertices a, b with d(a, b) ≥ 2k + 2, every geodesic [ab] and every vertex v ∈ [ab]
such that d(v, {a, b}) > k, then v is an ab-Nk-obstructing vertex.

Proof. Suppose that geodesics between vertices are stable with constant R. Then, given any two
vertices a, b ∈ G with d(a, b) ≥ 2R + 2 and any geodesic [ab], every geodesic σ joining a to b satisfies
that dH(σ, [ab]) ≤ R. Thus, for every vertex v ∈ [ab] there is some vertex w ∈ σ such that d(v, w) ≤ R.
Suppose v ∈ [ab] with d(v, {a, b}) > R. Hence, v is an ab-NR-obstructing vertex.

Now, suppose that for every pair of vertices a, b with d(a, b) ≥ 2k + 2, every geodesic [ab] and
every vertex v ∈ [ab] with d(v, {a, b}) > k, then v is an ab-Nk-obstructing vertex. Consider any pair of
vertices a, b ∈ G and any pair of ab-geodesics σ1, σ2. If d(a, b) < 2k + 2, then it is trivial to check that
dH(σ1, σ2) < k + 1. Suppose d(x, y) ≥ 2k + 2. Then, for every vertex v ∈ σ1 such that d(v, {a, b}) > k,
σ2 ∩ Nk(v) �= ∅. Therefore, it follows immediately that σ1 ⊂ Nk+1/2(σ2). The same argument proves
that σ2 ⊂ Nk+1/2(σ1), and therefore, dH(σ1, σ2) < k + 1.

Let B0 be the family of cycles that are bigons defined by two geodesics between vertices.

Proposition 7. If G is k
4 -densely (k, m)-chordal on B0, then for every pair of vertices a, b with d(a, b) ≥ k

2 + 4,
every geodesic [ab] and every vertex v0 such that d(v0, {a, b}) ≥ k

4 + 1, v0 is an ab-Nk-obstructing vertex.
In particular, [ab] contains an ab-Nk-obstructing vertex.

Proof. Consider any pair of vertices a, b with d(a, b) ≥ k
2 + 4, any geodesic [ab] and any vertex v0 ∈ [ab]

with d(v0, {a, b}) ≥ k
4 + 1. Let a′ be the vertex in [av0] ⊂ [ab] with d(a′, v0) =

⌈
k
4

⌉
and b′ be the vertex

in [v0b] ⊂ [ab] with d(v0, b′) =
⌈

k
4

⌉
. Therefore, d(a′, b′) ≥ k

2 , a′ �= a and b′ �= b.
If there is no geodesic joining a to b disjoint from Nk/4(v0), we are done.
Suppose there is some geodesic γ0 joining a to b such that γ0 ∩ Nk/4(v0) = ∅. Then, [ab] ∪ γ0

contains a cycle C (with possibly C = [ab] ∪ γ0) composed by two geodesics γ1 = [a′′b′′] with
[a′b′] ⊂ [a′′b′′] ⊂ [ab] and γ2 ⊂ γ0 joining also a′′ to b′′. Clearly, L(C) ≥ k. Since G is k

4 -densely
(k, m)-chordal on B0, then there is a strict shortcut σ with L(σ) ≤ m joining two vertices in C with a
shortcut vertex v1 in Nk/4(v0). Furthermore, since γ1 and γ2 are geodesics, then σ joins v1 to a vertex
v2 in γ2 ⊂ γ0. Therefore, d(v2, v0) ≤ m + k

4 < k (see Remark 2) and γ0 ∩ Nk(v0) �= ∅.
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Theorem 13. Given a graph G, geodesics between vertices are stable if and only if there exist constants ε > 0
and k, m ∈ N such that G is ε-densely (k, m)-chordal on B0.

Proof. Suppose that G is ε-densely (k, m)-chordal on B0. By Proposition 7, if k′ = max{4ε, k}, then for
every pair of vertices a, b with d(a, b) ≥ k′

2 + 4, every geodesic [ab] and every vertex v0 such that
d(v0, {a, b}) ≥ k′

4 + 1, v0 is an ab-Nk′ -obstructing vertex. Thus, by Proposition 6, geodesics are stable
with constant R = k′

4 + 2.
Let us suppose that geodesics between vertices are stable with constant R. Let a, b be two

vertices with d(a, b) ≥ 2R + 2 and C be a cycle that is a bigon defined by two ab-geodesics, σ1, σ2.
Therefore, L(C) ≥ 4R + 4. Consider any vertex v ∈ σ1 (respectively, σ2) such that d(v, {a, b}) > R.
Then, since geodesics between vertices are stable with parameter R, v ∈ NR(σ2) (respectively, σ1) and
there is a strict R-shortcut in C with an associated shortcut vertex w such that dC(v, w) < R, therefore
shortcut vertices are (2R + 1)-dense in C, and G is (2R + 1)-densely (4R + 4, R)-chordal on B0.

The following example shows that having stable geodesics between vertices does not imply that
geodesics are stable.

Example 3. Consider the family of odd cycles {C2k+1 : k ∈ N}, and suppose we fix a vertex vk in each
cycle; we define a connected graph G identifying the family {vk : k ∈ N} as a single vertex v. Notice that in
G geodesics between vertices are unique. If two vertices belong to the same cycle C2k+1, then the geodesic is
contained in the cycle, and it is clearly unique. Otherwise, the geodesic is the union of the two (unique) shortest
paths joining the vertices to v. Thus, geodesics between vertices are stable with constant zero.

Let mk be the midpoint of an edge in C2k+1 such that d(mk, v) = k + 1
2 . Then, C2k+1 is a bigon in G

defined by two geodesics, σ1, σ2 joining mk to v and dH(σ1, σ2) =
k
2 + 1

4 with k arbitrarily large.

Remark 14. Notice that the same property that characterizes being quasi-isometric to a tree (Corollary 3)
also characterizes being hyperbolic, when restricted to triangles (Theorem 6), having stable geodesics,
when restricted to bigons (Theorem 12), and having stable geodesics between vertices, when restricted to
bigons between vertices (Theorem 13).

Remark 15. In the context of multi-path routing, (BP) implies that given any nominal path (with minimum
cost) joining x and y, then any other path would remain close (at least at some point) to the nominal one.
Furthermore, if we consider all paths with minimum cost, the stability of geodesics characterized above implies
that every point of any minimal path is close to the nominal one.

The proof of Proposition 7 can be adapted to prove also the following:

Proposition 8. If G is ( k
4 − m)-densely (k, m)-chordal on B0 with k > 4m, then for every geodesic [ab]

with d(a, b) ≥ k
2 + 2 and every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ m + 1 and such that

d(a′, b′) ≥ k
2 − 2m, [a′b′] ⊂ [ab] is an ab-Nm-obstructing set. In particular, for every pair of vertices a, b in G

with d(a, b) ≥ k
2 + 2, there is a geodesic σ of length k

2 − 2m or k+1
2 − 2m such that σ is ab-Nm-obstructing.

Proof. Consider any geodesic [ab] with d(a, b) ≥ k
2 + 2 and any pair of vertices a′, b′ ∈ [ab] with

d({a′, b′}, {a, b}) ≥ m + 1 and d(a′, b′) ≥ k
2 − 2m. Let a′′ be the vertex in [aa′] ⊂ [ab] with d(a′, a′′) = m

and b′′ be the vertex in [b′b] ⊂ [ab] with d(b′, b′′) = m. Therefore, d(a′′, b′′) ≥ k
2 .

Suppose that there is some geodesic γ0 joining a and b such that γ ∩ Nm([a′b′]) = ∅. Then,
[ab] ∪ γ0 contains a cycle C composed by two geodesics: γ1 with [a′′b′′] ⊂ γ1 ⊂ [ab] and γ2 ⊂ γ0.
Clearly, L(C) ≥ k. Consider the midpoint c in [a′b′]. Since G is ( k

4 − m)-densely (k, m)-chordal on
B0, then there is a strict shortcut σ with L(σ) ≤ m joining two vertices in C with a shortcut vertex v1

such that dC(v1, c) ≤ k
4 − m, and hence, v1 ∈ [a′b′]. Furthermore, since γ1 and γ2 are geodesics, then

σ joins v1 to a vertex, v2, in γ2 ⊂ γ0. Therefore, d(v2, [a′b′]) ≤ m and γ0 ∩ Nm([a′b′]) �= ∅, leading to
a contradiction.
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Abstract: Let G = (V, E) be a simple graph with vertex set V and edge set E. Let D be a subset
of V, and let B(D) be the set of neighbours of D in V \ D. The differential ∂(D) of D is defined as
|B(D)| − |D|. The maximum value of ∂(D) taken over all subsets D ⊆ V is the differential ∂(G) of
G. For β ∈ (−1, Δ), the β-differential ∂β(G) of G is the maximum value of {|B(D)| − β|D| : D ⊆ V}.
Motivated by an influential maximization problem, in this paper we study the β-differential of G.

Keywords: differential of a graph; domination number

1. Introduction

Social networks, such as Facebook or Twitter, have served as an important medium for
communication and information disseminating. As a result of their massive popularity, social
networks now have a wide variety of applications in the viral marketing of products and political
campaigns. Motivated by its numerous applications, some authors [1–3] have proposed several
influential maximization problems, which share a fundamental algorithmic problem for information
diffusion in social networks: the problem of determining the best group of nodes to influence the
rest. As it was shown in [4], the study of the differential of a graph G, could be motivated from such
scenarios. In this work we generalize the notion of differential of a graph and provide new applications.
Let us first give some basic notation and then we motivate such a generalization.

Throughout this paper, G = (V, E) is a simple graph of order n ≥ 3 with vertex set V and edge
set E. Let u, v be distinct vertices of V, and let S be a subset of V. We will write u ∼ v whenever u
and v are adjacent in G. If S is nonempty, then NS(v) denotes the set of neighbors that v has in S, i.e.,
NS(v) := {u ∈ S : u ∼ v}; the degree of v in S is denoted by δS(v) := |NS(v)|. As usual, N(v) is the
set of neighbors that v has in V, i.e., N(v) := {u ∈ V : u ∼ v}; and N[v] is the closed neighborhood
of v, i.e., N[v] := N(v)∪ {v}. We denote by δ(v) := |N(v)| the degree of v in G, and by δ(G) and Δ(G)

the minimum and the maximum degree of G, respectively. The subgraph of G induced by S will be
denoted by G[S], and the complement of S in V by S. Then NS(v) is the set of neighbors that v has
in S = V \ S. We let N(S) :=

⋃
v∈S N(v) and N[S] := N(S) ∪ S. Finally, we will use B(S) to denote

the set of vertices in S that have a neighbour in S, and C(S) to denote S ∪ B(S). Then {S, B(S), C(S)}
is a partition of V. An external private neighbor of v ∈ S (with respect to S) is a vertex w ∈ N(v) ∩ S
such that w /∈ N(u) for every u ∈ S \ {v}. The set of all external private neighbors of v is denoted
by epn [v, S].

To motivate the notion of β-differential of a graph, assume for a moment that our graph G = (V, E)
represents a map of a country, where V is the set of cities of G and E is the set of roads between cities
of G. To avoid weights, we could assume that all the cities of G have the same population and have the
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same importance, and also that all roads have the same length. A supermarket chain wants to build
some supermarkets in that country and they are studying which are the best places to do it. For that,
they might consider that every supermarket will give service to the own city and the neighboring
cities. Moreover, according to some previous studies, the cost of building a new supermarket is α > 0
times the benefit that can be obtained by each city in an specific number of years. In consequence,
if we consider the unit as the amount of money that we can obtain from a city in that amount of years
and we build a supermarket in each vertex of a set D ⊆ V, we have that the benefit that we obtain is
|B(D)|+ |D| − α|D| = |B(D)| − (α − 1)|D|, or equivalently, |B(D)| − β|D| for β = α − 1. Such a value
is denoted by ∂β(D) and it is called the β-differential of D. We are naturally interested in determining
the following value:

∂β(G) := max{∂β(D) : D ⊆ V} = max{|B(D)| − β|D| : D ⊆ V}.

The number ∂β(G) is the β-differential of G. Let Δ be the maximum degree of G. Note that if
v ∈ V has degree Δ, then ∂β(G) ≥ ∂β({v}) = Δ − β. Thus, if β < Δ, there will always be a choice
of places giving benefits. On the other hand, if β ≥ Δ and D ⊆ V, then ∂β(D) = |B(D)| − β|D| ≤
Δ|D| − β|D| = (Δ − β)|D| ≤ 0, and hence no set of locations will make benefits. For these reasons, we
restrict our study of ∂β(G) to the values of β belonging to (−1, Δ).

The particular case in which β = 1 is called the differential of G, and it is usually denoted by
∂(G). The study of ∂(G) together with a variety of other kinds of differentials of a set, started in [5].
In particular, several bounds for ∂(G) were given. The differential of a graph has also been investigated
in [4,6–15], and it was proved in [11] that ∂(G) + γR(G) = n, where n is the order of the graph G
and γR(G) is the Roman domination number of G, so every bound for the differential of a graph
can be used to get a bound for the Roman domination number. The differential of a set D was also
considered in [16], where it was denoted by η(D), and the minimum differential of an independent
set was considered in [17]. The case of the B-differential of a graph or enclaveless number, defined as
ψ(G) := max{|B(D)| : D ⊆ V}, was studied in [5,18].

Notice that if G is disconnected, and G1, . . . , Gk are its connected components, then ∂β(G) =

∂β(G1) + · · ·+ ∂β(Gk). In view of this, from now on we only consider connected graphs.
Other graph parameters that we will use in this paper are the dominating number and the packing

number of G. We recall that a set S ⊆ V is a dominating set if every vertex v ∈ S is adjacent to a vertex
in S. The domination number γ(G) is the minimum cardinality among all dominating sets. A packing of
a graph G is a set of vertices in G that are pairwise at distance more than two. The packing number ρ(G)

of G is the size of a largest packing in G. An open packing of G is a set S ⊆ V such that N(u)∩ N(v) = ∅
for every two different vertices u, v ∈ S. The open packing number ρo(G) of G is the size of a largest
open packing in G.

2. The Function fG(β) = ∂β(G)

Throughout this section Δ denotes the maximum degree of G = (V, E) and β ∈ (−1, Δ). Clearly,
the values of ∂β(G) can be considered as a function fG : (−1, Δ) → R, which is defined as fG(β) :=
∂β(G). A subset D ⊆ V satisfying ∂β(D) = ∂β(G) is called a β-∂-set or a β-differential set. If D
has minimum (maximum) cardinality among all β-differential sets, then D is a minimum (maximum)
β-differential set. We will write Dm

β (respectively, DM
β ) to indicate that D is a minimum (respectively,

maximum) β-differential set. Since the value of ∂β(G) can be achieved by several subsets of V, a natural
problem is to determine the properties of such β-differential sets. Our goal in this section is to establish
several properties of these sets. In particular, as a consequence of some of them we will show in
Theorem 1 that fG is a continuous function. We have seen before that, if v ∈ V has maximum degree,
then ∂β({v}) > 0 for any admissible β. In our next results we continue our study in this direction and
we show that the positive value of the β-differential of a subset D of vertices of G will depend on the
values of |D| and β.
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Proposition 1. Let G = (V, E) be a graph. If β ∈ (−1, 1] and k ∈ N such that k <
n

β + 1
, then there exists a

subset D ⊆ V such that |D| = k and ∂β(D) > 0.

Proof 1. If G contains a dominating set D ⊆ V of cardinality k, then ∂β(D) = |B(D)| − β|D| =

n − k(β + 1) > n − n
β + 1

(β + 1) = 0, as desired. Now we suppose γ(G) > k, and consider a

maximum matching of G, say M = {u1v1, . . . , umvm}. It is known that m = |M| ≥ γ(G) > k.
Let D = {u1, . . . , uk}. If um or vm is adjacent to a vertex in D, then ∂β(D) = |B(D)| − β|D| ≥
k + 1 − k = 1 > 0. Thus we can assume that neither um nor vm is adjacent to any vertex in D. Since G
is connected, then at least one of um or vm is adjacent to a vertex of V \ (D ∪ {um, vm}). Without loss
of generality, we suppose that um is adjacent to a vertex x ∈ V \ (D ∪ {um, vm}). If x /∈ {v1, . . . , vk},
then D′ = {u1, . . . , uk−1, um} satisfies ∂β(D′) = |B(D′)| − β|D′| ≥ k + 1 − k = 1 > 0. If x = vj for
some j ∈ {1, . . . , k}, then D′ = {u1, . . . , uj−1, vj, uj+1, . . . , uk} satisfies ∂β(D′) = |B(D′)| − β|D′| ≥
k + 1 − k = 1 > 0.

Taking into account that n
β+1 ≤ n−γ(G)

β when β ∈ (−1, 1], the next proposition shows that the
upper bound on the size of D in Proposition 1 cannot be relaxed.

Proposition 2. Let G = (V, E) be a graph. Every set D ⊆ V such that
|D| ≥ min

{
n

β+1 , n−γ(G)
β

}
satisfies ∂β(D) ≤ 0.

Proof 2. Firstly, if D ⊆ V is a set such that |D| ≥ n/(β + 1), then β|D| ≥ n − |D| ≥ |B(D)|,
consequently, ∂β(D) ≤ 0. Secondly, if |D| ≥ (n − γ(G))/β, then β|D| ≥ n − γ(G) ≥ |B(D)|, which
again implies ∂β(D) ≤ 0.

Lemma 1. If G = (V, E) is a graph and β1 < β2, then ∂β1(G) > ∂β2(G).

Proof 3. If β1 < β2, then |B(D)| − β1|D| > |B(D)| − β2|D| for every D ⊆ V. Since the number of
subsets of V is finite, we conclude that ∂β1(G) > ∂β2(G).

Proposition 3. Let G = (V, E) be a graph. If β /∈ N, then every minimum β-differential set is a maximal
β-differential set and every maximum β-differential set is a minimal β-differential set.

Proof 4. Let Dm
β be a minimum β-differential set and let D be a β-differential set such that Dm

β ⊂ D.
In such a case, D \ Dm

β = {u1, ..., ur} ⊆ B(Dm
β ) ∪ C(Dm

β ) and {ui; zi1 , ..., ziki
} are disjoint stars (not

necessarily induced stars) with centers ui for every i ∈ {1, . . . , r}, such that zs ∈ C(Dm
β ) for every

s ∈ {ij : i ∈ {1, . . . , r}, j ∈ {1, . . . , ki}} and ∑ui∈B(Dm
β )(−1 + ki − β) + ∑ui∈C(Dm

β )(ki − β) = 0. Since

β /∈ N, there exists i ∈ {1, . . . , r} such that ui ∈ B(Dm
β ) and −1 + ki − β > 0, or ui ∈ C(Dm

β ) and
ki − β > 0, thus ∂β(Dm

β ∪ {ui}) > ∂β(Dm
β ), a contradiction. Analogously, we can prove that every

maximum β-differential set is minimal.

Now we establish a couple of relationships between dominating sets and β-differential sets of G.

Lemma 2. Let G = (V, E) be a graph and let A be a dominating set in G. If D ⊆ V with |D| > |A|, then
∂β(D) < ∂β(A). In particular,

∂β(G) = max{∂β(D) : D ⊆ V, |D| ≤ γ(G)}.

Proof 5. Let D ⊆ V with |D| > |A|. Then

∂β(A) = |B(A)| − β|A| = |V| − |A| − β|A| > |V| − |D| − β|D| ≥ |B(D)| − β|D| = ∂β(D).
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Proposition 4. Let G = (V, E) be a graph of order n. If β ∈ [−1, 0], then ∂β(G) = n− (1+ β)γ(G). That is,
every β-differential set is a minimum dominating set.

Proof 6. Let A, D ⊆ V such that A is a dominating set with γ(G) = |A| and ∂β(G) = ∂β(D). It is
known that |B(A)| = max{|B(S)| : S ⊆ V}. If β = 0 we have that ∂0(A) = |B(A)| ≥ |B(D)| = ∂0(D),
and so |B(A)| = |B(D)|. Then |B(D)|+ |A| = n, or equivalently, ∂0(D) = n − γ(G), as required. Now
we suppose that β < 0. By Lemma 2 we know that |D| ≤ |A|. If |D| < |A|, then

∂β(A) = |B(A)| − β|A| ≥ |B(D)| − β|A| > |B(D)| − β|D| = ∂β(D),

a contradiction. Finally, since |D| = |A| and ∂β(D) = |B(D)| − β|D| = |B(D)| − β|A| ≤
|B(A)| − β|A| = ∂β(A), we have that |B(D)| = |B(A)| and, consequently, that D is a minimum
dominating set.

In view of Proposition 4, unless otherwise stated, from now on we will only consider β > 0.
Note that the trees shown in Figures 1–3, and the 1- and 2-differential sets marked (in black) suggest
that if β1 < β2 then |DM

β2
| ≤ |Dm

β1
|. This question will be answered in Lemma 3.

Figure 1. |Dm
1 | = 3 and |DM

2 | = 1.

Figure 2. |Dm
1 | = |DM

2 | = 3.

Figure 3. |Dm
1 | = 8 and |DM

2 | = 3.

Lemma 3. Let G = (V, E) be a graph. If β1 < β2, and there is no D ⊆ V such that ∂β1(G) = ∂β1(D) and
∂β2(G) = ∂β2(D), then for every D1, D2 ⊆ V such that ∂β1(G) = ∂β1(D1) and ∂β2(G) = ∂β2(D2), we have
|D2| ≤ |D1| − 1.
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Proof 7. Let D1 and D2 be such that ∂β1(G) = ∂β1(D1) and ∂β2(G) = ∂β2(D2). By hypothesis ∂β2(G) �=
∂β2(D1), so |B(D2)| − β2|D2| > |B(D1)| − β2|D1|. Hence

|B(D2)| − β1|D2| = |B(D2)| − |B(D1)|+ |B(D1)| − β1|D2|+ β1|D1| − β1|D1|
> β2|D2| − β2|D1|+ β1|D1| − β1|D2|+ ∂β1(G)

= (β2 − β1)(|D2| − |D1|) + ∂β1(G).

Therefore, if |D2| − |D1| ≥ 0, then |B(D2)| − β1|D2| > ∂β1(G), a contradiction.

Lemma 4. Let G = (V, E) be a graph. If β1 < β2, then for every β1-differential set D1 and every β2-differential
set D2 it is satisfied |D2| ≤ |D1| and |B(D2)| ≤ |B(D1)|.

Proof 8. By absurdum we suppose that |D2| > |D1|. Since ∂β2(D1) ≤ ∂β2(D2), then

|B(D1)| − β2|D1| ≤ |B(D2)| − β2|D2| = |B(D2)| − β1|D2| − |D2|(β2 − β1).

Therefore,

|B(D1)| − β2|D1|+ |D2|(β2 − β1) = |B(D1)| − β1|D1|+ (|D2| − |D1|)(β2 − β1) ≤ ∂β1(D2).

Since (|D2| − |D1|)(β2 − β1) > 0, we have ∂β1(D1) = |B(D1)| − β1|D1| < ∂β1(D2),
a contradiction.

Finally, since |B(D2)| − β1|D2| ≤ ∂β1(G) = |B(D1)| − β1|D1|, we have

|B(D2)| − |B(D1)| ≤ β1(|D2| − |D1|) ≤ 0.

Looking also Figures 1–3, it might be thought that every minimum β-differential set is included
in a maximum β-differential set, but this is not true, as we can see in Figure 4, where black vertices
sets are the minimum 1-differential set and 1

2 -differential set, respectively, and grey vertices set are the
maximum 1-differential set and 1

2 -differential set, respectively.

Figure 4. On the left |Dm
1 | = 1 and |DM

1 | = 2, and on the right |Dm
1
2
| = 1 and |DM

1
2
| = 3.

If β is an irrational number, then |Dm
β | = |DM

β |, because |B(DM
β )| − β|DM

β | = |B(Dm
β )| − β|Dm

β |
implies that β(|DM

β | − |Dm
β |) = |B(DM

β )| − |B(Dm
β )|.

Proposition 5. Let G = (V, E) be a graph. If β1 < β2 and there exists D ⊆ V such that ∂β1(G) = ∂β1(D)

and ∂β2(G) = ∂β2(D), then for every β ∈ (β1, β2) it holds ∂β(G) = ∂β(D) and |D| = |DM
β2
| = |Dm

β1
|.

Proof 9. Let β ∈ (β1, β2) and let D′ ⊆ V be a β-differential set, by Lemma 4 we have

|D| ≤ |D′| ≤ |D| and |B(D)| ≤ |B(D′)| ≤ |B(D)|,
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thus, ∂β(D) = |B(D)| − β|D| = |B(D′)| − β|D′| = ∂β(G). Finally, since D is a β2-differential set,
by Lemma 4, we have |D| ≤ |Dm

β1
|. Using now that D is also a β1-differential set, we have |D| ≥ |Dm

β1
|.

The equality |D| = |DM
β2
| can be obtained analogously.

Theorem 1. Let G = (V, E) be a graph, then the function fG(β) = ∂β(G) is continuous for every β ∈
(−1, Δ).

Proof 10. It follows from Lemma 3 and Proposition 5 that the graphic representation of the function
fG(β) is formed by pieces of straight lines with negative slope. That is, there exists a partition
0 < β1 < β2 < · · · < βr−1 < βr = Δ of [0, Δ] such that

fG(β) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n − (1 + β)γ(G) −1 < β ≤ 0
a1 − b1β 0 < β ≤ β1

a2 − b2β β1 < β ≤ β2
...

...
ar − brβ βr−1 < β ≤ βr

where ai, bi ∈ N. Moreover, bi ≤ bi−1 − 1 and r ≤ γ(G). Observe that fG(β) is a continuous function
because, if ai − biβi > ai+1 − bi+1βi, then there exist δ > 0 and β′ ∈ (βi, βi + δ) such that ai − biβ

′ >
ai+1 − bi+1β′, so fG(β′), since it is a maximum, should be equal to ai − biβ

′, a contradiction.

For instance, in the graphs shown in Figure 5 we have f (β) = 4 − 3β if β ∈
(

0, 1
2

]
and f (β) =

3 − β if β ∈
(

1
2 , 3
]
.

Figure 5. β-differential set when β ∈
(

0, 1
2

]
(on the left) and β-differential set when β ∈

(
1
2 , 3
]

(on the right).

Notice that from the point of view explained in the introduction, if the cost of building a
supermarket is α = 7

5 (that is β = 2
5 ), it is more profitable to build three supermarket giving service

to all the towns. However, if the cost of building a supermarkets is α = 8
5 (that is β = 3

5 ), it is more
profitable to build only one supermarket, leaving without service to three towns.

Note that there exist another generalizations in graphs using continuous parameters, for instance,
α-domination number in [19], where the resulting function is not continuous.

It might be also thought that the intervals where the function is a straight line are big, but there
are graphs where these intervals are really small. For instance, if we consider the graph Gr with 3r + 1
vertices shown in Figure 6, the β-differential set is an unitary set containing the black vertex when
β > 1

r−1 , and the set containing the grey vertices when β ≤ 1
r−1 .
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Figure 6. An example of a graph Gr such that ∂β(Gr) = 1 + 2r − βr if β ≤ 1
r−1 , and ∂β(Gr) = 2r − β if

β > 1
r−1 .

As vr ∈ B(Dβ) for every β-differential set Dβ in Gr, we can consider a graph G whose vertices are

V(G) =
⋃j

i=0 V(Gr+i) and edges E =
⋃j

i=0 E(Gr+i) ∪ {vsvs+1 : s ∈ {r, . . . , r + j − 1}. In such a case,
the partition of the interval (0, Δ) for the definition of the piecewise function fG(β) is 0 < 1

r+j−1 <
1

r+j−2 < · · · < 1
r−1 < Δ.

3. Bounds on the β-Differential of a Graph

As we have mentioned in the introduction, ∂β(G) will be the maximum benefit we could obtain if
the cost of placing the considered service is α = β + 1, so it will be interesting to get lower and upper
bounds for this benefit.

Proposition 6. Let G = (V, E) be a graph with order n and maximum degree Δ. Then Δ − β ≤ ∂β(G) ≤
n − (1 + β).

Proof 11. Let v ∈ V such that δ(v) = Δ. Then ∂({v}) = Δ − β ≤ ∂β(G). Now, for any β-differential
set D we have that

∂β(G) = |B(D)| − β|D| ≤ n − 1 − β|D| ≤ n − 1 − β.

Proposition 7. Let G = (V, E) be a graph with order n and maximum degree Δ. The following properties hold.

(a) ∂β(G) = n − (1 + β) if and only if Δ = n − 1.
(b) ∂β(G) = n − (2 + β) if and only if Δ = n − 2.
(c) If β > 1, then ∂β(G) = n − (3 + β) if and only if Δ = n − 3.

Proof 12. (a) If Δ = n − 1, by Proposition 6 we have n − 1 − β ≤ ∂β(G) ≤ n − 1 − β, then ∂β(G) =

n − 1 − β. If ∂β(G) = n − 1 − β and D is a β-differential set, then we have n − 1 − β =

|B(D)| − β|D| ≤ n − 1 − β|D|. Therefore, |D| ≤ 1, that is, |D| = 1 and |B(D)| = n − 1, which
means that Δ = n − 1.

(b) If Δ = n − 2, by Proposition 6 and (a) we have n − 2 − β ≤ ∂β(G) < n − 1 − β. If D is a
β-differential set such that |D| ≥ 2, then n− 2− β ≤ |B(D)| − β|D| ≤ |B(D)| − 2β, consequently,
n − 2 − β ≤ |B(D)|. Since β > 0, we have n − 1 ≤ |B(D)|, which is a contradiction. If D
is a β-differential set such that |D| = 1, by n − 2 − β ≤ |B(D)| − β|D| and (a) we obtain
|B(D)| = n − 2, so ∂β(G) = n − (2 + β). Now, if ∂β(G) = n − 2 − β, there exists a β-differential
set D such that n − 2 − β = |B(D)| − β|D| ≤ |B(D)| − β, therefore |B(D)| ≥ n − 2. By (a) we
know that |B(D)| �= n − 1, then |B(D)| = n − 2 and, using again that |B(D)| − β|D| = n − 2− β,
we conclude that |D| = 1, which means that Δ = n − 2.

(c) If ∂β(G) = n− (3+ β), there exists a β-differential set D such that n− (3+ β) = |B(D)| − β|D| ≤
|B(D)| − β, then |B(D)| ≥ n − 3. By (a) we know that |B(D)| �= n − 1. If |B(D)| = n − 2, then
we have |D| ≤ 2 and |D| = 1 + 1

β , which is a contradiction with the fact that β > 1. Therefore,
|B(D)| = n − 3 and, consequently, |D| = 1, which means that Δ = n − 3. Finally, if Δ = n − 3
and D is a β-differential set, by Proposition 6 we have n − 3 − β ≤ |B(D)| − β|D| ≤ |B(D)| − β,
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then |B(D)| = n − 2 or |B(D)| = n − 3. If |B(D)| = n − 2, since Δ = n − 3, we have |D| = 2 and
−1 − β ≤ −β|D| = −2β, a contradiction. If |B(D)| = n − 3, since n − 3 − β ≤ |B(D)| − β|D| =
n − 3 − β|D|, we have |D| = 1 and ∂β(G) = n − 3 − β.

Let us note that, if we consider the path P5 with five vertices and β < 1, then we have Δ = n − 3
but ∂β(P5) = n − 2 − 2β �= n − (3 + β).

To characterize the graphs G such that ∂β(G) = Δ − β is much more difficult. A characterization
of these graphs when β = 1 was given in [5], but only for trees. Next we will give some properties that
the graphs verifying that equality must satisfy.

Proposition 8. Let G = (V, E) be a graph with maximum degree Δ. If ∂β(G) = Δ − β and v ∈ V is such
that δ(v) = Δ, then:

(a) Δ(G[V \ N[v]]) ≤ β.
(b) δN[v](u) ≤ β + 1 for every u ∈ N(v).
(c) |NN[v](A)|+ |NN(v)\A(A)| ≤ Δ − 1 + β(|A| − 1) for every A ⊆ N(v).

Proof 13. We suppose that ∂β(G) = Δ − β and we take any vertex v ∈ V such that δ(v) = Δ.
If Δ(G[V \ N[v]]) > β, there exist {u, u1, . . . , uj} ⊆ V \ N[v] such that u ∼ ui for every i ∈ {1, . . . , j}
and j > β. In such a case, ∂β({v, u}) = Δ + j − 2β > Δ − β, a contradiction. If there exists u ∈ N(v)
such that δN[v](u) > β + 1, then ∂β({v, u}) > Δ − 1 + β + 1 − 2β = Δ − β, a contradiction. If there
exists A ⊆ N(v) such that |NN[v](A)|+ |NN(v)\A(A)| > Δ− 1+ β(|A| − 1), then ∂β(A) = |NN[v](A)|+
|NN(v)\A(A)|+ 1 − β|A| > Δ − β, a contradiction.

Note that conditions (a)–(c) in the above Proposition are not enough to guarantee that ∂β(G) =

Δ − β. The graph G shows in Figure 7 satisfies these three conditions but ∂2(G) = 4 > Δ − 2.

Figure 7. An example with β = 2 and ∂2(G) = 4.

Proposition 9. Let G = (V, E) be a graph with order n and maximum degree Δ. If β ∈ (0, 1) and ∂β(G) =

Δ − β, then n ≤ 2Δ + 1. Moreover, if β < 1
Δ−1 , then n ≤ 2Δ.

Proof 14. The first statement is directly obtained by Proposition 8. Assume that β < 1
Δ−1

and n = 2Δ + 1. If δ(v) = Δ, then ∂β(N(v)) = Δ + 1 − βΔ > Δ − β, a contradiction.

Another lower and upper bound is shown in the following lemma.

Lemma 5. Let G = (V, E) be a graph with order n. Then

n − (1 + β)γ(G) ≤ ∂β(G) ≤ n − γ(G)− β.

Proof 15. For any set of vertices D it is known that |B(D)| ≤ n−γ(G). Therefore, for any β-differential
set D we have

∂β(G) = |B(D)| − β|D| ≤ n − γ(G)− β|D| ≤ n − γ(G)− β.

Finally, if D is a minimum dominating set, then n − (1 + β)γ(G) = ∂β(D) ≤ ∂β(G).
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Next, we will characterize all trees attaining the upper bound given in this lemma. For that, we
will need the following result. We recall that a wounded spider is a graph that results by subdividing at
most m − 1 edges of the complete bipartite graph K1,m.

Lemma 6 ([20]). If G = (V, E) is a tree, then γ(G) = n − Δ if only if G is a wounded spider.

Theorem 2. If G is a tree of order n, then ∂β(G) = n − γ(G)− β if only if G is a wounded spider.

Proof 16. Assume that ∂β(G) = n − γ(G)− β, and let D be a β-differential set of G. Since |B(D)| −
β|D| = n − γ(G)− β and we know that |B(D)| ≤ n − γ(G), we deduce that D = {v} for some v ∈ V,
and δ(v) = n − γ(G). Therefore, δ(v) = Δ and, by Lemma 6 we have that G is a wounded spider. If G
is a wounded spider, again by Lemma 6 we have that Δ = n− γ(G), so ∂β(G) ≥ Δ− β ≥ n− γ(G)− β.
Finally, using Lemma 5 we conclude that ∂β(G) = n − γ(G)− β.

Proposition 10. If G = (V, E) is a graph with minimum degree δ. Then,

(a) if β ∈ (0, δ − 1), then ∂β(G) ≥ ρo(G)(δ − β − 1),
(b) if β ∈ (0, δ), then ∂β(G) ≥ ρ(G)(δ − β).

Proof 17. (a) Let S be a maximum open packing in G. If u ∈ S then δ
[S](u) ≥ δ − 1, and so ∂β(S) ≥

|S|(δ − 1)− β|S| = ρo(G)(δ − β − 1). The proof of (b) is analogous.

Proposition 11. Let G = (V, E) be a graph with maximum degree Δ. If β ∈ [1, Δ), then ∂β−1(G)− γ(G) ≤
∂β(G) ≤ ∂β−1(G)− 1.

Proof 18. On one hand

∂β−1(G) = max{|B(D)| − β|D|+ |D| : D ⊆ V}
≥ max{|B(D)| − β|D|+ 1 : D ⊆ V}
= max{|B(D)| − β|D| : D ⊆ V}+ 1 = ∂β(G) + 1.

On the other hand, if D is a (β − 1)-differential set, then |D| ≤ γ(G) and

∂β−1(G) = |B(D)| − β|D|+ |D| ≤ |B(D)| − β|D|+ γ(G) ≤ ∂β(G) + γ(G).

Proposition 12. Let Kn, Pn and Cn be the complete, path and cycle graph of order n and let Sn,m and Kn,m be
the double star and the bipartite complete graph of orders n + m + 2 and n + m respectively. Then

∂β(Kn) = ∂β(Wn) = n − 1 − β.

∂β(Pn) = ∂β(Cn) =

{ ⌊ n
3
⌋
(2 − β) + 1 − β if β ∈ (0, 1) and n ≡ 2 (mod 3)⌊ n

3
⌋
(2 − β) otherwise.

If m ≥ n

∂β(Kn,m) =

{
m + n − 2(1 + β) if 0 < β < n − 2

m − β if β ≥ n − 2.

∂β(Sn,m) =

{
m + n − 2β if 0 < β < n − 1
m + 1 − β if β ≥ n − 1.

Proof 19. ∂β(Kn) = ∂β(Wn) = n − 1 − β follows immediately from Proposition 6. Let V(Pn) =

V(Cn) = {u1, . . . , un} with n = 3k or n = 3k + 1. Let D = {u2, u5, . . . , u3� n
3 �−1} then
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∂β(D) =
⌊ n

3
⌋
(2 − β). Since any other set has β-differential less than or equal to ∂β(D), then ∂β(Pn) =

∂β(Cn) =
⌊ n

3
⌋
(2 − β). Similarly, we can check the other cases.

Lemma 7. Let G = (V, E) be a graph. If D is a minimum (respectively, maximum) β-differential set of G,
then |B(D)| ≥ (�β�+ 1) |D| (respectively, |B(D)| ≥ �β�|D|).

Proof 20. If D is a minimum β-differential set, then for every v ∈ D, the number k of vertices in B(D)

which are adjacent to v but not to any w ∈ D \ {v}, that means that they are private neighbors of v
with respect to D, must satisfy k > β, and so k ≥ �β�+ 1. If we consider the same situation when D is
a maximum β-differential set, it must be satisfied k ≥ β, that is, k ≥ �β�.

Observe that �β�+ 1 = �β� when β /∈ N.

Proposition 13. Let G = (V, E) be a graph. If D is a β-differential set of G, then (�β� − β) |D| ≤ ∂β(G).
Moreover, if D is a minimum β-differential set, then (�β� − β + 1) |D| ≤ ∂β(G).

Proof 21. It is enough to prove the first statement for a maximum β-differential set. By Lemma 7
we have�β�|D| ≤ |B(D)|, so |D| (�β� − β) ≤ ∂β(G). If D is a minimum β-differential set, Again by
Lemma 7 we have (�β�+ 1) |D| ≤ |B(D)|, so (�β� − β + 1) |D| ≤ ∂β(G).

Theorem 3. Let G = (V, E) be a graph with maximum degree Δ.

(i) If β ∈ (0, 1], then (Δ−β)∂(G)
Δ−1 ≤ ∂β(G).

(ii) If β ∈ (1, Δ), then (�β�−β+1)∂(G)
�β� ≤ ∂β(G).

Proof 22. (i) Let D be a 1-differential set of G. Since ∂(G) ≤ (Δ − 1)|D|, we have

∂β(G) ≥ |B(D)| − β|D| = |B(D)| − |D|+ (1 − β)|D| = ∂(G) + (1 − β)|D|

≥ ∂(G) +
(1 − β)∂(G)

Δ − 1
=

(Δ − β)∂(G)

Δ − 1
.

(ii) Let D be a 1-differential set of G. Since 1 − β < 0, by Proposition 13 we have

∂β(G) ≥ |B(D)| − β|D| = |B(D)| − |D|+ (1 − β)|D| = ∂(G) + (1 − β)|D|

≥ ∂(G) +
(1 − β)∂β(G)

(�β� − β + 1)
,

then
(

1 − (1−β)
(�β�−β+1)

)
∂β(G) ≥ ∂(G) or, equivalently ∂β(G) ≥ (�β�−β+1)∂(G)

�β� .

Theorem 4. Let G = (V, E) be a graph of order n and minimum degree δ, and let β ∈ (0, δ). Then,

∂β(G) ≥
( �β� − β + 1

β�β�+ 2�β�+ 2

)
n.

Proof 23. Let D be a minimum β-differential set. Since β < δ we have that every vertex in C(D)

has at least one neighbor in B(D), that is, B(D) is a dominating set. On one hand, since ∂β(G) ≥
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|B(B(D))| − β|B(D)| = |D|+ |C(D)| − β|B(D)|, we have |C(D)| ≤ ∂β(G) + β|B(D)| − |D| = (1 +

β)∂β(G) + (β2 − 1)|D|. Now, using that, by Proposition 13, (�β� − β + 1) |D| ≤ ∂β(G), we have

n = |D|+ |B(D)|+ |C(D)| ≤ (β + 1)∂β(G) + |B(D)|+ β2|D|

= (β + 2)∂β(G) + (β2 + β)|D| ≤ (β + 2)∂β(G) +

(
β2 + β

�β� − β + 1

)
∂β(G)

=

(
(β + 2) (�β� − β + 1) + β2 + β

�β� − β + 1

)
∂β(G) =

(
β�β�+ 2�β�+ 2
�β� − β + 1

)
∂β(G).

Note that (i) in Theorem 3 is attained for any graph with order n and maximum degree Δ = n − 1.
On the other hand, (ii) is attained in any double star, like the one shown in Figure 8, when β ∈ N and
r = s = 1 + β.

Figure 8. This graph show that the bound (ii) in Theorem 3 is attained when β ∈ N and r = s = 1 + β.

On the other hand, notice that, if β ≥ δ it is not possible to give a bound similar to the one given
in Theorem 4. For instance, it fails for the graph shown in Figure 9 with δ = 2, β = 3 and k ≥ 29, where
Ck represents a cycle of k vertices, we have n = 6 + k and ∂3(G) = 2.

Figure 9. This graph show that Theorem 4 can fail when β > δ.

Theorem 5. Let G = (V, E) be a graph of order n, size m and maximum degree Δ. Then

∂β(G) ≥ (2m − n�β�)(�β� − β + 1)
Δ(�β�+ 2) + 1

.

Proof 24. We note that if D is a minimum β-differential set of G, then the following properties hold:

(1) |D| ≤
∂β(G)

�β� − β + 1
.

(2) If v ∈ B(D), then δC(D)(v) ≤ �β�+ 1.
(3) If v ∈ C(D), then δC(D)(v) ≤ �β�.

Let r be the number of edges from B(D) to C(D). Then from (3) and (2) we have⎛
⎝ ∑

u∈C(D)

δ(u)

⎞
⎠− |C(D)|�β� ≤ r ≤ |B(D)|(�β�+ 1).
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Therefore,

2m ≤ |D|Δ + |B(D)|Δ + ∑
u∈C(D)

δ(u) ≤ |D|Δ + |B(D)|Δ + |B(D)|(�β�+ 1) + |C(D)|�β�

= |D|Δ + |B(D)|(Δ + 1) + (n − |D|)�β�
= |D|(Δ − �β�) + ∂β(G)(Δ + 1) + β|D|(Δ + 1) + n�β�
= (Δ − �β�+ β(Δ + 1))|D|+ ∂β(G)(Δ + 1) + n�β�

≤
(

Δ − �β�+ β(Δ + 1)
�β� − β + 1

)
∂β(G) + ∂β(G)(Δ + 1) + n�β�

=

(
Δ − �β�+ β(Δ + 1) + (Δ + 1)(�β� − β + 1)

�β� − β + 1

)
∂β(G) + n�β�

=

(
Δ(�β�+ 2) + 1
�β� − β + 1

)
∂β(G) + n�β�.

In consequence, ∂β(G) ≥ (2m−n�β�)(�β�−β+1)
Δ(�β�+2)+1 .

We present now a technical lemma which will be used in the proof of Theorem 6.

Lemma 8. If β ∈ (0, δ), then( �β�(1 + �β�)
δ − �β� + 2 + �β�

)(
Δ − β

1 + �β� − β
+ 1
)
> 2 + Δ(2 + �β�).

Proof 25. We write β = k + α
10 , where k ∈ N and α ∈ [0, 10), so the inequality is

(
(k + 1)2

δ − k
+ 2 + k

)(
Δ − k − α

10
1 − α

10
+ 1
)
> 2 + Δ(2 + k)

or, equivalently,

(
(k + 1)2 + (2 + k)(δ − k)

δ − k

)(
10Δ − 10k − 2α + 10

10 − α

)
> 2 + Δ(2 + k).

Since h1(δ) := (k+1)2+(2+k)(δ−k)
δ−k is decreasing in δ and h2(α) = 10Δ−10k−2α+10

10−α is increasing in α,
we have (

(k + 1)2 + (2 + k)(δ − k)
δ − k

)(
10Δ − 10k − 2α + 10

10 − α

)

≥
(
(k + 1)2 + (2 + k)(Δ − k)

Δ − k

)(
10Δ − 10k + 10

10

)

=

(
(k + 1)2 + (2 + k)(Δ − k)

Δ − k

)
(Δ − k + 1)

= (k + 1)2 + (2 + k)(Δ − k) +
(k + 1)2

Δ − k
+ (2 + k)

= k(k + 2) + 1 + (2 + k)Δ − (2 + k)k +
(k + 1)2

Δ − k
+ (2 + k)

= 1 + Δ(2 + k) +
(k + 1)2

Δ − k
+ (2 + k) > 2 + Δ(2 + k).
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Theorem 6. Let G = (V, E) be a graph of order n, minimum degree δ and maximum degree Δ. Let β < δ and
h(k) :=

( �β�(1+�β�)
δ−�β� + 2 + �β�

) (
Δ−β

1+�β�−β
+ k + 1

)
, where k ∈ N. If n ≥ h(k), then

∂β(G) ≥ Δ − β + (k + 1)(�β� − β + 1).

Proof 26. We proceed by induction on k. For k = 0 we suppose that n ≥ h(0) and take v ∈ V such
that δ(v) = Δ. If there exists u ∈ B({v}) with δC({v})(u) ≥ �β�+ 2, then for D = {v, u} we obtain
∂β(D) ≥ Δ− 1+ �β�+ 2− 2β = Δ− β+(�β�− β+ 1). Therefore, we can assume δC({v})(u) ≤ �β�+ 1
for every u ∈ B({v}). Note that if there exists a w ∈ C({v}) such that N(w) ∩ B({v}) = ∅, then

∂({v, w}) ≥ Δ + δ − 2β = Δ − β + δ − β ≥ Δ − β + (�β� − β + 1),

because δ ≥ �β� + 1. If we assume that N(w) ∩ B({v}) �= ∅ for every w ∈ C({v}), and hence
|C({v})| ≤ Δ(1 + �β�). From Lemma 8 it follows

n = 1 + Δ + |C({v})| ≤ 1 + Δ(2 + �β�) < h(0),

contradicting the hypothesis. Now, we suppose that the theorem is true for k and n ≥ h(k + 1). Let
M be the collection of all β-differential sets of G such that every D ∈ M satisfies that every vertex
v ∈ D has at least �β�+ 1 external private neighbors with respect to D. That is, |epn[v, D]| ≥ �β�+ 1.
Let D′ ∈ M with maximum cardinality. Since n ≥ h(k + 1) ≥ k, by induction hypothesis we know
that ∂β(D′) ≥ Δ − β + (k + 1)(�β� − β + 1). Moreover, as |B(D′)| ≥ (�β� + 1)|D′|, we also have
∂β(G) ≥ (�β� − β + 1)|D′|.

If there exists w ∈ C(D′) such that δC(D′)(w) > �β�, then we have

∂(D′ ∪ {w}) ≥ Δ − β + (k + 1)(�β� − β + 1) + �β� − β + 1 = Δ − β + (k + 2)(�β� − β + 1)

and we are done. Therefore, we suppose that for every w ∈ C(D′) it is satisfied δC(D′)(w) ≤ �β�. If m′

is the number of edges in G[C(D′)], then

m′ ≤ (n−|D′| − |B(D′)|)�β�
2

.

We suppose that there exists v ∈ D′ and u ∈ B({v}) such that δC(D′)(u) ≥ 1 + β. If |epn[v, D′]| =
�β�+ 1, then D′′ = (D′ \ {v}) ∪ {u} gives a β-differential bigger than ∂β(D′), which is impossible.
If |epn[v, D′]| > �β� + 1, then D′′ = D′ ∪ {u} ∈ M contradicting the choice of D′. Thus, we can
assume that δC(D′)(u) < 1 + β for any u ∈ B({v}) and v ∈ D′, that is, δC(D′)(u) ≤ �β� for any
u ∈ B({v}) and v ∈ D′.

Let r be the number of edges between B(D′) and C(D′). Then r ≤ �β�|B(D′)| = �β�(∂β(G) +

β|D′|). Hence,

m′ ≥ (n−|D′| − |B(D′)|)δ−r
2

≥
(n−|D′| − |B(D′)|)δ − �β�(∂β(G) + β|D′|)

2
,

consequently,

(n−|D′| − |B(D′)|)δ − �β�(∂β(G) + β|D′|)
2

≤ (n−|D′| − |B(D′)|)�β�
2

or, equivalently,

n ≤ �β�
δ − �β� (∂β(G) + β|D′|) + ∂β(G) + (β + 1)|D′|.
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Finally, using that |D′| ≤ ∂β(G)

�β�−β+1 , we obtain

n ≤ �β�
δ − �β� (∂β(G) + β|D′|) + ∂β(G) + (β + 1)|D′|

≤ �β�
δ − �β�

(
∂β(G) +

β∂β(G)

�β� − β + 1

)
+ ∂β(G) +

(β + 1)∂β(G)

�β� − β + 1

=
�β�

δ − �β�

(
(1 + �β�)∂β(G)

�β� − β + 1

)
+

(2 + �β�)∂β(G)

�β� − β + 1

=

( �β�(1 + �β�)
δ − �β� + 2 + �β�

)
∂β(G)

�β� − β + 1

and, as ( �β�(1 + �β�)
δ − �β� + 2 + �β�

)(
Δ − β + (k + 2)(�β� − β + 1)

�β� − β + 1

)
= h(k + 1) ≤ n,

we conclude that ∂β(G) ≥ Δ − β + (k + 2)(�β� − β + 1).
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1. Introduction

The focus of the first works on Gromov hyperbolic spaces were finitely generated groups [1].
Initially, the main application of hyperbolic spaces were the automatic groups (see, e.g., [2]).
This concept appears also in some algorithmic problems (see [3] and the references therein).
Besides, they are useful in the study of secure transmission of information on the internet [4].

In [5], the equivalence of the hyperbolicity of graphs and negatively curved surfaces was
proved. The study of hyperbolic graphs is a topic of increasing interest (see, e.g., [4–28] and the
references therein).

If γ : [a, b] → X is a continuous curve in the metric space (X, d), γ is a geodesic if
LX(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every t, s ∈ [a, b]. We say that X is a geodesic metric space
if, for every x, y ∈ X, there exists a geodesic in X joining them. Let us denote by [xy] any geodesic
joining x and y (this notation is very convenient although it is ambiguous, recall that we do not assume
uniqueness of geodesics). Consequently, any geodesic metric space is connected.

G = (V(G), E(G)) will denote a non-trivial (V(E) �= ∅) simple graph such that we have defined
a length function, denoted by LG or L, on the edges LG : E(G) → R+; the length of a path η =

{e1, e2, . . . , ek} is defined as LG(η) = ∑k
i=1 LG(ei). We assume that �(G) := sup

{
LG(e) | e ∈ E(G)

}
< ∞.

In order to consider a graph G as a geodesic metric space, identify (by an isometry I) any edge uv ∈ E(G)

with the interval [0, LG(uv)] in the real line; then, the real interval [0, LG(uv)] is isometric to the edge uv
(considered as a graph with a single edge). If x, y ∈ uv and ηxy denotes the segment contained in uv
joining x and y, we define the length of ηxy as LG(ηxy) = |I(x)− I(y)|. Thus, the points in G are the
vertices u ∈ V(G) and, in addition, the points in the interior of any edge uv ∈ E(G).

Symmetry 2017, 9, 255; doi:10.3390/sym9110255 www.mdpi.com/journal/symmetry77
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We denote by dG or d the natural distance of the graph G. If x, y belong to different connected
components of G, then let us define dG(x, y) = ∞. In Section 3, we just consider graphs with every
edge of length 1. Otherwise, if a graph G has edges with different lengths, then we also assume that it is
locally finite. These properties guarantee that any connected component of G is a geodesic metric space.

If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three geodesics [x1x2], [x2x3] and
[x3x1] is a geodesic triangle that will be denoted by T = {x1, x2, x3} and we will say that x1, x2 and x3

are the vertices of T; we can also write T = {[x1x2], [x2x3], [x3x1]}. The triangle T is δ-thin if any side
of T is contained in the δ-neighborhood of the union of the two other sides. Let us denote by δ(T) the
sharp thin constant of the geodesic triangle T, i.e., δ(T) := inf{δ ≥ 0 | T is δ-thin}. We say that the
space X is δ-hyperbolic if every geodesic triangle in X is δ-thin. Let us define:

δ(X) := sup{δ(T) | T is a geodesic triangle in X}.

The geodesic metric space X is hyperbolic if it is δ-hyperbolic for some δ ≥ 0; then, X is hyperbolic
if and only if δ(X) < ∞. If Y is the union of geodesic metric spaces {Yi}i∈I , we define its hyperbolicity
constant by δ(Y) := supi∈I δ(Yi), and we say that Y is hyperbolic if δ(Y) < ∞.

To relate hyperbolicity with other properties of graphs is an interesting problem. The papers [6,9,28]
prove, respectively, that chordal, k-chordal and edge-chordal graphs are hyperbolic; these results are
improved in [23]. In addition, several authors have proved results on hyperbolicity for some particular
classes of graphs (see, e.g., [21,29–31]).

A geometric graph is a graph in which the vertices or edges are associated with geometric objects.
Two of the main classes of geometric graphs are Euclidean graphs and intersection graphs. A graph
is Euclidean if the vertices are points in Rn and the length of each edge connecting two vertices is
the Euclidean distance between them (this makes a lot of sense with the cities and roads analogy
commonly used to describe graphs). An intersection graph is a graph in which each vertex corresponds
with a set, and two vertices are connected by an edge if and only if their corresponding sets have
non-empty intersection. In this paper, we work with interval graphs (a class of intersection graphs)
and indifference graphs (a class of Euclidean graphs).

We say that G is an interval graph if it is the intersection graph of a family of intervals in R:
there is a vertex for each interval in the family, and an edge joins two vertices if and only if the their
corresponding intervals intersect. Usually, we consider that every edge of an interval graph has
length 1, but we also consider interval graphs whose edges have different lengths. It is well-known
that interval graphs are always chordal graphs [32,33]. The complements of interval graphs also
have interesting properties: they are comparability graphs [34], and the comparability relations are
the interval orders [32]. The theory of interval graphs was developed focused on its applications by
researchers at the RAND Corporation’s mathematics department (pp. ix–10, [35]).

An indifference graph is an interval graph whose vertices correspond to a set of intervals with
length 1, and the length of the corresponding edge to two unit intervals that intersect is the distance
between their midpoints. In addition, we can see an indifference graph as an Euclidean graph in R

constructed by taking the vertex set as a subset of R and two vertices are connected by an edge if and
only if they are within one unit from each other. Since it is a Euclidean graph, the length of each edge
connecting two vertices is the Euclidean distance between them. Indifference graphs possess several
interesting properties: connected indifference graphs have Hamiltonian paths [36]; an indifference
graph has a Hamiltonian cycle if and only if it is biconnected [37]. In the same direction, we consider
indifference graphs since for these graphs we can remove one of the hypothesis of a main theorem on
interval graphs (compare Theorem 8 and Corollary 6).

We would like to mention that Ref. [38] collects very rich results, especially those concerning
path properties, about interval graphs and unit interval graphs. It is well-known that interval graphs
(with a very weak hypothesis) and indifference graphs are hyperbolic. One of the main results in this
paper is Theorem 8, which provides a sharp upper bound of the hyperbolicity constant of interval
graphs verifying a very weak hypothesis. This result allows for obtaining bounds for the hyperbolicity
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constant of every indifference graph (Corollary 6) and the hyperbolicity constant of every interval
graph with edges of length 1 (Corollary 7). Moreover, Theorem 10 provides sharp bounds for the
hyperbolicity constant of the complement of any interval graph with edges of length 1. Note that it is
not usual to obtain such precise bounds for large classes of graphs. The main result in this paper is
Theorem 9, which allows for computing the hyperbolicity constant of every interval graph with edges
of length 1, by using geometric criteria.

2. Previous Results

We collect some previous results that will be useful along the paper.
A cycle is a path with different vertices, unless the last vertex, which is equal to the first one.

Lemma 1. ([39] Lemma 2.1) Let us consider a geodesic metric space X. If every geodesic triangle in X that is a
cycle is δ-thin, then X is δ-hyperbolic.

Corollary 1. In any geodesic metric space X,

δ(X) = sup
{

δ(T) | T is a geodesic triangle that is a cycle
}

.

Recall that a chordal graph is one in which all cycles of four or more vertices have a chord, which is
an edge that is not part of the cycle but connects two vertices of the cycle.

If C is a cycle in G and v ∈ V(G), we denote by degC(v) the degree of the vertex v in the subgraph
Γ induced by V(C) (note that Γ could contain edges that are not contained in C, and thus it is possible
to have degC(v) > 2).

Lemma 2. ([9] Lemma 2.2) Consider a chordal graph G and a cycle C in G with a, v, b ∈ C ∩ V(G) and
av, vb ∈ E(G). If ab /∈ E(G), then degC(v) ≥ 3.

Corollary 2. Consider a cycle C in a chordal graph G and v1, v2, v3 consecutive vertices in C. If degC(v2) = 2,
then v1v3 ∈ E(G). Consequently, if C has at least four vertices, then degC(v1) ≥ 3 and degC(v3) ≥ 3.

Let J(G) be the set of vertices and midpoints of edges in G. Consider the set T1 of geodesic
triangles T in G that are cycles and such that the three vertices of the triangle T belong to J(G), and
denote by δ1(G) the infimum of the constants λ such that every triangle in T1 is λ-thin.

Theorem 1. ([40] Theorem 2.5) For every graph G with edges of length 1, we have δ1(G) = δ(G).

The next result will narrow the possible values for the hyperbolicity constant.

Theorem 2. ([40] Theorem 2.6) If G is a hyperbolic graph with edges of length 1, then δ(G) is a multiple
of 1/4.

Theorem 3. ([40] Theorem 2.7) If G is a hyperbolic graph with edges of length 1, then there exists a geodesic
triangle T ∈ T1 such that δ(T) = δ(G).

In the following theorems, we study the graphs G with δ(G) < 1.

Theorem 4. ([41] Theorem 11) If G is a graph with edges of length 1 with δ(G) < 1, then we have either
δ(G) = 0 or δ(G) = 3/4. Furthermore,

• δ(G) = 0 if and only if G is a tree.
• δ(G) = 3/4 if and only if G is not a tree and every cycle in G has length 3.

79



Symmetry 2017, 9, 255

Corollary 3. A graph G with edges of length 1 satisfies δ(G) ≥ 1 if and only if there exists a cycle in G with
length at least 4.

In order to characterize from a geometric viewpoint the interval graphs with hyperbolicity constant 1,
we need the following result, which is a direct consequence of Theorems 2 and 4, and ([7] Theorem 4.14).

Theorem 5. Let G be any graph with edges of length 1. We have δ(G) = 1 if and only if δ(G) /∈ {0, 3/4} and,
for every cycle C in G and every x, y ∈ C ∩ J(G), we have d(x, y) ≤ 2.

Theorems 4 and 5 have the following consequences.

Corollary 4. Let G be any graph with edges of length 1. We have δ(G) ≤ 1 if and only if, for every cycle C in
G and every x, y ∈ C ∩ J(G), we have d(x, y) ≤ 2.

By Theorems 2 and 4, and ([7] Theorems 4.14 and 4.21), we have the following result.

Theorem 6. Let G be any graph with edges of length 1. If there exists a cycle in G with p, q ∈ V(G) and
d(p, q) ≥ 3, then δ(G) ≥ 3/2.

We will also need this last result.

Theorem 7. ([41] Theorem 30) If G is any graph with edges of length 1 and n vertices, then δ(G) ≤ n/4.

3. Interval Graphs and Hyperbolicity

Given a cycle C in an interval graph G, let {v1, . . . , vk} be the vertices in G with

C = v1v2 ∪ · · · ∪ vk−1vk ∪ vkv1.

Denote by {I1, . . . , Ik} the corresponding intervals to {v1, . . . , vk}. If Ij = [aj, bj], then let us define
the minimal interval of C as the interval Ij1 = [aj1 , bj1 ] with aj1 ≤ aj for every 1 ≤ j ≤ k and bj1 > bj
if aj = aj1 with 1 ≤ j ≤ k and j �= j1, and the maximal interval of C as the interval Ij2 = [aj2 , bj2 ] with
bj2 ≥ bj for every 1 ≤ j ≤ k and aj2 < aj if bj = bj2 with 1 ≤ j ≤ k and j �= j2. If i ∈ Z \ {1, 2, . . . , k},
1 ≤ j ≤ k and i = j (mod k), then we define vi := vj and Ii := Ij.

If H is a subgraph of G and w ∈ V(H), we denote by degH(w) the degree of the vertex w in the
subgraph induced by V(H).

For any graph G,
diam V(G) := sup

{
dG(v, w) | v, w ∈ V(G)

}
,

diam G := sup
{

dG(x, y) | x, y ∈ G
}

,

i.e., diam V(G) is the diameter of the set of vertices of G, and diam G is the diameter of the whole
graph G (recall that in order to have a geodesic metric space, G must contain both the vertices and the
points in the interior of any edge of G).

The following result is well-known.

Lemma 3. For any geodesic triangle T in a graph G, we have δ(T) ≤ (diam T)/2 ≤ L(T)/4.

Corollary 5. The inequalities

δ(G) ≤ 1
2

diam G ≤ 1
2
(

diam V(G) + �(G)
)

hold for every graph G.
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A graph G is length-proper if every edge is a geodesic. A large class of length-proper graphs are
the graphs with edges of length 1. Another important class of length-proper graphs are the following
geometric graphs: consider a discrete set V in an Euclidean space (or in a metric space) where we
consider two points connected by an edge if some criterium is satisfied. If we define the length of an
edge as the distance between its vertices, then we obtain a length-proper graph.

It is well-known that every interval graph is chordal. Hence, every length-proper interval graph
is hyperbolic. The following result is one of the main theorems in this paper, since it provides a
sharp inequality for the hyperbolicity constant of any length-proper interval graph. Recall that
�(G) := sup

{
LG(e) | e ∈ E(G)

}
.

Theorem 8. Every length-proper interval graph G satisfies the sharp inequality

δ(G) ≤ 3
2
�(G).

Proof. Consider a geodesic triangle T = {x, y, z} that is a cycle in G and p ∈ [xy]. Assume first that
T satisfies the following property:

if a, b ∈ V(G) ∩ [xy] and ab ∈ E(G), then ab ⊆ [xy]. (1)

Consider the consecutive vertices {v1, . . . , vk} in the cycle T, and their corresponding intervals
{I1, . . . , Ik}. As before, we denote by Ij1 and Ij2 the minimal and maximal intervals, respectively.

If k < 4, then L(T) ≤ 3�(G) and Lemma 3 gives:

d(p, [xz] ∪ [zy]) ≤ 1
4

L(T) ≤ 3
4
�(G). (2)

Assume now that k ≥ 4.
Case (A). Assume that p ∈ V(G). Let a, b ∈ V(G) with ap, bp ∈ E(G) and ap ∪ bp ⊂ T.
Case (A.1). If ab /∈ E(G), then Lemma 2 gives degT(p) ≥ 3, and there exists q ∈ V(G) ∩ T with

pq ∈ E(G) such that pq is not contained in T. By (1), q ∈ [xz] ∪ [zy] and so:

d(p, [xz] ∪ [zy]) ≤ d(p, q) = L(pq) ≤ �(G). (3)

Case (A.2). If ab ∈ E(G), then ab is not contained in T, since T is a cycle and k ≥ 4. By (1), {a, b}
is not contained in [xy], and:

d(p, [xz] ∪ [zy]) ≤ max
{

d(p, a), d(p, b)
}
= max

{
L(pa), L(pb)

}
≤ �(G). (4)

Case (B). Assume that p /∈ V(G). Let a, b ∈ V(G) with p ∈ ab ⊂ T and d(p, a) ≤ L(ab)/2 ≤ �(G)/2.
Corollary 2 gives that we have degT(a) ≥ 3 or degT(b) ≥ 3.

Case (B.1). Assume that degT(a) ≥ 3.
Case (B.1.1). If a /∈ [xy], then:

d(p, [xz] ∪ [zy]) ≤ d(p, a) ≤ 1
2
�(G). (5)

Case (B.1.2). Assume that a ∈ [xy]. Since degT(a) ≥ 3, there exists q ∈ V(G) ∩ T with aq ∈ E(G)

such that aq is not contained in T. By (1), q ∈ [xz] ∪ [zy] and so:

d(p, [xz] ∪ [zy]) ≤ d(p, a) + d(a, [xz] ∪ [zy]) ≤ d(p, a) + d(a, q)

= d(p, a) + L(aq) ≤ 1
2
�(G) + �(G) =

3
2
�(G).

(6)
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Case (B.2). Assume that degT(a) = 2 and degT(b) ≥ 3. Let α �= b with α ∈ V(G), αa ∈ E(G) and
αa ⊂ T. Corollary 2 gives that we have αb ∈ E(G). By (1), we have that {α, b} is not contained in [xy],
and:

d(p, [xz] ∪ [zy]) ≤ max
{

d(p, α), d(p, b)
}
≤ max

{
d(p, a) + d(a, α), d(p, b)

}
≤ max

{1
2
�(G) + �(G), �(G)

}
=

3
2
�(G).

(7)

Inequalities (2)–(7) give in every case d(p, [xz] ∪ [zy]) ≤ 3�(G)/2.
Consider now a geodesic triangle T = {x, y, z} = { [xy], [xz], [yz]} that does not satisfy

property (1). We are going to obtain a new geodesic γ joining x and y such that the geodesic triangle
T′ = {γ, [xz], [yz]} satisfies (1).

Let us define inductively a finite sequence of geodesics {g0, g1, g2, . . . , gr} joining x and y in the
following way:

If j = 0, then g0 := [xy].
Assume that j ≥ 1. If the geodesic triangle {gj−1, [xz], [yz]} satisfies (1), then r = j − 1 and

the sequence stops. If {gj−1, [xz], [yz]} does not satisfy (1), then there exists a, b ∈ V(G) ∩ [xy]
such that ab ∈ E(G) and ab is not contained in [xy]. Denote by [ab] the geodesic joining a and b
contained in gj−1. Let us define gj := (gj−1 \ [ab]) ∪ ab. Note that gj ∩ V(G) ⊂ gj−1 ∩ V(G) and
|gj ∩ V(G)| < |gj−1 ∩ V(G)|.

Since |gj ∩ V(G)| < |gj−1 ∩ V(G)| for any j ≥ 1, this sequence must finish with some geodesic gr

such that the geodesic triangle T′ := {gr, [xz], [yz]} satisfies (1). Thus, define γ := gr. Hence,

gr ∩ V(G) ⊂ gr−1 ∩ V(G) ⊂ · · · ⊂ g1 ∩ V(G) ⊂ g0 ∩ V(G),

and so γ ∩ V(G) ⊂ [xy] ∩ V(G).
Let us consider p ∈ [xy] ⊂ T.
If p ∈ γ ⊂ T′, then, by applying the previous argument to the geodesic triangle T′, we obtain

d(p, [xz] ∪ [zy]) ≤ 3�(G)/2. Assume that p /∈ γ.
Since γ ∩ V(G) ⊂ [xy] ∩ V(G), there exist v, w ∈ γ ∩ V(G) with vw ∈ E(G) such that, if [vw]

denotes the geodesic joining v and w contained in [xy], then:

p ∈ [vw], [vw] ∩ vw = {v, w}.

Since vw and [vw] are geodesics, we have L(vw) = L([vw]). Thus, we can define p′ ∈ γ as the
point in vw with d(p′, v) = d(p, v) and d(p′, w) = d(p, w). By applying the previous argument
to p′ and T′, we obtain d(p′, [xz] ∪ [zy]) ≤ 3�(G)/2. Since p′ belongs to the edge vw, we have
d(p′, [xz] ∪ [zy]) = d(p′, v) + d(v, [xz] ∪ [zy]) or d(p′, [xz] ∪ [zy]) = d(p′, w) + d(w, [xz] ∪ [zy]).
By symmetry, we can assume that d(p′, [xz]∪ [zy]) = d(p′, v) + d(v, [xz]∪ [zy]). Since d(p′, v) = d(p, v),
we have:

d(p, [xz]∪ [zy]) ≤ d(p, v) + d(v, [xz]∪ [zy]) = d(p′, v) + d(v, [xz]∪ [zy]) = d(p′, [xz]∪ [zy]) ≤ 3
2
�(G).

Finally, Corollary 1 gives δ(G) ≤ 3�(G)/2.
Proposition 1 below shows that the inequality is sharp.

Note that, if we remove the hypothesis �(G) < ∞, then there are non-hyperbolic length-proper
interval graphs: if Γ is any graph such that every cycle in Γ has exactly three vertices and
sup{L(C) | C is a cycle in Γ} = ∞, then Γ is a non-hyperbolic chordal graph. Some of these graphs Γ
are length-proper interval graphs.

Recall that every indifference graph is an Euclidean graph. Hence, every indifference graph G is a
length-proper graph and �(G) ≤ 1.

Theorem 8 has the following direct consequence.
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Corollary 6. Every indifference graph G satisfies the inequality:

δ(G) ≤ 3
2
�(G) ≤ 3

2
.

4. Interval Graphs with Edges of Length 1

Along this section, we just consider graphs with edges of length 1. This is a very usual class of
graphs. Note that every graph G with edges of length 1 is a length-proper graph with �(G) = 1.

The goal of this section is to compute the precise value of the hyperbolicity constant of every
interval graph with edges of length 1 (see Theorem 9). We wish to emphasize that it is unusual to be
able to compute the hyperbolicity constant of every graph in a large class of graphs. Let us start with a
direct consequence of Theorem 8.

Corollary 7. Every interval graph G with edges of length 1 satisfies the inequality:

δ(G) ≤ 3
2

.

First of all, we characterize the interval graphs with edges of length 1 and δ(G) = 3/2 in
Proposition 1 below. Furthermore, Proposition 1 shows that the inequality in Theorem 8 is sharp.

Let G be an interval graph. We say that G has the (3/2)-intersection property if there exists
two disjoint intervals I′ and I′′ corresponding to vertices in a cycle C in G such that there is no
corresponding interval I to a vertex in G with I ∩ I′ �= ∅ and I ∩ I′′ �= ∅.

Proposition 1. An interval graph G with edges of length 1 satisfies δ(G) = 3/2 if and only if G has the
(3/2)-intersection property.

Proof. Assume that G has the (3/2)-intersection property. Thus, there exist two disjoint corresponding
intervals I′ and I′′ to vertices in a cycle C in G such that there is no corresponding interval I to a vertex in
G with I ∩ I′ �= ∅ and I ∩ I′′ �= ∅. If v′ and v′′ are the corresponding vertices to I′ and I′′, respectively,
then v′, v′′ ∈ C and d(v′, v′′) ≥ 3. Thus, Theorem 6 gives δ(G) ≥ 3/2 and, since δ(G) ≤ 3/2 by
Corollary 7, we conclude δ(G) = 3/2.

Assume now that G does not have the (3/2)-intersection property. Seeking for a contradiction,
assume that δ(G) = 3/2. By Theorem 3, there exist a geodesic triangle T = {x, y, z} that is a
cycle in G and p ∈ [xy] such that d(p, [xz] ∪ [zy]) = δ(T) = δ(G) = 3/2 and x, y, z ∈ J(G).
Since d(p, {x, y}) ≥ d(p, [xz] ∪ [zy]) = 3/2, we have d(x, y) ≥ 3. Since G does not have the
(3/2)-intersection property, for each two disjoint corresponding intervals I′ and I′′ to vertices in
the cycle T, there exists a corresponding interval I to a vertex in G with I ∩ I′ �= ∅ and I ∩ I′′ �= ∅.
If v′ and v′′ are the corresponding vertices to I′ and I′′, respectively, then v′, v′′ ∈ T and d(v′, v′′) = 2.
We conclude that diam(T ∩ V(G)) ≤ 2 and diam T ≤ 3. Since d(x, y) ≥ 3 with x, y ∈ J(G), we have
diam(T ∩ V(G)) = 2, diam T = 3, d(x, y) = 3, L([xy])/2 = d(p, x) = d(p, y) = d(p, [xz] ∪ [zy]) =

δ(T) = δ(G) = 3/2 and p is the midpoint of [xy]. Thus x, y ∈ J(G) \ V(G) and p ∈ V(G).
If x ∈ x1x2 ∈ E(G) and y ∈ y1y2 ∈ E(G), then d({x1, x2}, {y1, y2}) = 2. Let Ix1 , Ix2 , Iy1 , Iy2 , Ip be the
corresponding intervals to the vertices x1, x2, y1, y2, p, respectively. We can assume that x1, y1 ∈ [xy]
and thus Ix1 ∩ Ip �= ∅ and Iy1 ∩ Ip �= ∅ since d(x1, y1) = 2, Ix1 ∩ Iy1 = ∅. Thus, there exists
ζ ∈ Ip \ (Ix1 ∪ Iy1). Since [xy] ∩ V(G) = {x1, p, y1} and T is a cycle containing x1, p, y1, by continuity,
there exists a corresponding interval J to a vertex v ∈ ([xz]∪ [zy])∩ V(G) with ζ ∈ J. Thus, pv ∈ E(G)

and 3/2 = d(p, [xz] ∪ [zy]) ≤ d(p, v) = 1, which is a contradiction. Hence, δ(G) �= 3/2.

Corollary 7 and Theorems 2 and 4 give that δ(G) ∈ {0, 3/4, 1, 5/4, 3/2} for every interval graph
G with edges of length 1. Proposition 1 characterizes the interval graphs with edges of length 1 and
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δ(G) = 3/2. In order to characterize the interval graphs with the other values of the hyperbolicity
constant, we need some definitions.

Let G be an interval graph.
We say that G has the 0-intersection property if, for every three corresponding intervals I′, I′′ and

I′′′ to vertices in G, we have I′ ∩ I′′ ∩ I′′′ = ∅.
G has the (3/4)-intersection property if it does not have the 0-intersection property and for

every four corresponding intervals I′, I′′, I′′′ and I′′′′ to vertices in G we have I′ ∩ I′′ ∩ I′′′ = ∅
or I′ ∩ I′′ ∩ I′′′′ = ∅.

By a couple of intervals in a cycle C of G, we mean the union of two non-disjoint intervals whose
corresponding vertices belong to C. We say that G has the 1-intersection property if it does not have the 0
and (3/4)-intersection properties and, for every cycle C in G, each interval and a couple of corresponding
intervals to vertices in C are not disjoint.

One can check that every chordal graph that has a cycle with length of at least four has a cycle
with length four and, since this cycle has a chord, it also has a cycle with length three.

Next, we provide a characterization of the interval graphs with hyperbolicity constant 0. It is
well-known that these are the caterpillar trees, see [42], but we prefer to characterize them by the
0-intersection property in Proposition 2 below, since it looks similar to the other intersection properties.

Proposition 2. An interval graph G with edges of length 1 satisfies δ(G) = 0 if and only if G has the
0-intersection property.

Proof. By Theorem 4, δ(G) = 0 if and only if G is a tree. Since every interval graph is chordal, G is not
a tree if and only if it contains a cycle with length 3, and this last condition holds if and only if there
exist three corresponding intervals I′, I′′ and I′′′ to vertices in G with I′ ∩ I′′ ∩ I′′′ �= ∅. Hence, G has a
cycle if and only if it does not have the 0-intersection property.

Proposition 3. An interval graph G with edges of length 1 satisfies δ(G) = 3/4 if and only if G has the
(3/4)-intersection property.

Proof. By Theorem 4, δ(G) = 3/4 if and only if G is not a tree and every cycle in G has length
3. Proposition 2 gives that G is not a tree if and only if G does not have the 0-intersection
property. Therefore, it suffices to show that every cycle in G has length 3, if and only if for every
four corresponding intervals I′, I′′, I′′′ and I′′′′ to vertices in G, we have I′ ∩ I′′ ∩ I′′′ = ∅ or
I′ ∩ I′′ ∩ I′′′′ = ∅.

Since every interval graph is chordal, G has a cycle with length at least 4 if and only if it has a
cycle C with length 4 and this cycle has at least a chord.

Assume first that there exists such a cycle C. If I′, I′′, I′′′, I′′′′ are the corresponding intervals
to the vertices in C and I′, I′′ corresponds to vertices with a chord, and then I′ ∩ I′′ ∩ I′′′ �= ∅ and
I′ ∩ I′′ ∩ I′′′′ �= ∅.

Assume now that there are corresponding intervals I′, I′′, I′′′, I′′′′ to the vertices v′, v′′, v′′′, v′′′′ in
G with I′ ∩ I′′ ∩ I′′′ �= ∅ and I′ ∩ I′′ ∩ I′′′′ �= ∅. Thus, v′v′′′, v′′v′′′ ∈ E(G) and v′v′′′, v′′v′′′′ ∈ E(G),
and so v′v′′′ ∪ v′′′v′′ ∪ v′′v′′′′ ∪ v′′′′v′ is a cycle in G with length 4.

Proposition 4. An interval graph G with edges of length 1 satisfies δ(G) = 1 if and only if G has the
1-intersection property.

Proof. By Theorem 5, δ(G) = 1 if and only if δ(G) /∈ {0, 3/4}, and, for every cycle C in G and every
x, y ∈ C ∩ J(G), we have d(x, y) ≤ 2. Propositions 2 and 3 give that δ(G) /∈ {0, 3/4} if and only if G
does not have the 0 and (3/4)-intersection properties. Therefore, it suffices to show that for every
cycle C in G, we have d(x, y) ≤ 2 for every x, y ∈ C ∩ J(G) if and only if each interval and couple of
corresponding intervals to vertices in C are not disjoint.
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Fix a cycle C in G. Each interval and couple of corresponding intervals to vertices in C are not
disjoint if and only if d(x, y) ≤ 3/2 for every x ∈ C ∩ V(G) and y ∈ C ∩ (J(G) \ V(G)). Since every
point in C ∩ (J(G) \ V(G)) has a point in C ∩ V(G) at distance 1/2, this last condition is equivalent to
d(x, y) ≤ 2 for every x, y ∈ C ∩ J(G).

Finally, we collect the previous geometric characterizations in the following theorem. Note that
the characterization of δ(G) = 5/4 in Theorem 9 is much simpler than the one in [7]. Recall that to
characterize the graphs with hyperbolicity 3/2 is a very difficult task, as it was shown in ([7] Remark 4.19).

Theorem 9. Every interval graph G with edges of length 1 is hyperbolic and δ(G) ∈ {0, 3/4, 1, 5/4, 3/2}. Furthermore,

• δ(G) = 0 if and only if G has the 0-intersection property.
• δ(G) = 3/4 if and only if G has the (3/4)-intersection property.
• δ(G) = 1 if and only if G has the 1-intersection property.
• δ(G) = 5/4 if and only if G does not have the 0, 3/4, 1 and (3/2)-intersection properties.
• δ(G) = 3/2 if and only if G has the (3/2)-intersection property.

Complement of Interval Graphs

The complement G of the graph G is defined as the graph with V
(

G
)
= V(G) and such that

e ∈ E
(

G
)

if and only if e /∈ E(G). Recall that, for every disconnected graph G, we define δ(G) as the
supremum of δ(Gi), where Gi varies in the set of connected components of G.

We consider that the length of the edges of every complement graph is 1.
If Γ is a subgraph of G, we consider in Γ the inner metric obtained by the restriction of the metric

in G, that is:

dΓ(v, w) := inf
{

L(γ) | γ ⊂ Γ is a continuous curve joining v and w
}
≥ dG(v, w) .

Note that the inner metric dΓ is the usual metric if we consider the subgraph Γ as a graph.
Since the complements of interval graphs belong to the class of comparability graphs [34], it is

natural to also study the hyperbolicity constant of complements of interval graphs. In order to do it,
we need some preliminary results and the following technical lemma.

Lemma 4. Let G be an interval graph with edges of length 1, V(G) = {v1, . . . , vr} and corresponding
intervals {I1, . . . , Ir}. We have diam V(G) = 2 if and only if there exists an interval Ii with Ij ∩ Ii �= ∅
for every 1 ≤ j ≤ r and diam V(G′) ≥ 2, where G′ is the corresponding interval graph to {I1, . . . , Ir} \ Ii.
Furthermore, if this is the case, then δ

(
G
)
= δ

(
G′ ).

Proof. Assume that diam V(G) = 2. Let [aj, bj] = Ij for 1 ≤ j ≤ r. Consider integers 1 ≤ i1, i2 ≤ r satisfying:

bi1 ≤ bj, aj ≤ ai2 , for every 1 ≤ j ≤ r. (8)

Since diam V(G) = 2, we have bi1 < ai2. Thus, dG(vi1, vi2) = 2 and there exists i with vivi1, vivi2 ∈
E(G). Hence, Ii1 ∩ Ii �= ∅ and Ii2 ∩ Ii �= ∅. Thus, (8) gives Ij ∩ Ii �= ∅ for every 1 ≤ j ≤ r, and we
deduce dG(vj, vi) ≤ 1 for every 1 ≤ j ≤ r.

Seeking for a contradiction assume that diam V(G′) ≤ 1. Thus, dG(vj, vj′) ≤ dG′(vj, vj′) ≤ 1 for
every 1 ≤ j, j′ ≤ r with j, j′ �= i. Furthermore, we have proved dG(vj, vi) ≤ 1 for every 1 ≤ j ≤ r.
Therefore, dG(vj, vj′) ≤ 1 for every 1 ≤ j, j′ ≤ r and we conclude diam V(G) ≤ 1, which is a
contradiction. Hence, diam V(G′) ≥ 2.

The converse implication is well-known.
Finally, since vjvi ∈ E(G) for every 1 ≤ j ≤ r with j �= i, we have G = {vi} ∪ G′ and:

δ
(

G
)
= max

{
δ
(
{vi}

)
, δ
(

G′ )} = max
{

0, δ
(

G′ )} = δ
(

G′ ).
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Note that it is not usual to obtain such close lower and upper bounds for a large class of graphs.
Some inequalities are not difficult to prove; the most difficult cases are the upper bound when
diam V(G) = 2 (recall that this is the more difficult case in the study of the complement of a graph),
and the lower bound when diam V(G) ≥ 4.

Theorem 10. Let G be any interval graph.

• If diam V(G) = 1, then δ
(

G
)
= 0.

• If 2 ≤ diam V(G) ≤ 3, then 0 ≤ δ
(

G
)
≤ 2.

• If diam V(G) ≥ 4, then 5/4 ≤ δ
(

G
)
≤ 3/2.

Furthermore, the lower bounds on δ
(

G
)

are sharp.

Proof. If diam V(G) = 1, then G is a complete graph. Thus, G is a union of isolated vertices
and δ

(
G
)
= 0.

Let us prove now the upper bounds.
It is well-known that if diam V(G) ≥ 3, then G is connected and diam V( G

)
≤ 3.

Therefore, Corollary 5 gives δ
(

G
)
≤ 2.

If diam V(G) ≥ 4, then ([43] Theorem 2.14) gives δ
(

G
)
≤ 3/2.

Assume now that diam V(G) = 2. By Lemma 4, there exists an interval graph G′ with
|V(G′)| = |V(G)| − 1, diam V(G′) ≥ 2 and δ

(
G
)
= δ

(
G′ ). Let us define inductively a finite

sequence of interval graphs {G(0), G(1), G(2), . . . , G(k)} with:

δ
(

G(0)
)
= δ

(
G(1)

)
= δ

(
G(2)

)
= · · · = δ

(
G(k)

)
,

|V(G(j))| = |V(G(j−1))| − 1, for 0 < j ≤ k,

diam V(G(j)) ≥ 2, for 0 ≤ j ≤ k,

in the following way:
If j = 0, then G(0) := G.
If j = 1, then G(1) := G′.
Assume that j > 1. If diam V(G(j−1)) ≥ 3, then k = j − 1 and the sequence stops.

If diam V(G(j−1)) = 2, then Lemma 4 provides an interval graph (G(j−1))′ with:

|V((G(j−1))′)| = |V(G(j−1))| − 1, diam V((G(j−1))′) ≥ 2, δ
(

G(j−1)
)
= δ

(
(G(j−1))′

)
,

and we define G(j) := (G(j−1))′.
Since |V(G(j))| = |V(G(j−1))| − 1 for 0 < j ≤ k and the diameter of a graph with just a vertex is 0,

this sequence must finish with some graph G(k) satisfying diam V(G(k)) ≥ 3. Thus,

δ
(

G
)
= δ

(
G(0)

)
= δ

(
G(1)

)
= · · · = δ

(
G(k)

)
≤ 2.

We prove now that δ
(

G
)
≥ 5/4 if diam V(G) ≥ 4. Let us fix any graph G with diam V(G) ≥ 4.

Thus, there exists a geodesic [v0v4] = v0v1 ∪ v1v2 ∪ v2v3 ∪ v3v4 in G. If Γ is the subgraph of G
induced by {v0, v1, v2, v3, v3, v4}, then E(Γ) = {v0v2, v0v3, v0v4, v1v3, v1v4, v2v4}. Consider the cycle
C := v0v2 ∪ v2v4 ∪ v4v1 ∪ v1v3 ∪ v3v0 in Γ. If p is the midpoint of v0v2, then dΓ(v1, p) = 5/2 and
so Corollary 4 gives δ(Γ) > 1. Therefore, Theorem 2 gives δ(Γ) ≥ 5/4. Since Γ is an induced
subgraph of G, if g is a path in G joining vi and vj (0 ≤ i, j ≤ 4) and g is not contained in Γ, then
LG(g) ≥ 2. Since diamG V(Γ) = 2, we have dΓ(vj, vj) = dG(vj, vj) for every 0 ≤ i, j ≤ 4; consequently,
dΓ(x, y) = dG(x, y) for every x, y ∈ Γ, i.e., Γ is an isometric subgraph of G. Hence, the geodesic
triangles in Γ are also geodesic triangles in G, and we have δ

(
G
)
≥ δ(Γ) ≥ 5/4.
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Let us show now that the lower bounds on δ
(

G
)

are sharp. Recall that the path graph with
n vertices Pn is a graph with V(Pn) = {v1, v2, . . . , vn} and E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.

Consider the path graph with four vertices G = P4. Since G = P4, we have diam V(G) = 3 and
δ
(

G
)
= 0.

Consider the path graph with five vertices G = P5. Since diam V(G) = 4, we have δ
(

G
)
≥ 5/4.

Note that G has five vertices and thus Theorem 7 gives δ
(

G
)
≤ 5/4. Hence, we conclude δ

(
G
)
=

5/4.

Corollary 8. If G is any interval graph with edges of length 1, then

δ(G) δ
(

G
)
≤

⎧⎪⎪⎨
⎪⎪⎩

0, if diam V(G) = 1,

3, if 2 ≤ diam V(G) ≤ 3,

9/4, if diam V(G) ≥ 4.

Note that we can not improve the trivial lower bound δ(G)δ(G) ≥ 0, since it is attained if G is
any tree.

Corollary 9. If G is any interval graph with edges of length 1, then

δ(G) + δ
(

G
)
≤

⎧⎪⎪⎨
⎪⎪⎩

3/2, if diam V(G) = 1,

7/2, if 2 ≤ diam V(G) ≤ 3,

3, if diam V(G) ≥ 4.

In addition, δ(G) + δ
(

G
)
≥ 5/4 for every graph G with diam V(G) ≥ 4.

5. Conclusions

Gromov hyperbolicity is an interesting geometric property, and so it is natural to study it in the
context of geometric graphs. In this work we deal with interval and indifference graphs, which are
important classes of intersection and Euclidean graphs, respectively. It is well-known that interval
graphs (with a very weak hypothesis) and indifference graphs are hyperbolic. One of our main
results is Theorem 8, which provides a sharp upper bound of the hyperbolicity constant of interval
graphs verifying a very weak hypothesis. This result allows for obtaining bounds for the hyperbolicity
constant of every indifference graph (Corollary 6) and the hyperbolicity constant of every interval
graph with edges of length 1 (Corollary 7). Moreover, Theorem 10 provides sharp bounds for the
hyperbolicity constant of the complement of any interval graph with edges of length 1. Note that it
is not usual to obtain such precise bounds for large classes of graphs. Our main result is Theorem 9,
which provides the hyperbolicity constant of every interval graph with edges of length 1, by using
geometric criteria.
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Abstract: Analytical treatment of the composition of higher-order graphs representing linear relations
between variables is developed. A path formalism to deal with problems in graph theory is introduced.
It is shown how paths in the composed graph representing individual contributions to variables
relation can be enumerated and represented by ordinals. The method allows for one to extract partial
information and gives an alternative to classical graph approach.
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1. Introduction

A flow graph is a graphical representation of a system of linear equations. It is introduced by
Euler [1], this notion is especially useful in simplifying the treatment of certain linear problems arising
e.g., in optical systems [2], classical and quantum field theory [3,4], and network theory [5], just to
mention some relevant examples [6]. While this approach is worthy for 2 × 2 systems, for higher-order
arrangements it becomes cumbersome. In consequence, to introduce an alternative treatment to
solve these higher-order composition graph problems seems to be a relevant task. In this way, some
significant contributions were presented earlier [7,8].

Flow graphs are applicable to several fields, such as System of Systems (SoS) implementations.
Moreover, higher order graph reduction method could be used as a tool in optimizing the design of
SoS, such as, obtaining self-managed smart grids, creating communication networks between all of
the possible nodes of systems, setting up a secure transport and auxiliary routes of transportation
in real time, managing the energy distribution around systems, permitting flexible and optimized
manufacturing, or in financial and business flux analysis.

Flow graph algebra represents a set of linear equations in terms of a complex graph. Through
the basic rules, this graph can be reduced to a simpler equivalent form called the “residual graph”.
For higher order graphs, there are several paths connecting the input nodes with the output ones,
where it results to be difficult to follow a particular trajectory. For this reason, except for in the simplest
cases, it is more practical to use numerical methods. Nevertheless, other features of flow graphs are
still useful.

Here, we propose a new didactic and intuitive tool to solve graphs in any dimension without
reducing them by the conventional rules. The new approach is called Path Ordinal Method (POM).
The result is equivalent to a matrix product or graph reduction. However, the utility of the presented
method arises in the simplicity of predicting such product graphically by means of a simple calculus
table, as well as finding the impact of a certain parameter upon others without solving the entire graph.

Symmetry 2017, 9, 288; doi:10.3390/sym9110288 www.mdpi.com/journal/symmetry90
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The plan of this work is as follows. Section 2.1 is devoted to give a brief overview of the flow
graph algebra and the basic reduction rules. In Section 2.2 higher-order graph composition is treated.
Each possible path in the graph is defined by an ordinal and its trajectory is characterized by a
“path-set”. A new method to solve graphs of any order is introduced showing the way to extract
partial information from the composition. Finally, in Section 2.3 we present an application to 3 × 3
matrix composition to demonstrate the validity of the developed method.

2. Materials and Methods

2.1. Flow Graphs

Graphs are geometrical structures that can represent linear equations. They relate magnitudes
(variables) by graphic interconnections, following a few rules. A variable is represented by a small
circle, called a “node”. White and black colors are used to indicate the orientation of the nodes,
which is analogous to the sides of the equation, in standard algebra: black nodes are “sources”, that
is, the input variables one has to handle to obtain the output variables called “sinks”, which are
indicated by white nodes. The line connecting two nodes is called “branch” and the corresponding
label is termed “transmittance”, which indicates that the relation between the interconnected variables.
Furthermore, if this transmittance is not specified for a branch, it will be understood that it has the value
1. Branches with transmittance zero are not drawn. Figure 1 shows some flow graph representation of
linear equations.

Figure 1. Elementary graph-algebra operations.

The order of a graph is the smallest number of sources or sinks in the graph. Besides, a cascade
graph is the results of the composition of several graphs of the same order. Moreover, there is a mutual
relation between matrix representation and flow graphs. For example, the algebraic relation between
the following two-dimensional vectors,(

x2

y2

)
=

(
A B
C D

)(
x1

y1

)
, (1)

can be represented by the second-order graph as in Figure 2.
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Figure 2. A second order graph representing Equation (1). The homologous of the vector parameters
are the nodes while the homologous of the matrix elements are the branches transmittance.

Matrix multiplication can be solved through its alternative graphical representation. Figure 3
shows a composition of n graphs of order two: the result is a 2 × n cascade graph.

Figure 3. A cascade graph composed of n graphs of order two, attached side by side. Each individual
graph represents a 2 × 2 matrix.

Which is equivalent to the following matrix expression of Equation (2),(
x2

y2

)
=

(
An Bn

Cn Dn

)
· · ·
(

A2 B2

C2 D2

)(
A1 B1

C1 D1

)(
x0

y0

)
. (2)

For a cascade flow graph there are two ways to proceed. First, by using the five basic algebraic
rules namely: addition, product, transmission, suck up node, and self-loop elimination, where an
equivalent simpler graph is obtained. The second one is the Mason’s rule, recommended when we are
only interested in one of the output variables as a function of one of the input variables.

2.2. Graph Composition and Path Characterization

The analysis of bulky systems made of several elements implies the composition of higher-order
graphs, which turns to be complicated. In this section, we propose a general method to obtain the
equivalent matrix, as well as the residual graph directly from the individual elements. Also, the influence
of a certain input parameters upon an output one could be obtained without solving the whole graph.

We define two graphs: the cascade graph representing the whole system and the individual graph
corresponding to any arbitrary element of the system. Consider, for example, the cascade graph of
Figure 4.

The input variables are the vector:

→
x 0 = (x01, x02, x03, . . . , x0k, . . . , x0m),

and the output variables are represented by the vector:

→
x n = (xn1, xn2, xn3, . . . , xnk, . . . , xnm),
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Figure 4. A m × n cascade graph.

This cascade graph is composed of n graphs, attached side by side, each one of order m. In consequence,
the total number of possible paths connecting the input nodes to the output ones is:

Nm,n = mn+1.

Now, let us consider the jth constituent of the cascade graph as sketched in Figure 5.

Figure 5. The jth graph of order m inside the cascade graph of Figure 4. Aj(k,L) represents the transmittance
of the branch connecting the nodes xk and xL.

The total number of possible paths is m2. This individual graph is defined by the incoming nodes
vector

→
x j−1 and the outgoing nodes vector

→
x j, where j takes the values j = 1, 2, 3, . . . , n.

2.2.1. Ordinal of a Path and Path Value

An arbitrary path with an ordinal i (1 ≤ i ≤ Nm,n), connecting any node in the input vector with
another node in the output vector, is characterized by a set of numbers {θij} that we will call “path-set”,
which defines the trajectory of the path.

{
θij
}

= {θi0, θi1, θi2, θi3, . . . . . . . . . , θin}

These θij can take any of the values 1 ≤ θij ≤ m. If θij = k this means that the ith path passes
through the kth node of the jth vector, xjk. An example of a path-set is illustrated in Figure 6.
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Figure 6. An example illustrating a path i. The trajectory of the path corresponds to the path-set {θij} =
{2,3,1, . . . ,k,L, . . . ,m − 1,m} where xmn = Pix20 and Pi = (A1(2,3)·A1(3,1)· . . . Aj(k,L)· . . . An(m − 1,m)).

The value of any possible path Pi can be seen as the product of the transmittances corresponding
to each branch along the path

Pi =
n

∏
j=1

Aij(θi(j−1), θij), (3)

where Aij is the transmittance of the branch in the jth graph within the path i (see Figure 5).
Separating the contribution of the first and the last graph we get:

Pi = Ai1(θi0, θi1)

[
n

∏
j=2

Aij(θi(j−1), θij)

]
Ain(θi(n−1), θin), (4)

The path value Pi that starts in an arbitrary node x0k in the input vector
→
x 0 and reaches the output

vector
→
x n in any arbitrary node xnL, is given by

Pi
kL = Ai1(k, θi1)

[
n

∏
j=2

Aij(θi(j−1), θij)

]
Ain(θi(n−1), L), (5)

So, each path is defined by two items, the path ordinal i and the path value PkL
i , where both are

associated to a “path-set”.
Defining a path sequence, the first path (i = 1) will start from the node x01 and will end at the

node xn1, the second starts from the node x02 and ends at the node xn1, the kth will start from the node
x0k till the path m is reached, which starts from the node x0m and ends at the node xn1.

When considering the output vector
→
x n as it is composed of m outgoing nodes. The total number

of paths Nm,n is divided into m groups each has mn paths. The first group ends at the node x1n where
(1 ≤ i ≤ mn) and the second group ends at the node xn2 where (1 + mn ≤ i ≤ 2mn). As a consequence, all of
the paths that end at the node xnL have the path ordinals within the limit (1 + (L − 1)mn ≤ i ≤ Lmn). On the
other hand, all of the paths that start from the node x0k, according to the path sequence, have the ordinals i
= k, k + m, k + 2m, . . . .
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Thus, for a m × n cascade graph, there are mn−1 paths connecting an output node with an input
one. These paths that start from an input node x0k and ends at an output node xnL, have the path
ordinals i = k + (L − 1)mn, k + m+ (L − 1)mn, . . . , k – m + Lmn.

The contribution of the source x0k to the sink xnL, can be expressed as the summation of all the
paths that start from x0k and end at xnL as follows,

x(xok)
nL = x0k

mn−1

∑
r=1

PkL
k−m+(L−1)mn+rm. (6)

Similarly, the total contribution of the input vector nodes
→
x 0 to the sink xnL is given by,

xnL =
m

∑
k=1

x0k

mn−1

∑
r=1

PkL
k−m+(L−1)mn+rm. (7)

Calling TkL to the summation of all the path values that start from x0k and end at xnL

TkL =
mn−1

∑
r=1

PkL
k−m+(L−1)mn+rm, (8)

So, the sink xnL can be expressd as,

xnL =
m

∑
k=1

TkLx0k. (9)

Hence, for a m × n graph, the contribution of all the sources to all of the sinks, can be represented
by the equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn1

xn2
...

xnL
...

xn(m−1)
xnm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11 T21 · · · Tk1 · · · Tm1

T12 T22 · · · Tk2 · · · Tm2

...
...

. . . ...
...

T1L

...
T2(m−1)

T1m

T2L

...
T2(m−1)

T2m

· · ·

· · ·
· · ·

TkL

...
Tk(m−1)

Tkm

· · ·
. . .
· · ·
· · ·

TmL

...
Tm(m−1)

Tmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x01

x02
...

x0L
...

x0(m−1)
x0m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

According to Equation (3) for all of the path-sets representing such trajectories, only θi0 and θin are
defined, with the values k and L, respectively. Now, the goal is to define the trajectory of an arbitrary
path, i.e., to evaluate the set of numbers {θij}.

2.2.2. Determination of the Characteristic Path Set

As it is mentioned before, for a m × n cascade graph, there are m groups of paths, of which, each is
composed mn paths. Each group reaches an output node. Accordingly, the group of paths that reaches
an arbitrary node xnL in the output vector

→
x n has the path ordinals within the range (1 + (L − 1)mn ≤ i

≤ Lmn).
Proceeding to calculate the path set. For any path of ordinal i, if the path ordinal i is subtracted by

one and then divided by the number of paths that reach an output node (mn), we get:

i − 1 = Cnmn + Rn,
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where mn is de divisor, Cn is the quotient (0 ≤ Cn < m), and Rn is the reminder (0 ≤ Rn < mn). So, the
last element of the path-set θin can be expressed as:

θin = Cn + 1.

Similarly the penultimate element of the path set is calculated by considering a cascade graph of
n − 1 graphs each of order m. The total number of paths corresponding to such graph is mn−1 paths.
Now, the path ordinal becomes:

i = Rn + 1.

To determine the node x(n−1)L that the path ends at, following the previous procedure, the path
ordinal is subtracted by one and then divided by mn−1, so we have:

Rn = Cn−1mn−1 + Rn−1 ⇒ θi(n−1) = Cn−1 + 1,

where 0 ≤ Cn−1 < m and 0 ≤ Rn−1 < mn−1. Iterating the same procedure, we finally get:

i − 1 = Cnmn + Cn−1mn−1 + · · ·+ C1m + R1. (11)

On account of this:

{
θij
}

= {R1 + 1, C1 + 1, C2 + 1, . . . . . . . . . , Cn + 1}.

Thus, we conclude that, for a given path-ordinal i the corresponding path-set {θij} can be
determined as follows:

I The path ordinal is subtracted by one.
II Then, it is divided by m for n-times.
III Finally, one is added to the remainders of the division, R1, C1, C2, . . . , Cn.

A scheme illustrating the calculation of the path-set is shown in the next diagram Figure 7.

Figure 7. The Path Set Diagram (PSD). Starting from a path ordinal i, its corresponding characteristic

path set
{

θij

}
= {θi0, θi1, θi2, θi3, . . . . . . . . . , θin} is calculated as follows: firstly, the path ordinal is

subtracted by one, then it is divided by m n-times, finally one is added to the remainders of the division.
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The utility of the Path Set Diagram (PSD) is crucial in the application of Equations (7)–(9). In the
next section, we discuss a simple and explicit example to illustrate how the Path Ordinal Method
(POM) works.

2.3. Examples and Concluding Remarks

Consider an arbitrary system that is composed of two elements, each one is represented by a 3 × 3
matrix. Starting from the physical scheme of the system, the flow graph is formed by attaching side by
side the graph corresponding to each element. The result is a 3 × 2 cascade graph. The cascade graph of
the problem is shown the Figure 8.

Figure 8. A cascade graph resulting from the composition of two graphs of order 3.

The problem can be solved either by matrix multiplication as in Equation (12) or through
conventional graph reduction rules.

⎛
⎜⎝ x21

x22

x23

⎞
⎟⎠ =

⎛
⎜⎝ A2(1, 1) A2(1, 1) A2(1, 1)

A2(1, 1) A2(1, 1) A2(1, 1)
A2(1, 1) A2(1, 1) A2(1, 1)

⎞
⎟⎠
⎛
⎜⎝ A2(1, 1) A2(1, 1) A2(1, 1)

A2(1, 1) A2(1, 1) A2(1, 1)
A2(1, 1) A2(1, 1) A2(1, 1)

⎞
⎟⎠
⎛
⎜⎝ x01

x02

x03

⎞
⎟⎠ (12)

⎛
⎜⎝ x21

x22

x23

⎞
⎟⎠ =

⎛
⎜⎝ T11 T21 T31

T12 T22 T32

T13 T23 T33

⎞
⎟⎠
⎛
⎜⎝ x01

x02

x03

⎞
⎟⎠

However, we will proceed to get the residual graph as well as the equivalent matrix by applying
the POM. We denote the equivalent matrix as:⎛

⎜⎝ T11 T21 T31

T12 T22 T32

T13 T23 T33

⎞
⎟⎠.

Using the path ordinal formalism we will find the partial contribution of an input parameter,
as well as the total solution.

2.3.1. The Contribution of and Input Parameter to an Output Parameter

If one is interested to know the effect of an input parameter on an output one, it is not necessary
to build the whole matrix or to reduce the whole graph. When considering the path sequence,
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the contribution of e.g., the input parameter x03 to the output parameter x22 is given by the matrix
element T32. When applying Equation (8), we get:

T32 =
3

∑
r=1

P32
3−3+(3−1)32+3r =

3

∑
r=1

P32
9+3r = P32

12 + P32
15 + P32

18 .

Accordingly, there are three paths that connect both nodes. These paths have the ordinals 12,
15, and 18. The path-values of the above equation are calculated by specifying, firstly, the path-set
corresponding to each trajectory.

For the paths of ordinals 12, 15, and 18, the corresponding path sets are obtained by means of the
PSD as follows:

12 − 1 = 11 3 15 − 1 = 14 3 18 − 1 = 17 3
: 3 3 : 4 3 : 5 3
: : 1 : : 1 : : 1
: : : : : : : : :
2 0 1 2 1 1 2 2 1

+1 3 1 2 +1 3 2 2 +1 3 3 2

{
θ12,j

}
= {3, 1, 2}

{
θ15,j

}
= {3, 1, 2}

{
θ12,j

}
= {3, 1, 2}

For completeness, the corresponding graph-trajectories according to the above calculations appear
in Figure 9.

Figure 9. The three possible graph paths P12, P15, and P18, connecting the input node x03 to the output
node x22 according to the path sets calculated by the Path Set Diagram (PSD).
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Hence, we get,

T32 = P12 + P15 + P18 = A1(3, 1)A2(1, 2) + A1(3, 2)A2(2, 2) + A1(3, 3)A2(3, 2). (13)

We emphasize that, by means of the POM and as an alternative to the classical approach, we have
simply obtained a matrix element without solving the whole matrix product or reducing the whole
graph. This is precisely one of the applications of the formalism.

2.3.2. The Total Solution

The cascade graph is solved by specifying the equivalent matrix of the system. In consequence,
the residual graph can be drawn easily. According to Equation (10) and recalling Equation (12),
the algebraic expression representing the system is⎛

⎜⎝ x21

x22

x23

⎞
⎟⎠ =

⎛
⎜⎝ T11 T21 T31

T12 T22 T32

T13 T23 T33

⎞
⎟⎠
⎛
⎜⎝ x01

x02

x03

⎞
⎟⎠. (14)

The equivalent matrix elements are calculated through three steps, each is represented within
a table. The path-sets corresponding to each possible path is illustrated in Table 1, while Table 2 gives
the path values corresponding to the path sets of Table 1.

Table 1. The path-sets corresponding to the 3 × 2 cascade graph. The table is divided vertically into
three parts, each part represents the paths that reach the output nodes x21, x22 and x23, respectively.

i θi0 θi1 θi2 i θi0 θi1 θi2 i θi0 θi1 θi2
1 1 1 1 10 1 1 2 19 1 1 3
2 2 1 1 11 2 1 2 20 2 1 3
3 3 1 1 12 3 1 2 21 3 1 3
4 1 2 1 13 1 2 2 22 1 2 3
5 2 2 1 14 2 2 2 23 2 2 3
6 3 2 1 15 3 2 2 24 3 2 3
7 1 3 1 16 1 3 2 25 1 3 3
8 2 3 1 17 2 3 2 26 2 3 3
9 3 3 1 18 3 3 2 27 3 3 3

Table 2. The path values corresponding to the path-sets of Table 1.

Pi Path Value Pi Path Value Pi Path Value
P1 A1(1,1)*A2(1,1) P10 A1(1,1)*A2(1,2) P19 A1(1,1)*A2(1,3)
P2 A1(2,1)*A2(1,1) P11 A1(2,1)*A2(1,2) P20 A1(2,1)*A2(1,3)
P3 A1(3,1)*A2(1,1) P12 A1(3,1)*A2(1,2) P21 A1(3,1)*A2(1,3)
P4 A1(1,2)*A2(2,1) P13 A1(1,2)*A2(2,2) P22 A1(1,2)*A2(2,3)
P5 A1(2,2)*A2(2,1) P14 A1(2,2)*A2(2,2) P23 A1(2,2)*A2(2,3)
P6 A1(3,2)*A2(2,1) P15 A1(3,2)*A2(2,2) P24 A1(3,2)*A2(2,3)
P7 A1(1,3)*A2(3,1) P16 A1(1,3)*A2(3,2) P25 A1(1,3)*A2(3,3)
P8 A1(2,3)*A2(3,1) P17 A1(2,3)*A2(3,2) P26 A1(2,3)*A2(3,3)
P9 A1(3,3)*A2(3,1) P18 A1(3,3)*A2(3,2) P27 A1(3,3)*A2(3,3)

The matrix elements are calculated according to Equation (8) and represented in Table 3.

Table 3. The matrix elements corresponding to the example, according to 3 × 2 graph analysis.
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Obtaining the matrix elements, which are homologues to the graph transmittances, the residual
graph could be drawn easily.

In summary, what we expect to have accomplished is to work out a new didactic and useful tool
to solve graphs of different dimensions as an alternative to reducing them by the conventional rules.

3. Results and Discussion

A new didactic, simple, and intuitive tool is developed. The POM is applicable to any type of
problems that could be raised with the usual matrix algebra or graphs of any order, contributing an
alternative and powerful treatment that allows for treating multitude of problems in physics that
nowadays are approached by means of standard matrix treatment or flow graph algebra.

The aptitude of the method to treat as an independent form, each of the contributions of the
different components of the input and output vectors, is especially useful in problems of Physics in
which one is interested in knowing the impact of certain input parameter of the problem on others.
Also, the utility of the method could be observed in problems with higher order matrix compositions
or higher order graphs.

The POM states that; for any arbitrary m × n cascade graph represented by the input
variables vector

→
x 0 = (x01, x02, x03, . . . , x0k, . . . , x0m), (15)

and the output variables vector

→
x n = (xn1, xn2, xn3, . . . , xnk, . . . , xnm), (16)

there exist Nm,n = mn+1 possible paths connecting the input nodes with the output ones (Figure 4).
These paths are defined by an ordinal (1 ≤ i ≤ Nm,n), which, as a consequence, is attached to a
characteristic Path-Set that determines the path along the graph and a Path-Value that is considered as
the product of the transmittances corresponding to each branch along the path. Once the path values
are calculated, the transmittances of the branches of the residual graph are calculated through Equation
(8), which are homologues to the matrix elements representing the system. For better organization,
simplicity, and in order to avoid calculation mistakes, we suggest that all of the calculations to be put
in tables. Tables 4 and 5, and Figure 10 summarizes the process.

Table 4. A general form of a table used to calculate all the possible paths of a m × n cascade graph.
Aj(k,L) represents the transmittance of the branch connecting the node X(j − 1)k and Xjk in the jth graph.

Path Ordinal Pi
Path Set{

θij

}
= {θi0, θi1, θi2, . . . . . . . . . ., θin}

Path Value Pi =
n
∏

j=1
Aij(θi(j−1), θij)

1 {1, 1 . . . . . . . . . . . . ... . . . ..., 1} P1 = A1(1,1)* . . . . . . . . . . . . . . . . . . An(1,1)
: : :

mn {m, m . . . . . . . . . . . . . . . . . . . , 1} Pmn = A1(m,m)* . . . . . . . . . . . . .An(m,1)
: : :
: : :

mn+1 {m, m . . . . . . . . . . . . . . . ..., m} Pmn+1 = A1(m,m)* . . . . . . . . . ...An(m,m)

Table 5. A table illustrating the value of each transmittance in the residual graph as a sum of its
corresponding path-values.

T11 =
mn−1

∑
r=1

P1−m+r.m . . . Tk1 =
mn−1

∑
r=1

Pk−m+r.m . . . Tm1 =
mn−1

∑
r=1

Pr.m

:
: . . . :

: . . . :
:

T1L =
mn−1

∑
r=1

P1−m+(L−1).mn+r.m . . . TkL =
mn−1

∑
r=1

Pk−m+(L−1).mn+r.m . . . TmL =
mn−1

∑
r=1

P(L−1).mn+r.m

:
: . . . :

: . . . :
:

T1m =
mn−1

∑
r=1

P1−m+(m−1).mn+r.m . . . Tkm =
mn−1

∑
r=1

Pk−m+(m−1).mn+r.m . . . Tmm =
mn−1

∑
r=1

P(m−1).mn+r.m
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Figure 10. The residual graph and its equivalent matrix form.

In addition, a useful feature of the POM is its practicability in special problems when the impact of
a certain parameter upon others is of our interest. Taking into account the path order, the contribution
of a source x0k to a sink xnL is given by the transmittance TkL of the residual graph. Which is the
summation of its corresponding path values in agreement with Equation (8). These path values can
be calculated directly by specifying their corresponding path sets by means of the PSD illustrated
in Figure 7, i.e., by applying the POM the contribution of a source to a sink can be calculated easily
without solving the entire problem.

The fields of application of this tool spread to all of those linear problems that are treated in
physics by means of matrix algebra or flow graphs, being especially effective in the simplification of
some specific calculations possessing composition of several high order matrices or bulky graphs.

Clear examples of applications could be fields as: matrix optics in asymmetric systems, matrix
treatments in quantum mechanics and quantum theory of fields, treatments of dielectric multilayers,
analysis of tensor mechanical properties of materials, optical networks, classic mechanics formulations,
polarization and depolarization problems in optics, fluids dynamics, acoustic, and in general, any
problem that holds linear relations and sets the stage for a matrix treatment. The POM was applied to
3-layers dielectric system [9].

Finally, other industrial applications could be the simulation in designing System of Systems
focused on communication networks, multimodal traffic control, energy distribution systems,
multi-site industrial manufacture or emergency management, among others.
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Abstract: Various sizes of chemical reaction network exist, from small graphs of linear networks
with several inorganic species to huge complex networks composed of protein reactions or metabolic
systems. Huge complex networks of organic substrates have been well studied using statistical
properties such as degree distributions. However, when the size is relatively small, statistical data
suffers from significant errors coming from irregular effects by species, and a macroscopic analysis
is frequently unsuccessful. In this study, we demonstrate a graphical classification method for
chemical networks that contain tens of species. Betweenness and closeness centrality indices of a
graph can create a two-dimensional diagram with information of node distribution for a complex
chemical network. This diagram successfully reveals systematic sharing of roles among species
as a semi-statistical property in chemical reactions, and distinguishes it from the ones in random
networks, which has no functional node distributions. This analytical approach is applicable for rapid
and approximate understanding of complex chemical network systems such as plasma-enhanced
reactions as well as visualization and classification of other graphs.

Keywords: chemical reaction network; centrality index; statistical analysis; random graph

1. Introduction

Graph theory provides for us a graphical approach to a system containing various elements
with connections between them [1,2]. Chemical reaction networks are one such system, and small
and simple reaction systems are visualized in linear or small graphs with sufficient understanding
of reaction procedures [3–5]. On the other hand, the networks of protein and metabolic systems
in a biological cell are quite complicated due to their numbers of nodes (at least, more than 1000),
so that not only visualization as a graph but also statistical properties such as degree distributions are
representative for characterizing their complexity [6,7].

Recently, we performed graph visualization for plasma-enhanced chemical reactions [8,9].
In low-temperature reactive plasma, high-energy electrons trigger a number of simultaneous
dissociations of mother molecules, and its chemistry is more complex than other chemical systems in
artificial environments for chemical plants [10–12]. After definitions of a node (for one species) and an
edge (for each reaction) for a display in a graph, centrality indices of nodes derived from the graph
work as representatives of chemical roles in the system, such as agents, intermediates, and products.
However, except for such microscopic points of view, approaches have not been accomplished for
describing macroscopic properties of graphs for chemical reaction networks that contain several tens
of species.

Such relatively small-sized chemical network systems create rich outputs despite limited numbers
of nodes and edges in a graph. For instance, information processing in biochemical reactions revealed
collective behaviors that can be interpreted using interactions among analogical spins, leading to

Symmetry 2017, 9, 309; doi:10.3390/sym9120309 www.mdpi.com/journal/symmetry103
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similar features to electronic information processing or mechanical systems [13,14]. Another example
of graphical network approaches for medium-sized chemical complexity was on numerical calculations
of rate equations in plasma-enhanced chemical reactions, and the calculated results were visualized in
reaction pathways in a graph to summarize complicated time evolutions of densities of species [15]. In
comparison with the previous achievements based on numerical finite-difference methods [10–12,15],
direct visualization of reactions based on graph theory is applied here, and we focus on graphical
classification of nodes or species on statistical aspects that are missing in our previous studies [8,9].

In this study, for such systems as medium-sized chemical reaction networks, which are neither
so small as several numbers of reactions nor too large with more than 1000 species, we demonstrate
suitable macroscopic measures by graphical diagrams based on multi-centrality indices. Using such
diagrams, semi-statistical properties with confirmation of systematic and global structures in the
corresponding system can be deduced, even if the total number of nodes is limited to less than
100, as well as identifications of roles in each species, such as agents, intermediates and products.
This method of classification of species in macroscopic points of view provides us with insight and
understandings about predictions of global properties of chemical reactions for approximate designs
of upcoming chemical reactors and rapid selection of mother chemicals for products when accurate
computer aided designs are not available. In Section 2, using reactions in silane and methane plasmas,
we show the diagrams with axes of betweenness and closeness centrality indices. Using such a
diagram, we can understand both macroscopic and microscopic properties of graphs with tens of
nodes. In Section 3, we compare these two examples with random graphs, and discuss the validities of
this graphical characterization.

2. Analysis of Reaction Networks in Plasma Chemistry

As examples, we use two plasma-enhanced chemical networks reported in [10,11]. We performed
some analyses of methane plasma [8] and silane plasma [9] using some centrality indices, but they did
not include macroscopic measures of complex chemical networks. Here, we proceed to study them
using the same reaction systems to obtain their macroscopic and microscopic properties simultaneously.
Table A1 in Appendix A shows active species in silane plasma with temporary indicator numbers,
where we use reaction sets in [11]. There are a wide variety of species that originate initially from
two species: SiH4 and Ar. The number of species or nodes in the corresponding graph is 58, and that of
reactions or edges is 222. The reason why we can observe such rich diversity is based on high-energy
electrons whose energy spreads up to 20 eV with electron temperature of 1–5 eV; kinetic energy with
1–20 eV induces most of reactions of decomposition, dissociation and ionization [16]. Almost all
reactions are bi-molecule, and we treat all reactions as irreversible ones.

To convert a chemical reaction into a graph, when we handle the following reaction,

A + B → D + E, (1)

and use the names of species in reactions as node indicators, we set directed edges from node A to node
D, from node A to node E, from node B to node D and from node B to node E, as shown in Figure 1a.
When one performs graph representation for an underlying system of interest, elements of the system
becomes nodes and interactions between elements are displayed as edges. For chemical reactions, as
interpreted in [3], species becomes nodes, and not a simple co-existence but an agent-product relation
is suitable for a directed edge, leading to a form of representation in Figure 1a. In general chemical
reactions for inorganic molecules, since roles of agents, intermediates and products are fairly clear with
energy consumption as driving forces, regular graphs or graphs with frequent cycles are less important,
and monotone graphs or trees with several nodes are sufficient in many cases [3–5]. However, in
reactions enhanced by energetic electrons in plasma, cycles appear with their various sizes with
increasing values of clustering coefficients [8], which makes a role of each species more complicated.
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After completion of an edge list for a graph, we calculate several centrality indices. In this study,
we use betweenness centrality index Cb and closeness centrality index Cc. Cb is defined as [2]:

Cb(i) = ∑
j,k

j �=k �=i

gjk(i)
gjk

, (2)

where i, j and k are species/node indicator numbers and gjk is number of the shortest paths between
nodes j and k. gjk(i) indicates number of gjk passing through node i. Cc is defined as [2]:

Cc(i) =
1

∑
j

dij
, (3)

where dij is distance or edge numbers from node i to j along the shortest path. Since we consider
directed graphs, no path may exist from node i to j; in such a case, dij is defined as number of all nodes.
This fact indicates that, although Cc represents one of the topological aspects, it includes a measure
of agents in chemical reactions. In our previous studies [8,9], we calculated simplified PageRank
values [17], which represent information on roles of species, i.e., in a microscopic point of view. In this
study, we put more emphasis on analysis of topological and statistical properties of graphs, and Cb
and Cc are suitable for this purpose.

Figure 1b shows the graph of reactions with species in silane plasma. Since the number of nodes
is not large, we can identify an individual species. On the other hand, the number of edges is pretty
large, and we cannot trace all of them. For complex networks with huge size, one can recognize neither
of them, and they are mainly analyzed using statistical properties (i.e., Power-law tails in degree
distributions [18]) from a macroscopic point of view, neglecting identification of microscopic roles of
each species. In our case, however, the number of nodes is insufficient to obtain smooth statistical
trends. Figure 2 shows the in-degree and out-degree distribution. Nodes scatter broadly in both sides
of the dashed line that shows equal numbers of the in-degrees and the out-degrees, which indicates
both agents, with larger values of the out-degree, and products are present in balance. When we carry
out searches for global information in Figure 2, although it indicates that this degree distribution is not
the Poisson one, we cannot clarify its statistical characteristic at this moment.

 

(a) (b) 

Figure 1. Graph for chemical reaction network in silane plasma. (a) Example of formation of nodes and
edges for one typical reaction; and (b) whole structure of graph. Nodes represent species in chemical
reactions, and edges start from agents and ends at products of each reaction. Chemical reactions are
listed in Ref. [11]. Closed red diamonds indicate species displayed in Figures 2 and 3.
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Figure 2. Distributions of in-degree and out-degree of species (or nodes) in silane plasma displayed in
Figure 1. Inset dashed line indicates equal cases of in-degrees and out-degrees.

Here, we propose a diagram with Cb and Cc to analyze a macroscopic property of a graph and to
obtain microscopic roles of species simultaneously, as shown in Figure 3 for the graph in Figure 1. In
general, both Cb and Cc show centrality indices, and a node closer to the center has a higher value,
and positive correlation is roughly expected between them. However, this diagram includes various
types of information, as described below. For instance, nodes Si4H9 and Si5H11 are located in the
periphery region of Figure 1. Both of them are in the low-Cb area in Figure 3, but their positions in
the diagram are different. Si4H9 has three directed paths from other species and another to Si4H10.
The degree, the total number of edges, is limited to 4 as shown in Figure 2, and we can recognize
the edges and the nodes around Si4H9 in Figure 1. Consequently, Si4H9 is not a significant species
that affects many reactions, and it is located in the low-Cb area in Figure 3, while Cc of Si4H9 is in
the middle range. Si5H11 also has three directed paths from other species and one directed path to
another species, Si5H12. It is in the low-Cb area with very low Cc. The difference of locations between
Si4H9 and Si5H11 is destination of out-degree edges; Si4H10 is more active in reactions than Si5H12

in our model, and we can clarify such a point using this diagram. Note that both of them have the
same statistical values of degrees, and they are in the same position in the degree distribution that is a
conventional classification in theory of complex network [2].

From a macroscopic point of view, this diagram displays semi-statistical properties of the graph
as a visual classification tool. The overall distribution of data points displayed here is fairly uniform
along the log(Cb) axis, and it covers the range in 4 orders of magnitude of Cb. The SixHy system,
which includes main species coming from the mother gas, SiH4, is distributed throughout the entire
range. The H system, which also originates from SiH4, scatters in all ranges. The Ar system is in a
less important area as Cb values. In the area with high-value Cb, stable species such as SiH4 and H2

exist, and electrons are also one of the highest-value species both in Cb and Cc. SiH3, which is the most
important precursor for Si thin film deposition using silane plasma, is also in this high-value region.
In the case of the linear Cb axis shown in the inset of Figure 3, data points are concentrated around 0,
and a few of them scatter in the area of high Cb, which is not a sufficient visualization of the graph.
A logarithmic plot for Cb is a key manner for graphs for reaction paths and visual classifications of
chemical reactions, in particular, in plasma-enhanced chemistry.
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Figure 3. Diagram of betweenness-closeness centrality indices of reaction network in silane plasma
displayed in Figure 1. Inset is diagram in linear scales.

Another fact that we can deduce from this diagram is rough estimation on differences coming
from roles of species. Values of Cc, which are shown along the vertical axis, become high when the
out-degree of a given species is larger than its in-degree (see Figure 2 to confirm these correspondences).
For instance, Cc of SiH4 is larger than that of H2: the ratio, in-degree/out-degree of SiH4, is 19/34,
while that of H2 is 33/19. Electrons have also unbalanced values: the ratio is 8/34. These facts indicate
that species mainly working as agents (on the left-hand side of chemical reactions, such as A and B in
Reaction (1), having larger out-degrees) are in the upper area of Cc. Products in chemical reactions
tend to be in the lower area.

Figure 4 shows another example of chemical reactions, CH4 system in methane plasma. In [8],
we treat species except ions, but here we include all species listed in Ref. [10], shown in Table A2 in
Appendix A. The log(Cb)− Cc diagram for the graph in Figure 4 is shown in Figure 5, which is quite
similar to that in Figure 3; the area of log(Cb) is quite wide in comparison with the width of the Cc

range. Also, most of the species that have been so far pointed out on their importance of roles are
located in the higher-Cb range. In a microscopic point of view, we can also find similar points to the
case of silane plasma. For instance, CH4 and CH3 are in the similar locations to SiH4 and SiH3 in
Figure 3, respectively. Our previous report [8] in which the centrality indices similar to PageRank [17]
indicate importance of CH3, and the result here is consistent with the one in Ref. [8]. There are a
few points that are different from the case of silane plasma, such as the location of electrons between
Figures 3 and 5, although such a feature may be a factor coming from each specific system.

Two results shown here indicate that complex reactions in plasma chemistry can be visualized
in a log(Cb) − Cc diagram, and both macroscopic and microscopic properties are derived from
it. In particular, since plasma chemistry includes various levels of roles as well as wide range of
contribution frequencies to reactions, the range of node distributions along the log(Cb) axis is quite
wide. Cb, given by Equation (2), includes information as reaction connection between species, while
Cc indicates rather simple information about a location in a network.
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Figure 4. Graph for chemical reaction network in methane plasma. Nodes represent species in chemical
reactions, and edges start from agents and ends at products of each reaction. Chemical reactions are
listed in Ref. [10]. Closed red diamonds indicate species displayed in Figure 4.
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Figure 5. Diagram of betweenness-closeness centrality indices of reaction network in methane plasma
displayed in Figure 3. Inset is diagram in linear scales.

3. Discussion

Figures 3 and 5 show wide-range distributions of nodes on the log(Cb) axis, but it might arise
from simple randomness that also exists in random graphs. Here we compare such tendencies to those
in arbitrary random graphs.

We fixed the numbers of nodes and edges to the ones in Figure 1, and created random graphs with
directed edges in computation. Figure 6 shows three examples, and we cannot see any common points
in allocation of roles for specific species. In all log(Cb)− Cc diagrams shown in Figure 7, the values
Cb and Cc for the nodes are around a certain area. In particular, the values of log(Cb) is in a range
with approximately one order of magnitude except for a few nodes. This is attributed to the fact that
degrees of random graphs are in the Poisson distributions [18].
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To compare spectra in the log(Cb) scale, the data in Figures 3, 5 and 7 are summarized as
histograms of cumulative probabilities or relative densities P in Figure 8. Values of the nodes in
random graphs are localized around 102, and almost no changes among these three plots. This is
attributed to the fact that degrees of random graphs are in the Poisson distribution [18], and these
graphs have certain averaged profiles of parameters with some deviations. On the other hand, the
spectrum of silane plasma chemistry with the same numbers of the nodes and the edges is quite
broad. The case of methane plasma chemistry shows similar tendencies. This comparison implies
that networks of complex plasma chemistry include self-arranged systematic roles in the constituent
species. The roles of agents and products are partially distinguished from scattering along the Cc axis
in the diagram. A wide range of log(Cb) indicates a number of levels of intermediate roles from one
species to another along successive sequential reactions, where the levels are from inevitable functions
in reactions to less-frequent contributions for sub-products creations, etc.

 
(a) (b) 

 
(c) 

Figure 6. Random graphs created randomly in computation (a–c).
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Figure 7. Diagrams of betweenness-closeness centrality indices. (a–c) corresponds to (a–c) in Figure 6,
respectively. Inset is diagram in linear scales.
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Figure 8. Histograms of cumulative probabilities or relative densities as function of betweenness
centrality index. Data points are from Figures 3, 5 and 7.

The above descriptions are based on the data set on silane and methane plasma chemistry.
If another sufficient set of reactions is available, one can perform similar data analysis on complex
chemical networks. As shown here, approximate estimations of roles on species and global balance in
the reaction system are beneficial for various purposes such as rapid analysis of robustness of a reaction
system against impurity mixing. Another feasible and interesting contribution is selection of species
for monitoring an industrial chemical reactor; behaviors of the limited number of the species detectable
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on the edge of reaction space can predict the ongoing entire system working on by comparing values
of indices with the detected signals.

This kind of graph analysis using diagrams composed of multi-centrality indices is applicable
for analyses of other networks. In particular, networks that include less than 100 nodes are suitable
for this method to investigate both macroscopic topologies and microscopic identifications of nodes.
This is also applicable for larger networks to clarify roles of nodes by specifying their positions in a
rough distribution of node data in a diagram. For instance, other physical and chemical processes can
be analyzed by this approach when they are described in rate equations, since chemical reactions are
given in one type of rate equation and successfully interpreted in this study.

4. Conclusions

A diagram with axes of multi-centrality indices works to clarify both macroscopic structures of
the graph and microscopic features such as roles of a species. Plasma-enhanced chemical reactions, in
which tens of chemical reactions take place in parallel, are analyzed using a diagram based on Cb and
Cc indices. The derived diagram indicates, from its macroscopic distribution of node values, that nodes
have a wide variety of roles that are quite different from random classification. It also shows some roles
of specific nodes by their locations, such as roles of products, agents, and intermediates. For plasma
chemistry, this study provides us a measure for statistical properties for tens or hundreds of species in
reaction systems, and for graph analysis, this analysis will become a practical and applicable method
for understanding such medium-sized graphs.
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Appendix A

The chemical reactions we analyze in this study are in two sets: silane (SiH4) and methane (CH4)
plasma chemical reactions. All species treated in Figures 1–3 are shown in Table A1, and those in
Figures 4 and 5 are in Table A2; they are listed in [10,11], respectively.

Table A1. List of species in silane plasma chemical reactions [11]. Except charge indicators “+” and
“−”, other symbols like “*” and “v” mean various electronic and mechanical excitation levels of species.
M indicates arbitrary species except ions.

Number Species Number Species

0 Ar 31 Si2H6 **
1 Ar * 32 Si2H6

+

2 Ar ** 33 Si2H7
+

3 Ar+ 34 Si3H4
+

4 ArH+ 35 Si3H6
+

5 e− 36 Si3H7
6 H 37 Si3H8
7 H * 38 Si4H10
8 H+ 39 Si4H2

+

9 H2 40 Si4H6
+

10 H2(v(1)) 41 Si4H8
+

11 H2(v(2)) 42 Si4H9
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Table A1. Cont.

Number Species Number Species

12 H2 * 43 Si5H10
+

13 H2
+ 44 Si5H11

14 H3
+ 45 Si5H12

15 M 46 Si5H4
+

16 Si 47 SiH
17 Si+ 48 SiH+

18 Si2H+ 49 SiH2
19 Si2H2 50 SiH2

−

20 Si2H2
+ 51 SiH2

+

21 Si2H3 52 SiH3
22 Si2H3

+ 53 SiH3
−

23 Si2H4 54 SiH3
+

24 Si2H4
+ 55 SiH4

25 Si2H5 56 SiH4(v(1,3))
26 Si2H5

+ 57 SiH4(v(2,4))
27 Si2H6
28 Si2H6(v(1,3))
29 Si2H6(v(2,4))
30 Si2H6 *

Table A2. List of species in methane plasma chemical reactions [10]. Except charge indicator “+”,
other symbols like “*” mean various electronic and mechanical excitation levels of species. M indicates
arbitrary species except ions.

Number Species Number Species

1 CH4 21 CH3
+

2 H 22 CH4
+

3 CH3 23 C2H2
+

4 CH2 24 C2H3
+

5 C2H6 * 25 C2H4
+

6 M 26 C2H5
+

7 CH 27 H2
+

8 C2H5 * 28 H3
+

9 C 29 e−

10 C2H4 * 30 C4H3
11 C2H6 31 C4H2
12 C2H5 32 CH5

+

13 C2H4 33 C3H4
+

14 C2H3 34 C3H5
+

15 C2H2 35 C4H5
+

16 C2H 36 C4H8
+

17 C+ 37 C3H6
+

18 CH+ 38 C3H7
+

19 H2 39 C4H7
+

20 CH2
+ 40 C4H9

+
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Abstract: Despite recent progress in the study of complex systems, reconstruction of damaged
networks due to random and targeted attack has not been addressed before. In this paper, we
formulate the network reconstruction problem as an identification of network structure based on
much reduced link information. Furthermore, a novel method based on multilayer perceptron neural
network is proposed as a solution to the problem of network reconstruction. Based on simulation
results, it was demonstrated that the proposed scheme achieves very high reconstruction accuracy in
small-world network model and a robust performance in scale-free network model.

Keywords: network reconstruction; neural networks; small world networks; scale free networks

1. Introduction

Complex networks have received growing interest from various disciplines to model and study
the network topology and interaction between nodes within a modeled network [1–3]. One of the
important problems that are actively studied in the area of network science is the robustness of a
network under random failure of nodes and intentional attack on the network. For example, it has
been found that scale-free networks are more robust compared to random networks against random
removal of nodes, but are more sensitive to targeted attacks [4–6]. Furthermore, many approaches
have been proposed to optimize conventional networks against random failure and intentional attack
compared to the conventional complex networks [7–10]. However, these approaches have been
mainly concentrated on designing network topology based on various optimization techniques to
minimize the damage to the network. So far, no work has been reported on techniques to repair
and recover the network topology after the network has been damaged. Numerous solutions have
been proposed on reconstruction of spreading networks based on spreading data [11–13], but the
problem on the reconstruction of damaged networks due to random and targeted attacks has not been
addressed before.

Artificial neural networks (NNs) have been applied to solve various problems in complex
systems due to powerful generalization abilities of NNs [14]. Some of the applications where NNs
have been successfully used are radar waveform recognition [15], image recognition [16,17], indoor
localization [18,19], and peak-to-average power reduction [20,21]. In this paper, we propose a novel
network reconstruction method based on the NN technique. To the best of our knowledge, this
work is the first attempt to recover the network topology after the network has been damaged and
also the first attempt to apply NN technique for complex network optimization. We formulate
the network reconstruction problem as an identification of a network structure based on a much
reduced amount of link information contained in the adjacency matrix of the damaged network. The
problem is especially challenging due to (1) very large number of possible network configurations
on the order of 2N2

, where N is the number of nodes and (2) very small number of node interaction
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information due to node removals. We simplify the problem by the following assumptions (1) average
number of real connections of a network is much smaller than all the possible link configurations
and (2) link information of M undamaged networks are available. Based on these assumptions, we
chose the multiple-layer perceptron neural network (MLPNN), which is one of the frequently used
NN techniques, as the basis of our method. We evaluate the performance of the proposed method
based on simulations in two classical complex networks (1) small-world network and (2) scale-free
networks, generated by Watts and Strogatz model and Barabási and Albert model, respectively.

The rest of the paper is organized as follows. Section 2 describes the small-world network
model and scale-free network, followed by the network damage model. In Section 3, we propose the
reconstruction method based on NN technique. In Section 4, we present the numerical results of the
proposed method, and conclusions are given Section 5.

2. Model

2.1. Small-World Network

Small-world network is an important network model with low average path length and high
clustering coefficient [22–24]. Small-world networks have homogeneous network topology with a
degree distribution approximated by the Poisson distribution. A small-world network is created based
on a regular lattice such a ring of N nodes, where each node is connected to J nearest nodes. Next, the
links are randomly rewired to one of N nodes in the network with probability p. The rewiring process
is repeated for all the nodes n = 1 . . . N. By controlling the rewiring probability p, the network will
interpolate between a regular lattice (p = 0) to a random network (p = 1). Figure 1 shows the detailed
algorithm for small-world network construction in pseudocode format.

Figure 1. Small-world network algorithm.

2.2. Scale-Free Network

Scale-free networks, such as Barabási and Albert (BA) network, are evolving networks that have
degree distribution following power-law model [4–6]. Scale-free networks consist of a small number
of nodes with very high degree of connections and rest of the nodes with low degree connections.
A scale-free network starts the evolution process with a small number of m0 nodes. Next, a new node is
introduced to the network and attaches to m existing nodes with high degree k. The process consisting
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of new node introduction and preferential attachment is repeated until a network with N = t + m0

nodes has been constructed. Figure 2 shows the detailed algorithm for scale-free network construction
in pseudocode format.

Figure 2. Scale-free network algorithm.

2.3. Network Damage Model

We simulate the damage process on complex networks by considering the random attack model.
In the random attack model, nodes are randomly selected and removed. Note that when a node is
removed, all the links connected to that node are also removed [25]. To evaluate the performance of the
proposed reconstruction method, the difference in the number of links between the original network
and the reconstructed network is used and represented as probability of reconstruction error, PRE, that
is defined as follows:

PRE =
NL,di f f

NL
, (1)

where NL is the total number of existing links in the complex network that were damaged due to
random attack and NL,diff is the total number of links in the reconstructed network that are different
from the links in the original network before any node removal. For example, let us assume that the
number of nodes N = 4 and the node pair set in the original network is equal to Eo = {(1, 2), (1, 4), (2, 3),
(3, 4)}. If the reconstructed network has node pair set as Er = {(1, 2), (1, 3), (1, 4), (2, 3)}, then NL,diff = 2
and NL = 4, giving us PRE = 0.5. Note that the estimated links in the reconstructed network that were
not in the original network, in additions to links that were not reproduced, are all counted as errors.

3. Reconstruction Method

3.1. Neural Network Model

Neural networks are important tools that are used for system modeling with good generalization
properties. We propose to use MLPNN employing backpropagation based supervised learning in
this work. A MLPNN has three types of layers: An input layer, an output layer, and multiple hidden

116



Symmetry 2017, 9, 310

layers in between the input and output layer as shown in Figure 3. The input layer receives input
data and is passed to the neurons or units in the hidden layer. The hidden layer units are nonlinear
activation function of the weighted sum of inputs from the previous layer. The output of the jth unit in
the hidden layer O(j) can be represented as [26]

A(j) =
m

∑
i=1

w(j, i)O(i) − U(j), (2)

O(j) = �(A(j)) =
1

1 + e−A(j)
, (3)

where A(j) is the activation input to jth hidden layer unit, w(i, j) is the weights from unit i to j, O(j) is
the input to unit j, U(j) is the threshold of unit j, and � (•) is a nonlinear activation function such as
sigmoid function, as shown in Equation (3), hardlimit function, radial basis function, and triangular
function. The number of units in the output layer is equal to the dimension of the desired output
data format. The weights on the network connections are adjusted using training input data and
desired output data until the mean square error (MSE) between them are minimized. To implement the
MPLNN, the feedforwardnet function provided by the MATLAB Neural Network Toolbox was utilized.
Additionally, the MPLNN weights were trained using the Levenberg-Marguardt algorithm [27].

 

Figure 3. Multiple-layer perceptron neural network (MLPNN) model.

3.2. Neural Network Based Method

To reconstruct the network topology of a damaged complex network due to random attack, we
apply MLPNN as a solution to solve the complex network reconstruction problem. One of the key
design issues in MLPNN is the training process of weights on the network connections such that the
MLPNN is successfully configured to reconstruct damaged networks. Usually, a complex network
topology is represented by an adjacency matrix describing interactions of all the nodes in the network.
However, an adjacency matrix is inappropriate as training input data for MLPNN training process due
to its complexity. Thus, we define a link list (LL) that contains binary elements representing existence

of node pairs among all possible combination of node pairs

(
N
2

)
, where N is the number of nodes

in the network. For example, for a network with N = 4, possible node pair set is equal to, E = {(1, 2),
(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. If a network to be reconstructed has four nodes and four links given
by E = {(1, 2), (1, 4), (2, 3), (3, 4)}, then LL = [1 0 1 1 0 1], where 1 s represents the existence of the four
specific links among six possible ones. To obtain the training input data, M networks are damaged by
randomly removing f percent of N nodes in a network. As shown in Figure 4, the proposed method
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consists of the following modules: Adjacency matrix of damaged network input module, adjacency
matrix to link list transformation module, MLPNN module, and network index to adjacency matrix
transformation module. In the second module, the adjacency matrices of the damaged networks are
pre-processed into LLs that can be entered into the MLPNN. Note that the input dimension of the
MLPNN is equal to the dimension of the training input data format. Thus, input dimension of the

MLPNN is equal to

(
N
2

)
. As for the desired output data, which is the output of the MLPNN

module, binary sequence numbers are used to represent the indices of the original complex networks
that have been damaged. The number of MLPNN output will depend on the number of training
networks used to train the MLPNN. For example, eight binary outputs will be sufficient to represent
256 complex networks. Based on the training input data and desired output data, representing network
topology of different complex networks, the goal of the MLPNN is to be able to identify, reconstruct,
and produce node pair information of the original network, among numerous networks used to train
the neural network. The detailed training algorithm of MLPNN is described in Figure 5.

 

Figure 4. MLPNN based reconstruction method.

Figure 5. MLPNN training algorithm.
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4. Performance Evaluations

4.1. Simulation Environment

We study and evaluate the proposed reconstruction method based on the probability of
reconstruction error PRE described in Section 2. For the network damage model, we assume random
attack process, where nodes are randomly removed with attached links. The MLPNN used in our
method has two hidden layers with 64 neurons in the first layer and four neurons in the second layer.
The nonlinear activation function in the hidden layer is chosen to be triangular activation function.
The number of inputs to the MLPNN depends on the number of nodes in the network. To train and
test the MLPNN, using complex networks with N = 10, N = 30, and N = 50, the number of inputs are set
equal to the possible number of node pair combinations, which are 45, 435, and 1225, respectively. As
for the number of outputs, eight are chosen to represent maximum number of 256 complex networks.
The training input and output data patterns are randomly chosen from LL of M damaged complex
networks with different percentage f of failed nodes out of total N nodes and corresponding indices of
the complex networks.

4.2. Small-World Network

To evaluate the performance of the proposed method in small-world network model, the network
is implemented based on the algorithm described in Figure 1. Figure 6 and Table 1 shows the
reconstruction error probability as a function of percentage of random node failure f. Furthermore, we
study the influence of the number of node on the network reconstruction performance with N = 10,
N = 30, and N = 50. The initial degree K of the network is set to two and the links are randomly
rewired with probability p = 0.15. One can see that with the increase in the number of node failures,
the reconstruction performance deteriorates for all different N, but for f = 0.1, PRE is less than 0.35 and
for f = 0.5, PRE is less than 0.5. In another words, the proposed method can reconstruct almost close
to 70% of the network topology for 10% node failures and more than 60% of the network topology
for 50% node failures. Note that lower reconstruction error probability is observed for larger number
of nodes. The reason for this results is due to the higher dimension of input data to the MLPNN,
e.g., 1225 for N = 50. Furthermore, from the figure, we observe that PRE is less than what one might
expect for the case where most of the nodes are destroyed, e.g., f = 0.7. This phenomenon is due to
the large number of overlap in the node connections in LL among the M damaged networks due to
small rewiring probability p. To study how the rewiring probability affects the reconstruction accuracy,
simulations are performed with p = 0.3, p = 0.5, and p = 0.7, as shown in Figure 7 and Table 2. From the
figure, we can see that there is a significant deterioration in performance in reconstruction accuracy
with increase in rewiring probability p. This is because the small-world network topology becomes
increasingly disordered with increase in rewiring probability and results in decrease in ability of the
proposed method to reproduce the original network topology.

Figure 6. Probability of reconstruction error for small-world networks with N = 10, N = 30, N = 50,
M = 10, and p = 0.15.
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Table 1. Probability of reconstruction error for small-world networks with N = 10, N = 30, N = 50,
M = 10, and p = 0.15.

N/f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.307 0.325 0.343 0.361 0.379 0.397 0.415 0.431
30 0.273 0.284 0.295 0.308 0.321 0.335 0.347 0.358
50 0.186 0.196 0.205 0.216 0.225 0.234 0.241 0.246

 
Figure 7. Probability of reconstruction error for small-world networks with p = 0.3, p = 0.5, p = 0.7,
M = 10, and N = 50.

Table 2. Probability of reconstruction error for small-world networks with p = 0.3, p = 0.5, p = 0.7,
M = 10, and N = 50.

P/f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.3 0.315 0.319 0.334 0.356 0.373 0.399 0.431 0.477
0.5 0.430 0.438 0.457 0.477 0.494 0.524 0.566 0.616
0.7 0.534 0.529 0.534 0.556 0.590 0.653 0.705 0.770

However, even in the case of high rewiring probability p = 0.5, 50% of links can be successfully
estimated. In Figure 8 and Table 3, we study the influence of the number of networks M that were used
to train and test the MLPNN on the reconstruction performance. The number of nodes N is assumed
to be 50 and the rewiring probability p is set to 0.5. It can be observed from the figure that there is a
small degradation in performance with increase in M, but, PRE remains less than 0.3.

Figure 8. Probability of reconstruction error for small-world networks with M = 10, M = 30, M = 50,
N = 50, and p = 0.15.
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Table 3. Probability of reconstruction error for small-world networks with M = 10, M = 30, M = 50,
N = 50, and p = 0.15.

M/f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.186 0.196 0.205 0.216 0.225 0.234 0.241 0.246
30 0.218 0.226 0.233 0.239 0.246 0.253 0.260 0.268
50 0.26 0.267 0.267 0.269 0.274 0.279 0.285 0.293

4.3. Scale-Free Network

The proposed method is also evaluated in scale-free network model that is generated using the
algorithm described in Figure 2. Figure 9 and Table 4 compares the reconstruction error probability
for different number of nodes N = 10, N = 30, and N = 50. The initial number of nodes m0 was set
to two and the node degree K = 2 for the preferential attachment process. Figure 9 shows that the
reconstruction accuracy in scale-free network model is significantly lower compared to the small-world
network. The reason for the poor performance is that the network topologies of M scale-free networks
are more complex compared to the small-world network models. Furthermore, the links in LL between
the M damaged networks do not overlap as much as in the small-world network models. In Figure 10
and Table 5, the reconstruction error probability performance with N = 30 and m0 = 2, for different
number of networks M = 10, M = 30, and M = 50, is shown. Compared to the small-world network
environment, the reconstruction error probability values are quite high even in low percentage of
node failures for M = 30 and M = 50. Due to the complex topology of the scale-free network model,
increase in M affects the link estimation ability of the MLPNN. Finally, Figure 11 and Table 6 shows the
reconstruction accuracy performance with different initial number of nodes in constructing scale-free
network model. One can observe that there is a small difference in reconstruction performance for
high percentage of node failures, regardless of the initial number of nodes. This is because the link
estimation difficulty is almost equal to the MLPNN, even if they have different degree distributions,
when the number of hubs remains the same in scale-free networks.

Figure 9. Probability of reconstruction error for scale-free networks with N = 10, N = 30, N = 50, M = 10,
and m0 = 2.

Table 4. Probability of reconstruction error for scale-free networks with N = 10, N = 30, N = 50, M = 10,
and m0 = 2.

N/f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.411 0.423 0.437 0.455 0.484 0.518 0.551 0.588
30 0.455 0.471 0.487 0.510 0.542 0.582 0.628 0.671
50 0.490 0.507 0.525 0.547 0.575 0.618 0.669 0.730
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Figure 10. Probability of reconstruction error for scale-free networks with M = 10, M = 30, M = 50,
N = 30, and m0 = 2.

Table 5. Probability of reconstruction error for scale-free networks with M = 10, M = 30, M = 50, N = 30,
and m0 = 2.

M/f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 0.455 0.471 0.487 0.510 0.542 0.582 0.628 0.671
30 0.643 0.652 0.669 0.685 0.702 0.717 0.730 0.738
50 0.708 0.718 0.729 0.735 0.745 0.755 0.761 0.766

Figure 11. Probability of reconstruction error for scale-free networks with m0 = 2, m0 = 3, m0 = 4, N = 30,
and M = 10.

Table 6. Probability of reconstruction error for scale-free networks with m0 = 2, m0 = 3, m0 = 4, N = 30,
and M = 10.

mo/f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 0.455 0.471 0.487 0.510 0.542 0.582 0.628 0.671
3 0.468 0.483 0.503 0.528 0.559 0.597 0.636 0.679
4 0.508 0.522 0.530 0.558 0.582 0.612 0.646 0.689

5. Conclusions

In this paper, we proposed a new method that efficiently reconstructs the topology of the damaged
complex networks based on NN technique. To the best of our knowledge, our proposed method is
the first known attempt in the literature to recover the network topology after the network has been
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damaged and also the first known application of the NN technique for complex network optimization.
The main purpose of our work was to design a NN solution based on known damaged network
topology for accurate reconstruction. The proposed reconstruction method was evaluated based
on the probability of reconstruction error in small-world network and scale-free network models.
From simulation results, the proposed method was able to reconstruct around 70% of the network
topology for 10% node failures for small-world networks and around 50% of the network topology
for 10% node failures for scale-free networks. Important topics that need to be considered in the
future work is to develop a new link list that can represent both unidirectional and bidirectional link
information and various performance metric needs to be developed that can be used to provide deeper
understanding on the network reconstruction performance.
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Abstract: Mountain protected areas (PAs) aim to preserve vulnerable environments and at the same
time encourage numerous outdoor leisure activities. Understanding the way people use natural
environments is crucial to balance the needs of visitors and site capacities. This study aims to develop
an approach to evaluate the structure and use of designated skiing zones in PAs combining Global
Positioning System (GPS) tracking and analytical methods based on graph theory. The study is
based on empirical data (n = 609 GPS tracks of backcountry skiers) collected in Tatra National Park
(TNP), Poland. The physical structure of the entire skiing zones system has been simplified into
a graph structure (structural network; undirected graph). In a second step, the actual use of the
area by skiers (functional network; directed graph) was analyzed using a graph-theoretic approach.
Network coherence (connectivity indices: β, γ, α), movement directions at path segments, and
relative importance of network nodes (node centrality measures: degree, betweenness, closeness,
and proximity prestige) were calculated. The system of designated backcountry skiing zones was
not evenly used by the visitors. Therefore, the calculated parameters differ significantly between
the structural and the functional network. In particular, measures related to the actually used trails
are of high importance from the management point of view. Information about the most important
node locations can be used for planning sign-posts, on-site maps, interpretative boards, or other
tourist infrastructure.

Keywords: protected areas; tourism; tourist mobility; backcountry skiing; outdoor recreation; GPS
tracking; graph theory; graph connectivity; centrality measures; network analysis; network

1. Introduction

Protected areas (PAs) play a crucial role in the conservation of vulnerable mountain ecosystems [1].
Depending on the nature conservation regime, they may also have social functions, such as
provisioning space for recreation, research, and educational purposes [2]. Mountain PAs frequently
serve as attractive tourist destinations, where multifunctional use requires effective management
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strategies [3]. Therefore, understanding the way people use natural environments is crucial to balance
the needs of visitors and site capacities [4,5].

Network science methods, largely based on graph theory, are gaining in importance in social,
physical, medical, and many other disciplines [6,7]. In recent years an increased interest in network
analytics can also be observed within tourism domain [8,9]. This analytical approach contributes to
a better understanding of the structure and the behavior of the whole system, where various types
of relationships (social, economic, operational, informational, spatial, etc.) may be investigated [9].
Mobility of tourists is one example of application context, where empirical travel data fits well into the
graph theoretic analytical framework [9,10].

Spatial behavior of visitors in outdoor leisure areas can be documented in many different ways [11].
Data on tourists’ mobility can be obtained using traditional survey methods [12,13], trip diaries, or
map sketches [14], and since early 2000 also via automatic tracking devices [15,16]. Within the last two
decades, Global Positioning System (GPS) tracking has become a well-established method to collect
the exact movement trajectories of visitors [15,17–20]. The raw data comprises series of recorded
trackpoints (pairs of geographic positions and associated time stamps), termed GPS tracks. GPS
tracking data is typically used to analyze route parameters of individual visitors or a collective
distribution of visitors in the study area [21–23]. Studies on outdoor recreation in protected areas
often use the Geographic Information Systems (GIS) framework for conducting spatial analysis [22].
However, dedicated network analytic approaches investigating the structural and functional properties
of recreational/tourism systems are underrepresented in comparison to other analysis methods [9].

TNP is known for its outstanding alpine landscape and is characterized by high biodiversity [24].
Recent rapid development of a new winter recreational activity—backcountry skiing—fosters new
management challenges, related to an effective visitor guidance within the protected area [25].
Therefore, this study aims to develop a methodology to evaluate the structure and use of newly
designated skiing zones in TNP combining GPS tracking of visitors and analytical methods based on
graph theory.

2. Materials and Methods

2.1. Study Area

The study is based on empirical data (n = 609 GPS tracks of backcountry skiers) collected in
the western part of Tatra National Park (TNP), Poland. The Tatra Mountains are situated in Central
Eastern Europe and are the highest mountain range of the Carpathians. The national border between
Poland and Slovakia runs along the main mountain ridge, dividing the protected area into two
neighboring national parks. The Polish part of TNP covers an area of 21,197 ha [24], where recreational
activities, due to nature conservation objectives, are restricted to designated zones [26]. Due to the
rapid development of backcountry skiing in the Tatras within the last decade, TNP management
has recently introduced a system of designated skiing zones (Figure 1), covering 13% of the TNP
area [25]. Backcountry skiers can move up or down over snow-covered terrain without the necessity
of using ski lifts nor prepared ski pistes. Ascents are possible with special skins fixed on visitors’ skis.
The backcountry skiing traffic within TNP is estimated at 10,000 visits per winter season [27]. Most of
the visitor entries (approximately 70%) concentrate at Kuźnice trailhead, whereas other entry points,
such as Chochołowska, Kościeliska, and Białka Valleys, are less frequently used [27].
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Figure 1. Characteristics of the study area: designated backcountry skiing zones within the border of
Tatra National Park (TNP), Poland.

2.2. Data

2.2.1. Inventory of Skiing Zones System

The exact delineation of skiing zones system was obtained from the TNP management and stored
within the Geographic Information Systems (GIS) as a vector dataset (Supplementary Materials Data S2.
Ski touring area maps).

2.2.2. Mobility Data of Backcountry Skiers

In order to collect trip itineraries of backcountry skiers in TNP, the on-site GPS tracking method
was applied. One hundred and three GPS loggers (Hollux M-1000C) were distributed by trained staff
at major TNP entry points during sampling days throughout the winter seasons of 2012 and 2013.
The GPS loggers were distributed simultaneously during the sampling days at three chosen entrances
(Kuznice, Koscieliska, Chocholowska). The choice of these points was based on the pilot study [25].
The chosen entrances provide access for the ski tourers to central and western parts of the park.
Each ski tourer entering TNP (at the chosen entry points) was approached and asked to carry a GPS
device for the duration of his or her trip. The response rate was 87% and the total sample size reached
609 backcountry skiers participating in the study. Thirty-six GPS tracks were partially incomplete
due to low battery level and/or device failure, and were therefore excluded from further analysis.
Therefore, 573 complete tracks were used as a basis for final calculations (Supplementary Materials
Data S1. Tracks).

2.3. Data Analysis

The general procedure of data analysis consisted of the following steps:

• GPS data pre-processing
• Creation of the structural network (undirected graph)
• Creation of the functional network (directed graph)
• Quantification of network connectivity indices
• Calculation of centrality measures of network nodes.

The calculations were made in MATLAB (version R2012b) [28] and Pajek software (version 5.01) [29].
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2.3.1. Pre-Processing of GPS Data

GPS data was stored in GPX data format and pre-processed. It was necessary to clear some
spatial artefacts caused by GPS signal reflection observed while starting up a device or location in
unsuitable terrain conditions (e.g., deep mountain valleys, indoor usage of GPS logger in mountain
huts or cable car station). GPS loggers were configured to record trackpoints every 50 meters (or every
120 seconds in the absence of movement). Taking into account these conditions, all anomalous data
(e.g., displacements > 200 m) were identified and quantified. GPS tracks having signal errors above
10% were not considered for further analysis. However, tracks presenting smaller levels of error (<10%)
were corrected using 1-D median filtering (medfilt1 Matlab function). In addition, the first five records
from each GPS track were deleted due to the instability of the GPS device immediately after activation.

2.3.2. Creating the Structural Network

The physical structure of the entire skiing zones system was simplified into a graph structure
(structural network; undirected graph). In order to build this structure, we used the geometric planes of
the ski area in ESRI Shapefile (Supplementary Materials Date S2. Ski touring area maps). Trailheads as
well as crossing points of skiing areas were used as nodes of the constructed network (all of them were
labeled as a function of their west-east location, from 1 to 93). The node number 1 corresponded to the
location situated most west, while number 93 referred to the node located most east. The ski paths
between nodes were converted into network links (edges of the graph). In this way, the structure of
the graph consisted of 93 vertices and 133 edges. The graph structure was saved as plaintext in Pajek
file format for further analysis. Figures 2 and 3 present the resulting graph, based on the network
of designated skiing zones in TNP. The height of the nodes (Figure 3) was calculated using SRTM
Elevation Data [30].

Figure 2. Translation of the designated backcountry skiing areas system into a structural network
(undirected graph). The geographic coordinates (longitude and latitude) were defined in WGS84
spatial reference system and are expressed in decimal degrees.
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Figure 3. Three-dimensional visualization of the structural skiing network (undirected graph).
The geographic coordinates (longitude and latitude) were defined in WGS84 spatial reference system
and are expressed in decimal degrees. Altitude is expressed in meters above sea level (m.a.s.l.).
The elevation data was used only for visualization purposes.

2.3.3. Creating the Functional Network

The actual use of the area by skiers (GPS records of visitors’ trip itineraries) was assigned to the
network (functional network; directed graph). In order to allocate visits to specific node locations,
a buffer of 200 m for every node was defined. However, after discussion with the experts of the
national park, the buffers of 21 nodes were additionally adapted to specific local conditions (the buffer
radius was reduced or extended). Intersections of GPS trackpoints with node buffer zones were
used to establish a relation between visitor routes and the network. Figure 4 shows an example of
a recorded skiing route (a) and its trip assignment to the network (b). Assignment of all GPS tracks
resulted in 2420 arcs, linking network nodes. This data was stored as plaintext and analyzed with
Pajek software (version 5.01) [31]. The programming code utilized to build the network can be found
in the Supplementary Materials Code S3.

(a) (b)

Figure 4. Example of a skiing route. (a) Recorded GPS track of a TNP visitor; (b) representation of
the corresponding directed graph G = (V,E) where the vertices are V = {44, . . . ,66} and the edges are
E = {(50, 49), (49, 51), (51, 59), (59,62), (62, 61), (61, 66), (66, 61), (61,54), (54, 53), (53, 58), (58, 60), (60, 54),
(54, 48), (48, 44), (44, 45), (45, 49), (49, 50)}. In the final graph the loop, (66, 66) was deleted, since a
property of directed graphs is vi �= vj.
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2.3.4. Calculating Network Connectivity Indices

Network connectivity indices quantify the coherence of a network. In order to compare the
coherence of the entire structural network and the actually used one (functional network), the following
measures were calculated:

• Kansky index β = e
v where e is the number of edges, v is the number of vertices (the higher the

value of β, the more coherent the network);
• Kansky index γ = e/(3 ∗ (v − 2)), defining the ratio of the existing number of edges (e) to the

maximum possible number of edges resulting from the number of vertices (v). The γ value ranges
from 0 to 1, where the value of 1 indicates a completely connected network.

• Kansky index α = μ
2v−5 , where μ is a cyclomatic measure calculated as μ = e − v + p, where p is

the number of isolated subgraphs. An α value of 1 indicates a completely meshed network, and 0
indicates a very simple network.

A more detailed description of the indices can be found in Rodrigue et al. [10].

2.3.5. Calculating Node Centrality Measures

In order to investigate the relative importance of nodes within the system of designated skiing
zones, the following centrality measures were computed: degree, input degree, output degree, degree
all, weighted input degree, weighted output degree, weighted degree all, closeness, betweenness, and
proximity prestige. The calculations were made for both the structural and the functional network,
whereas in functional network the nodes without activity were not taken into account. Table 1 gives an
overview of the calculated centrality measures.

Table 1. Overview of node centrality measures used in the study.

Centrality Measure Description Mathematical Equation

Input degree Number of edges entering to vertex i. d+i = ∑j∈G xij
xij signal the position between node i and node j.

Output degree Number of edges leaving vertex i. d−i = ∑
j∈G

xij

Degree (all) Total number of edges connected to the vertex i. Di = d+ + d−

Closeness Inverse sum of distances from a given vertex to
all other vertices in the graph.

Ci = ∑j �=i∈G (d(i, j))−1

where d(i, j) is a topological distance between
vertices i and j.

Betweenness A number of times a vertex is crossed by
shortest paths in the graph.

B(i) = ∑j < k gjk(i)/gjk
where gjk is the number of geodesics connecting
jk, and gjk(i) is the number that geodesics i is on.

Proximity prestige

Expresses the influence domain of a vertex by
the average distance from all vertices in the

influence domain. Pp value of 0 indicates that
node i is unreachable; whereas Pp = 1 if all

nodes are directly connected to node i.

Ppi =
Ii

g−1 ∑
j �=i∈G

(d(i, j)/Ii)−1

Equations based on References [10,32].

3. Results

3.1. General Characteristics of the Structural and Functional Networks

Figure 5 depicts the overall structure of the skiing network. The constructed structural network
consisted of 93 nodes connected by 133 links. Additionally, one loop (node 46), which was not included
in the link quantification, can be also observed. The average degree was 2.86. The longest network
distance was established between nodes 1 and 83 (with a total of 20 steps between both), while the
number of unreachable pairs was 184.
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To build the functional network, all previously defined 93 nodes were considered. However, the
collected GPS data indicated that 30 nodes were not visited. The functional network had 175 links
connecting 63 nodes. The average degree of the connected network was 3.76, and the longest distance
occurred between the nodes 1 and 17 (with 17 steps between them). Figure 6 illustrates the functional
skiing network. Both network datasets were stored in Pajek software (Supplementary Materials File S4).

 

Figure 5. Structural network (undirected graph) depicting the designated backcountry skiing system
in TNP. The network is composed of 93 nodes and 133 links.

 

Figure 6. Functional network (directed graph) of the designated backcountry skiing system; graph
based on the recorded visitors’ trip itineraries. Arrows indicate movement direction; color scale (grey
scale) illustrates the intensity of skiing traffic. A darker color means higher use intensity.

3.2. Network Coherence (Connectivity Indices)

The existing network of designated skiing zones had moderate connectivity (β = 1.43; γ = 0.49; α = 0.23).
Using the network systems typology introduced by Taaffe and Gauthier [33], the investigated network
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can be classified as a lattice network type. Lattice networks are characterized by a moderate density of
edges relative to the number of nodes [33].

The actual recreational use concentrated only on a part of the designated skiing network.
Taking into account all 93 nodes of the structural network and the documented visitors’ movement
between nodes, we observed that the connectivity indices of the functional network were slightly
lower (β = 1.25; γ = 0.42; α = 0.13). Although 30 out of the total 93 nodes (22%) were not visited
at all, several additional connections between node locations were identified outside of the officially
designated skiing network. This can be confirmed by the additional calculation of connectivity indices
for the connected graph only (63 interconnected nodes used by visitors). These results show higher
connectivity in comparison to the structural network (β = 1.84; γ = 0.63; α = 0.54).

3.3. Relative Importance of Network Nodes (Centrality Measures)

The results show a large heterogeneity of node centrality measures within the investigated
network. Each of the applied parameters generated slightly different outputs, indicating the relative
importance of nodes within the skiing network of TNP.

All nodes’ centrality values, calculated separately for the structural and the functional networks,
can be found in Supplementary Materials Table S1. Figure 7 shows a graphic representation of
calculated centrality measures in both networks. Results of the 10 most important nodes, considering
“all degree” values, for both networks (structural and functional) are listed in Tables 2 and 3.

The degree values were obtained for a structural network ranging from 1 to 6, and the average was
2.86. Nodes located near the northern border of the study area served as entrance locations and usually
had very low degree values. Low degree values were also a typical feature of distant mountain peaks.
The most interconnected nodes were located in the central part of the study area; the node with the
highest degree was located in the Valley of Five Lakes. Weighted degree measures, calculated for the
functional network, reflected the actual intensity of use at particular node locations. It can be seen that
the majority of skiing traffic concentrates in the Kuznice-Kasprowy Wierch area. The highest weighted
degree values were observed at nodes 45 and 49 (located lower in the valley, close to the Kuznice
entrance point). Other nodes were less frequently used (low weighted degree values). The directions of
use were balanced at most node locations; the disproportion of in and out degree values was observed
at some trailheads, such as node 49 (Kuznice) and the neighboring node 45.

Closeness centrality is based on the network distance between nodes. In the structural network,
nodes located in the central part of the study area had higher closeness measures, whereas nodes
placed in the most western part of the park had the lowest closeness measures. Closeness calculations
made for the functional network exposed the importance of the Kuznice-Kasprowy Wierch area.
Nodes located in the western and the eastern parts of the study area were considered less important.
Proximity prestige measures calculated for the directed network (functional network) showed equal
the closeness values.

Table 2. Structural network node centrality measures of the 10 nodes with the highest “all
degree” values.

Node Number Degree Closeness Betweenness

79 6 0.14 0.14
24 5 0.15 0.08
48 5 0.18 0.43
61 5 0.17 0.30
69 5 0.14 0.02
16 4 0.11 0.12
18 4 0.12 0.17
27 4 0.15 0.09
44 4 0.17 0.09
45 4 0.15 0.14
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Table 3. Functional network node centrality and prestige measures of the 10 nodes with the highest
“weighted all degree” values.

Node Number
Weighted

Input Degree
Weighted Output

Degree
Weighted All

Degree
Closeness Betweenness

Proximity
Prestige

45 350 532 882 0.19 0.08 0.19
49 351 149 500 0.20 0.13 0.20
48 197 194 391 0.19 0.06 0.19
44 152 149 301 0.18 0.01 0.17
61 109 90 199 0.17 0.10 0.17
62 93 100 193 0.15 0.05 0.15
41 86 84 170 0.17 0.04 0.17
54 82 88 170 0.17 0.06 0.17
7 79 78 157 0.12 0.07 0.12
51 56 83 139 0.17 0.02 0.17

(a) (b)

Figure 7. Node centrality measures in the structural (a) and functional networks (b) of designated
backcountry skiing zones in TNP.
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Betweenness centrality provides information about the number of geodesics in the network
crossing particular nodes. In the structural network, the highest betweenness measures were observed
at node 48 (the summit of Kasprowy Wierch) and at the beginning of the Koscieliska Valley, as well as
at several nodes located along the main ridge of the Tatra Mountains. The functional network exposed
the importance of the Kuznice entrance (node 49), Ornak mountain hut (node 16), and Czerwone
Wierchy peaks (nodes 30 and 33).

4. Discussion and Conclusions

4.1. General Meaning of the Findings

The main contribution of the study is the application of graph theory to analyze a recreational
system considering not only the physical structure of the environment, but also its actual use
(visitor mobility data obtained via GPS tracking).

Typically, GPS tracks are analyzed within Geographic Information Systems (GIS) and focus
on calculations of (track)point densities illustrating the intensity of recreational use [17,20,22,23],
intersections with other thematic layers such as nature protection zones and wildlife habitats [20],
or movement parameters of individual visitors [21,23,34]. Also, recent approaches of visual analytics
dedicated to movement data, such as V-analytics [35,36], have gained importance and are frequently
used in the field of spatial planning and transportation [35,37]. Typically, GPS tracks analyzed within
a GIS framework are not constrained to network structures [35], although network analysis is an
important approach used in geoinformatics [38].

Network analytic tools, although highly recognized in other disciplines such as sociology,
economics, transportation, computer science, and medicine [6], are still underrepresented in the
domain of recreation research [39]. Most of the studies related to outdoor recreation using graph
theoretic analysis methods focus on the physical structures of recreation systems [40–42]. Even in
the tourism sector (an important branch of the world economy), scientists underline the necessity for
tourism scholars to refine and improve their analysis methods and tools, which also refers to network
analytics [9].

Our study builds upon our previous work [39], applying graph theoretical approach to analyze
the structure and function of a recreational system, using as an example a network of designated
backcountry skiing zones.

4.2. Comparison of the Structural and Functional Networks in the Study Area

Our results show that the existing network of designated skiing zones is not evenly used by
backcountry skiers. The main objective of the structure created by the park management is to minimize
visitors’ impact on nature [26]. However, skiers’ major motivation is to reach an attractive peak and
descent [43]. Although general connectivity indices of the structural and functional networks remained
similar, a closer look at the spatial distribution of the use intensity (number of visits per network link or
weighted degree measures at node locations) revealed large heterogeneity in network use. The region
of Kuznice-Kasprowy Wierch turned out to be the most heavily used area, whereas other locations
were less frequently visited.

When we analyzed the centrality measures of network nodes in depth, some remarkable
differences were observed. The largest differences refer to degree and weighted degree measures as
they directly reflect the intensity of tourist traffic. A high degree centrality value in the structural
network (the existence of many skiing routes around a specified node) does not always imply higher
use intensity at the specified location. For instance, a well-connected node (79) is located in the distant
Valley of Five Lakes at a higher elevation. Therefore, although it has a high degree value, it is not that
frequently used. In contrary, nodes 49 and 45, located close to the most popular trailhead, Kuznice,
have medium degree values in the structural network, but attract most of the skiing visits in the park.
For both networks only one node (48—Kasprowy Wierch peak) was similarly important, which is the
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central point with the top cable car station. It can be reached by ski-tourers from many directions, even
in bad weather conditions with a high level of avalanche risk. Moreover, this peak (Kasprowy Wierch)
is also surrounded by the groomed pistes for downhill skiing. These factors explain the high popularity
of this node location.

The closeness parameter is generally similar in the structural and functional networks.
However, there are some nodes that differ in use. Nodes 36 and 53 have a high closeness value
in the structural network. These two points are also important in the functional network, as they are
usually ski tour destinations and, after reaching them, the skiers turn back and descend. It is also
remarkable that nodes with low closeness values were generally less frequently used, or even not
visited at all.

The betweenness values showed us that in the structural network the nodes 48, 20, and 19 have
very high values, while in the functional network the maximum intermediation values are in nodes 33,
49, 30, and 16. The areas close to the peaks are those used by skiers as transit areas (e.g., nodes: 30, 33),
while the areas close to the forest or to the entrances (e.g., nodes: 19, 20) are the most important points
according to the structure.

The comparison of the structural and functional properties of the skiing network showed
that recreational use only partly depends on the network structure (e.g., distribution of use in the
Kuznice-Kasprowy Wierch region). The overall popularity of specific network locations is possibly
caused by additional external factors, such as accessibility from tourist resorts or the difficulty of ski
tours related to local terrain and snow conditions [25]. A further reason for strong differences between
the two mentioned networks is the origin of the structural network, which was primarily designed for
summer hiking [26]. The winter network was created only recently [25], and according to the legal
regulations it was obligatory to base it on the summer hiking trial network [44].

4.3. Limitations of the Proposed Methodology

The main strength of this study is a parallel analysis of the structural and functional properties of
the system of designated skiing zones in TNP. Collected mobility data (GPS tracks) were assigned to
the existing network structure and several measures characterizing the overall network as well as the
relative importance of node locations were investigated in order to better understand how the park
space is being used by backcountry skiers.

Nevertheless, there is still room for methodological improvements. One of the limitations of
this study is related to the use of GPS loggers to collect the mobility data of backcountry skiers.
It is possible that skiers may have changed their behaviors by feeling observed. This problem is
a subject of discussion in recreation monitoring studies using GPS tracking to document visitor
behavior in protected areas [19,23,39]. However, so far there is no empirical confirmation of this
thesis. Moreover, the accuracy of GPS records can be influenced by mountain terrain conditions
(e.g., lower accuracy in narrow valleys, forested areas) [45], which is another limitation of this data
collection technique.

Another discussion point refers to the sampling strategy used during the distribution of GPS
loggers. GPS devices were distributed simultaneously at major trailheads of the national park by
trained staff, which required a demanding logistic strategy and was challenging in winter conditions.
Therefore, the study concentrated on the most important entrance locations and some minor trailheads
were disregarded. We analyzed only the three main entry points, excluding the Bialka Valley due to
its lower importance from the management perspective and high cost of data collection campaign
(far away from Zakopane). In the future this entrance might be a case of its own for researching
backcountry skiing traffic accessing the highest peaks of the Tatra Mountains.

As a consequence, their surroundings were underrepresented in the overall spatial distribution
of skiing traffic, which possibly could affect the calculations of the functional network measures.
In order to overcome these limitations, in the future, technological advances should enable anonymous
tracking of visitors’ electronic devices (such as mobile phones) at desirable resolutions [15,46,47].
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Nevertheless, so far systematic tracking via distributed GPS loggers is one of the most reliable methods
used for visitor monitoring in outdoor leisure settings. It is also worth mentioning that the total
number of backcountry skiers entering TNP at the investigated trailheads [27] corresponds with the
proportions of the collected GPS tracks.

Backcountry skiing is an example of a semi-open recreational system [22], where people can move
along designated trails, but they also can leave a marked track and move freely over snow-covered
terrain. Assigning recorded visitors’ trip itineraries to a network structure is very successful in cases
when visitors follow designated trails. It is also possible when visitors are crossing network nodes and
are moving partly off-trail (the presence at particular node locations enables establishing a network
link). Yet, the most challenging situation from the network analytics perspective occurs when a
visitor completely leaves the system of designated skiing zones and moves freely out of the skiing
network. Such type of spatial behavior cannot be documented with the methodology proposed in this
paper. Extending the number of network nodes, including all potential off-trail destinations (such as
unconnected mountain passes or peaks) in the network could possibly overcome this problem and
will be considered in future studies. Visitors who do not cross the specified node locations cause
“untightens” of the investigated network system. This problem is particularly visible by comparing
the directed degree measures of network nodes (in-degree and out-degree). In transit locations, those
values should be practically the same, but in the presented results in- and out-degree values sometimes
differed from each other. Large differences in directed degree measures were observed in nodes 49 and
45. This fact is caused mainly by another reason: the data pre-processing algorithm deleting the first
five records of each track, which were mainly located around the entrance node 49 (Kuznice). In this
way, the network link “49, 45” was not considered in several skiing itineraries.

From the network analytics point of view, we only calculated well-established parameters
such as network connectivity (β, γ, α indices) and basic node centrality measures (degree, closeness,
betweenness, and proximity prestige). Future work could use other calculations [6,8,10,29,32,48] that
could extend our analysis. Next to the topological properties of the network, geographic dimension
could be additionally considered by using spatial graphs [49]. In this way metric distances between
nodes and terrain steepness could be included in distance calculations and accessibility measures.

4.4. Meaning of the Findings for Visitor Management in Protected Areas

The presented results deliver comprehensive information about the structural properties of the
designated skiing network in TNP and its actual use over the winter season. Outcomes of the study
can be practically used for evaluating the newly introduced regulations concerning backcountry skiing
in this protected area and for supporting management decisions related to the strategic allocation of
infrastructure and provisioning purposive tourist information.

Although designated skiing zones cover 13% of the total park area, most of the skiing traffic
concentrated in one particular region: Kuznice-Kasprowy Wierch. Basically, the management strategy
of TNP requires some improvements in the guidance of winter visitors. The first important aspect is
the lack of signage dedicated to backcountry skiers in many strategic locations, such as the Kuznice
trailhead and its surroundings, as well as the Kasprowy Wierch peak. The presented results indicated
node locations with the highest centrality measures (especially those calculated for the functional
network) which could be used as a background for further decisions concerning the locations of
information boards and signposts in TNP. Node locations with high betweenness values should be
especially carefully investigated, as their strategic position enables directing visitor flow to other
regions of the national park. Experiences from other protected areas underline the importance of
signposting for effective visitor guidance in protected areas [50,51]. It would also be desirable to
promote certain backcountry skiing destinations through written information (e.g., maps, informative
leaflets), participative events, and discussions in order to avoid skiing traffic in the most vulnerable
nature conservation zones [50].
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We conclude that that the newly designated system of backcountry skiing zones, largely based on
the summer hiking trail network and the existing groomed pistes of downhill skiing, needs detailed
functional analysis and partial adaptation in order to conform with winter recreation requirements in
addition to nature protection objectives. The presented study based on graph theory is a first step to
evaluate the whole winter recreation system, considering not only its structural properties but also
its function.

Supplementary Materials: The following will be available online at www.mdpi.com/2073-8994/9/12/317/s1,
Data: S1. Maps: Tracks; S2. Ski touring area maps; Code: S3. Code MATLAB; Files: S4. Pajek; Tables S1.
Centrality parameters.
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Abstract: The location of resources in a network satisfying some optimization property is a classical
combinatorial problem that can be modeled and solved by using graphs. Key tools in this problem
are the domination-type properties, which have been defined and widely studied in different types
of graph models, such as undirected and directed graphs, finite and infinite graphs, simple graphs
and hypergraphs. When the required optimization property is that every node of the network must
have access to exactly one node with the desired resource, the appropriate models are the efficient
dominating sets. However, the existence of these vertex sets is not guaranteed in every graph,
so relaxing some conditions is necessary to ensure the existence of some kind of dominating sets,
as efficient as possible, in a larger number of graphs. In this paper, we study independent [1, 2]-sets,
a generalization of efficient dominating sets defined by Chellali et al., in the case of cylindrical
networks. It is known that efficient dominating sets exist in very special cases of cylinders, but the
particular symmetry of these graphs will allow us to provide regular patterns that guarantee the
existence of independent [1, 2]-sets in every cylinder, except in one single case, and to compute exact
values of the optimal parameter, the independent [1, 2]-number, in cylinders of selected sizes.

Keywords: cartesian product of graphs; efficient domination; tropical matrix algebra

MSC: 05C69; 05C85

1. Introduction

Graphs have been used, since their informal beginnings, as a model to represent complex networks,
to describe different properties within them and to find solutions to diverse problems, such as optimal
routes or the best location of resources. Formally, a finite graph is a pair G = (V, E), where V is a
non-empty finite set, whose elements are called vertices, and E ⊆ V × V is a set of unordered pairs
of vertices called edges. If uv is an edge, we say that u and v are neighbors. The distance between
two vertices u and v in a graph is the number of edges in a shortest path connecting them and it is
denoted by d(u, v). The open neighborhood of a vertex u in a graph G is N(u) = {v ∈ V(G) : uv ∈ E(G)}
and the closed neighborhood is N[u] = N(u) ∪ {u}. The degree of a vertex is the cardinality of its
open neighborhood.

Domination-type properties in graphs, formally defined in the late 1950s [1] and early 1960s [2],
are a good example of how these models can help to represent real world problems and to provide
optimal solutions to them. A dominating set in a graph G is a vertex set S such that every vertex
not in S has at least one neighbor in S. This classical definition provides a model of resource
location in a network, in such a way that every node of the network has access to such a resource.
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Symmetry 2018, 10, 24

Once this model is formulated, it is an immediate question to find the best possible distribution,
which results in the definition of the domination number γ(G) of a graph G, which is the minimum
cardinality of a dominating set of G. An extensive compilation of results on this subject can be found
in [3], as well as some of its applications such as the planning of school bus routes, the design of
computer communication networks, the location of broadcasting stations, social networks modeling
and land surveying.

Following this classic pattern, a large number of variants have been defined, which pay attention
to different aspects. For instance, k-domination requests at least k neighbors in S for the vertices not
in the k-dominating set S and locating-domination asks for N(u) ∩ S �= N(v) ∩ S for every pair of
vertices u, v ∈ V(G) \ S. Another interesting variation consists of considering dominating sets with
additional properties, such as connectedness or independence. A vertex set is connected if every two
vertices in it can be joined by a sequence of edges consisting of vertices in the set. This model is useful
to distribute resources in a network that need to be connected to each other. The opposite point of
view is independence. A vertex set is independent if no pair of vertices in it are neighbors. Independent
dominating sets have been widely studied, as they provide a model of resource location in cases where
such resources should be placed far away from each other.

The most precise way to dominate a graph is the so-called efficient domination. A vertex set S is an
efficient dominating set [4], or perfect code [5,6], if S is independent and every vertex not in S has a unique
neighbor in S. The idea behind this definition is keeping the domination of each vertex to the minimum,
so that vertices in S are dominated just by themselves, and vertices not in S are dominated just once by
vertices in S. Clearly, this definition provides a desirable form of domination, which becomes even
more interesting with the repeatedly rediscovered result that ensures every efficient dominating set
is a minimum dominating set [3]. However, the main problem with efficient dominating sets is that
their existence is not guaranteed in every graph. There are well-known graph families that have no
efficient dominating sets and, in these cases, a number of relaxations of conditions are possible in order
to obtain a dominating set as efficient as possible. In this paper, we focus on one of these relaxed forms,
called independent [1, 2]-sets and defined in [7]. The lower level of requirement of these sets consists of
allowing at most two neighbors in the set, for vertices not in it, while keeping independence. Although
existence is not guaranteed either in this case, the lesser requirement leads one to think that the family
of graphs that possess such sets is larger than in the case of efficient domination. The independent
[1, 2]-number of a graph G was also defined in [7] as the minimum cardinality of an independent
[1, 2]-set, if such sets exist in G, and it is denoted by i[1,2](G). The following general relationship among
the three mentioned domination parameters can easily be deduced from definitions. Every graph G
satisfies the first inequality, while the last one is true for graphs admitting an independent [1, 2]-set.

γ(G) ≤ i(G) ≤ i[1,2](G) (1)

Given two graphs, G and H, the Cartesian product of them is the graph G�H with vertex set
V(G�H) = V(G)× V(H) and edge set defined as follows: (u1, v1)(u2, v2) ∈ E(G�H) if and only if
u1u2 ∈ E(G), v1 = v2 or u1 = u2, v1v2 ∈ E(H). Cartesian product graphs play an interesting role in
the domination-type properties, due in part to the well-known Vizing’s Conjecture [8], which states
γ(G�H) ≥ γ(G)γ(H) for every two graphs G and H. It was formulated in 1968 and is still open.

We study the particular case of cylindrical networks Cm�Pn, which are the Cartesian product of
a cycle Cm and a path Pn, and our interest comes from the known fact that they have no efficient
dominating set, except in one particular case [9]. On the other hand, studying the existence of
independent [1, 2]-sets in cylinders was proposed as an open problem in [7]. Unlike in the case
of grids Pm�Pn, the Cartesian product of two paths, where the domination number is completely
computed [10], the domination number of the cylinder is unknown in the general case, while formulas
for γ(Cm�Pn) have recently been obtained for m ≤ 11 [11] and m ≤ 30 [12]. This makes cylinders a
graph family of interest for domination-type properties, in which there is still much to study.
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The rest of the paper is organized as follows. In Section 2, we prove that all cylinders have an
independent [1, 2]-set, except the single case of the Cartesian product of the cycle with 5 vertices
and the path with 2 vertices, which has no such set. We use the symmetry of the cylindrical graphs
to provide regular models of independent [1, 2]-sets that, in addition, will give an upper bound for
the independent [1, 2]-number. We will also prove that this upper bound is indeed the exact value,
in some small cases. In Section 3, we present a modification of a dynamic programming algorithm,
originally developed for computing the domination number of grids, to provide information about
the independent [1, 2]-number in cylinders of selected sizes. Depending on the size of the cylinder,
this modified algorithm computes the exact value of the parameter or just an upper bound for it. In the
latter case we combine these results with an appropriate lower bound, in order to obtain the desired
exact value. Finally, in Sections 4 and 5 we present and discuss the experimental results obtained with
the above mentioned algorithm. All graphs that appear in this paper are finite, simple and undirected.
For undefined general concepts of graph theory, we refer to [13].

2. Dominating a Cylinder as Efficiently as Possible

We devote this section to studying the existence of independent [1, 2]-sets in cylinders of any size.
As we mentioned before, a cylinder Cm�Pn is the Cartesian product of a cycle Cm with m ≥ 3 vertices
and a path Pn with n ≥ 2 vertices. We will not consider the smallest case Cm�P1 = Cm because
all vertices in a cycle have degree two, so that every independent dominating set is trivially an
independent [1, 2]-set.

We present some regular patterns that provide independent [1, 2]-sets in every cylinder, except in
the case C5�P2, where no such sets exist. The key point of this graph family is the particular symmetry
of cylinders, which allows one to replicate small pieces in order to cover the whole graph.

The interest in obtaining independent [1, 2]-sets in cylinders lies in the known fact that just a
particular case of them have an efficient dominating set, as we recall in the following proposition.

Proposition 1. [9] The cylinder Cm�Pn has an efficient dominating set if and only if m ≡ 0 (mod 4) and
n = 2.

We begin our study about the behaviour of independent [1, 2]-sets in cylinders proving that C5�P2

has no such sets. This will eventually be the unique case of a cylinder failing this property.

Proposition 2. The cylinder C5�P2 has no independent [1, 2]-set.

Proof. Denote V(C5�P2) by {(ui, k) : 1 ≤ i ≤ 5, 1 ≤ k ≤ 2} and suppose on the contrary that
S ⊆ V(C5�P2) is an independent [1, 2]-set. Suppose that there exist at least two vertices in S sharing
the second coordinate. By the symmetry of the graph, we may assume that (ui, 1), (uj, 1) ∈ S.

Note that d((ui, 1), (uj, 1)) ≤ 2, so it must be d((ui, 1), (uj, 1)) = 2, because S is independent.
By symmetry, we may assume that ui = u1 and uj = u3. Then (u1, 2), (u2, 1), (u3, 2) /∈ S,
by independence, so (u2, 2) ∈ S in order to be dominated. However, this means that (u2, 1) has
three neighbors in S, which is not possible (see Figure 1). Therefore, if (ui, 1) ∈ S then (ui′ , 1) /∈ S
for every i′ �= i. In the same way, if (uj, 2) ∈ S then (uj′ , 2) /∈ S for every j′ �= j. Finally, |S| ≤ 2,
but 3 = γ(C5�P2) ≤ i[1,2](C5�P2), a contradiction.

(u2, 2)(u1, 2) (u3, 2)

(u2, 1)(u1, 1) (u3, 1)

Figure 1. C5�P2 has no independent [1, 2]-set.
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We now focus on the rest of the cylinders with n = 2, where we provide an example of an
independent [1, 2]-set in each size and we also obtain the exact value of the independent [1, 2]-number.

Proposition 3. Let m ≥ 3 be an integer. Then, the cylinder Cm�P2 has an independent [1, 2]-set if and only if
m �= 5. Moreover,

i[1,2](Cm�P2)) = i(Cm�P2) =

⎧⎨
⎩ �m

2 � if m ≡ 0, 3 (mod 4),

�m
2 �+ 1 if m ≡ 1, 2 (mod 4), m �= 5.

Proof. By Proposition 2, we know that C5�P2 has no independent [1, 2]-set. It is shown in [14] that
i(Cm�P2) = �m

2 �, if m ≡ 0, 3 (mod 4), and i(Cm�P2) = �m
2 � + 1, if m ≡ 1, 2 (mod 4). For every

integer m �= 5 we will construct an independent [1, 2]-set, with i(Cm�P2) vertices, so we will obtain
that i[1,2](Cm�P2) ≤ i(Cm�P2).

If m ≡ 0 (mod 4), then m = 4r ≥ 4 and consider the set of black vertices in Figure 2a. The basic
block can be repeated r times to obtain an independent [1, 2]-set S of C4r�P2. Each basic block contains 2
vertices of S, so |S| = 2r = m

2 = �m
2 � = i(Cm�P2). Note that S is also an efficient dominating set.

Basic block Basic block

(a)

Tail block Rest

(b)

Tail block RestBasic block

(c)

Tail block Rest

(d)
Basic block Tail block Rest

(e)

Rest

(f)
Basic block Basic block Rest

(g)

Figure 2. Regular patterns for an independent [1, 2]-set (black vertices) in Cm�P2, m �= 5: (a) m ≡ 0
(mod 4), m ≥ 4; (b) m = 9; (c) m ≡ 1 (mod 4), m ≥ 13; (d) m = 6; (e) m ≡ 2 (mod 4), m ≥ 10;
(f) m = 3; (g) m ≡ 3 (mod 4), m ≥ 7.

If 5 < m ≡ 1 (mod 4), then m = 4r + 1 ≥ 9 and r ≥ 2. We repeat the basic block r − 2 times,
add the tail block and the rest (see Figure 2b for the case r = 2, m = 9 and Figure 2c for the general case
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r ≥ 3). We obtain an independent [1, 2]-set S (black vertices) with 2(r − 2) + 6 = 2r + 2 = m−1
2 + 2 =

m+1
2 + 1 = �m

2 �+ 1 = i(Cm�P2) vertices.
If m ≡ 2 (mod 4), then m = 4r + 2 ≥ 6 and r ≥ 1. We add r − 1 copies of the basic block, the tail

block for this case and the appropriate rest (see Figure 2d for the case r = 1, m = 6 and Figure 2e for
the general case r ≥ 2) and we obtain an independent [1, 2]-set with 2(r − 1) + 4 = 2r + 2 = m

2 + 1 =

�m
2 �+ 1 = i(Cm�P2) vertices.

If m ≡ 3 (mod 4), then m = 4r + 3 ≥ 3 and r ≥ 0. We construct the independent [1, 2]-set by
adding r copies of the basic block to the rest for this size, as is shown in Figure 2f if r = 0, m = 3 and in
Figure 2g if r ≥ 1. We obtain an independent [1, 2]-set with 2r + 2 = m+1

2 = �m
2 � = i(Cm�P2) vertices.

Once we have proven the existence of an independent [1, 2]-set in Cm�P2 (m �= 5), with size
i(Cm�P2), the desired equality now comes from Equation (1).

Remark 1. It is known that γ(Cm�P2) = �m
2 � + 1 if m ≡ 2 (mod 4) and γ(Cm�P2) = �m

2 � if m ≡ 3
(mod 4) [11]. In these cases, no efficient dominating set exists and Proposition 3 shows that minimum
independent [1, 2]-sets play a similar role to such sets, in the sense that they provide the most efficient way of
dominating these cylinders and they are at the same time minimum dominating sets.

In the same way, we obtained the value of i[1,2] in the case n is as small as possible, we now study
the case with the smallest cycle, that is C3�Pn. Here, we also supply an example of an independent
[1, 2]-set that proves to be minimum. Henceforth, we will say that Cm�Pn has m rows and n columns.
Each row is a path with n vertices and each column is a cycle with m vertices. We numerate rows from
top to bottom and we numerate columns from left to right.

Proposition 4. Let n ≥ 2 be an integer. Then the cylinder C3�Pn has an independent [1, 2]-set. Moreover,

i[1,2](C3�Pn) = i(C3�Pn) = n.

Proof. We just need to prove that C3�Pn has an independent [1, 2]-set with i(C3�Pn) elements.
In Figure 3, we show a regular pattern for such a set, for any value of n. Clearly, this set has n
elements, one in each column, so i[1,2](C3�Pn)) ≤ n = i(C3�Pn) (for the last equality see [14]).

Figure 3. Regular pattern for an independent [1, 2]-set in C3�Pn.

Remark 2. We would like to point out that the value of the domination number of cylinder C3�Pn that appears
in [12], γ(C3�Pn) = � 3n+1

3 � is not correct. The correct one is γ(C3�Pn) = � 3n
4 �+ 1 if n ≡ 0 (mod 4) and

γ(C3�Pn) = � 3n
4 � otherwise, and it can be found in [11]. In Figure 4a, we show a minimum dominating set

of C3�P8 with � 24
4 �+ 1 = 7 vertices and, in Figure 4b, a dominating set of C3�P9 with � 27

4 � = 7 vertices.
None of them are independent sets; indeed, γ(C3�Pn) = i(C3�Pn) if and only if 1 ≤ n ≤ 4.

(a) (b)

Figure 4. γ(C3�Pn) < i(C3�Pn), for every n ≥ 5: (a) γ(C3�P8) = 7; (b) γ(C3�P9) = 7.
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Once we have studied the cases with the smallest values of m and n, we now focus on the general
case. Our target is to prove that every cylinder Cm�Pn, with m ≥ 4 and n ≥ 3 has an independent
[1, 2]-set. To this end we construct regular patterns that can be replicated in order to cover all the
cases. These patterns will also provide an upper bound of i[1,2]. We think that it could be possible to
separately study some other small cases, for instance m = 4 or m = 5, to obtain the exact values of the
independent [1, 2]-number. However, we now prefer to provide general constructions, even if they are
not minimum ones, that can be used in cylinders of any size, in order to prove the general existence
of independent [1, 2]-sets. On the other hand, we will compute the exact value of i[1,2] for a number
of small cases in the following sections. We divide our study into two results, one for odd paths and
another for even paths. We begin with the odd case.

Theorem 1. Let m ≥ 4 be an integer and let n ≥ 3 be an odd integer. Then the cylinder Cm�Pn has an
independent [1, 2]-set. Moreover in this case

i[1,2](Cm�Pn) ≤
⌊m(n + 1)

4

⌋
.

Proof.

Case 1: m = 2r ≥ 4.

Using n = 2k + 1 ≥ 3, consider the pattern described in Figure 5, where set S consists of black
vertices. There are no vertices of S in the even columns. Regarding odd columns, we begin with
vertices in odd positions in the first one and then we alternate with vertices in even positions. Clearly
S is an independent [1, 2]-set in C2r�P2k+1. Moreover, in each odd column there are r vertices of S, so

|S| = r(k + 1) =
m
2
· n + 1

2
=

m(n + 1)
4

=
⌊m(n + 1)

4

⌋
.

1 2

3

4 2k-1 2k 2k+1

1

2

3

4

2r-1

2r

Figure 5. Regular pattern (black vertices) for an independent [1, 2]-set in C2r�P2k+1.

Case 2: m = 2r + 1 ≥ 5 and n = 4k + 1 ≥ 5.

Consider the pattern described in Figure 6. Here, we use a basic block with four columns,
which we repeat k times, and a rest with one column.

In the basic block, vertices in S in the first column are in even positions, in the second column
the unique vertex in S is the last one. In the third column, vertices in S are the ones in the odd
positions, except the first and the last ones. Finally, in column number four, we pick just the first vertex.
Therefore, there are r + 1 + (r − 1) + 1 = 2r + 1 vertices of S in each basic block (see Figure 6).

The last column contains r vertices in S which are in even positions (see Figure 6). Clearly, S is an
independent [1, 2]-set of C2r+1�P4k+1 and moreover,

|S| = (2r + 1)k + r = m · n − 1
4

+
m − 1

2
=

m(n + 1)− 2
4

=
⌊m(n + 1)

4

⌋
.
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3

1

2

4

2r

2r+1

5

6

2r-1

Basic block Basic block Rest

Figure 6. Regular pattern (black vertices) for an independent [1, 2]-set in C2r+1�P4k+1.

Case 3: m = 2r + 1 ≥ 5 and n = 4k + 3 ≥ 3.

We now take the pattern in Figure 7. Again, we repeat the same basic block as before k times, and
we add a rest with three columns. If k = 0 and n = 3, we just consider the rest with three columns.
In any case, the resulting set S is an independent [1, 2]-set of C2r+1�P4k+3. We know that a basic block
contains 2r + 1 vertices of S and note that the rest contains r + 1 + r vertices of S, therefore

|S| = (2r + 1)k + (2r + 1) = (2r + 1)(k + 1) = m · n + 1
4

=
⌊m(n + 1)

4

⌋
.

3

1

2

4

2r

2r+1

5

6

2r-1

Basic block Basic block Rest

Figure 7. Regular pattern (black vertices) for an independent [1, 2]-set in C2r+1�P4k+3.

We now complete the study of the existence of independent [1, 2]-sets in cylinders with the
following theorem, covering the remaining case, that is, when n is even.

Theorem 2. Let m ≥ 4 be an integer and let n ≥ 4 be an even integer. Then, the cylinder Cm�Pn has an
independent [1, 2]-set. Moreover, in this case,

i[1,2](Cm�Pn) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⌊m

3

⌋
n if m ≡ 0, 1 (mod 3),⌊m

3

⌋
n +

n
2

if m ≡ 2 (mod 3).
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Proof.

Case 1: m = 3r.

We consider here the pattern described in Figure 8 that provides an independent [1, 2]-set S,
in C3r�Pn. Note that each column contains r vertices of S, so

|S| = rn =
m
3

n =
⌊m

3

⌋
n.

Figure 8. Regular pattern (black vertices) for an independent [1, 2]-set in C3r�Pn.

Case 2: m = 3r + 1 ≥ 4.

To describe the pattern we use here, we begin with a single column. Vertices in S in such a column
are those in positions a multiple of three plus one, except the vertex in position m = 3r + 1, so the
column contains r vertices in S. We call the vertex in position one in the column the mark vertex, and,
by construction, the mark vertex belongs to S (see Figure 9a, mark vertex with a square). We repeat
this distribution of vertices in S in the second column, but rotating the cycle in such a way that the
mark vertex is in the position two units smaller (modulo m) (see Figure 9b, the arrow shows rotation).
The set S is an independent [1, 2]-set in this pair of columns.

︸ ︷︷ ︸
Column one

1

4

7

2

3

5

6

8

9

10

(a)

︸ ︷︷ ︸
Pair one

1

4

7

2

3

5

6

8

9

10

(b)

︸ ︷︷ ︸
Pair one

︸ ︷︷ ︸
Pair two

1

4

7

2

3

5

6

8

9

10

(c)

︸ ︷︷ ︸
Pair one

︸ ︷︷ ︸
Pair two

︸ ︷︷ ︸
Pair k

︸ ︷︷ ︸
Pair k − 1· · · · · · · · · · · · · · · · · · · · · · · ·

(d)

Figure 9. Construction of a regular pattern for an independent [1, 2]-set in C3r+1�P2k: (a) first column;
(b) a pair of columns; (c) two pairs of columns; (d) k pairs of columns.

Consider now a new pair of columns with the distribution of vertices in S described above.
We join it to the preceding pair, and, in this case, we rotate the cycles so that the mark vertex is in
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position one unit larger (modulo m) (see Figure 9c, the arrows show rotations). Again, we obtain an
independent [1, 2]-set in the resulting cylinder. Repeating this operation as many times as necessary,
we obtain an independent [1, 2]-set S in C3r+1�P2k (see Figure 9d, the arrows show rotations).

We show in Figure 9 an example with ten rows, but the construction also works for smaller cases
(four and seven rows), and for bigger cases. Regarding the cardinality of S, note that there are r vertices
of S in each column, so

|S| = rn =
m − 1

3
n =

⌊m
3

⌋
n.

Case 3: m = 3r + 2 ≥ 5.

We begin here with two types of columns. In Type A columns, vertices in S are in positions
multiple of three plus one, except in position 3m + 1; in addition we include vertex in position 3m
(see Figure 10a). We call the vertex in position one in the column the Type A mark vertex, and, by
construction, this vertex belongs to S. Note that there are r + 1 vertices of S in type A columns.

︸ ︷︷ ︸
Type A column

1

4

7

2

3

5

6

8

9

10

11

(a)

︸ ︷︷ ︸
Type B column

1

4

7

2

3

5

6

8

9

10

11

(b)

A B B A︸ ︷︷ ︸
Four-column block

(c)

B A︸ ︷︷ ︸
Two-column block

(d)

A B B A︸ ︷︷ ︸
Four-column block

B A︸ ︷︷ ︸
Two-column block

(e)

B A︸ ︷︷ ︸
Two-column

B A︸ ︷︷ ︸
Two-column

(f)

Figure 10. Construction of a regular pattern for an independent [1, 2]-set in C3r+2�P2k: (a) Type A
column; (b) Type B column; (c) four-column block; (d) two-column block; (e), (f) joining blocks.

In Type B columns, vertices in S are in positions multiple of three plus one, except in position
3m + 1. We do not add any other vertex here (see Figure 10b). We call the vertex in position one in the
column the Type B mark vertex, which belongs to S. In a Type B column there are r vertices in S.

Rules to join both types of columns, in order to obtain the desired independent [1, 2]-set, are the
following. We first need a four-column block, of types A, B, B and A (in this order), where each
column is rotated, in reference to the previous one, until placing mark vertices as shown in Figure 10c.
Note that vertices in S in this block are an independent [1, 2]-set in the block.

We now make a two-column block by placing a Type B column and a Type A column (in this
order), in such a way that mark vertices are in positions shown in Figure 10d.

We place a two-column block after another block (with four or two columns), rotating the second
block in such a way that its mark vertex is in positions shown in Figure 10e,f.

The desired independent [1, 2]-set S is obtained with one initial four-column block and attaching
to it as many two-column blocks as necessary, to obtain the cylinder Cm�P2k (note that 2k ≥ 4)
(see Figure 11). Note that, although vertices in S in a two-column block are not a dominating set
by themselves, as can be seen in Figure 10d, when we attach such a block to one four-column block
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following the rotation rules as described above, we obtain an independent [1, 2]-set S (see Figure 10e).
After this first operation, adding a new two-column block keeps independent [1, 2]-domination
(see Figure 11). We show in this figure the case m = 11, but the same pattern works with smaller cases
m = 5 and m = 8, and also with larger ones.

A B B A︸ ︷︷ ︸
Four-column block

B A︸ ︷︷ ︸
Two-column

B A︸ ︷︷ ︸
Two-column

B A︸ ︷︷ ︸
Two-column

Figure 11. Regular pattern (black vertices) for an independent [1, 2]-set in C3r+2�P2k.

The four-column block contains two type A and two type B columns, so there are 2(r + 1) + 2r =
4r + 2 vertices of S in the block. On the other hand, two-column blocks consist of one type A and one
type B column, so they have (r + 1) + r = 2r + 1 vertices in S. Finally, S contains one four-column
block and k − 2 two-column blocks, so:

|S| = (4r + 2) + (2r + 1)(k − 2) = (2r + 1)k = (2
m − 2

3
+ 1)

n
2
=

m − 2
3

n +
n
2
=
⌊m

3

⌋
n +

n
2
·

3. Computing the Independent [1, 2]-Number in Cylinders

Having proven that every cylinder, except C5�P2, has an independent [1, 2]-set, in this section, we
present an algorithm to compute the independent [1, 2]-number in cylinders of small sizes. This is an
adaptation of the algorithm presented in [15], to compute the domination number of grids. A modified
version of this algorithm also appears in [16,17]. Although the steps of the algorithm are quite similar
to the original one, we prefer to completely described it, in order to fix notation and to point out
the differences. We focus on cylinders Cm�Pn with m ≥ 4, because the case m = 3 was solved in
Proposition 4.

The main tool of the algorithm is the (min,+) matrix multiplication. This is the standard matrix
multiplication for the semi-ring of tropical numbers in the min convention (see [18]), that is, the usual
multiplication is replaced by sum, whereas the usual sum is replaced by minimization. Therefore,
the (min,+) product of an m × n matrix A and an n × p matrix B is computed by the formula
(A� B)i,j = min

1≤k≤n
(ai,k + bk,j). Moreover, the (min,+) product of a matrix A and a scalar c is computed

by (c � A)i,j = c + ai,j.
The other key point of the algorithm is the identification of columns of the cylinder with words in

the alphabet {0, 1, 2, 3}, in such a way that the number in each vertex describes its behaviour regarding
independent [1, 2]-domination. We next describe how we will do this. Let Cm�Pn be a cylinder and
let S ⊆ V(Cm�Pn) be an independent [1, 2]-set. We identify each vertex u with an element of the set
{0, 1, 2, 3}, following these rules:
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u = 0 if u ∈ S;
u = 1 if u has exactly one neighbor in S in its column or in the previous one;
u = 2 if u has exactly two neighbors in S in its column or in the previous one;
u = 3 if u has no neighbors in S in its column or in the previous one.

By definition, each vertex equal to 2 has at least one neighbor in S in its column and each vertex
equal to 3 has a unique neighbor in S, which is in the following column. Every vertex in the cylinder
is in exactly one of the preceding situations, so all of them can be identified with a unique number.
Therefore each column can be seen as a word of length m in the alphabet {0, 1, 2, 3}, where the first
and last letters are consecutive, because columns in the cylinder Cm�Pn are cycles with m vertices.
The property of set S being an independent [1, 2]-set provides a number of restrictions in words that
can appear, which we list below. In all the restrictions, we consider that the first and last letters of the
word P(≡ column) are consecutive, because each column is a cycle. If P is a word associated to an
independent [1, 2]-set S, then P does not contain any of the following sequences:

(a) 00, 22, 33, 112, 211, 212, 213, 321, 1111, 1113, 3111, 3113
(b) 03, 30, 010, 121, 123, 321, 323
(c) 12021, 12023, 32021, 32023

Note that any sequence of List (a) in a column implies that in the column, or in the previous one,
or in the following one, there are two consecutive vertices of S, so it is not possible. Sequences in list
(b) are not allowed because of the rules for associating each vertex with its number. Finally, sequences
of list (c) do not appear in any column because each vertex has at most two neighbors in S and in all
cases, such a sequence implies that in the previous column there is a vertex (next to the zero) with three
neighbors in S. A word of length m in the alphabet {0, 1, 2, 3} not containing any of the sequences in
Lists (a), (b) and (c) is called a correct word.

We also need to bear in mind that the first and last columns of the cylinder play a different role
than interior ones, because they are placed next to a unique column, not between two columns. A word
in the first column satisfies that every vertex equal to 1 has a neighbor in the column (just one) equal
to 0, and every vertex equal to 2 has both neighbors in the column equal to 0. A correct word satisfying
these conditions is called an initial word. On the other hand, the word in the last column does not
contain any vertex equal to 3 and we call correct words satisfying this property final words.

Some restrictions regarding rows also arise. They can be described with rules that describe where
a column P can be placed in the following position of column Q. In order to collect these restrictions,
we denote letters in words P and Q as P = p1 p2 . . . pm and Q = q1q2 . . . qm and in the following cases,
indices are taken modulo m,

(i) if qi = 0, then either
{

pi = 2 and {pi−1 �= 0 or pi+1 �= 0, but not both are non-zero}
}

or{
pi = 1 and pi−1 �= 0 and pi+1 �= 0

}
;

(ii) if qi = 1, then either pi = 0 or
{

pi = 1 and {pi−1 �= 0 or pi+1 �= 0, but not both are non-zero}
}

or
{

pi = 2 and pi−1 = 0 and pi+1 = 0
}

or pi = 3;

(iii) if qi = 2, then either
{

pi = 1 and {pi−1 �= 0 or pi+1 �= 0, but not both are non-zero}
}

or pi = 3;
(iv) if qi = 3, then pi = 0.

If words P and Q satisfy Conditions (i) to (iv), we say that P can follow Q. Clearly, each independent
[1, 2]-set in the cylinder Cm�Pn can be identified with a unique ordered list P1, P2, . . . , Pn, of n correct
words of length m in the alphabet {0, 1, 2, 3}, such that

1. P1 is initial;
2. Pi+1 can follow Pi, for i ∈ {1, 2, . . . n − 1};
3. Pn is final.
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We denote such ordered lists as (m, n)-lists. An ordered list satisfying properties 1 and 2 is called
an (m, n)-quasilist.

To compute the independent [1, 2]-number of Cm�Pn, that is, the minimum number of zeros
among all (m, n)-lists, we define the following vector. Denote by cm the cardinality of the set
{P1, P2, . . . , Pcm} of correct words of length m. The vector X1 = (α1, α2, . . . , αcm), of length cm, is defined
as follows:

αi =

{
number of zeros of Pi if Pi is initial,
+∞ otherwise.

We also define the matrix Acm×cm = (ai,j), a square matrix of size cm such that

ai,j =

{
number of zeros of Pi if Pi can follow Pj,
+∞ otherwise.

By multiplying vector X1 and matrix A, with the (min,+) matrix multiplication, we obtain a new
vector X2 = A � X1 = (β1, β2, . . . , βcm), and, clearly, every finite entry

βi = min
1≤j≤cm

(αj + ai,j) < +∞

represents the minimum number of zeros among all (m, 2)-quasilists having Pi as its second word.
We can repeat this process as many times as we need, so if Xn = A � X(n−1) = (δ1, δ2, . . . , δcm),
then every finite entry δi < +∞, represents the minimum number of zeros among all (m, n)-quasilists
having Pi as its last word. Having in mind that an (m, n)-quasilist whose last word is final is an
(m, n)-list, we obtain

i[1,2](Cm�Pn) = min{δi : Pi is a final word}. (2)

Moreover, algebraic properties of (min,+) matrix multiplication give the following result, which is
similar to Theorem 2.2 of [16].

Proposition 5. Let m ≥ 3 be an integer and suppose that there exist n0, c, d > 0 such that Xn0+d = c � Xn0 .
Then Xn+d = c � Xn for every n ≥ n0, and moreover

i[1,2](Cm�Pn+d) = i[1,2](Cm�Pn) + c.

Proof. We prove by induction that Xn+d = c�Xn for every n ≥ n0. On the one hand, Xn0+d = c�Xn0

by hypothesis. Assume now that X(n−1)+d = c � X(n−1) for n − 1 ≥ n0. Then, properties of the
(min,+) matrix algebra and the inductive hypothesis give

Xn+d = A � X(n−1)+d = A � (c � X(n−1)) = c � (A � X(n−1)) = c � Xn.

Therefore, if Xn+d = (ε1, ε2, . . . , εcm) and Xn = (δ1, δ2, . . . , δcm), then εi = δi + c for every index i.
In particular, εi is finite if and only if δi is finite. Finally this gives

i[1,2](Cm�Pn+d) = min{εi : Pi is a final word}
= min{δi + c : Pi is a final word}
= min{δi : Pi is a final word}+ c

= i[1,2](Cm�Pn) + c.

Results presented in this section provide the following algorithm to compute the independent
[1, 2]-number of Cm�Pn. It is an adaptation of the algorithm presented in [15], to compute the
domination number of grids. A modified version of this algorithm also appears in [16,17]. On the one
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hand, the algorithm computes the value of i[1,2](Cm�Pn) for fixed and small enough (m, n). On the
other hand, given a fixed m, it computes a list of vectors X1, X2, . . . , Xr and it tries to find the recurrence
relationship on the hypothesis of Proposition 5.

If a recurrence is found by Algorithm 1, Proposition 5 provides a finite difference equation

i[1,2](Cm�Pn+d)− i[1,2](Cm�Pn) = c, for n ≥ n0.

with d boundary values i[1,2](Cm�Ps), for n0 ≤ s ≤ n0 + d − 1. The solution of this equation is

i[1,2](Cm�Pn) =
⌈ cn + β

d

⌉
, for n ≥ n0,

where the value of β depends on the boundary values. Remaining values of i[1,2](Cm�Pn), that is for
2 ≤ n ≤ n0 − 1, have also been computed by the algorithm, so finding the recurrence means that the
independent [1, 2]-number of Cm�Pn is completely computed.

Algorithm 1: Recurrence for the Independent [1, 2]-number in Cylinders
Input: integers m ≥ 4 and r ≥ 2
Output: n0, c, d > 0 such that Xn0+d = c � Xn0 and i[1,2](Cm�Pn) for 2 ≤ n ≤ n0 + d − 1,
or NO RECURRENCE FOUND

1 compute the ordered set of all correct words on length m;
2 compute vector X1;
3 compute matrix A;
4 use (min,+) matrix multiplication to obtain X2, X3, . . . , Xr;
5 if (Xn0+d = c � Xn0 for some n0, d, c==True) then
6 use Equation (2) to compute i[1,2](Cm�Ps) for 2 ≤ s ≤ n0 + d − 1;
7 return n0, d, c and i[1,2](Cm�Ps) for 2 ≤ s ≤ n0 + d − 1;
8 else
9 return NO RECURRENCE FOUND;

10 end

However, the existence of such a recurrence relationship is not guaranteed, as was mentioned in
Section 6 of [15]. Some sufficient conditions on an arbitrary matrix A, in the (min,+) matrix algebra,
are known that ensure such a recurrence exists. We recall the following definition from [15]. A matrix A
is irreducible if there exists an integer K such that for every k ≥ K, matrix Ak has no infinite entries, and
this is analogous to the definition of irreducible matrix in regular matrix algebra. Theorem 6.3 of [15]
states that, if A is an irreducible matrix, then the recurrence needed to apply Proposition 5 occurs.

The following characterization is well known; see, for instance, [19]. Considering matrix A as
the adjacency matrix of a directed graph (there is an arc from j to i if and only if ai,j < +∞), A is
irreducible if and only if such a directed graph is strongly connected. In particular, a matrix such that
every entry in the ith row is equal to +∞ is not irreducible, because no arc arrives to i. When this
situation happens, the recurrence needed in Proposition 5 could not occur.

This is the main difference between the computation of the independent [1, 2]-number in cylinders
and the previous cases where this algorithm has been used (see [15–17]). In our case, matrices defined
using the properties of independent [1, 2]-sets have an increasing number of rows with no finite
entry, when m gets larger. In fact, we just found the desired recurrence in cases m = 4 and m = 5.
If m ≥ 6 our strategy consists of modifying the first step of the algorithm. We consider a reduced
collection C of correct words instead of having all of them, so we obtain an auxiliary parameter fm(n)
that represents the minimum number of zeros among all (m, n)-lists with words in C, if there exists at
least one of such (m, n)-list. Then, we use the algorithm to look for the recurrence relationship, but
using just correct words in subset C and, in the case it is found, the auxiliary function obtained satisfies
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i[1,2](Cm�Pn) ≤ fm(n). The final step consists of combining this upper bound with an appropriate
lower bound, in order to localize the independent [1, 2]-number in an interval as small as possible.

4. Experimental Results

In this section, we present the results obtained with Algorithm 1, for values of m between 4 and 15.
The link to the source code, in programming language C, to perform all the operations described in the
algorithm can be found in the Supplementary Materials. Notice that vector X1 is computed using its
definition, but vectors X2, X3, . . . , Xr are obtained by successively multiplying matrix A and vector
X1, with the (min,+) matrix multiplication. We do this operation by means of an adaptation of the
CSPARSE library [20]. This library provides a fast method for multiplying sparse matrices with the
usual product, and we have adapted it for the (min,+) matrix product. Therefore, we have obtained
a library that efficiently multiplies sparse matrices, also with this product, as can be seen in Table 1,
where we show that execution times for computing the first 100 vectors are shorter than times for the
computation of the matrix. We have also included computation times for the set of correct words,
but not for vector X1, because it is less that one second in all cases.

Table 1. Execution times with only one core, Intel(R) Core(TM) i7-3632QM at 2.20 GHz processor.

m 4m = Words of Length m
in Alphabet {0, 1, 2, 3}

cm = Number
of Correct Words

Execution Times

Correct Words A Xr , 2 ≤ r ≤ 100

4 256 20 < 1 s. < 1 s. < 1 s.
5 1024 35 < 1 s. < 1 s. < 1 s.
6 4096 79 < 1 s. < 1 s. < 1 s.
7 16384 154 < 1 s. < 1 s. < 1 s.
8 65536 332 < 1 s. < 1 s. < 1 s.
9 262144 666 < 1 s. < 1 s. < 1 s.

10 1048576 1389 < 1 s. < 1 s. < 1 s.
11 4194304 2849 < 1 s. 2.6 s. < 1 s.
12 16777216 5891 2.2 s. 11.8 s. 1.9 s.
13 67108864 12116 8.1 s. 53.2 s. 3.7 s.
14 268435456 25008 31.1 s. 4 m. 3 s. 6.9 s.
15 1073741824 51509 2 m. 5 s. 18 m. 25 s. 13.3 s.

4.1. Cases m = 4 and m = 5

In both cases, we have found the recurrence needed to apply Proposition 5, and we have
completely computed the independent [1, 2]-number of cylinders Cm�Pn, for n ≥ 2. Data obtained
with Algorithm 1 and finite difference equations appear in Table 2.

Table 2. Recurrence values for reduced sets of correct words.

m n0 d c Finite Difference Equation Boundary Values Rest of Values

4 3 2 2 i[1,2](C4�Pn+2)− i[1,2](C4�Pn) = 2, n ≥ 3
i[1,2](C4�P3) = 3
i[1,2](C4�P4) = 4 i[1,2](C4�P2) = 2

5 4 1 1 i[1,2](C5�Pn+1)− i[1,2](C5�Pn) = 1, n ≥ 4 i[1,2](C5�P4) = 6 i[1,2](C5�P3) = 5

The solution of the finite difference equation gives the formula of the independent [1, 2]-number.
In both cases, the independent [1, 2]-number agrees with the domination number (see [12]); therefore,
independent [1, 2]-sets provide the most efficient way to dominate these cylinders.

i[1,2](C4�Pn) = n, for n ≥ 2
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i[1,2](C5�Pn) = n + 2, for n ≥ 3.

4.2. Cases 6 ≤ m ≤ 10

In these cases, matrices obtained with the algorithm have a large number of rows with all entries
equal to +∞, so they are not irreducible. This means the recurrence is not guaranteed and, in fact,
we have not found it in the first 100 vectors. Clearly, it could happen that the recurrence relationship
exists for some n0 ≥ 100, but instead of keeping on looking for a recurrence in larger values, we prefer
a different approach.

We remove a group of correct words and we use Algorithm 1 again, but considering the remaining
word subset instead of the complete list of correct words computed in step 1. The criterion for removing
words takes into account formulas for the independent domination number i(Cm�Pn) = � cn+β

d �
obtained in [14], and we look for similar formulas for the independent [1, 2]-number. We fixed vector
X20 because it is small enough to quickly use the algorithm and it gives positive results in cases we
are considering. For each m, we take the integer d in formula i(Cm�Pn) = � cn+β

d � and we study
the pair of vectors X20, X20+d. Their entries in the ith position, X20(i), X20+d(i), are in one of the
following situations:

1. both are infinite;
2. both are finite, then we compute the difference X20+d(i)− X20(i);
3. one of them is finite and the other one is infinite, then we say that they are non-comparable.

If a recurrence is not found, then either there are non-comparable pairs or differences of finite
entries are not equal, or both. In Table 3, we show values of differences found and if there are
non-comparable words. Recall that, for each m, the set of correct words {P1, P2, . . . , Pcm} is ordered and
it has cm elements, and the size of vector Xn is cm. We now take the integer c in i(Cm�Pn) = � cn+β

d �
and we keep the word in position i if both ith entries are finite with X20+d(i)− X20(i) = c and also in
case X20+d(i) = X20(i) = +∞. However, we remove the word in position i if entries are finite with
X20+d(i)− X20(i) �= c or X20+d(i), X20(i) are non-comparable. This strategy provides a subset C of
correct words that we use in the algorithm, instead of the complete list originally computed in the first
step. In cases 6 ≤ m ≤ 9, we found the recurrence, as we expected. However, in case m = 10, after a
first selection of words, recurrence does not appear and we remove a second group of words, with the
same criterion. It is shown in Table 3, in rows 10-I and 10-II. After removing the second word group,
a recurrence also appears for m = 10.

Table 3. Criteria for removing some correct words.

m d c
Vector Pair

X20+d, X20
Values of
Differences

Non-Comparable
Pairs

Remove Correct Words in
Positions Where Appears

Remaining
Words

6 3 4 X23, X20 4, 6 yes 6, non-comparable 69
7 2 3 X22, X20 3, 4 no 4 126
8 5 9 X25, X20 9, 10 yes 10, non-comparable 228
9 2 4 X22, X20 4, 6 no 6 660

10-I 2 4 X22, X20 2, 4, 5, 6 no 2, 5, 6 1077
10-II 2 4 X22, X20 4, 5 no 5 1067

We now apply Algorithm 1, but using the subset C of remaining words instead of the complete
list. We would like to point out that there exists an (m, n)-list with words in C if and only if the value
of fm(n) = min{δi : Pi ∈ C is a final word} is finite, where Xn = An � X1 = (δ1, . . . , δk), X1 is the
initial vector, A is the matrix, both associated to subset C of correct words of length m, and |C| = k.
Clearly, if this auxiliary function fm(n) is finite, then it provides the minimum number of zeros among
all (m, n)-lists with words in C, so it is trivially true that i[1,2](Cm�Pn) ≤ fm(n). Moreover, if we
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just consider words in C and the recurrence relationships described in Proposition 5 occurs, then the
finitude of boundary values ensures that fm(n) is finite, for every n ≥ n0.

Recurrences and boundary values found by Algorithm 1, when we just use the subset C of correct
words described in Table 3, are shown in Table 4.

Table 4. Recurrence values for reduced sets of correct words.

m n0 d c Auxiliary Equation Boundary Values

6 7 3 4 f6(n + 3)− f6(n) = 4, n ≥ 7 f6(7) = 10, f6(8) = 12, f6(9) = 13

7 6 2 3 f7(n + 2)− f7(n) = 3, n ≥ 6 f7(6) = 12, f7(7) = 13

8 11 5 9 f8(n + 5)− f8(n) = 9, n ≥ 11
f8(11) = 21, f8(12) = 24, f8(13) = 25
f8(14) = 28, f8(15) = 29

9 8 2 4 f9(n + 2)− f9(n) = 4, n ≥ 8 f9(8) = 18, f9(9) = 20

10 10 2 4 f10(n + 2)− f10(n) = 4, n ≥ 10 f10(10) = 24, f10(11) = 26

The solutions of auxiliary equations are the following:

m = 6, n ≥ 7 : f6(n) =

{⌈ 4n
3
⌉

if n ≡ 1 (mod 3),⌈ 4n
3
⌉
+ 1 otherwise.

m = 7, n ≥ 5 : f7(n) =

{⌈ 3n
2
⌉
+ 2 if n ≡ 1 (mod 2),⌈ 3n

2
⌉
+ 3 otherwise.

m = 8, n ≥ 11 : f8(n) =

{⌈ 9n
5
⌉
+ 1 if n ≡ 1, 3 (mod 5),⌈ 9n

5
⌉
+ 2 if n ≡ 0, 2, 4 (mod 5).

m = 9, n ≥ 8 : f9(n) = 2n + 2.

m = 10, n ≥ 10 : f10(n) = 2n + 4.

As we mentioned before, fm(n) is an upper bound of the independent [1, 2]-number of Cm�Pn,
and we now combine these results with the values of i(Cm�Pn) [14], which is a natural lower bound,
that is

i(Cm�Pn) ≤ i[1,2](Cm�Pn) ≤ fm(n).

In cases m = 6, 7, 9, 10 and also in case m = 8, n ≡ 0, 1, 3 (mod 5), we obtained fm(n) = i(Cm�Pn),
so the independent [1, 2]-number agrees with the independent domination number. In case m = 8
and n ≥ 12, n ≡ 2, 4 (mod 5), we obtained fm(n) = i(Cm�Pn) + 1; the bounds do not agree and we
can just conclude that i(Cm�Pn) ≤ i[1,2](Cm�Pn) ≤ i(Cm�Pn) + 1. We computed the independent
[1, 2]-number for 12 ≤ n ≤ 100, n ≡ 2, 4 (mod 5) and it agrees with the upper bound in all cases.

We also computed the independent [1, 2]-number of small cylinders (n ≤ n0 − 1) with the
algorithm, by using Equation (2) with the complete list of correct words. We include these values in
the final formulas.

i[1,2](C6�Pn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6 if n = 3,
9 if n = 5,⌈ 4n

3
⌉

if n ≡ 1 (mod 3),⌈ 4n
3
⌉
+ 1 otherwise.
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i[1,2](C7�Pn) =

⎧⎪⎨
⎪⎩

2n if n = 2, 3, 4,⌈ 3n
2
⌉
+ 2 if n ≡ 1 (mod 2),⌈ 3n

2
⌉
+ 3 otherwise.

i[1,2](C8�Pn) =

⎧⎪⎨
⎪⎩

2n if n = 2, 3, 4, 5, 7, 9,⌈ 9n
5
⌉
+ 1 if n ≡ 1, 3 (mod 5),⌈ 9n

5
⌉
+ 2 if n ≡ 0 (mod 5) or n ≤ 100, n ≡ 2, 4 (mod 5).

⌈ 9n
5
⌉
+ 1 ≤ i[1,2](C8�Pn) ≤

⌈ 9n
5
⌉
+ 2, if n > 100 and n ≡ 2, 4 (mod 5).

i[1,2](C9�Pn) = 2n + 2, if n ≥ 2.

i[1,2](C10�Pn) =

⎧⎪⎨
⎪⎩

2n + 2 if n = 2, 4, 5,
2n + 3 if n = 3, 6, 7, 8, 9,
2n + 4 otherwise .

4.3. Cases 11 ≤ m ≤ 15

In these cases, the independent domination number is not known, so our first task is to compute it.
We will use these values as a lower bound of the independent [1, 2]-number. To this end we have
implemented the algorithm described in [16], to compute the independent domination number of
the grid Pm�Pn, making the necessary changes to adapt it to the cylinder Cm�Pn. These changes just
consist of considering that the first and the last letters in each word are neighbors. Computations can
be done following the same steps as in Algorithm 1, but taking into account the rules to define correct
words and to compute vector X1 and matrix A that correspond with the definition of independent
domination. For the sake of completeness, we recall these rules from [16]. For an independent
dominating set S of Cm�Pn, each vertex u ∈ V(Cm�Pn) is identified with an element of the set {0, 1, 2},
following these rules:

u = 0 if u ∈ S;
u = 1 if u has at least one neighbor in S, in its column or in the previous one;
u = 2 if u has no neighbors in S, in its column or in the previous one.

Each column in Cm�Pn can be seen as a word of length m in the alphabet {0, 1, 2}, where the
first and last letters are consecutive. Correct words are those words not containing the sequences
00, 22, 1111, 1112, 2111, 2112. For a pair of correct words P, Q, we say that P = p1 p2 . . . pm can follow
Q = q1q2 . . . qm if they satisfy the following conditions

(i) if qi = 0, then pi = 1,
(ii) if qi = 1, then either pi = 0 or

{
pi = 1 and {pi−1 �= 0 or pi+1 �= 0, }

}
or pi = 2,

(iii) if qi = 2, then pi = 0.

Following the same steps as in Algorithm 1 with the rules described above, recurrence is found
for 11 ≤ m ≤ 15 and we present the final formulas obtained (we have not included small cases not
following the general formula).

i(C11�Pn) =
⌈ 12n+12

5
⌉

if n ≥ 4.

i(C12�Pn) =
⌈ 5n+9

2
⌉

if n ≥ 17.

i(C13�Pn) =
⌈ 20n+20

7
⌉

if n ≥ 6.

i(C14�Pn) = 3n + 4 if n ≥ 12.

i(C15�Pn) = 3n + 6 if n ≥ 8.

We now follow the same strategy as in the preceding cases and we use vectors X50, X50+d because
they provide positive results in all cases. For m = 11, 12, 13, 15, the first reduction of the correct words
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gives positive results and we found the recurrence. However, in case m = 14, after a first selection of
words, a recurrence does not appear and we remove a second group of words, with the same criterion.
After removing the second word group, a recurrence also appears in this case. We show the rules
for reducing the correct word set in Table 5. In Table 6, we show recurrences and finite difference
equations in each case.

Table 5. Criteria for removing some correct words.

m d c
Vector Pair

X50+d, X50
Values of
Differences

Non-Comparable
Pairs

Remove Correct Words in
Positions Where Appears

Remaining
Words

11 5 12 X55, X50 11, 12, 13, 14, 15 no 11, 13, 14, 15 2475
12 2 5 X52, X50 2, 4, 5, 6, 8 no 2, 4, 6, 8 3531
13 7 20 X57, X50 19, 20, 21, 22, 23, 28 no 19, 21, 22, 23, 28 9438

14-I 2 6 X52, X50 2, 4, 5, 6, 7, 8 no 2, 4, 5, 7, 8 20792
14-II 2 6 X52, X50 6, 7 no 7 19686

15 1 3 X51, X50 1, 2, 3, 4, 5, 6 no 1, 2, 4, 5, 6 34913

Table 6. Recurrence values for reduced sets of correct words.

m n0 d c Auxiliary Equation Boundary Values

11 7 5 12 f11(n + 5)− f11(n) = 12, n ≥ 7
f11(7) = 20, f11(8) = 22, f11(9) = 24,
f11(10) = 27, f11(11) = 29

12 8 2 5 f12(n + 2)− f12(n) = 5, n ≥ 8 f12(8) = 25, f12(9) = 27

13 10 7 20 f13(n + 7)− f13(n) = 20, n ≥ 10
f13(10) = 32, f13(11) = 35, f13(12) = 38,
f13(13) = 40, f13(14) = 44, f13(15) = 46, f13(16) = 50

14 10 2 6 f14(n + 2)− f14(n) = 6, n ≥ 10 f14(10) = 34, f14(11) = 37

15 10 1 3 f15(n + 1)− f15(n) = 3, n ≥ 10 f15(10) = 36

Solutions of auxiliary equations are the following

m = 11, n ≥ 7 : f11(n) =
⌈ 12n+12

5
⌉

m = 14, n ≥ 10 : f14(n) = 3n + 4

m = 12, n ≥ 8 : f12(n) =
⌈ 5n+9

2
⌉

m = 15, n ≥ 15 : f15(n) = 3n + 6

m = 13, n ≥ 10 : f13(n) =

{⌈ 20n+20
7

⌉
+ 1 if n ≡ 0, 2 (mod 7),⌈ 20n+20

7
⌉

otherwise.

Final formulas have been obtained by comparing auxiliary equations with the above computed
independent domination number and by using inequalities i(Cm�Pn) ≤ i[1,2](Cm�Pn) ≤ fm(n).
We also include values for small cylinders, with n ≤ n0 − 1. In the case m = 13, we also include values
of i[1,2](C13�Pn) for n ≤ 100, n ≡ 0, 2 (mod 7).

i[1,2](C11�Pn) =

⎧⎪⎨
⎪⎩

6 if n = 2,
9 if n = 3,⌈ 12n+12

5
⌉

otherwise.

i[1,2](C12�Pn) =

⎧⎪⎨
⎪⎩

3n if n = 2, 3, 4,⌈ 5n+5
2
⌉

if n = 5, 6, 7,⌈ 5n+9
2
⌉

if n ≥ 8.
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i[1,2](C13�Pn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

7 if n = 2,
10 if n = 3,⌈ 20n+11

7
⌉

if 4 ≤ n ≤ 9,⌈ 20n+20
7

⌉
if n ≥ 10, n �≡ 0, 2 (mod 7) or n = 14, 16,⌈ 20n+20

7
⌉
+ 1 if 21 ≤ n ≤ 100, n ≡ 0, 2 (mod 7).⌈ 20n+20

7
⌉
≤ i[1,2](C13�Pn) ≤

⌈ 20n+20
7

⌉
+ 1, if n > 100 and n ≡ 0, 2 (mod 7).

i[1,2](C14�Pn) =

⎧⎪⎨
⎪⎩

8 if n = 2,
3n + 3 if 3 ≤ n ≤ 9,
3n + 4 if otherwise.

i[1,2](C15�Pn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

8 if n = 2,
12 if n = 3,
3n + 4 if n = 4, 5,
3n + 5 if n = 6, 7,
3n + 6 otherwise.

5. Conclusions

In this paper, we have deeply studied independent [1, 2]-sets and their associated parameter,
the independent [1, 2]-number, in cylindrical networks. The main interest of this study lies in the
known fact that the cylinder Cm�Pn has an efficient dominating set if and only if m ≡ 0 (mod 4) and
n = 2, so in other cylinders different domination-like sets are needed to dominate them as efficiently
as possible. On the other hand, the symmetry of these graphs allows us to focus their study from
different points of view.

In Section 2, we have proven that every cylinder Cm�Pn with (m, n) �= (5, 2) has an independent
[1, 2]-set. We also provided exact values of i[1,2](Cm�P2), m �= 5 and i[1,2](C3�Pn), n ≥ 2 and upper
bounds for the independent [1, 2]-number in the rest of the cases.

In Section 3, we presented an adaptation of a known algorithm to compute exact values of
i[1,2](Cm�Pn); and we presented the experimental results obtained with the algorithm in Section 4,
for 4 ≤ m ≤ 15. To this end, we have adapted the CSPARSE library, a fast method for multiplying
sparse matrices, to the case of (min,+) multiplication and we have introduced the technique of
selecting some correct words when using the algorithm, providing new possibilities of applying this
type of recursive computing in cases where the matrix is not irreducible and a recurrence is not found.

Regarding the cases in which we have exactly computed the independent [1, 2]-number,
comparing our results with the values of the domination number [11,12] and leaving aside the small
values of n not following the general formula, we may conclude that:

• if m = 3, 4, 5, 6, 9, 10, 15, then i[1,2](Cm�Pn) = γ(Cm�Pn);
• if m = 7, 14, then i[1,2](Cm�Pn) = γ(Cm�Pn) + 1;
• if m = 8, 12, then γ(Cm�Pn) ≤ i[1,2](Cm�Pn) ≤ γ(Cm�Pn) + 1,
• i[1,2](C11�Pn) = i(C11�Pn);
• i(C13�Pn) ≤ i[1,2](C13�Pn) ≤ i(C13�Pn) + 1.

Summing up, it is known that, in general, the independent [1, 2]-number does not equal the
domination number; however, we have seen that there are some cylinders having this property
and some others where both parameters differ by 1. In view of these results, we may conclude
that independent [1, 2]-sets provide an interesting alternative to efficient dominating sets in
cylindrical networks.

Supplementary Materials: The following are available online at https://github.com/hpcjmart/cylinders: source
code, in programming language C, to perform all the operations described in Algorithm 1, and instructions to
generate the executable files and links to the additional libraries necessary for its compilation.
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Abstract: Let G = (V, E) be a connected graph and d(u, v) denote the distance between the vertices u
and v in G. A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector
of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving
set of G and is denoted by dim(G). Let J2n,m be a m-level gear graph obtained by m-level wheel graph
W2n,m ∼= mC2n + k1 by alternatively deleting n spokes of each copy of C2n and J3n be a generalized gear
graph obtained by alternately deleting 2n spokes of the wheel graph W3n. In this paper, the metric
dimension of certain gear graphs J2n,m and J3n generated by wheel has been computed. Also this
study extends the previous result given by Tomescu et al. in 2007.
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1. Introduction and Preliminary Results

In a connected graph G(V, E), where V is the set of vertices and E is the set of edges. The distance
d(u, v) between two vertices u, v ∈ V is the length of the shortest path between them and the
diameter of G denoted by diam(G) is the maximum distance between pairs of vertices u, v ∈ V(G).
Let W = {v1, v2, . . . , vk} be an order set of vertices of G and u be a vertex of G. The representation
r(u|W) of u with respect to W is the k − tuple {d(u, v1), d(u, v2), d(u, v3), . . . , d(u, vk)}, where W is
called a resolving set or locating set if distinct vertices of G have distinct representations with respect
to W. See for more results [1,2].

A resolving set of minimum cardinality is called a metric basis for G and the cardinality of a metric
basis is said the metric dimension of G, denoted by dim(G), see [3]. The motivation for this topic
stems from chemistry [4]. A common but important problem in the study of chemical structures
is to determine ways of representing a set of chemical compounds such that distinct compounds
have distinct representations. Moreover the application of this invariant to the navigation of robots in
networks are discussed in [5]. The application to problems of pattern recognition and image processing,
some of which involve the use of hierarchical data structures are given in [6].
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For a given ordered set of vertices W = {v1, v2, . . . , vk} of a graph G, the ith component of
r(u|W) is 0 if and only if u = vi. Thus, to show that W is a resolving set it suffices to verify that
r(y|W) �= r(z|W) for each pair of distinct vertices y, z ∈ V(G)\W.

Motivated by the problem of determining uniquely the location of an intruder in a network,
the concept of metric dimension was introduced by Slater in [7] and studied independently by Harary
and Melter in [8].

Let Ω be a family of connected graphs Fm : Ω = (Fm)m≥1 depending on m as follows: ψ(m) =
cardinality of the set of vertices of any member F of Ω and limm→∞ ψ(m) = ∞. If ∀m ≥ 1, ∃C > 0
such that dim(Fm) ≤ C, then we shall say that Ω has bounded metric dimension, otherwise Ω has
unbounded metric dimension. If all graphs in Ω have the same metric dimension then F is called
a family with constant metric dimension [9].

A connected graph G has dim(G) = 1 if and only if G is a path [5], cycle Cn have metric dimension
2 for every n ≥ 3. Other families of graphs with unbounded metric dimension are regular bipartite
graphs [10], wheel graph [11]. The metric dimensions of m-level wheel graphs, convex polytope graphs
and antiweb gear graphs are computed in [12]. The metric dimension of honeycomb networks are
computed in [13] and t he metric dimension of generators of graphs in [14]. In the following section,
some results related to m-level generalized gear graph are given.

2. The Metric Dimension of Double Gear Graph J2n,m

Definition 1. The joining of two graphs G1 and G2 is denoted by G1 + G2 with the following vertex and
edge sets:

V(G1 + G2) = V(G1) ∪ V(G2)

E(G1 + G2) = E(G1) ∪ E(G2) ∪ {uv; u ∈ V(G1), v ∈ V(G2)}.

Definition 2. In graph theory, an isomorphism of graphs G1 and G2 is a bijection between the vertex sets of G1

and G2, f : V(G1) → V(G2) such that any two vertices u and v of G1 are adjacent in G1 if and only if f (u)
and f (v) are adjacent in G2. If an isomorphism exists between two graphs, then the graphs are called isomorphic
and denoted as G1

∼= G2.

Note that the the graph Cn + K1 is isomorphic to wheel graph Wn. In addition, note that 2Cn + K1

mean union of two copies of Cn that are joined with K1.

Definition 3. A double-wheel graph Wn,2 can be obtained as join of 2Cn + k1 and inductively an m-level wheel
graph denoted by Wn,m can be constructed as Wn,m ∼= mCn + k1.

Definition 4. A double gear graph denoted by J2n,2 can be obtained from double-wheel W2n,2 = 2C2n + k1 by
alternatively deleting n spokes of each copy of C2n and inductively an m-level gear graph J2n,m can be constructed
from m-level wheel W2n,m ∼= mC2n + k1 by alternatively deleting n spokes of each C2n (see [15]). A double gear
graph is depicted in Figure 1.

Construction and Observations

A double gear graph J2n,2 (see in Figure 1) is constructed if we consider two even cycles with
n ≥ 2,

C2n,1 : v1
1, v1

2, v1
3, . . . , v1

2n, v1
1 and C2n,2 : v2

1, v2
2, v2

3, . . . , v2
2n, v2

1

Now take a new vertex v adjacent to n vertices of C2n,1:v1
2, v1

4, . . . , v1
2n as well as v is also adjacent

to n vertices of C2n,2:v2
2, v2

4, . . . , v2
2n. Inductively we can construct an m-level gear graph denoted by

J2n,m by taking m even cycles C2n,1, C2n,2, . . . , C2n,m.
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Figure 1. (a) The double gear graph J6,2; (b) The double gear graph J8,2.

The vertices of C2n,i; 1 ≤ i ≤ 2, in the graph J2n,2 are of two kinds namely the vertices of degree 2
and the vertices of degree 3. Vertices of degree 2 and 3 will be considered as minor and major vertices
respectively. One can easily check that:

• When n = 2,

dim(J4,2) = 3 + 2, (central vertex v with one major and minor vertex of each C2n,i, 1 ≤ i ≤ 2
form basis).

• When n = 3,

dim(J6,2) = 3 + 2, (central vertex v with two minor vertices of each C2n,i, 1 ≤ i ≤ 2 form basis).

• When n = 4,

dim(J8,2) = 2 + 3, (two minor vertices u1, w1 such that d
(
u1, w1) = 2 of C2n,1 with one minor

vertex u2 and two major vertices w2, x2 of C2n,2 such that d
(
u2, w2) = d

(
u2, x2) = 3 form basis).

• When n = 5,

dim(J10,2) = 3 + 4, (three minor vertices u1, w1, x1 satisfying d
(
u1, w1) = d

(
w1, x1) = 2,

d
(
u1, x1) = 4 of C2n,1 with three minor vertices u2, w2, x2 and one major vertex z2 of C2n,2 satisfying

d
(
u2, w2) = d

(
w2, x2) = 2, d

(
u2, x2) = 4 and d

(
u2, z2) = d

(
w2, z2) = d

(
x2, z2) = 3 form metric

basis of J10,2 ).

Consider the gear graph J2n,1 in which C2n,1 is an outer cycle of length 2n. If B is a basis of J2n,1

then B contains r ≥ 2 vertices of C2n,1 for n ≥ 6. Suppose B = {vi1 , vi2 , . . . , vir} then vertices of B
can be ordered as vi1 < vi2 < . . . < vir such that {vit , vit+1} for 1 ≤ t ≤ r − 1 and {vir , vi1} are called
neighboring vertices. Vertices of C2n,1 lying between any two neighboring vertices of B are called gaps
which are denoted by Git for 1 ≤ t ≤ r − 1 and Gir , and their cardinalities are said to be the size of
gaps. One can easily observe that every vertex of B has two neighboring vertices; gaps generated by
these three vertices are called neighboring gaps following a concept already exist in [2] and [17]. A gap
determined by neighboring vertices of basis say vi and vj will be called an α − β with α ≤ β when
deg(vi) = α and deg

(
vj
)
= β or when deg(vi) = β and deg

(
vj
)
= α. Hence we have three kinds of

gaps namely, 2 − 2 gap, 2 − 3 gap and 3 − 3 gap.

For the graph J2n,2, n ≥ 4 central vertex v does not belong to any basis. Since d(vj
i , v) ≤ 2∀,

1 ≤ i ≤ 2n, 1 ≤ j ≤ 2 and diam(J2n,2) = 4, if central vertex v belongs to any metric basis B then
there must exists two distinct vertices ui and uj for 1 ≤ i �= j ≤ 2n such that r(ui|B) = r

(
uJ
∣∣B).

Consequently, the basis vertices of J2n,2 belong to the cycles induced by C2n,1 and C2n,2. It is shown
in [17] that if B is a basis of J2n,1 then B consist only of the vertices of C2n,1 that satisfy the
following properties.
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• If B is a basis of J2n,1, n ≥ 6 then every 2 − 2 gap, 2 − 3 gap and 3 − 3 gap of B contains at most 5,
4 and 3 vertices respectively.

• If B is a basis of J2n,1, n ≥ 6 then it contains at most one major gap.
• If B is a basis of J2n,1, n ≥ 6 then any two neighboring gaps contain together at most six vertices in

which one gap is a major gap.
• If B is a basis of J2n,1, n ≥ 6 then any two minor neighboring gaps contain together at most

four vertices.

Lemma 1. Let B be a basis of J2n,2, n ≥ 6, then every 2 − 2 gap, 2 − 3 gap and 3 − 3 gap of B induced by C2n,1

and C2n,2 contains at most 5, 4 and 3 vertices respectively.

Proof. Suppose the result is false and there exists a 2 − 2 gap of size 7 say u1, u2, u3, u4, u5, u6, u7

consisting of consecutive vertices of C2n,1 or C2n,2 with deg(u1) = deg(u7) = 3 then r(u3|B) = r(u5|B)
which is a contradiction. If there exists a 2 − 3 gap of size 6 then we have a path u1, u2, u3,u4, u5, u6

consisting of consecutive vertices of C2n,1 or C2n,2 with deg(u1) = 3 and deg(u6) = 2 then
r(u3|B) = r(u5|B) which is again a contradiction. The existence of a 3 − 3 gap of size 5 say
u1, u2, u3, u4, u5 induced by C2n,1 or C2n,2 with deg(u1) = deg(u5) = 2, would imply r(u2|B) = r(u4|B)
a contradiction.

The 2 − 2 gap 2 − 3 gap and 3 − 3 gap containing 5, 4 and 3 vertices respectively will be referred
to as major gaps and the remaining gaps are called minor gaps. In the proof of Lemmas 2–4, the major
vertices will be labeled by a star (*). �

Lemma 2. Let B be a basis of J2n,2, n ≥ 6 then it contains at most one major gap induced by the vertices of
cycles C2n,1 and C2n,2.

Proof. Suppose B contains two distinct major gaps induced by the vertices of cycles C2n,1 or C2n,2.
Case-(i): When both gaps are 3− 3 then we have two distinct paths consisting consecutive vertices

u1, u∗
2, u3 and w1, w∗

2, w3 of C2n,1 and C2n,2 respectively in this case r(u∗
3

∣∣B) = r(w∗
3

∣∣B); a contradiction.
Case-(ii): When both gaps are 2 − 2 then we have two distinct paths consisting of consecutive

vertices u∗
1, u2, u∗

3, u4, u∗
5 and w∗

1, w2, w∗
3, w4, w∗

5 of C2n,1 and C2n,2 respectively but r(u∗
3

∣∣B) = r(w∗
3

∣∣B);
a contradiction.

Case-(iii): When both gaps are 2 − 3 then we have two distinct paths consisting of consecutive
vertices u∗

1, u2, u∗
3, u4 and w∗

1, w2, w∗
3, w4 of C2n,1 and C2n,2 respectively in this case r(u∗

3

∣∣B) = r(w∗
3

∣∣B);
a contradiction.

Case-(iv): When one gap is 3 − 3 and other is 2 − 2 gap then we have two distinct paths u1, u∗
2, u3

and w∗
1, w2, w∗

3, w4, w∗
5 induced by C2n,1 and C2n,2 respectively but r(u∗

2 |B) = r(w∗
3

∣∣B); a contradiction.
Case-(v): When one gap is 3 − 3 and other is 2 − 3 gap then we have two distinct paths consisting

of consecutive vertices u1, u∗
2, u3 and w∗

1, w2, w∗
3, w4 of C2n,1 and C2n,2 respectively but r(u∗

2 |B) =

r(w∗
3

∣∣B); a contradiction.
Case-(vi): When one gap is 2− 2 and other is 2− 3 gap then we have two distinct paths consisting

of consecutive vertices u∗
1, u2, u∗

3, u4, u∗
5 and w∗

1, w2, w∗
3, w4 of C2n,1 and C2n,2 respectively in this case

r(u∗
3

∣∣B) = r(w∗
3

∣∣B); a contradiction.
Similarly, if both major gaps are induced by C2n,1 then we get a contradiction and a similar

contradiction arises if C2n,2 induced both major gaps. �

Lemma 3. Let B be a basis of J2n,2, n ≥ 6, then any two neighboring gaps, one of which being a major gap
induced by exactly one of two cycles C2n,1 or C2n,2 contain together at most six vertices.

Proof. If the major gap is 3 − 3 then there is nothing to prove by Lemma 2. Without loss of
any generality we can say that only C2n,1 induced a major gap by Lemma 2. If the major gap is
a 2 − 2 gap having five vertices then its neighboring minor gap contains at most one vertex. If this
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statement is false and 2 − 2 gap, 2 − 3 minor gaps having three and two vertices respectively are
neighboring gaps of 2 − 2 major gap, then we have two paths consisting of consecutive vertices
of C2n,1:u∗

1, u2, u∗
3, u4, u∗

5, u6, u∗
7, u8, u∗

9 and w∗
1, w2, w∗

3, w4, w∗
5, w6, w∗

7, w8, where u4, w6 ∈ B induced
by 2 − 2 major, 2 − 2 minor gaps and 2 − 2 major, 2 − 3 minor gaps respectively. In this case
r(u∗

3

∣∣B) = r(u∗
5

∣∣B) and r(w∗
5

∣∣B) = r(w∗
7 |B); a contradiction. The existence of 2 − 3 major gap

having four vertices is not possible if its neighboring minor gap is a 2 − 2 gap with three vertices.
If this case holds then we consider the following path: u∗

1, u2, u∗
3, u4, u∗

5, u6, u∗
7, u8, where u4 ∈ B then

r
(
u∗

4

∣∣B) = r(u∗
5

∣∣B); a contradiction. �

Lemma 4. Let B be a basis of J2n,2, n ≥ 6, then any two minor neighboring gaps induced by C2n,1 or C2n,2

contain together at most four vertices.

Proof. To prove the statement, it is sufficient to prove two cases.
Case-(i): 2 − 2 minor gap with three vertices cannot be neighboring gap of 2 − 2 minor gap

having three vertices, otherwise we have a path consisting of consecutive vertices of C2n,1 or
C2n,2:u∗

1, u2, u∗
3, u4, u∗

5, u6, u∗
7, where u4 ∈ B in this case r(u∗

3

∣∣B) = r(u∗
5

∣∣B).
Case-(ii): 2 − 2 minor gap with three vertices cannot be neighboring gap of 2 − 3 minor

gap having two vertices, otherwise we have a path consisting of consecutive vertices of C2n,1 or
C2n,2:w∗

1, w2, w∗
3, w4, w∗

5, w6 where w4 ∈ B in this case r(w∗
3

∣∣B) = r(w∗
5

∣∣B); a contradiction. �

Theorem 1. If J2n,2 be a double gear graph for n ≥ 4, then

dim(J2n,2) = dim(J2n,1) +

⌈
2n
3

⌉

Proof. We have seen that dim(J8,2) = 5 = dim(J8,1) +
⌈ 8

3
⌉
, dim(J10,2) = 7 = dim(J10,1) +

⌈
10
3

⌉
and the

central vertex v does not belong to any basis B of J2n,2. Moreover

C2n,1 : v1
1, v1

2, v1
3, . . . , v1

2n, v1
1

and
C2n,2 : v2

1, v2
2, v2

3, . . . , v2
2n, v2

1

be the outer cycles of J2n,2 at level 1 and 2 respectively. First we prove that dim(J2n,2) ≤ dim(J2n,1) +⌈ 2n
3
⌉

by constructing a resolving set W in J2n,2 with dim(J2n,1) +
⌈ 2n

3
⌉

vertices.
We consider three cases according to the residue class modulo 3 to which n belongs.
Case-(i): When n ≡ 0(mod3), then we may write 2n = 3k, where k ≥ 4, is even and dim(J2n,1) +⌈ 2n

3
⌉
= 2k, in this case W can be considered as:

W = {vj
1, vj

2n−1; 1 ≤ j ≤ 2} ∪ {v1
6i+1, v1

6i+3, v2
6i−1, v2

6i+1; 1 ≤ i ≤ k
2
− 1}

Case-(ii): When n ≡ 1(mod3), then we may write 2n = 3k + 2, where k ≥ 4 is even and
dim(J2n,1) +

⌈ 2n
3
⌉
= 2k + 1, in this case W can be considered as:

W = {v1
1, v1

2n−1, v2
1} ∪ {v1

6i+1, v1
6i+3; 1 ≤ i ≤ k

2
− 1} ∪ {v2

6i−1, v2
6i+1; 1 ≤ i ≤ k

2
}

Case-(iii): When n ≡ 2(mod3), then we may write 2n = 3k + 1, where k ≥ 5 is even and
dim(J2n,1) +

⌈ 2n
3
⌉
= 2k + 1, in this case W can be considered as:

W = {v1
1, v2

1, v2
2n−1} ∪ {v1

6i+1, v1
6i+3; 1 ≤ i ≤ k − 1

2
} ∪ {v2

6i−1, v2
6i+1; 1 ≤ i ≤ k − 1

2
}
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The set W contains a unique 2 − 2 major gap having at most five vertices and all other gaps
are 2 − 2 minor gaps which contain at most three vertices. The set W is a resolving set of J2n,2 since
any two major or any two minor vertices respectively lying in different gaps or in the same gap are
separated by at least one vertex in the set of three vertices of W generating these neighboring gaps.
When gaps are not neighboring gaps, then the set of four vertices of W which generate two gaps
make the representation unique of each vertex of these two gaps. Representation of central vertex v is
(2, 2, 2, . . . , 2), which is different from the representation of all other vertices of J2n,2. Hence,

dim(J2n,2) ≤ dim(J2n,1) +

⌈
2n
3

⌉
(1)

Now we show that dim(J2n,2) ≥ dim(J2n,1) +
⌈ 2n

3
⌉
. As the central vertex v does not belong to any

basis of J3n. Let B be a basis of J2n,2 such that |B|= r then we have r gaps. By lemma 2 B contains at
most one major gap, without loss of generality we can say major gap lies on C2n,1. Hence B induces⌊ r

2
⌋

gaps on C2n,1 and
⌈ r

2
⌉

gaps on C2n,2.

We denote the gaps on C2n,1 by G1
1, G1

2, G1
3, . . . , G1

� r
2 �

where G1
i and G1

i+1 are called neighboring

gaps for 1 ≤ i ≤
⌊ r

2
⌋
− 1 as well as G1

� r
2 �

is also neighboring gap of G1
1 and the gaps on C2n,2 will be

denoted by G2
1, G2

2, G2
3, . . . , G2

� r
2 �

where G2
i and G2

i+1 are called neighboring gaps for 1 ≤ i ≤
⌈ r

2
⌉
− 1 as

well as G2
� r

2 �
is also neighboring gap of G2

1. By Lemma 2, suppose G1
1 is a major gap. By Lemmas 3 and 4,

we can write

|G1
1 + G1

2 |≤ 6, |G1
1 + G1

� r
2 �|≤ 6, ‖G1

i + G1
i+1|≤ 4, f or 2 ≤ i ≤

⌊ r
2

⌋
− 1

and
|G2

1 + G2
2 |≤ 4, ‖G2

1 + G2
� r

2 �|≤ 4, ‖G2
i + G2

i+1|≤ 4, f or 2 ≤ i ≤
⌈ r

2

⌉
− 1

We consider two cases according to the residue class modulo 2 to which r belongs.

Case-(i): When r ≡ 0(mod2): In this case
⌊ r

2
⌋
=
⌈ r

2
⌉
= r

2
By summing the above inequality we have

2(2n − r
2
) = 2

r
2

∑
i=1

∣∣∣G1
i

∣∣∣ ≤ 2r + 4 ⇒ r
2
≥ 2n − 2

3
⇒ r

2
≥
⌊

2n
3

⌋
(2)

Again

2(2n − r
2
) = 2

r
2

∑
i=1

∣∣∣G1
i

∣∣∣ ≤ 2r ⇒ r
2
≥ 2n

3
⇒ r

2
≥
⌈

2n
3

⌉
(3)

From Equations (2) and (3) we have,

r ≥
⌊

2n
3

⌋
+

⌈
2n
3

⌉
⇒ dim(J2n,2) ≥ dim(J2n,1) +

⌈
2n
3

⌉

Case-(ii): When r ≡ 1(mod2): In this case
⌊ r

2
⌋
= r−1

2 and
⌈ r

2
⌉
= r+1

2
By summing the above inequality we have

2(2n − r − 1
2

) = 2

r−1
2

∑
i=1

∣∣∣G1
i

∣∣∣ ≤ 4 + 4
(

r − 1
2

)
⇒ r − 1

2
≥ 2n − 2

3
⇒ r − 1

2
≥
⌊

2n
3

⌋
(4)

and

2(2n − r + 1
2

) = 2

r+
2

∑
i=1

∣∣∣G2
i

∣∣∣ ≤ 4
(

r + 1
2

)
⇒ r + 1

2
≥ 2n

3
⇒ r + 1

2
≥
⌈

2n
3

⌉
(5)
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From Equations (4) and (5) we have

r ≥
⌊

2n
3

⌋
+

⌈
2n
3

⌉
⇒ dim(J2n,2) ≥ dim(J2n,1) +

⌈
2n
3

⌉
(6)

Now from Equations (1) and (6) we conclude that,

dim(J2n,2) = dim(J2n,1) +

⌈
2n
3

⌉

which complete the proof. �

Theorem 2. If J2n,m be a double gear graph for n ≥ 4, m ≥ 3, then

dim(J2n,m) = dim(J2n,1) + (m − 1)
⌈

2n
3

⌉

Proof. We will prove this result by induction on levels of gear graph denoted by J2n,m.

When m = 1, then dim(J2n,1) =
⌊ 2n

3
⌋

is obtained in [17].

When m = 2, then dim(J2n,2) = dim(J2n,1) +
⌈ 2n

3
⌉

by Theorem 1.

Now we assume that the statement is true for m = k, dim(J2n,k) = dim(J2n,1) + (k − 1)
⌈ 2n

3
⌉
.

we will show the result for m = k + 1, by using concept of Theorem 1 we have dim(J2n,k+1) =

dim(J2n,k) +
⌈ 2n

3
⌉
.

Now dim(J2n,k+1) = dim(J2n,k) +
⌈ 2n

3
⌉
= dim(J2n,1) + (k − 1)

⌈ 2n
3
⌉
+
⌈ 2n

3
⌉
. ⇒ dim(J2n,k+1) =

dim(J2n,1) + k
⌈ 2n

3
⌉
. Hence the result is true for all positive integers m ≥ 3. �

3. The Metric Dimension of Generalized Gear Graph J3n

Definition 5. To define the generalized gear graph J3n: consider a cycle C3n having vertices v1, v2, v3, . . . , v3n, v1

with n ≥ 2, take a new vertex v adjacent to n vertices v3, v6, v9, . . . , v3n of C3n. The generalized gear graph J3n
has order 3n + 1 and size 4n. It can be obtained from wheel graph W3n by alternately deleting 2n spokes.

Construction and Observations

The vertices of C3n in the graph J3n are of two kinds: vertices of degree 2 and 3. Vertices of degree
2 and 3 will be considered as minor and major vertices respectively. The graph J3n is a bipartite graph
in which one bipartition class contains minor vertices together with central vertex v and the second
bipartition class contain major vertices. In the proof of Lemmas 5–9, major vertices will be represented
by a star. One can easily check that:

• When n = 2

dim(J6) = 2, (one minor vertex of C6 together with central vertex v form basis).

• When n = 3

dim(J9) = 2 = dim(J12), (two minor vertices w1 and w2 such that d(w1, w2) = 3 form basis).

• When n = 5

dim(J15) = 3, (three minor vertices w1,w2 and w3 such that d(w1, w2) = d(w2, w3) = d(w3, w4) = 4
form basis).

For the graph J3n, n ≥ 4 central vertex v does not belong to any basis. Since d(vi, v) ≤ 2∀,
1 ≤ i ≤ 3n, and diam(J3n) = 4 if central vertex v belongs to any metric basis B then there must exist
two distinct vertices ui and uj for 1 ≤ i �= j ≤ 3n such that r(ui|B) = r

(
uj
∣∣B). If B is a basis of J3n and

central vertex v does not belong to B then by using the concept of gap given in Section 2, we have
again three kinds of gaps i.e 2 − 2 gpa, 2 − 3 gap, and 3 − 3 gap.
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Lemma 5. If B is a basis of J3n, n ≥ 6 then every 2 − 2 gap, 2 − 3 gap and 3 − 3 gap of B contains at most 8, 7
and 5 points respectively.

Proof. Suppose the basis set B contains a 2 − 2 gap of nine consecutive vertices u1, u2, u3,
u4, u5, u6, u7, u8, u9 of C3n such that deg(u1) = deg(u9) we have r(u4|B) = r(u6|B) in this case. If 2 − 3
gap contains more than 7 vertices then it contains 9 consecutive vertices u1, u2, u3, u4, u5, u6, u7, u8, u9

of C3n such that deg(u1) = 3 and deg(u9) = 2 we have r(u4|B) = r(u7|B), a contradiction in
this case. If a 3 − 3 gap contains more then 5 vertices, then it contains 8 consecutive vertices
u1, u2, u3, u4, u5, u6, u7, u8 such that deg(u1) = deg(u8) = 2 then r(u3|B) = r(u6|B) which is again
a contradiction.

The 2 − 2 gap, 2 − 3 gap and 3 − 3 gap containing 8, 7 and 5 vertices respectively will be referred
to as major gaps and the remaining gaps are called minor gaps. �

Lemma 6. If B is a basis of J3n, n ≥ 6, then it contains at most one major gap.

Proof. Suppose B is basis of J3n and it contains two distinct major gaps.
Case-(i): When both gaps are 3 − 3 then we have two distinct paths u1, u2, u∗

3, u4, u5 and
w1, w2, w∗

3, w4, w5 but r(u∗
3

∣∣B) = r(w∗
3

∣∣B).
Case-(ii): When both gaps are 2 − 2 then we have two distinct paths u1, u∗

2, u3, u4, u∗
5, u6, u7, u∗

8
and w1, w∗

2, w3, w4, w∗
5, w6, w7, w∗

8 but r(u∗
5

∣∣B) = r(w∗
5

∣∣B).
Case-(iii): When both gaps are 2 − 3 then we have two distinct paths u1, u∗

2, u3, u4, u∗
5, u6, u7 and

w1, w∗
2, w3, w4, w∗

5, w6, w7 but r(u∗
5

∣∣B) = r(w∗
5

∣∣B).
Case-(iv): When one gap is 3 − 3 and other is 2 − 2 gap then we have two distinct paths

u1, u2, u∗
3, u4, u5 and w1, w∗

2, w3, w4, w∗
5, w6, w7, w∗

8 but r(u∗
3

∣∣B) = r(w∗
5

∣∣B).
Case-(v): When one gap is 3 − 3 and other is 2 − 3 gap then we have two distinct paths

u1, u2, u∗
3, u4, u5 and w1, w∗

2, w3, w4, w∗
5, w6, w7 but r(u∗

3

∣∣B) = r(w∗
5

∣∣B).
Case-(vi): When one gap is 2 − 2 and other is 2 − 3 gap then we have two distinct paths

u∗
1, u2, u3, u∗

4, u5, u6, u∗
7, u8 and w1, w∗

2, w3, w4, w∗
5, w6, w7 but r

(
u∗

4

∣∣B) = r(w∗
5

∣∣B). �

Lemma 7. If B is a basis of J3n, n ≥ 6, containing one major gap either 2 − 2 gap or 2 − 3 gap then it does not
contain 2 − 2 gap and 2 − 3 minor gap having 7 and 6 vertices respectively.

Proof. Case-(i): When one gap is 2 − 2 major gap and the other is 2 − 2 minor gap having 7
vertices, then we have two distinct paths u1, u∗

2, u3, u4, u∗
5, u6, u7, u∗

8 and w∗
1, w2, w3, w∗

4, w5, w6, w∗
7 but

r(u∗
5

∣∣B) = r
(
w∗

4

∣∣B).
Case-(ii): When one gap is 2− 2 major gap and the other is 2− 3 minor gap having 6 vertices, then

we have two distinct paths u1, u∗
2, u3, u4, u∗

5, u6, u7, u∗
8 and w∗

1, w2, w3, w∗
4, w5, w6 but r(u∗

5

∣∣B) = r
(
w∗

4

∣∣B).
Case-(iii): When one gap is 2− 3 major gap and the other is 2− 2 minor gap having 7 vertices, then

we have two distinct paths u1, u∗
2, u3, u4, u∗

5, u6, u7 and w∗
1, w2, w3, w∗

4, w5, w6, w∗
7 but r(u∗

5

∣∣B) = r
(
w∗

4

∣∣B).
Case-(iv): When one gap is 2− 3 major gap and the other is 2− 3 minor gap having 6 vertices, then

we have two distinct paths u1, u∗
2, u3, u4, u∗

5, u6, u7 and w∗
1, w2, w3, w∗

4, w5, w6 but r(u∗
5

∣∣B) = r
(
w∗

4

∣∣B).
�

Lemma 8. If B is a basis of J3n, n ≥ 6 then any two neighboring gaps contain together at most 13 vertices in
which one gap is a major gap.

Proof. To show the statement, it is sufficient to show that a 2 − 2 major gap with 8 vertices has
a neighboring 2 − 2 minor gap in which 6 vertices cannot occur. If it holds then we have the
path u1, u2, u∗

3, u4, u5, u∗
6, u7, u8, u∗

9, u10, u11, u∗
12, u13, u14, u∗

15, u16, u17 with u1, u10, u17 ∈ B in this case
r(u7|B) = r(w13|B), a contradiction. �
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Lemma 9. If B is a basis of J3n, n ≥ 6, then any two minor neighboring gaps contain together at most
11 vertices.

Proof. To show the statement, it is sufficient to show that a 2 − 2 gap with 6 vertices has a neighboring
2 − 2 gap with 6 vertices cannot occur. Since gap is 2 − 2, both base elements must have degree 2.
For two consecutive 2 − 2 gaps having 6 vertices, we have two possible paths. (i) First possible path
is u1, u2, u∗

3, u4, u5, u∗
6, u7, u8, u∗

9, u10, u11, u∗
12, u13, u14, u∗

15 with u1, u8, u∗
15 ∈ B which is not possible as

d(u1) = 2 = d(u8) but d
(
u∗

15
)
= 3 �= 2.

(ii) Second possible path is u2, u∗
3, u4, u5, u∗

6, u7, u8, u∗
9, u10, u11, u∗

12, u13, u14, u∗
15, u16 with

u2, u∗
9, u16 ∈ B which is not possible as d(u2) = 2 = d(u16) but d(u∗

9) = 3 �= 2. Hence two minor gap
contain at most 11 vertices. �

Theorem 3. If J3n be the generalized gear graph for n ≥ 6, then dim(J3n) =
⌊ n

2
⌋
.

Proof. First we prove that dim(J3n) ≤
⌊ n

2
⌋

by constructing a resolving set W in J3n with
⌊ n

2
⌋

vertices.
We consider two cases according to the residue class modulo 2 to which n belongs.

Case-(i): When n ≡ 0(mod2) then W can be considered as:

W = {v1, v10, v16} ∪ {v6i+5; 3 ≤ i ≤ n
2
− 1}

Case-(ii): When n ≡ 1(mod2) then W can be considered as:

W = {v1, v10, v16} ∪ {v6i+5; 3 ≤ i ≤ n − 1
2

− 1}

�

The set W contains a unique 2 − 2 major gap and all other gaps are 2 − 2 minor gap which
contain at most five vertices, only one 2 − 2 minor gap contains six vertices. The set W is a resolving
set of J3n since any two major or any two minor vertices lying in different gaps or in the same gap
are separated by at least one vertex in the set of three vertices of W generating these neighboring
gaps; when gaps are not neighboring gaps then the set of four vertices of W which generate two gaps
make the representation of each vertex of these two gaps unique. Representation of central vertex is
(2, 2, 2, . . . , 2), which is different from the representation of all other vertices of J3n. Hence

dim(J3n) ≤
⌊n

2

⌋
(7)

Now we show that dim(J3n) ≥
⌊ n

2
⌋
. By Lemma 5 the central vertex v does not belong to any

basis of J3n. Let B be a basis of J3n such that |B|= r . We have r gaps on C3n generated by elements
of B. We denote these gaps by G1, G2, G3, . . . , Gr where Gi and Gi+1 are called neighboring gaps for
1 ≤ i ≤ r − 1 as well as Gr is also a neighboring gap of G1. By Lemma 6 at most one of them say G1 is
a major gap. By Lemmas 6 and 7, we have

|G1 + G2|≤ 13, |G1 + Gr|≤ 13

and by Lemmas 8 and 9, we have,

|G2 + G3|≤ 11, |G3 + G4|≤ 11, |Gi + Gi+1|≤ 10, f or all 4 ≤ i ≤ r − 1
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By summing these inequalities, we get,

2(3n − r) = 2
r

∑
i=1

|Gi| ≤ 8 + 10r ⇒ 6n − 2r ≤ 8 + 10r

⇒ 6n − 8 ≤ 12r ⇒ r ≥ n
2
− 2

3

Hence r =
⌊ n

2
⌋
.

⇒ dim(J3n) ≥
⌊n

2

⌋
(8)

So from Equations (7) and (8), we get

dim(J3n) =
⌊n

2

⌋
which complete the proof.

4. Conclusions

In the foregoing section, m-level gear graph J2n,m and generalized gear graph J3n are constructed.
It is proved that metric dimension of J2n,m is dim(J2n,1) + (m − 1)

⌈ 2n
3
⌉

for every n ≥ 4 and metric
dimension of J3n is

⌊ n
2
⌋

for every n ≥ 6. This section is closed by raising the following open problem.

Open Problem. Determine the metric dimension of m-level generalized gear graph J2n,k,m.
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Abstract: The existence of chaos and the quest of dense orbits have been recently considered for
dynamical systems given by multivalued linear operators. We consider the notions of topological
transitivity, topologically mixing property, hypercyclicity, periodic points, and Devaney chaos in the
general case of binary relations on topological spaces, and we analyze how they can be particularized
when they are represented with graphs and digraphs. The relations of these notions with different
types of connectivity and with the existence of Hamiltonian paths are also exposed. Special attention
is given to the study of dynamics over tournaments. Finally, we also show how disjointness can be
introduced in this setting.

Keywords: Devaney chaos; hypercyclicity; topological transitivity; topologically mixing; disjointness;
connectivity

1. Introduction

One of the pillars of the study of chaos in dynamical systems is the search of orbits that are
dense in the whole space. Typical examples of chaotic maps on the interval, where chaos can be easy
visualized, are given by the tent map or by some functions of the logistic family (see, for instance, [1–4]).

The existence of orbits that spread along the whole space has been also studied in the setting of
binary relations. When they are considered from one set onto itself, one can consider them from the
point of view of graph theory. On the one hand, Hamilton was the first one who started to consider
the analysis of graphs containing paths that visit all the nodes, named Hamiltonian paths. On the
other hand, in terms of connectivity of (directed) graphs, a graph is (strongly) connected if, for every
(ordered) pair of nodes, there is a path connecting them.

Roughly speaking, these two areas share the idea of the quest of orbits/paths visiting (nearly)
the whole domain. But there are differences in how these problems are addressed. In the case of
chaotic maps on the interval, the results usually involve computable conditions on the parameters of
the function that defines the system. For instance, this is the case of how it is determined the chaos of
the logistic map for μ = 4. However, in the case of graphs, these results are related with the global
structure of edges/arcs of the graph and/or on the quantification of the local structure at every node.

In the present work, our goal is to investigate the dynamics on graphs and on the more general
frame of binary relations on topological spaces. In this setting, when a relation is composed with
another one (or itself), each element of the domain does not need to be necessarily connected with a
single element in the range. For this reason, we have set a connection with some recent results of the

Symmetry 2018, 10, 211; doi:10.3390/sym10060211 www.mdpi.com/journal/symmetry171
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authors that were introduced to study the dynamics of multivalued continuous linear operators [5].
We will analyze hypercyclicity, topological transitivity, and topologically mixing properties of binary
relations. It is worth mentioning that the study of dynamics over finite graphs has been recently
considered by Bahi et al. by setting links between Devaney chaos and strong connectivity in order to
provide an algorithm for the generation of strongly connected graphs and to construct Pseudo Random
Number Generators (PRNGs) [6]. This approach has also allowed for the obtainment of PRNGs based
on the construction of Hamiltonian cycles over an N-cube [7,8]. It is also worth mentioning that such
results can also be considered in connection with finite state machines [9] and explained using Turing
machines [10].

In the present work, we have also tackled the problem of the link between chaotic properties and
connectivity, but analyzing more carefully the implications of using different topologies over the set of
nodes. These results will allow us to stretch the connections between graph theory and dynamical
systems in order to facilitate the exchange of ideas between both areas.

It is worth mentioning that there have been also recent results concerning the dynamics of
continuous linear operators acting on Lp-spaces consisting of functions V  → K, where K = {R, C},
and V is a multigraph, an infinite or a Cayley graph, a tree, or some similar structure (see, e.g., [11,12]
and the references cited therein). We point out that our approach is different to the one of studying
associations of directed graphs with finite topologies, as is taken in [13]. It also differs from the one
taken by Namayanja; she generalized the dynamics of solution C0-semigroups of birth-and-death
models [14–16] to the case in which the transport equations are defined on the edges of an infinite
network [17].

2. Preliminaries

Given two nonempty sets X and Y, a binary relation E is a subset of the Cartesian product X × Y.
If we consider the following relations ρ ⊆ X × Y and σ ⊆ Z × T with Y ∩ Z �= ∅, then we can define
the inverse of ρ, denoted by ρ−1 ⊆ Y × X, as the relation ρ−1 := {(y, x) ∈ Y × X : (x, y) ∈ ρ}, and the
composition of relations σ ◦ ρ ⊆ X × T by

σ ◦ ρ := {(x, t) ∈ X × T : ∃y ∈ Y ∩ Z such that (x, y) ∈ ρ and (y, t) ∈ σ}.

Given x ∈ X, we define its set of adjacent elements by ρ(x) := {y ∈ Y : (x, y) ∈ ρ}. The domain of a
binary relation ρ ⊆ X × Y is given by D(ρ) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈ ρ} and the range of
ρ is defined as R(ρ) := {y ∈ Y : ∃x ∈ X such that (x, y) ∈ ρ}.

We define the n-th power of ρ as ρn := ρ ◦ · · · ◦ ρ︸ ︷︷ ︸
n

, their inverses ρ−n := (ρn)−1, and the trivial

relation ρ0 := ΔX := {(x, x) : x ∈ X}. We also set D∞(ρ) :=
⋂

n∈N D(ρn) and Nn := {1, . . . , n},
for every n ∈ N. The definitions of the reflexive, symmetric, anti-symmetric, and transitive properties
are assumed to be known, as long as the classes of equivalence and partial order relations.

When X = Y, a binary relation can be also understood as the links of a graph. If we distinguish
the order in which the elements appear in each pair of the relation, then we speak of a directed graph or
a digraph; if not, we will refer to it as an undirected graph or simply as a graph. Following the previous
notation, a (di-)graph G = (X, ρ) is given by a nonempty set X, whose elements are called nodes or
vertices, and a set ρ or (ordered) pairs of elements of X, called arcs in the directed case and edges in the
undirected one. Thus, a binary relation on a graph is just the set of arcs/edges.

If y /∈ ρ(x), then y is not adjacent to x. In a graph, we define the degree of x as the cardinal of
ρ(x), |ρ(x)|. In a digraph, the outer degree of x, d+(x), is given by |ρ(x)|, and the inner degree of x,
d−(x), is given by |{y ∈ Y : (y, x) ∈ ρ}|. The set X of nodes of a (di-)graph G can be considered as
a topological space when endowed with certain topology over its elements. In the sequel, we will
only deal with non-trivial finite simple (di-)graphs (without multiple edges connecting two nodes,
and without any pair (x, x) in ρ).
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A walk is an ordered sequence of nodes x1, . . . , xn+1 ∈ X such that (xi, xi+1) ∈ ρ, 1 ≤ i ≤ n.
In this case, we say that its length is n. A path is a walk that does not include any node twice, except
that its first node can be the same as the last one. Such a (walk) path is called a x1 − xn+1 (walk)
path. A path with x1 = xn+1 is called a closed path or a cycle. Given an element x ∈ X, we define
its set of accessible elements by ω(x) := {y ∈ Y : there is an x − y path}. We say that a (di-)graph
is (strongly) connected if, forevery pair of nodes x, y ∈ X, there is an x − y path. A digraph whose
underlying non-directed graph, obtained by removing the direction of every arc, is connected is said
to be weakly connected. Further information on graph theory can be found in [18–20].

Throughout the rest of the paper, we assume that X and Y are two given topological spaces. If it is
not explicitly mentioned, we consider that these spaces are endowed with the discrete topology. In this
case, the unique dense set of X is the whole set X itself. We will also consider the product of N copies
of these spaces, XN and YN with N ∈ N, equipped with the usual product space topologies.

We introduce several notions of dynamical systems in the setting of binary relations:

Definition 1. Let (ρn)n∈N be a sequence of binary relations between the spaces X and Y, ρ a binary relation on
X, and x ∈ X. Then we say that

(i) x is a universal element for the sequence (ρn)n∈N if x ∈ ⋂n∈N D(ρn) and for each n ∈ N0 there exists
an element yn ∈ ρn(x) such that the set {yn : n ∈ N} is dense in Y. As a particular case, if ρn := ρn,
then we say x is hypercyclic for ρ.

(ii) ρ is topologically transitive if, for every pair of non-empty open sets U, V ⊂ X, there is some n ∈ N

such that U ∩ ρ−n(V) �= ∅. If there is some n0 ∈ N such that this last condition holds for all n ≥ n0, we
say that ρ is topologically mixing.

Clearly, if x is hypercyclic for G = (X, ρ), and (z, x) ∈ ρl for some l ∈ N, then z is likewise
hypercyclic for G. If ρ is a binary equivalence relation and x is hypercyclic, then the underlying
(di-)graph must be (strongly) connected and all the elements of X are hypercyclic for ρ.

Let us consider (On)n∈N a base of non-empty open sets for the topology of X. If we denote by
HC(ρ) the set consisting of all hypercyclic elements of ρ, then the following equality holds [21]:

HC(ρ) =
⋂

n∈N

⋃
k∈N

ρ−k(On
)
. (1)

Remark 1. (i) Let G = (X, ρ) be a graph with X equipped with the discrete topology. It can be simply
proved that the graph G is connected if and only if ρ is topologically transitive or hypercyclic.

(ii) In the Definition 1 (ii), it is irrelevant whether we write ρ−n(V) or ρn(V). It is also worth
noting that ρ does not need to be topologically mixing whenever ρ is topologically transitive: Let us
consider a graph G = (X, ρ) that is isomorphic to a square, that is X = {x1, x2, x3, x4} and
ρ = {(x1, x2), (x2, x3), (x3, x4), (x4, x1)}, see Figure 1a. Clearly, ρ is topologically transitive, but it does
not hold the topologically mixing property since there is no odd number n ∈ N such that x3 ∈ ρn(x1).

(iii) Unlike the linear setting, in our framework, the notion of hypercyclicity cannot be connected to that of
topological transitivity in any reasonable way. It is well known that these notions are equivalent for
continuous linear operators on Fréchet spaces by Baire’s category theorem (see, for instance, [21,22]).
However, there exist examples of continuous linear operators on non-metrizable locally convex spaces
that are topologically transitive and not hypercyclic [23]. Moreover, for any non-trivial Banach space
X there exists a multivalued linear operator A = {0} × X that is hypercyclic and not topologically
transitive (cf. [24]). It is very simple to construct an example of a hypercyclic relation on a finite set
that is not topologically transitive, as well: Set the digraph G = (X, ρ) with X := {x1, x2, x3} and
ρ := {(x1, x2), (x2, x1), (x1, x3)}, endowing X with the discrete topology, see Figure 1b. Then x1 is a
hypercyclic element for ρ, but ρ is not topologically transitive, since {x2} ∩ ρn({x3}) = ∅ for all n ∈ N.
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x1

x2 x3

x4

(a)

x1

x2 x3

(b)

x1

x2 x3

x4

(c)

Figure 1. (a) In Remark 1 (ii), we show a graph that, endowed with the discrete topology,
it is topologically transitive but not topologically mixing. (b) In Remark 1 (iii), we have
a graph that, endowed with the discrete topology, it is hypercyclic but not topologically
transitive. (c) In Example 1, different topologies—τ1 = {∅, {x1}, {x2}, {x3}, {x1, x2}, {x1, x3},
{x2, x3}, {x1, x2, x3}, {x1, x2, x3, x4}} and τ2 = {∅, {x1, x2}, {x1, x2, x3, x4}}—can be defined such that
the graph is hypercyclic for τ1 but not for τ2.

By considering different topologies on the set of nodes X, the aforementioned dynamical
properties can be used to generalize the notion of connectivity. The following examples illustrate
these facts:

Example 1. Let G = (X, ρ) be a graph without isolated nodes, and let τ be the topology on X. Let us denote by
G1, . . . , Gk, the connected components of the graph G. Then ρ is hypercyclic if there exists a number i ∈ Nk
such that Gi is dense in (G, τ), and any element of Gi is a hypercyclic element of ρ.

We point out that the topology endowed to X is crucial in order to ensure hypercyclicity, or any other
dynamical property. For example, let us take X = {x1, x2, x3, x4}, endowed with τ1 = {∅, {x1}, {x2}, {x3},
{x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}, {x1, x2, x3, x4}}, and τ2 = {∅, {x1, x2}, {x1, x2, x3, x4}},
see Figure 1c. We now set the binary relation ρ := {(x1, x4), (x4, x1), (x2, x3), (x3, x2)}, then ρ is not
hypercyclic in (X, τ1) but it is hypercyclic in (X, τ2).

Finally, observe that ρ is topologically transitive (and ρ is topologically mixing) if, for every pair of
non-empty open subsets of U, V ⊂ X, there exists i ∈ Nk such that U ∩ Gi �= ∅ and V ∩ Gi �= ∅.

The links between connectivity and dynamics will be thoroughly explained in the next section.

3. Hypercyclic and Chaotic Digraphs

We study the relations between different types of connectivity on digraphs and some of the
aforementioned dynamical properties. This will enable us to introduce two new important classes of
digraphs that are subclasses of the class of weakly connected digraphs and that extend the class of the
strongly connected ones.

One of the most accepted notions of chaos is the one introduced by Devaney [25] for continuous
mappings acting on metric spaces. Three ingredients are considered in this definition: topological
transitivity, density of periodic points, and sensitive dependence on the initial conditions (SDIC).
Banks et al. [26] proved that SDIC can be deduced from the other two properties. Nevertheless, since
topological transitivity does not coincide with hypercyclicity in our setting, we will introduce two
different notions of chaos.

Definition 2. Let ρ be a binary relation on X, and x ∈ X. Then we say that

1. x is a periodic point of ρ if x ∈ D∞(ρ) and there exists n ∈ N such that x ∈ ρn(x).
2. ρ is Devaney-chaotic if it is topologically transitive and it has a dense set of periodic points.
3. ρ is chaotic if it is hypercyclic and it has a dense set of periodic points.
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Let us consider G = (X, ρ), where X is endowed with the discrete topology. It immediately
follows from our definitions that G is strongly connected if and only if ρ is topologically transitive.
Every x ∈ X is also a periodic element for ρ. Thus, ρ is also Devaney-chaotic. Besides, ρ is also
hypercyclic and chaotic, and x ∈ HC(ρ) for every x ∈ X. Since ρ is hypercyclic, let us pick any
x ∈ HC(ρ). Then, for any two different points y, z ∈ X, an x − y path and an x − z path exists in G.
Thus, considering the underlying non-directed edges, there exists a walk connecting y and z, and G is
thus weakly connected. We summarize all these relations underneath.

(G, ρ) is Devaney-chaotic (equiv., strongly connected) ⇒ (G, ρ) is chaotic

⇒ (G, ρ) is hypercyclic ⇒ (G, ρ) is weakly connected. (2)

Therefore, we are able to introduce two new classes of digraphs that are subclasses of the class
of weakly connected digraphs and that extend the notion of strong connectivity. Any of these three
implications is strict, as the following examples show:

Example 2. (i) Let X := {x1, x2, x3, x4} be equipped with discrete topology, and let ρ :=
{(x1, x2), (x2, x1), (x1, x3), (x3, x4), (x4, x3)}, see Figure 2a. Then x3 ∈ ρ(x1), x4 ∈ ρ2(x1), x1 ∈
ρ3(x1), x2 ∈ ρ2n+1(x1), and x1 ∈ ρ2n(x1) (n ≥ 2), which simply yields that x1 ∈ HC(ρ). It is also
clear that any element of X is periodic for ρ, such that ρ is chaotic. Since there is no path connecting x3

and x1 in G, G is not strongly connected and ρ is neither topologically transitive nor Devaney-chaotic.
Therefore, the first implication in Equation (2) is strict.

(ii) Let C = x1 . . . xn+1 be an oriented closed cycle of length n (with x1 = xn+1), and let ρ := C ∪
{(x1, xn+2)}, where xn+2 �= xj for 1 ≤ j ≤ n + 1, see Figure 2b. Then it can be easily seen that
G = (X, ρ), endowed with the discrete topology, is hypercyclic, since any element lying on the cycle C is
hypercyclic for ρ and that G is not chaotic, because the point xn+2 cannot be a periodic element for ρ.

(iii) Let X := {x1, x2, x3} and ρ := {(x1, x2), (x3, x2)}, see Figure 2c. Then G = (X, ρ) is weakly connected
but, equipped with the discrete topology, it is not hypercyclic.

x1

x2 x3

x4

(a)

x1 x2 xn+1x3

xn+2

(b)

x1 x2 x3

(c)

Figure 2. The following graphs are endowing with the discrete topology. (a) In Example 2 (i), we show
that all in the elements in a graph can be periodic, but this does not imply strong connectivity,
Devaney chaos, nor topological transitivity. (b) In Example 2 (ii), we show that hypercyclicity does
not imply density of periodic points. (c) In Example 2 (iii), we show that weak connectivity does not
imply hypercyclicity.

A series of recent results in the theory of digraphs are devoted to the study of cyclability: Given a
digraph G = (X, ρ), a set S ⊂ X said to be cyclable in G if G contains a cycle through all the nodes of S.
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Setting S = X, we obtain the classical concept of a Hamiltonian (di-)graph. We refer the interested
reader to [27]. It is clear that the cyclability of S ⊂ X in G = (X, ρ) jointly with the denseness of S
in X imply that ρ is (Devaney)-chaotic for ρ. However, this is far from being necessary for ρ to be
(Devaney)-chaotic since this condition is automatically satisfied if the points in S lie on a closed path
in G not on a circle.

It is worth noting that our conclusions from Example 1 can be reformulated for digraphs only
partially; if G1, G2, . . . , Gk denote the strongly connected components of a digraph G = (X, ρ), then
the denseness of some Gi in G implies that ρ is (Devaney)-chaotic for ρ, but the converse statement
fails to be true even for discrete topology, as the next example shows:

Example 3. Consider a digraph G consisting of two oriented cycles given by G1 := {x1, x2, x3} and G2 :=
{x4, x5, x6} joined by an arc (x1, x4), see Figure 3a. Then G is Devaney-chaotic but neither G1 nor G2 are dense
in G.

4. Dynamics on Tournaments

Without any doubt, tournaments are the best studied class of digraphs (see, for instance,
the classical reference of [28]). We recall their definition.

Definition 3. A tournament T = (X, ρ) is a digraph in which any pair of different nodes x, y ∈ X are
connected by exactly one arc.

x1

x2 x3

x4

x6x5

(a)

x1 x2 x3

x4

(b)

Figure 3. (a) In Example 3, we show a Devaney-chaotic digraph, whose strongly connected components
are not dense. (b) In Example 4, we show an example of a tournament that, endowed with the discrete
topology, it is hypercyclic but not topologically transitive.

Example 4. It is straightforward that a tournament T = (X, ρ) with X = {x1, x2, x3, x4} and ρ obtained as
the union of a cycle {(x1, x2), (x2, x3), (x3, x1)} with the arcs {(x1, x4), (x2, x4), (x3, x4)}) is hypercyclic but
not topologically transitive, see Figure 3b.

In the following theorem, we completely characterize the class of hypercyclic tournaments.

Theorem 1. Let Tn = (X, ρ), with |X| = n, be a tournament of n nodes equipped with the discrete topology.
Then Tn is hypercyclic if and only if d+(x) < n − 1 for every x ∈ X.

Proof. First, assume that Tn is hypercyclic and d+(x) = n − 1 for some x ∈ X. Then d−(x) = 0, and
there is no k ∈ N, z ∈ {x1, x2, . . . , xn} such that x ∈ ρk(z), which contradicts the hypercyclicity of Tn.
Now, let us assume that the outdegree of any vertex is strictly less than n − 1. As a consequence of the
famous theorem attributed to Rédei [29], there exists a non-closed path visiting all nodes of X, that is a
Hamiltonian path named x1, x2 . . . , xn. Therefore, x1 ∈ HC(ρ).
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It is clear that, in any arbitrary tournament T, we have that d+(x) + d−(x) = n − 1 for all x ∈ X,
and d+(x) < n − 1 if and only if d−(x) > 0. For digraphs, we can prove the following extension of
Theorem 1:

Corollary 1. Let G = (X, ρ) be a digraph and X equipped with discrete topology, with |X| = n ≥ 3.
Suppose that, for any pair of nodes, x, y ∈ X such that, if (x, y) /∈ ρ, we have d+(x) + d−(y) ≥ n − 1. Then ρ

is hypercyclic if and only if d−(x) > 0 for all x ∈ X.

Proof. It is clear that the hypercyclicity of ρ implies that the indegree of any node is strictly positive.
The converse statement follows from the fact that such assumptions imply that there is a Hamiltonian
path in G by Ore’s Theorem [20], and the argumentation is in the proof of Theorem 1.

5. Disjointness on Binary Relations, Graphs, and Digraphs

Disjointness was firstly introduced for dynamical systems by Furstenberg in [30]. For linear
operators, it was firstly considered in [31,32] (see also [33]). Further information on the dynamics of
linear operators can be found in [34–37]. We introduce analogons of disjointness of the above classes of
hypercyclic and (Devaney)-chaotic graphs. Part of these results are inspired by the analogons obtained
for the case of multivalued linear operators in [5].

We first introduce the notion of disjointness for hypercyclicity, topological transitivity, and the
topologically mixing property.

Definition 4. Let N ≥ 2. Let X, Y be two topological spaces. For every j ∈ NN, let (ρj,n)n∈N be a sequence
of binary relations between the spaces X and Y, let ρj be a binary relation on X, and let x ∈ X. An element
x ∈ X is a d-universal element for the sequences (ρ1,n)n∈N, j ∈ NN if, for each j ∈ NN , n ∈ N, there exist
elements yj,n ∈ ρj,n(x) such that the set {(y1,n, y2,n, . . . , yN,n) : n ∈ N} is dense in YN. As a particular case,
the binary relations ρ1, . . . , ρN are called d-hypercyclic if there exists a d-universal element x of the sequences
(ρn

1 )n∈N, . . . , (ρn
N)n∈N. In this case, x is called a d-hypercyclic element of the binary relations ρ1, . . . , ρN .

Definition 5. Let N ≥ 2. Let X, Y be two topological spaces. For every 1 ≤ j ≤ N, let (ρj,n)n∈N be a sequence
of binary relations between the spaces X and Y and let ρj be a binary relation on X.

1. The sequences (ρ1,n)n∈N, . . . , (ρN,n)n∈N are d-topologically transitive if, for every non-empty open
subsets U ⊂ X and V1, . . . , VN ⊂ Y, there exists n ∈ N such that

U ∩ ρ−1
1,n(V1) ∩ . . . ∩ ρ−1

N,n(VN) �= ∅. (3)

2. The sequences (ρ1,n)n∈N, . . . , (ρN,n)n∈N are d-topologically mixing if, for every non-empty open subsets
U ⊂ X and V1, . . . , VN ⊂ Y, there exists n0 ∈ N such that, for every n ≥ n0, we have that Equation (3)
holds.

3. The binary relations ρ1, · · ·, ρN are d-topologically transitive (d-topologically mixing) if the sequences
(ρn

1 )n∈N, . . . , (ρn
N)n∈N are d-topologically transitive (d-topologically mixing).

We also introduce the notion of d-Devaney chaos and d-chaos for binary relations. For this
purpose, we define the set of periodic elements

P(ρ1, ρ2, · · ·, ρN) := {(x1, x2, . . . , xN) ∈ XN : ∃n ∈ N with xj ∈ ρn
j (xj), j ∈ NN}. (4)

Definition 6. Given N ≥ 2, the binary relations ρ1, . . . , ρN on X are said to be d-Devaney-chaotic if they
are d-topologically transitive and the set of periodic elements P(ρ1, ρ2, · · ·, ρN) is dense in XN. These relations
are d-chaotic if they are d-hypercyclic and the set of periodic elements is dense in XN.
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A formula similar to Equation (1) can be given for d-hypercyclic elements of binary relations [32],
and the most important consequences of both formulae can be formulated for continuous mappings
acting between topological spaces.

It is well known that two single-valued linear operators acting on a Fréchet space cannot be
d-hypercyclic if one of them is a scalar multiple of the other one. This is no longer true for multivalued
linear operators since there exists a multivalued linear operator A on a Banach space such that A
and some arbitrary multiples of it can be d-hypercyclic [5]. Concerning simple graphs, the notion of
d-hypercyclicity is much more complicated than the notion of hypercyclicity, and it does not reduce to
the connectivity of the graphs, as is described in Example 2 (ii). For the next result, we recall that a
graph of n nodes Kn = (Xn, ρ) is complete if, for every pair of different nodes x, y ∈ Xn, we have that
(x, y) ∈ ρ, i.e., ρ = X × X \ ΔX .

Theorem 2. Let n ≥ 2, and let Kn = (Xn, ρ) denote the complete graph with Xn = {x1, x2, . . . , xn}, equipped
with discrete topology. Let us consider N ≥ 2 copies of the graphs Kn. The following affirmations are equivalent:

i. The graphs are d-Devaney-chaotic.
ii. The graphs are d-hypercyclic.

iii. Each graph contains n ≥ 3 nodes.

Proof. Clearly, (i) implies (ii). To prove (ii) implies (iii), we only need to observe that, in the case
n = 2, we do not have the existence of a natural number k ∈ N such that x1 ∈ ρk(x1) and x2 ∈ ρk(x1).
Thus, any N-tuple of the XN

2 containing two different components cannot be an element of the set
∪k∈N[(ρk(x1))

N ∪ (ρk(x2))
N ]. Hence, neither x1 nor x2 are d-hypercyclic elements for the N graphs K2.

Now, let us assume n ≥ 3 and let us see that the N copies of Kn are d-Devaney-chaotic. For any N-tuple
(xi1 , . . . , xiN ) ∈ XN

n and i ∈ NN , we have that (xi1 , . . . , xiN ) ∈ (ρ2(xi))
N so that xi is a d-hypercyclic

element for the N-tuple of graphs Kn. Finally, the set of periodic points P(ρ, . . . , ρ) coincides with XN
n ,

even in the case n = 2.

In a similar way, it can be seen the equivalence of d-chaos and d-transitivity with the
condition n ≥ 3.

Another remarkable class of graphs are bipartite graphs. A graph G = (X, ρ) is said to be bipartite
if X = X1 ∪ X2 with X1 ∩ X2 = ∅ and for every (x, y) ∈ ρ, either x ∈ X1 and y ∈ X2 or x ∈ X2 and
y ∈ X1. In this case, the d-hypercyclicity can never hold. If we consider a family of bipartite graphs
G1, . . . , GN , sharing the partition of the set of nodes X into two sets X1 and X2, then for any x ∈ X and
every k ∈ N either ρk

1(x)× . . . × ρk
N(x) ⊂ XN

1 or ρk
1(x)× . . . × ρk

N(x) ⊂ XN
2 , depending on where is x

and if k is even or odd.
Before proceeding further, we would like to observe that the notion of (d-topological transitivity)

d-hypercyclicity is equivalent for simple graphs equipped with the discrete topology to the notion of
d-Devaney chaos, since for any simple graph G = (X, ρ) and for any x ∈ X we have that x ∈ ρ2k(x).

In the remaining part of this section, we will only consider digraphs.
For any digraph G = (X, ρ), where X = {x1, . . . , xn}, we introduce the adjacency matrix of A,

[A] = [ai,j] shortly, by ai,j := 1 if (xi, xj) ∈ ρ and ai,j := 0 if (xi, xj) /∈ ρ, for every 1 ≤ i, j ≤ n.
Let G1, . . . , GN be digraphs with, Gi = (Xi, ρi), i ∈ NN , each of which is equipped with discrete

topology, and let A1, . . . , AN be their corresponding adjacency matrices. Denote, for every l ∈ NN and
k ∈ N, the k-th power of the adjacency matrix Al as Ak

l = [al,k
i,j ]1≤i,j≤n. As is well known, the element

al,k
i,j of matrix Ak

l represents the exact number of xi − xj walks of length k in Gl . Using this result and
our definition of d-hypercyclic elements, we can simply clarify the following necessary and sufficient
conditions for an element to be a d-hypercyclic element.

Theorem 3. Let G1 . . . GN be digraphs over X = {x1, . . . , xn}, equipped with the discrete topology, with
adjacency matrices A1, . . . , AN. An element xi ∈ X is d-hypercyclic for G1, . . . , GN if and only if, for every
(j1, j2, . . . , jN) ∈ NN

n , there exists k ∈ N such that, for all l ∈ NN, al,k
i,jl

≥ 1.
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By taking Vl = {xjl}, l ≤ NN and U = {xi} in Condition 3, we obtain the following
characterization of d-topological transitivity of digraphs G1, . . . , GN equipped with discrete topologies,
and we can also characterize d-topologically mixing property in a similar way:

Theorem 4. Let G1 . . . GN be digraphs over X = {x1, . . . , xn}, equipped with the discrete topology, with
adjacency matrices A1, . . . , AN. The digraphs G1, . . . , GN are d-topologically transitive if and only if, for every
(j1, j2, . . . , jN) ∈ NN

n and for every i ∈ N, there exists k ∈ N such that, for all l ∈ NN, al,k
i,jl

≥ 1.

Thus, d-topological transitivity of digraphs G1, . . . , GN equipped with discrete topologies
immediately implies that these digraphs are d-hypercyclic with any x ∈ G being a d-hypercyclic
element. It is clear that d-Devaney chaos of G1, G2, . . . , GN implies d-chaos, which also implies
d-hypercyclicity. The converse implications do not hold in general, as can be illustrated with the
following examples.

Example 5. (i) Let G be the graph appearing in Example 2 (i), and let K4 be the complete graph of these 4
nodes, and both are equipped with discrete topologies, see Figure 4a. It can be easily seen that G and H are
d-chaotic but not d-Devaney-chaotic.

(ii) Let X := {x1, x2, x3, x4}, and let ρ :=
⋃

1≤i,j≤3(xi, xj) ∪ {(x1, x4), (x2, x4)}, see Figure 4b. If G =

(X, ρ) is equipped with the discrete topology, then the pair G, G is d-hypercyclic, since, for any even
number k ∈ N and for every x ∈ X, we have x ∈ ρk(x1), but it is not d-chaotic since x4 is not periodic
in G.

x1

x2 x3

x4 x1 x4

x2 x3

(a)

x1

x2 x3

x4 x1 x4

x2 x3

(b)

Figure 4. The following graphs are endowed with the discrete topology. (a) In Example 5 (i), we show
that the graph of Example 2 (i) and K4 are d-chaotic but not d-Devaney-chaotic. (b) In Example 5 (ii),
these two copies of the same graph are d-hypercyclic but not d-chaotic.

Disjointness of tournaments depends on the size of the set of nodes.

Theorem 5. Let n ≤ 3, and let T1, . . . , TN be N tournaments equipped with discrete topologies.
Then T1, . . . , TN cannot be d-hypercyclic nor d-topologically transitive.

Proof. Without loss of generality, we may assume that N = 2. If n = 2, then it can be easily
seen that T1 and T2 must be isomorphic to an oriented segment, which is neither hypercyclic nor
topologically transitive.
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If n = 3, there exist only two non-isomorphic tournaments of order 3. Since T1 and T2 should be
hypercyclic (topologically transitive), and only the Hamiltonian circles are hypercyclic (topologically
transitive), it follows that T1 and T2 have to be a Hamiltonian circle—either x1, x2, x3, x1 or x1, x3, x2, x1.
A careful inspection of all possible cases leads us to the impossibility of satisfying any of these
dynamical properties.

By Theorems 2 and 5, looking at the case n = 3, we easily observe the existence of digraphs that
are not d-chaotic, but whose underlying simple graphs are d-chaotic. In the case of n ≥ 4, we have the
following important result.

Theorem 6. Let n ≥ 4, and let T1, . . . , TN be tournaments over a set X = {x1, . . . , xn}equipped with discrete
topologies. The following are equivalent:

1. T1, . . . , TN are d-Devaney-chaotic.
2. T1, . . . , TN are d-topologically transitive.
3. Tl is strongly connected for all l ∈ NN.
4. Tl is a Hamiltonian tournament for all l ∈ NN.

Proof. Let T1, . . . , TN be d-chaotic. Then these tournaments are d-topologically transitive such that
any Tl , l ∈ NN , is topologically transitive and therefore strongly connected. By Camion’s theorem (see,
for instance, [28]), Tl is strongly connected if and only if each Tl is Hamiltonian.

Therefore, it remains to be proven that the strong connectivity of all Tl values implies that
T1, . . . , TN are d-chaotic. To see this, let us recall that the strong connectivity of any directed graph
is equivalent to its irreducibility [38]. Applying Th. 1 of [38], we have that the adjacency matrix
Al of Tl , l ∈ NN , is primitive, i.e., there exists a natural number ql such that Aql

l is strictly positive.
In fact, Wielandt estimates that ql ≤ (n − 1)2 + 1 [39]. The result now follows from an application
of Theorem 4 and from the observation that, for a given tuple (j1, j2, . . . , jN) ∈ NN

n , (xj1 , xj2 , . . . , xjN )

is a periodic point for T1, . . . , TN if and only if there exists k ∈ N such that, for each l ∈ NN , one has
al,k

jl ,jl
≥ 1.

Any of the above equivalencies implies that T1, . . . , TN are also d-hypercyclic. However, the
situation is not so simple because the strong connectivity of Tl values for all l ∈ NN is not equivalent
to the fact that T1, . . . , TN were d-hypercyclic:

Example 6. It is well known that there exist only four non-isomorphic tournaments of order four. Only two of
them, T1 and T2, defined as follows, are hypercyclic: T1 is the union of the Hamiltonian cycle x2, x3, x4, x2 and
oriented segments (x2, x1), (x3, x1), and (x4, x1), while T2 is the union of the Hamiltonian cycle x1, x2, x3, x4, x1

and oriented segments (x1, x3) and (x2, x4). Furthermore, T1 is hypercyclic but not topologically transitive,
whereas T2 is. It can be verified that the pair T1, T1 is not d-hypercyclic. Hence, the hypercyclicity of components
does not imply d-hypercyclicity of a tuple. We also point out that the pair T1, T2 is d-hypercyclic, but T1 is not
strongly connected.

We close this work by providing one more example.

Example 7. Let n ≥ 5, and T1, . . . TN be tournaments over a set of nodes X = {x1, . . . , xn}. Suppose that
T1 is a hypercyclic, non-Hamiltonian tournament and that, for l = 2, . . . , N, Tl is a Hamiltonian tournament.
Let x be a hypercyclic element for T1. Then the proof of Theorem 6 shows that T1, . . . TN are d-hypercyclic, where
x is their d-hypercyclic element. However, it is clear that T1, . . . TN cannot be d-topologically transitive.
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Abstract: Chemical graph theory plays an important role in modeling and designing any chemical
structure. The molecular topological descriptors are the numerical invariants of a molecular graph
and are very useful for predicting their bioactivity. In this paper, we study the chemical graph
of the crystal structure of titanium difluoride TiF2 and the crystallographic structure of cuprite
Cu2O. Furthermore, we compute degree-based topological indices, mainly ABC, GA, ABC4, GA5

and general Randić indices. Furthermore, we also give exact results of these indices for the crystal
structure of titanium difluoride TiF2 and the crystallographic structure of cuprite Cu2O.

Keywords: topological indices; cuprite; atom bond connectivity index; Zagreb indices;
geometric arithmetic index; general Randić index; titanium difluoride

1. Introduction

Graph theory is one of the most special and unique branches of mathematics by which the
demonstration of any structure is made conceivable. Recently, it has attained much attention
among researchers because of its wide range of applications in computer science, electrical networks,
interconnected networks, biological networks, chemistry, etc. The chemical graph theory CGT is a fast
growing area among researchers. It helps in understanding the structural properties of a molecular
graph. There are many chemical compounds that possess a variety of applications in the fields of
commercial, industrial, pharmaceutical chemistry and daily life and in the laboratory.

A relationship exists between chemical compounds and their molecular structures.
The manipulation and examination of chemical structural information is made conceivable using
molecular descriptors. Chemical graph theory is a branch of mathematical chemistry in which the
tools of graph theory are applied to model the chemical phenomenon mathematically. Furthermore,
it relates to the nontrivial applications of graph theory for solving molecular problems. This theory
contributes to a prominent role in the field of chemical sciences; see for details [1–3].

Chem-informatics is a new subject, which is a combination of chemistry, mathematics and
information science. It examines the quantitative structure–activity relationship (QSAR) and
quantitative structure-property relationship (QSPR), which are utilized to predict the bioactivity
and physicochemical properties of chemical compounds [4]. The field of chemical graph theory has
attained much attention and consideration among researchers [5,6].

In solid state physics, the electrons of a single, isolated atom occupy atomic orbitals, each of which
has a discrete energy level. When two atoms join together to form a molecule, their atomic orbitals
overlap [7]. The Pauli exclusion principle dictates that no two electrons can have the same quantum

Symmetry 2018, 10, 265; doi:10.3390/sym10070265 www.mdpi.com/journal/symmetry183



Symmetry 2018, 10, 265

numbers in a molecule. Therefore, if two identical atoms combine to form a diatomic molecule,
each atomic orbital splits into two molecular orbitals of different energy, allowing the electrons in
the former atomic orbitals to occupy the new orbital structure without any having the same energy.
Similarly if a large number N of identical atoms come together to form a solid, such as a crystal lattice,
the atoms’ atomic orbitals overlap [8]. Since the Pauli exclusion principle dictates that no two electrons
in the solid have the same quantum numbers, each atomic orbital splits into N discrete molecular
orbitals, each with a different energy.

In chemical graph, the vertices represent atoms, and edges refer to the chemical bonds in the
underlying chemical structure. A topological index is a numerical value that is computed mathematically
from the molecular graph. It is associated with the chemical constitution indicating the correlation of the
chemical structure with many physical, chemical properties and biological activities. The exact formulas
of topological indices of certain chemical graphs have been computed and plotted in [9,10].

Let G = (V, E) be a graph where V is the vertex set and E is the edge set of G. The degree deg(t)
(or dt) of v is the number of edges of G incident with t. The length of the shortest path in a graph G is a
distance d(s, t) between s and t. A graph can be represented by a polynomial, a numerical value or
by matrix form. There are certain types of topological indices, mainly eccentric-based, degree-based,
distance-based indices, etc. In this paper, we deal with degree-based topological indices.

The first and oldest degree-based index was introduced by Milan Randić [11] in 1975 and is
defined in the following equation.

R− 1
2
(G) = ∑

st∈E(G)

1√
dsdt

In 1988, Bollobás et al. [12] and Amic et al. [13] proposed the general Randić index independently.
For more details about the Randić index, its properties and important results, see [14,15]. The general
Randić index is defined as:

Rα(G) = ∑
st∈E(G)

(dsdt)
α

The atom bond connectivity index is of vital importance and was introduced by Estrada et al. [16].
It is defined as:

ABC(G) = ∑
st∈E(G)

√
ds + dt − 2

dsdt

The geometric arithmetic index GA of a graph G was introduced by Vukičević et al. [17]. It is
defined as:

GA(G) = ∑
st∈E(G)

2
√

dsdt

ds + dt

The first Zagreb index was introduced in 1972 by [18]. Later on, the second Zagreb index was
introduced by [19]. The first and second Zagreb indices are formulated as:

M1(G) = ∑
st∈E(G)

(ds + dt)

M2(G) = ∑
st∈E(G)

(dsdt)

The fourth version of the atom bond connectivity index ABC4 of a graph G was introduced by
Ghorbhani et al. [20]. It is defined as:

ABC4(G) = ∑
st∈E(G)

√
Ss + St − 2

SsSt
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where Ss = ∑
st∈E(G)

dt and St = ∑
st∈E(G)

ds.

Another molecular descriptor was the fifth version of the geometric arithmetic index GA5 of a
graph G introduced by Graovac et al. [21]. It is defined as:

GA5(G) = ∑
st∈E(G)

2
√

SsSt

Ss + St

2. Research Aim

Our aim in this article is to compute the additive topological indices, mainly the atom
bond connectivity index, geometric arithmetic index, fourth atom bond connectivity index ABC4,
fifth geometric arithmetic index GA5 and general Randić index Rα, for α = {−1, 1, 1

2 ,− 1
2} for

Cu2O[m, n, t] and TiF2[m, n, t]. Moreover, the graphical representation of these exact result is depicted
for further explanation of the behavior of these topological indices.

3. Applications of Topological Indices

The atom-bond connectivity (ABC) index provides a very good correlation for the stability
of linear alkanes, as well as the branched alkanes and for computing the strain energy of cyclo
alkanes [22]. The Randi/’c index is a topological descriptor that has been correlated with many
chemical characteristics of molecules and has been found to the parallel to computing the boiling
point and Kovats constants of the molecules. To correlate with certain physicochemical properties,
the GA index has much better predictive power than the predictive power of the Randić connectivity
index [23,24]. The first and second Zagreb index were found to occur for the computation of the total
π-electron energy of the molecules within specific approximate expressions [25]. These are among the
graph invariants, which were proposed for the measurement of the skeleton of the branching of the
carbon-atom [26].

4. Crystallographic Structure of the Molecule Cu2O

Among various transition metal oxides, Cu2O has attracted much attention in recent years
owing to its distinguished properties and non-toxic nature, low-cost, abundance and simple
fabrication process [27]. Nowadays, the promising applications of Cu2O mainly focus on chemical
sensors, solar cells, photocatalysis, lithium-ion batteries and catalysis [28]. The chemical graph
of the crystallographic structure of Cu2O is described in Figures 1 and 2; see details in [29].
Let G ∼= Cu2O[m, n, t] be the chemical graph of Cu2O with m × n unit cells in the plane and t layers.
We construct this graph first by taking m × n units in the mn-plane and then storing it up in t
layers. The number of vertices and edges of Cu2O[m, n, t] is (m + 1)(n + 1)(t + 1) + 5mnt and 8mnt,
respectively. In Cu2O[m, n, t], the number of vertices of degree zero is four; the number of vertices of
degree one is 4m + 4n + 4t − 8; the number of vertices of degree two is 4mnt + 2mn + 2mt + 2nt −
4n − 4m − 4t + 6; and the number of vertices of degree four is 2nmt − nm − nt − mt + n + m + t − 1.
Furthermore, the edge partition of Cu2O[m, n, t] based on the degrees of end vertices of each edge is
depicted in Table 1.

Table 1. Edge partition of Cu2O[m, n, t] based on the degrees of end vertices of each edge.

(ds, dt) Frequency Set of Edges

(1, 2) 4n + 4m + 4t − 8 E1
(2, 2) 4nm + 4nt + 4mt − 8n − 8m − 8t + 12 E2
(2, 4) 4(2nmt − nm − nt − mt + n + m + t − 1) E3
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Figure 1. Crystallographic structure of the molecule Cu2O. (a) Structural characteristics of Cu and O
atoms in the Cu2O lattice. The Cu2O lattice is formed by interpenetrating the Cu and O lattices with
each other. (b) Unit cell of Cu2O. Copper atoms are shown as small blue spheres, and oxygen atoms
are shown as large red spheres. In the Cu2O lattice, each Cu atom is coordinated with two O atoms,
and each O atom is coordinated with four Cu atoms.

(a)
(b)

Figure 2. (a) Unit cell of Cu2O[1, 1, 1] (b) Crystallographic structure of Cu2O[3, 2, 3].

Theorem 1. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its general Randić index is
equal to,

RαG =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
[
8mnt − 2(mn + mt + nt) + m + n + t

]
, if α = 1,

1
2 (2mnt + mn + mt + nt + m + n + t − 3), if α = −1,

4
(
4
√

2mnt + 2(1 −
√

2)(mn + mt + nt)

+(3
√

2 − 4)(m + n + t)− 4
√

2 + 6
)
, if α = 1

2 ,

2
√

2mnt + (2 −
√

2)(mn + mt + nt)

+(3
√

2 − 4)(m + n + t)− 5
√

2 + 6, if α = − 1
2 .
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Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The general Randić index,

For α = 1.

R1(G) = ∑
st∈E(G)

(ds × dt)

= ∑
st∈E1(G)

(ds × dt) + ∑
st∈E2(G)

(ds × dt) + ∑
st∈E3(G)

(ds × dt)

= (4m + 4n + 4t − 8)(1 × 2) + (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)(2 × 2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)(2 × 4)

= 8
[
8mnt − 2(mn + mt + nt) + m + n + t

]
For α = −1,

R−1(G) = ∑
st∈E(G)

1
(ds × dt)

= ∑
st∈E1(G)

1
(ds × dt)

+ ∑
st∈E2(G)

1
(ds × dt)

+ ∑
st∈E3(G)

1
(ds × dt)

= (4m + 4n + 4t − 8)
1

(1 × 2)
+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)

1
(2 × 2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)
1

(2 × 4)

=
1
2
(2mnt + mn + mt + nt + m + n + t − 3)

For α = 1
2 ,

R 1
2
(G) = ∑

st∈E(G)

√
(ds × dt)

= ∑
st∈E1(G)

√
(ds × dt) + ∑

st∈E2(G)

√
(ds × dt) + ∑

st∈E3(G)

√
(ds × dt)

= (4m + 4n + 4t − 8)
√
(1 × 2) + (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)

√
(2 × 2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)
√
(2 × 4)

= 4
(
4
√

2mnt + 2(1 −
√

2)(mn + mt + nt) + (3
√

2 − 4)(m + n + t)− 4
√

2 + 6
)
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For α = − 1
2 ,

R− 1
2
(G) = ∑

st∈E(G)

1√
(ds × dt)

= ∑
st∈E1(G)

1√
(ds × dt)

+ ∑
st∈E2(G)

1√
(ds × dt)

+ ∑
st∈E3(G)

1√
(ds × dt)

= (4m + 4n + 4t − 8)
1√

(1 × 2)
+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)

1√
(2 × 2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)
1√

(2 × 4)

= 2
√

2mnt + (2 −
√

2)(mn + mt + nt) + (3
√

2 − 4)(m + n + t)− 5
√

2 + 6

Theorem 2. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its atom bond connectivity index
is equal to,

ABC(G) = 4
√

2mnt.

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The result for the atom bond
connectivity index is as follows:

ABC(G) = ∑
st∈E(G)

√
ds + dt − 2

dsdt

= ∑
st∈E1(G)

√
ds + dt − 2

dsdt
+ ∑

st∈E2(G)

√
ds + dt − 2

dsdt
+ ∑

st∈E3(G)

√
ds + dt − 2

dsdt

= (4m + 4n + 4t − 8)

√
1 + 2 − 2

1 × 2
+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)

√
2 + 2 − 2

2 × 2

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)

√
2 + 4 − 2

2 × 4

= 4
√

2mnt.

Theorem 3. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its geometric arithmetic index is
equal to,

GA(G) = 4
[

4
√

2mnt
3

−
(2

√
2 − 3
3

)
(mn + mt + nt − 2m − 2n − 2t)− 2

√
2 + 3

]
.
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Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The geometric arithmetic index is
computed as below:

GA(G) = ∑
st∈E(G)

2
√

dsdt

ds + dt

= ∑
st∈E1(G)

2
√

dsdt

ds + dt
+ ∑

st∈E2(G)

2
√

dsdt

ds + dt
+ ∑

st∈E3(G)

2
√

dsdt

ds + dt

= (4m + 4n + 4t − 8)
2
√

1 × 2
1 + 2

+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)
2
√

2 × 2
2 + 2

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)
2
√

2 × 4
2 + 4

= 4
[

4
√

2mnt
3

−
(2

√
2 − 3
3

)
(mn + mt + nt − 2m − 2n − 2t)− 2

√
2 + 3

]

Theorem 4. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its first and second Zagreb
indices are equal to,

M1(G) = 4
(
12mnt − 2(mn + mt + nt) + m + n + t

)
M2(G) = 8

(
8mnt − 2(mn + mt + nt) + m + n + t

)
.

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The first Zagreb index is computed
as below:

M1(G) = ∑
st∈E(G)

(ds + dt)

= ∑
st∈E1(G)

(ds + dt) + ∑
st∈E2(G)

(ds + dt) + ∑
st∈E3(G)

(ds + dt)

= (4m + 4n + 4t − 8)(1 + 2) + (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)(2 + 2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)(2 + 4)

= 4
(
12mnt − 2(mn + mt + nt) + m + n + t

)
The second Zagreb index is computed as below:

M2(G) = ∑
st∈E(G)

(dsdt)

= ∑
st∈E1(G)

(dsdt) + ∑
st∈E2(G)

(dsdt) + ∑
st∈E3(G)

(dsdt)

= (4m + 4n + 4t − 8)(1 × 2) + (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)(2 × 2)

+ (8mnt − 4mn − 4mt − 4nt + 4m + 4n + 4t − 4)(2 × 4)

= 8
(
8mnt − 2(mn + mt + nt) + m + n + t

)
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Table 2 shows the edge partition of the chemical graph Cu2O[m, n, t] based on the degree sum of
end vertices of each edge.

Table 2. Edge partition of Cu2O[m, n, t] with m, n, t ≥ 2 based on the degree sum of end vertices of
each edge.

(Ss, St) Frequency Set of Edges

(2, 4) 4m + 4n + 4t − 8 E1
(4, 6) 4mn + 4mt + 4nt − 8m − 8n − 8t + 12 E2
(5, 8) 4n + 4m + 4t − 8 E3
(6, 8) 4mn + 4mt + 4nt − 8m − 8n − 8t + 12 E4
(8, 8) 8mnt − 8mn − 8mt − 8nt + 8m + 8n + 8t − 8 E5

Theorem 5. Consider the graph G ∼= Cu2O[m, n, t] with m, n, t ≥ 2, then its fourth atom bond connectivity
index is equal to,

ABC4(G) =
√

14mnt +
( 4√

3
−
√

14 + 2
)
(mn + mt + nt)− 4

√
2 + 4

√
3 −

√
14 − 2

√
110
5

+ 6

+
(

2
√

2 − 8√
3
+
√

14 +

√
110
5

− 4
)
(m + n + t).

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The fourth atom bond connectivity
index is computed by using Table 2 in the following equation.

ABC4(G) = ∑
st∈E(G)

√
Ss + St − 2

SsSt

= ∑
st∈E1(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E2(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E3(G)

√
Ss + St − 2

SsSt

+ ∑
st∈E4(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E5(G)

√
Ss + St − 2

SsSt

ABC4(G) = (4m + 4n + 4t − 8)

√
2 + 4 − 2

2 × 4
+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)

√
4 + 6 − 2

4 × 6

+ (4m + 4n + 4t − 8)

√
5 + 8 − 2

5 × 8
+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)

√
6 + 8 − 2

6 × 8

+ (8mnt − 8mn − 8mt − 8nt + 8m + 8n + 8t − 8)

√
8 + 8 − 2

8 × 8

=
√

14mnt +
( 4√

3
−
√

14 + 2
)
(mn + mt + nt)− 4

√
2 + 4

√
3 −

√
14 − 2

√
110
5

+ 6

+
(

2
√

2 − 8√
3
+
√

14 +

√
110
5

− 4
)
(m + n + t)
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Theorem 6. Consider the graph G ∼= Cu2O[m, n, t] with m, n, t ≥ 2, then its fifth geometric arithmetic index
is equal to,

GA5(G) = 8mnt +
(16

√
3

7
+

8
√

6
5

− 8
)
(mn + mt + nt)− 16

√
2

3
+

48
√

3
7

+
24
√

6
5

− 32
√

10
13

− 8

+
(8

√
2

3
− 32

√
3

7
− 16

√
6

5
+

16
√

10
13

+ 8
)
(m + n + t)

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The fifth geometric arithmetic index is
computed as below:

GA5(G) = ∑
st∈E(G)

2
√

SsSt

Ss + St

= ∑
st∈E1(G)

2
√

SsSt

Ss + St
+ ∑

st∈E2(G)

2
√

SsSt

Ss + St
+ ∑

st∈E3(G)

2
√

SsSt

Ss + St

+ ∑
st∈E4(G)

2
√

SsSt

Ss + St
+ ∑

st∈E5(G)

2
√

SsSt

Ss + St

= (4m + 4n + 4t − 8)
2
√

2 × 4
2 + 4

+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)
2
√

4 × 6
4 + 6

+ (4m + 4n + 4t − 8)
2
√

5 × 8
5 + 8

+ (4mn + 4mt + 4nt − 8m − 8n − 8t + 12)
2
√

6 × 8
6 + 8

+ (8mnt − 8mn − 8mt − 8nt + 8m + 8n + 8t − 8)
2
√

8 × 8
8 + 8

= 8mnt +
(16

√
3

7
+

8
√

6
5

− 8
)
(mn + mt + nt)− 16

√
2

3
+

48
√

3
7

+
24
√

6
5

− 32
√

10
13

− 8

+
(8

√
2

3
− 32

√
3

7
− 16

√
6

5
+

16
√

10
13

+ 8
)
(m + n + t)

5. Crystal Structure of Titanium Difluoride

Titanium difluoride is a water-insoluble titanium source for use in oxygen-sensitive applications,
such as metal production. Fluoride compounds have diverse applications in current technologies
and science, from oil refining and etching to synthetic organic chemistry and the manufacture of
pharmaceuticals. The chemical graph of the crystal structure of titanium difluoride TiF2[m, n, t] is
described in Figure 3; for more details, see [30]. Let G ∼= TiF2[m, n, t] be the chemical graph of TiF2

with m × n unit cells in the plane and t layers. We construct this graph first by taking m × n units
in the mn−plane and then storing it up in t layers. The number of vertices and edges of TiF2[m, n, t]
is 12mnt + 2mn + 2mt + 2nt + m + n + t + 1 and 32mnt, respectively.In TiF2[m, n, t], the number of
vertices of degree one is eight; the number of vertices of degree two is 4m + 4n + 4t − 12; the number
of vertices of degree four is 8mnt + 4mn + 4mt + 4nt − 4n − 4m − 4t + 6; and the number of vertices
of degree eight is 4mnt − 2(mn + mt + nt) + m + n + t − 1. The edge partition of TiF2[m, n, t] based
on the degrees of end vertices of each edge is depicted in Table 3.
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(a) (b)

Figure 3. (a)The unit cell of of TiF2[m, n, t] with Ti atoms in red and F atoms in green; (b) the crystal
structure of TiF2[4, 1, 2].

Table 3. Edge partition of TiF2[m, n, t] based on the degrees of end vertices of each edge.

(ds, dt) Frequency Set of Edges

(1, 4) 8 E1
(2, 4) 8(m + n + t − 3) E2
(4, 4) 16(mn + mt + nt)− 16(m + n + t) + 24 E3
(4, 8) 32mnt − 16(mt + mn + nt) + 8(m + n + t)− 8 E4

Theorem 7. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its general Randić index is equal to,

RαG =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
[
32mnt − 8(mn + mt + nt) + 2(m + n + t)− 1

]
, if α = 1,

1
4 (4mnt + 2(mn + mt + nt) + m + n + t + 1), if α = −1,

16
(
8
√

2mnt + 4(1 −
√

2)(mn + mt + nt)

+(3
√

2 − 4)(m + n + t)− 5
√

2 + 7
)
, if α = 1

2 ,

4
√

2mnt + 2(2 −
√

2)(mn + mt + nt)

+(3
√

2 − 4)(m + n + t)− 7
√

2 + 10, if α = − 1
2 .

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The general Randić index,

For α = 1.

R1(G) = ∑
st∈E(G)

(ds × dt)

= ∑
st∈E1(G)

(ds × dt) + ∑
st∈E2(G)

(ds × dt) + ∑
st∈E3(G)

(ds × dt) + ∑
st∈E4(G)

(ds × dt)

= (8)(1 × 4) + (8m + 8n + 8t − 24)(2 × 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)
(4 × 4)

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

)
(4 × 8)

= 32
[
32mnt − 8(mn + mt + nt) + 2(m + n + t)− 1

]
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For α = −1,

R−1(G) = ∑
st∈E(G)

1
(ds × dt)

= ∑
st∈E1(G)

1
(ds × dt)

+ ∑
st∈E2(G)

1
(ds × dt)

+ ∑
st∈E3(G)

1
(ds × dt)

+ ∑
st∈E4(G)

1
(ds × dt)

R−1(G) = (8)
1

(1 × 4)
+ (8m + 8n + 8t − 24)

1
(2 × 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

) 1
(4 × 4)

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

) 1
(4 × 8)

=
1
4
(4mnt + 2(mn + mt + nt) + m + n + t + 1)

For α = 1
2 ,

R 1
2
(G) = ∑

st∈E(G)

√
(ds × dt)

= ∑
st∈E1(G)

√
(ds × dt) + ∑

st∈E2(G)

√
(ds × dt) + ∑

st∈E3(G)

√
(ds × dt) + ∑

st∈E4(G)

√
(ds × dt)

= (8)
√
(1 × 4) + (8m + 8n + 8t − 24)

√
(2 × 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)√
(4 × 4)

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

)√
(4 × 8)

= 16
(
8
√

2mnt + 4(1 −
√

2)(mn + mt + nt) + (3
√

2 − 4)(m + n + t)− 5
√

2 + 7
)

For α = − 1
2 ,

R− 1
2
(G) = ∑

st∈E(G)

1√
(ds × dt)

= ∑
st∈E1(G)

1√
(ds × dt)

+ ∑
st∈E2(G)

1√
(ds × dt)

+ ∑
st∈E3(G)

1√
(ds × dt)

+ ∑
st∈E4(G)

1√
(ds × dt)

= (8)
1√

(1 × 4)
+ (8m + 8n + 8t − 24)

1√
(2 × 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

) 1√
(4 × 4)

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

) 1√
(4 × 8)

= 4
√

2mnt + 2(2 −
√

2)(mn + mt + nt) + (3
√

2 − 4)(m + n + t)− 7
√

2 + 10
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Theorem 8. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its atom bond connectivity index is
equal to,

ABC(G) = 2
[
4
√

5mnt − 2(
√

5 −
√

6)(mn + mt + nt) + (2
√

2 +
√

5 − 2
√

6)(m + n + t)
]

+ 2
[
− 6

√
2 + 2

√
3 −

√
5 + 3

√
6
]

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The atom bond connectivity
index can be calculated by using Table 3 in the following equation.

ABC(G) = ∑st∈E(G)

√
ds+dt−2

dsdt

= ∑st∈E1(G)

√
ds+dt−2

dsdt
+ ∑st∈E2(G)

√
ds+dt−2

dsdt
+ ∑st∈E3(G)

√
ds+dt−2

dsdt
+ ∑st∈E4(G)

√
ds+dt−2

dsdt

= (8)
√

1+4−2
1×4 + (8m + 8n + 8t − 24)

√
2+4−2

2×4

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)√ 4+4−2
4×4

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

)√ 4+8−2
4×8

= 2
[
4
√

5mnt − 2(
√

5 −
√

6)(mn + mt + nt) + (2
√

2 +
√

5 − 2
√

6)(m + n + t)
]

+ 2
[
− 6

√
2 + 2

√
3 −

√
5 + 3

√
6
]

Theorem 9. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its geometric arithmetic index is
equal to,

GA(G) = 8
[8

√
2(mnt − 1)

3
−
(4

√
2

3
− 2
)
(mn + mt + nt − m − n − t) +

19
5

]
Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The geometric arithmetic
index is computed as below:

GA(G) = ∑
st∈E(G)

2
√

dsdt

ds + dt

= ∑
st∈E1(G)

2
√

dsdt

ds + dt
+ ∑

st∈E2(G)

2
√

dsdt

ds + dt
+ ∑

st∈E3(G)

2
√

dsdt

ds + dt
+ ∑

st∈E4(G)

2
√

dsdt

ds + dt

= (8)
2
√

1 × 4
1 + 4

+ (8m + 8n + 8t − 24)
2
√

2 × 4
2 + 4

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)2
√

4 × 4
4 + 4

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

)2
√

4 × 8
4 + 8

= 8
[8

√
2(mnt − 1)

3
−
(4

√
2

3
− 2
)
(mn + mt + nt − m − n − t) +

19
5

]
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Theorem 10. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its first and second Zagreb indices
are equal to,

M1(G) = 8
[
48mnt − 8(mn + mt + nt) + 2(m + n + t)− 1

]
,

M2(G) = 32
[
32mnt − 8(mn + mt + nt) + 2(m + n + t)− 1

]
.

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The first and second Zagreb
indices are computed as below:

M1(G) = ∑st∈E(G)(ds + dt)

= ∑st∈E1(G)(ds + dt) + ∑st∈E2(G)(ds + dt) + ∑st∈E3(G)(ds + dt) + ∑st∈E4(G)(ds + dt)

= (8)(1 + 4) + (8m + 8n + 8t − 24)(2 + 4) +
(
16(mn + mt + nt)− 16(m + n + t) + 24

)
(4 + 4)

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

)
(4 + 8)

= 8
(
48mnt − 8(mn + mt + nt) + 2(m + n + t)− 1

)

M2(G) = ∑st∈E(G)(dsdt)

= ∑st∈E1(G)(dsdt) + ∑st∈E2(G)(dsdt) + ∑st∈E3(G)(dsdt) + ∑st∈E4(G)(dsdt)

= (8)(1 × 4) + (8m + 8n + 8t − 24)(2 × 4) +
(
16(mn + mt + nt)− 16(m + n + t) + 24

)
(4 × 4)

+
(
32mnt − 16(mn + mt + nt) + 8(m + n + t)− 8

)
(4 × 8)

= 32
[
32mnt − 8(mn + mt + nt) + 2(m + n + t)− 1

]

Table 4 shows the edge partition of the chemical graph TiF2[m, n, t] based on the degree sum of
the end vertices of each edge.

Table 4. Edge partition of TiF2[m, n, t], m, n, s ≥ 2 based on the degree sum of the end vertices of
each edge.

(Ss, St) Frequency Set of Edges

(4, 13) 8 E1
(8, 18) 8(m + n + t − 3) E2
(13, 16) 16 E3
(16, 18) 16(mn + mt + nt)− 16(m + n + t) + 8 E4
(16, 24) 32mnt − 16(mn + mt + nt) + 8 E5
(18, 32) 8(m + n + t − 2) E6

Theorem 11. Consider the graph G ∼= TiF2[m, n, t] with m, n, t > 1, then its fourth atom bond connectivity
index is equal to,

ABC4(G) =
4
√

57mnt
3

−
(2

√
57

3
− 16

3

)
(mn + mt + nt) +

( 4√
3
+

4
√

6
3

− 16
3

)
(m + n + t)

− 4
√

6 − 8√
3
+

12
√

39
13

+

√
57
3

+
4
√

195
13

+
8
3
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Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The fourth atom bond
connectivity index is computed as below:

ABC4(G) = ∑
st∈E(G)

√
Ss + St − 2

SsSt

= ∑
st∈E1(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E2(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E3(G)

√
Ss + St − 2

SsSt

+ ∑
st∈E4(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E5(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E6(G)

√
Ss + St − 2

SsSt

ABC4(G) = (8)

√
4 + 13 − 2

4 × 13
+ (8m + 8n + 8t − 24)

√
8 + 18 − 2

8 × 18
+ (16)

√
13 + 16 − 2

13 × 16

+
(
16(mn + mt + nt)− 16(m + n + t) + 8

)√16 + 18 − 2
16 × 18

+
(
32mnt − 16(mn + mt + nt) + 8

)√16 + 24 − 2
16 × 24

+ (8m + 8n + 8t − 16)

√
18 + 32 − 2

18 × 32

=
4
√

57mnt
3

−
(2

√
57

3
− 16

3

)
(mn + mt + nt) +

( 4√
3
+

4
√

6
3

− 16
3

)
(m + n + t)

− 4
√

6 − 8√
3
+

12
√

39
13

+

√
57
3

+
4
√

195
13

+
8
3

Theorem 12. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 2, then its fifth geometric arithmetic index
is equal to,

GA5(G) =
64
√

6mnt
5

+
(192

√
2

17
− 32

√
6

5

)
(mn + mt + nt)−

(192
√

2
17

− 4896
325

)
(m + n + t)

+
96
√

2
17

+
16
√

6
5

+
3104

√
13

493
− 12192

325

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The fifth geometric
arithmetic index is computed as below:
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GA5(G) = ∑
st∈E(G)

2
√

SsSt

Ss + St

= ∑
st∈E1(G)

2
√

SsSt

Ss + St
+ ∑

st∈E2(G)

2
√

SsSt

Ss + St
+ ∑

st∈E3(G)

2
√

SsSt

Ss + St

+ ∑
st∈E4(G)

2
√

SsSt

Ss + St
+ ∑

st∈E5(G)

2
√

SsSt

Ss + St
+ ∑

st∈E6(G)

2
√

SsSt

Ss + St

= (8)
2
√

4 × 13
4 + 13

+ (8m + 8n + 8t − 24)
2
√

8 × 18
8 + 18

+ (16)
2
√

13 × 16
13 + 16

+
(
16(mn + mt + nt)− 16(m + n + t) + 8

)2
√

16 × 18
16 + 18

+
(
32mnt − 16(mn + mt + nt) + 8

)2
√

16 × 24
16 + 24

+ (8m + 8n + 8t − 16)
2
√

18 × 32
18 + 32

=
64
√

6mnt
5

+
(192

√
2

17
− 32

√
6

5

)
(mn + mt + nt)−

(192
√

2
17

− 4896
325

)
(m + n + t)

+
96
√

2
17

+
16
√

6
5

+
3104

√
13

493
− 12192

325

6. Discussion

Since the topological indices have many applications in different branches of science,
namely pharmaceutical, chemistry and biological drugs, the graphical representation of these
calculated results is helpful to scientists. The graphical representations of topological indices for
Cu2O[m, n, t] are depicted for Randić indices in Figures 4 and 5. The atomic bond connectivity index
and geometric arithmetic index for Cu2O[m, n, t] are depicted in Figure 6. The first and second Zagreb
indices for Cu2O[m, n, t] are depicted in Figure 7. The fourth atomic bond connectivity index and the
fifth geometric arithmetic index for Cu2O[m, n, t] are depicted in Figure 8.

Figure 4. The graphical representation of the Randić index for (a) α = 1 and (b) for α = −1.
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Figure 5. The graphical representation of the Randić index for (a) α = 1
2 and (b) for α = −1

2 .

Figure 6. The graphical representation of the (a) ABC index and (b) GA index.

Figure 7. The graphical representation of the (a) first Zagreb index and (b) second Zagreb index.
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Figure 8. The graphical representation of the (a) ABC4 index and (b) GA5 index.

The graphical representations of topological indices for titanium difluoride TiF2 are depicted for
Randić indices in Figures 9 and 10. The atomic bond connectivity index and geometric arithmetic
index for titanium difluoride TiF2 are depicted in Figure 11. The first and second Zagreb indices for
titanium difluoride TiF2 are depicted in Figure 12. The fourth atomic bond connectivity index and the
fifth geometric arithmetic index for titanium difluoride TiF2 are depicted in Figure 13.

Figure 9. The graphical representation of the Randić index for (a) α = 1 and (b) for α = −1.

Figure 10. The graphical representation of the Randić index for (a) α = 1
2 and (b) for α = −1

2 .
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Figure 11. The graphical representation of the (a) ABC index and (b) GA index.

Figure 12. The graphical representation of the (a) first Zagreb index and (b) second Zagreb index.

Figure 13. The graphical representation of the (a) ABC4 index and (b) GA5 index.

7. Conclusions

In this paper, we have computed some degree-based topological indices, namely the atom bond
connectivity index ABC, the geometric arithmetic index GA, the general Randić index, the GA5 index,
the ABC4 index and the first and second Zagreb indices for the chemical graph of the crystal structure
of titanium difluoride TiF2 and crystallographic structure of cuprite Cu2O.

In the future, we are interested in computing the distance-based and counting-related topological
indices for these structures.
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Abstract: It is well-known that the different products of graphs are some of the more symmetric
classes of graphs. Since we are interested in hyperbolicity, it is interesting to study this property in
products of graphs. Some previous works characterize the hyperbolicity of several types of product
graphs (Cartesian, strong, join, corona and lexicographic products). However, the problem with the
direct product is more complicated. The symmetry of this product allows us to prove that, if the
direct product G1 × G2 is hyperbolic, then one factor is bounded and the other one is hyperbolic.
Besides, we prove that this necessary condition is also sufficient in many cases. In other cases,
we find (not so simple) characterizations of hyperbolic direct products. Furthermore, we obtain good
bounds, and even formulas in many cases, for the hyperbolicity constant of the direct product of
some important graphs (as products of path, cycle and even general bipartite graphs).

Keywords: direct product of graphs; geodesics; Gromov hyperbolicity; bipartite graphs

1. Introduction

An interesting topic in graph theory is the study of the different types of products of graphs [1].
In particular, given two graphs G1, G2, the direct product G1 × G2 is defined as the graph with vertices
the (Cartesian) product of V(G1) and V(G2), and two vertices (u1, v1), (u2, v2) ∈ V(G1 × G2) are
connected by an edge if and only if [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2). The direct product is
associative and commutative. Direct product was introduced in Principia Mathematica by Russell
and Whitehead.

Weichsel observed that G1 × G2 is connected if and only if the graphs G1 and G2 are connected
and G1 or G2 is not a bipartite graph [2], i.e., there exists an odd cycle. The direct product is known
with different names: tensor product, conjunction, categorical product, Kronecker product and cardinal
product. There are many works studying several properties of direct products. These works include
structural results [3–8], hamiltonian properties [9,10], and above all the well-known Hedetniemi’s
conjecture (see [11,12]). Imrich has an algorithm in [13] which can recognize in polynomial time if a
graph is a direct product; furthermore, the algorithm provides a factorization if the graph is a direct
product. This fact facilitates the computational use of the direct product of graphs.

Hyperbolic spaces are an important tool in geometry and group theory [14–16].
Gromov hyperbolicity is a meeting point for different spaces: some of them continuous (hyperbolic
plane and many Riemannian manifolds with negative curvature) and some of them discrete (trees and
many graphs) [14–16].
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Gromov hyperbolicity was introduced in the context of finitely generated groups [16], and it was
applied, in the science of computation, to the study of automatic groups [17,18]. Gromov hyperbolicity
is useful in networking, algorithms and discrete mathematics [19–24]; also, many real networks are
hyperbolic [25–29]. Besides, there are several important applications of hyperbolic spaces to the
Internet [30–34] and to random graphs [35–37]. It has recently been pointed out that also some aspects
of biological systems require hyperbolicity for proper functioning [38]. In [39], it was proven that, for a
large class of Riemannian surfaces endowed with a metric of negative curvature, there is a very simple
graph related with the surface such that the surface is hyperbolic if and only if the graph is hyperbolic;
therefore, it is interesting to study hyperbolic graphs to understand hyperbolic surfaces.

All these facts show the increasing interest of hyperbolic graphs (see,
e.g., [19,24–27,32,33,35–37,39–47] and the references therein).

In this paper, let us denote by G = (V, E) = (V(G), E(G)) a connected graph with V(G) �= ∅.
We consider that the length of each edge is 1. In addition, we assume that the graph does not have
either multiple edges or loops.

Trees are the graphs with hyperbolicity constant zero. Thus, we can view the hyperbolicity
constant as a measure of how “tree-like” the space is. This is an important subject (see, e.g., [48,49]).

From a computational viewpoint, we can obtain δ(G) in time O(n3.69) for graphs with n
vertices [50]. In addition, there is an algorithm which decides if a Cayley graph is hyperbolic [51].
In [52], this algorithm is improved, allowing to obtain δ(G) in time O(n2), but only if the
graph is given in terms of its distance-matrix. However, it is usually very difficult to decide
if an infinite graph is hyperbolic. Therefore, it is useful to study hyperbolicity for particular
classes of graphs. There are many works dealing with the hyperbolicity of different types of
graphs: median graphs [53], line graphs [54–56], cubic graphs [57], complement graphs [58], regular
graphs [59], chordal graphs [25,42,45,60], planar graphs [61,62], bipartite and intersection graphs [63],
vertex-symmetric graphs [64], periodic graphs [65,66], expanders [34], bridged graphs [67], short
graphs [68], graph minors [69], graphs with small hyperbolicity constant [70], Mycielskian graphs [71],
geometric graphs [56,72], and some types of products of graphs: Cartesian product and sum [46,73],
strong product [74], lexicographic product [75], and corona and join product [76].

Some of these works give results about the hyperbolicity of some unary operations in graphs:
A line graph is hyperbolic if and only if the original graph does [54–56].
For a large class of minor graphs, the minor graph is hyperbolic if and only if the original graph

does [69].
Mycielskian graphs are always hyperbolic [71].
Now, we summarize the known results about the hyperbolicity of the main class of binary

operations in graphs: products of graphs.
The Cartesian product is hyperbolic if and only if one factor graph is bounded and the other one

is hyperbolic [46].
The same holds for the strong product [74].
The corona product G1 ! G2 is hyperbolic if and only if the first factor G1 is hyperbolic, and the

join G1 " G2 is always hyperbolic [76].
The Cartesian sum G1 ⊕ G2 is always hyperbolic, if the factors have at least two vertices [73].
The lexicographic product graph G1 ◦ G2 is hyperbolic if and only if G1 does, if the first factor has

at least two vertices [75].
The goal of this paper is the characterization in many cases of the direct product of graphs which

are hyperbolic. Here, the situation is more complicated than with other products of graphs. This is
partly because the direct product of two bipartite graphs (i.e., graphs without odd cycles) is already
disconnected and the formula for the distance in G1 × G2 is more complicated that in the case of other
products of graphs. The symmetry of this product allows us to show that, if G1 × G2 is hyperbolic,
then one factor is hyperbolic and the other one is bounded (see Theorem 10). Besides, we prove that
this necessary condition is also sufficient in many cases. If G1 is a hyperbolic graph and G2 is a bounded
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graph, then we prove that G1 × G2 is hyperbolic when G2 has some odd cycle (Theorem 3) or G1 and
G2 do not have odd cycles (Theorem 4). One could think that otherwise (if G1 has some odd cycle and
G2 does not have odd cycles) this necessary condition is also sufficient; however, Theorem 15 allows
constructing in an easy way examples G1, G2 (with G1 hyperbolic and G2 bounded) such that G1 × G2

is not hyperbolic. This shows that the characterization of hyperbolic direct products is a more difficult
task when G1 has some odd cycle and G2 does not have odd cycles. Theorems 11 and 12 provide
sufficient conditions for non-hyperbolicity and hyperbolicity, respectively. Besides, Theorems 15 and
Corollary 5 characterize the hyperbolicity of G1 × G2 under some additional conditions. Furthermore,
we obtain good bounds, and even formulas in many cases, for the hyperbolicity constant of the direct
product of some important graphs; in particular, Theorem 18 provides the hyperbolicity constant of
many direct products of bipartite graphs, and Theorems 17 and 19 give the hyperbolicity constant of
many direct products of path and cycle graphs.

We want to remark that, in a general context, the hypothesis on the existence (or non-existence) of
odd cycles is artificial in the context of Gromov hyperbolicity. However, it is an essential hypothesis in
the works on direct products (see Theorem 1). Throughout the development of this work, we have
verified that the existence of odd cycles is also essential in the study of hyperbolic product graphs.

2. Definitions and Background

Let (X, d) be a metric space, and denote by L the length associated to the distance d. A geodesic is
a curve g : [a, b] → X satisfying L(g|[t,s]) = d(g(t), g(s)) = |t− s| for every s, t ∈ [a, b] (here, g|[t,s] is the
restriction of g to [t, s]). We say that the metric space X is a geodesic metric space if for each p, q ∈ X there
is a geodesic connecting them; we denote by [pq] any geodesic form p to q. Hence, a geodesic metric
space is a connected space. When X is a graph and p, q ∈ V(X), [p, q] denotes the edge connecting p
and q if they are adjacent.

Along this paper, we consider the graphs as geodesic metric spaces. To do that, we identify any
edge [p, q] ∈ E(G) with the real interval [0, 1]; therefore, the points in a graph are the vertices and
also the points in the interior of the edges. Hence, we can define a natural distance on the points of
a connected graph G by taking shortest paths in G, and so, we consider G as a metric graph. If p and q
are points in different connected components of the graph, we define d(p, q) = ∞.

Some authors do not consider the internal points of edges in the study. Although this approach
has some advantages, we prefer to consider the internal points since these graphs are geodesic metric
spaces. We use this approach since to work with geodesic metric spaces provides an interesting
geometric viewpoint (for instance, Theorem 2 holds for geodesic metric spaces).

Given a geodesic metric space X and three points x1, x2, x3 ∈ X, the geodesic triangle T =

{x1, x2, x3} is the union of three geodesics [x1x2], [x2x3] and [x3x1]. The points x1, x2, x3 are the
vertices of the triangle T. The geodesic triangle T is δ-thin if any side of T is contained in the
δ-neighborhood of the union of the two other sides. We define the thin constant of the triangle
T by δ(T) := inf{δ ≥ 0 : T is δ-thin }, and the hyperbolicity constant of the space X as δ(X) :=
sup{δ(T) : T is a geodesic triangle in X }. The space X is hyperbolic if δ(X) < ∞, and it is δ-hyperbolic
if X is hyperbolic and the constant δ satisfies δ ≥ δ(X). We say that a triangle with two identical
vertices is a “bigon”. Of course, each bigon in a space (which is δ-hyperbolic) is δ-thin. If {Xi}i∈I are
the connected components of X, then we can define δ(X) := supi∈I δ(Xi), and X is hyperbolic if and
only if δ(X) < ∞.

We want to remark that in the classical references on hyperbolicity [14,15,77] appear many
different definitions of Gromov hyperbolicity. However, the definitions are equivalent: if X is
δ1-hyperbolic for a definition, then it is δ2-hyperbolic for every definition, where the constant δ2

can be obtained from δ1.

We refer to the classical book [1] for definitions and background about direct product graphs.

We need bounds for the distance between points in the direct product. We use the definition given
in [1].
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Definition 1. Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two graphs. The direct product
G1 × G2 of G1 and G2 has V(G1)× V(G2) as vertex set, so that two distinct vertices (u1, v1) and (u2, v2) of
G1 × G2 are adjacent if [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2).

If G1 and G2 are isomorphic, we write G1 � G2. It is clear that, if G1 � G2, then δ(G1) = δ(G2).
It is clear that the direct product of two graphs is commutative, i.e., G1 × G2 � G2 × G1.

Therefore, the conclusion of every result in this paper with some “non-symmetric” hypothesis also
holds if we change the roles of G1 and G2 (see, e.g., Theorems 3, 4, 11, 12 and 15 and Corollary 5).

Denote by πi the projection map πi : V(G1 × G2) → V(Gi) for i ∈ {1, 2}. In fact, this projection is
well defined as a map πi : G1 × G2 → Gi for i ∈ {1, 2}.

We need some previous results of [1]. If u, u′ ∈ V(G), then by a u, u′-walk in G we mean a path
joining u and u′ where repeating vertices is allowed.

Proposition 1. ([1], Proposition 5.7) Suppose (u, v) and (u′, v′) are vertices of the direct product G1 × G2,
and n is an integer for which G1 has a u, u′-walk of length n and G2 has a v, v′-walk of length n. Then, G1 × G2

has a walk of length n from (u, v) to (u′, v′). The smallest such n (if it exists) equals dG1×G2((u, v), (u′, v′)).
If no such n exists, then dG1×G2((u, v), (u′, v′)) = ∞.

Proposition 2. ([1], Proposition 5.8) Suppose x and y are vertices of G1 × G2. Then,

dG1×G2(x, y) = min
{

n ∈ N | each factor Gi has a πi(x), πi(y)-walk of length n for i = 1, 2
}

,

where it is understood that dG1×G2(x, y) = ∞ if no such n exists.

Definition 2. If G is a connected graph, the diameter of its vertices is

diam V(G) := sup{dG(u, v) : u, v ∈ V(G)},

and the diameter of G is
diam G := sup{dG(x, y) : x, y ∈ G}.

Corollary 1. We have for every (u, v), (u′, v′) ∈ V(G1 × G2)

dG1×G2((u, v), (u′, v′)) ≥ max
{

dG1(u, u′), dG2(v, v′)
}

and, consequently,
diam V(G1 × G2) ≥ max

{
diam V(G1), diam V(G2)

}
.

Furthermore, if dG1(u, u′) and dG2(v, v′) have the same parity, then

dG1×G2((u, v), (u′, v′)) = max
{

dG1(u, u′), dG2(v, v′)
}

and, consequently,
diam V(G1 × G2) = max

{
diam V(G1), diam V(G2)

}
.

By trivial graph, we mean a graph which has only a vertex.
The following result characterizes when a direct product is connected. By cycle, we mean a simple

closed curve, i.e., a path with different vertices, unless the last one, which is equal to the first vertex.

206



Symmetry 2018, 10, 279

Theorem 1. ([1], Theorem 5.9) Suppose G1 and G2 are connected non-trivial graphs. If at least one of G1 or
G2 has an odd cycle, then G1 × G2 is connected. If both G1 and G2 are bipartite, then G1 × G2 has exactly
two connected components.

Corollary 2. ([1], Corollary 5.10) A direct product of connected non-trivial graphs is connected if and only if at
most one of the factors is bipartite. In fact, the product has 2max{k,1}−1 connected components, where k is the
number of bipartite factors.

Consider the metric spaces (X, dX) and (Y, dY). Given constants α ≥ 1, β ≥ 0, a map f : X −→ Y
is an (α, β)-quasi-isometric embedding if

α−1dX(x, y)− β ≤ dY( f (x), f (y)) ≤ αdX(x, y) + β,

for x, y ∈ X. We say that f is ε-full if for each y ∈ Y there is x ∈ X with dY( f (x), y) ≤ ε.
We say that f is a quasi-isometry if there exist constants α, β, ε, such that f is an ε-full

(α, β)-quasi-isometric embedding.
Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry f : X −→ Y.

One can check that to be quasi-isometric is an equivalence relation. An (α, β)-quasi-geodesic in X is
an (α, β)-quasi-isometric embedding between an interval of R and X.

We need the following result ([15], p. 88).

Theorem 2 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric embedding between
the geodesic metric spaces X and Y. If Y is δY-hyperbolic, then X is δX-hyperbolic, where δX is a constant which
just depends on α, β, δY.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry) and X is δX-hyperbolic, then Y is δY-hyperbolic,
where δY is a constant which just depends on α, β, δX , ε.

There are several explicit expressions for δX = δX(α, β, δY), some of them very complicated. In [78]
appears the best possible formula for δX :

δX(α, β, δY) = 8α(2α2(A1b + A2δY) + 4δY + β).

for some explicit constants A1, A2.

3. Hyperbolic Direct Products

Let us start with a necessary condition for hyperbolicity.

Proposition 3. Let G1 and G2 be two unbounded connected graphs. Then, G1 × G2 is not hyperbolic.

Proof. Since G1 and G2 are unbounded graphs, for each positive integer n there exist two geodesic
paths P1 := [w1, w2] ∪ [w2, w3] ∪ · · · ∪ [wn−1, wn] in G1 and P2 := [v1, v2] ∪ [v2, v3] ∪ · · · ∪ [vn−1, vn] in
G2. If n is odd, then we can consider the geodesic triangle T in G1 × G2 (see Figure 1) defined by the
following geodesics:

γ1 := [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ [(w3, v2), (w4, v1)] ∪ · · · ∪ [(wn−1, v1), (wn, v2)],

γ2 := [(w1, v2), (w2, v3)] ∪ [(w2, v3), (w1, v4)] ∪ [(w1, v4), (w2, v5)] ∪ · · · ∪ [(w1, vn−1), (w2, vn)],

γ3 := [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn−2)] ∪ [(w4, vn−2), (w5, vn−3)] ∪ · · · ∪ [(wn−1, v3), (wn, v2)],

Corollary 1 gives that γ1, γ2, γ3 are geodesics.
Let m := n+1

2 and consider the vertex (wm, vm+1) in γ3. For every vertex (wi, vj) in γ1, j ∈ {1, 2},
we have dG1×G2((wm, vm+1), (wi, vj)) ≥ dG2(vm+1, vj) ≥ m + 1 − 2 = n−1

2 by Corollary 1. We have for
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every vertex (wi, vj) in γ2, i ∈ {1, 2}, by Corollary 1, dG1×G2((wm, vm+1), (wi, vj)) ≥ dG1(wm, wi) ≥
m − 2 = n−3

2 . Hence, dG1×G2

(
(wm, vm+1), γ1 ∪ γ2

)
≥ n−3

2 and δ(G1 × G2) ≥ δ(T) ≥ n−3
2 . Since n is

arbitrarily large, G1 × G2 is not hyperbolic.

vn-1

w1 P1

P2

w2 wn

v1

v2

wn-1

vn

(wm ,vm+1)

(wn ,v2)(w1 ,v2)

(w2 ,vn)

γ1

γ2

γ3

…

…

Figure 1. If G1 and G2 are unbounded, for any odd n, there is a geodesic triangle T ⊂ G1 × G2 with
δ(T) ≥ n−3

2 .

Lemma 1. Consider two connected graphs G1 and G2. If f : V(G1) −→ V(G2) is an (α, β)-quasi-isometric
embedding, then there exists an (α, α + β)-quasi-isometric embedding g : G1 −→ G2 with g = f on V(G1).
In addition, if f is ε-full, then g is (ε + 1

2 )-full.

Proof. For each x ∈ G1, let us choose a closest point vx ∈ V(G1) from x, and define g(x) := f (vx).
Note that vx = x if x ∈ V(G1) and so g = f on V(G1). Given x, y ∈ G1, we have

dG2(g(x), g(y)) = dG2( f (vx), f (vy)) ≤ αdG1(vx, vy) + β ≤ α
(
dG1(x, y) + 1

)
+ β,

dG2(g(x), g(y)) = dG2( f (vx), f (vy)) ≥ α−1dG1(vx, vy)− β ≥ α−1(dG1(x, y)− 1
)
− β,

and g is an (α, α + β)-quasi-isometric embedding, since α ≥ 1 ≥ α−1.
In addition, if f is ε-full, then g is (ε + 1

2 )-full since g(G1) = f (V(G1)).

Given a graph G, let gI(G) denote the odd girth of G, that is, the length of the shortest odd cycle
in G.

Theorem 3. Let G1 be a connected graph and G2 be a non-trivial bounded connected graph with some odd cycle.
Then, G1 × G2 is hyperbolic if and only if G1 is hyperbolic.

Proof. Fix v0 ∈ V(G2) with v0 contained in an odd cycle C with L(C) = gI(G2). Consider the map
i : V(G1) → V(G1 × G2) such that i(w) := (w, v0) for every w ∈ V(G1).

By Corollary 1, for every w1, w2 ∈ V(G1), dG1(w1, w2) ≤ dG1×G2

(
(w1, v0), (w2, v0)

)
. In addition,

Proposition 2 gives the following.
If a geodesic joining w1 and w2 has even length, then

dG1×G2

(
(w1, v0), (w2, v0)

)
= dG1(w1, w2).
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If a geodesic joining w1 and w2 has odd length, then C defines a v0, v0-walk with odd length and

dG1×G2

(
(w1, v0), (w2, v0)

)
≤ max{dG1(w1, w2), gI(G2)} ≤ dG1(w1, w2) + gI(G2).

Thus, i is a
(
1, gI(G2)

)
quasi-isometric embedding.

Consider any (w, v) ∈ V(G1 × G2). Then, if the geodesic joining v and v0 has even length,

dG1×G2

(
(w, v), (w, v0)

)
= dG2(v, v0).

If a geodesic joining v and v0 has odd length, [vv0] ∪ C defines a v, v0-walk with even
length. Therefore,

dG1×G2

(
(w, v), (w, v0)

)
≤ dG2(v, v0) + gI(G2).

Thus, i is
(

diam(V(G2)) + gI(G2)
)
-full.

Hence, by Lemma 1, there is a
(
diam(V(G2)) + gI(G2) +

1
2
)
-full

(
1, gI(G2) + 1

)
-quasi-isometry,

j : G1 → G1 × G2, and G1 × G2 is hyperbolic if and only if G1 is hyperbolic by Theorem 2.

Theorem 4. Let G1 be a connected graph without odd cycles and G2 be a non-trivial bounded connected graph
without odd cycles. Then, G1 × G2 is hyperbolic if and only if G1 is hyperbolic.

Proof. Fix some vertex w0 ∈ V(G1) and some edge [v1, v2] ∈ E(G2).
By Theorem 1, there are exactly two components in G1 × G2. Since there are no odd cycles, there is

no (w0, v1), (w0, v2)-walk in G1 × G2. Thus, let us denote by (G1 × G2)
1 the component containing the

vertex (w0, v1) and by (G1 × G2)
2 the component containing the vertex (w0, v2).

Consider i : V(G1) → V(G1 × G2)
1 defined as i(w) := (w, v1) for every w ∈ V(G1) such that

every w0, w-walk has even length and i(w) := (w, v2) for every w ∈ V(G1) such that every w0, w-walk
has odd length.

By Proposition 2, dG1×G2

(
i(w1), i(w2)

)
= dG1(w1, w2) for every w1, w2 ∈ V(G1) and i is

a (1, 0)-quasi-isometric embedding.
Let (w, v) ∈ V(G1 × G2)

1. Let vj with j ∈ {1, 2} such that every v, vj-walk has even length.
Then, by Proposition 2, dG1×G2

(
(w, v), (w, vj)

)
= dG2(v, vj) ≤ diam(G2). Therefore, i is diam(G2)-full.

Hence, by Lemma 1, there is a
(
diam(G2) +

1
2
)
-full

(
1, 1
)
-quasi-isometry, j : G1 → (G1 × G2)

1,
and (G1 × G2)

1 is hyperbolic if and only if G1 is hyperbolic by Theorem 2.
The same argument proves that (G1 × G2)

2 is hyperbolic.

Denote by P2 the path graph with two vertices and an edge.

Lemma 2. Let G1 be a connected graph with some odd cycle and G2 a non-trivial bounded graph without odd
cycles. Then, G1 × G2 and G1 × P2 are quasi-isometric and δ(G1 × P2) ≤ δ(G1 × G2).

Proof. By Theorem 1, we know that G1 × G2 and G1 × P2 are connected graphs.
Denote by v1 and v2 the vertices of P2 and fix [w1, w2] ∈ E(G2). The map f : V(G1 × P2) −→

V(G1 × [w1, w2]) defined as f (u, vj) := (u, wj) for every u ∈ V(G1) and j = 1, 2, is an isomorphism of
graphs; hence, it suffices to prove that G1 × G2 and G1 × [w1, w2] are quasi-isometric.

Consider the inclusion map i : V(G1 × [w1, w2]) −→ V(G1 × G2). Since G1 × [w1, w2] is
a subgraph of G1 × G2, we have dG1×G2(x, y) ≤ dG1×[w1,w2]

(x, y) for every x, y ∈ V(G1 × [w1, w2]).
Since G2 is a graph without odd cycles, every w1, w2-walk has odd length and every wj, wj-walk

has even length for j = 1, 2. Thus, Proposition 2 gives, for every x = (u, w1), y = (v, w2) ∈ V(G1 ×
[w1, w2]),

dG1×[w1,w2]
(x, y) = dG1×G2(x, y) = min

{
L(g) | g is a u, v-walk of odd length

}
.

209



Symmetry 2018, 10, 279

Furthermore, for every x = (u, wj), y = (v, wj) ∈ V(G1 × [w1, w2]) and j = 1, 2,

dG1×[w1,w2]
(x, y) = dG1×G2(x, y) = min

{
L(g) | g is a u, v-walk of even length

}
.

Hence, dG1×[w1,w2]
(x, y) = dG1×G2(x, y) for every x, y ∈ V(G1 × [w1, w2]), and the inclusion map i

is an (1, 0)-quasi-isometric embedding. Therefore, δ(G1 × P2) = δ(G1 × [w1, w2]) ≤ δ(G1 × G2).
Since G2 is a graph without odd cycles, given any w ∈ V(G2), we have either that every w, w1-walk

has even length and every w, w2-walk has odd length or that every w, w2-walk has even length and
every w, w1-walk has odd length. In addition, since G1 is connected, for each u ∈ V(G1) there is some
u′ ∈ V(G1) such that [u, u′] ∈ E(G1). Therefore, by Proposition 2, for every (u, w) ∈ V(G1 × G2),
if min

{
dG2(w, w1), dG2(w, w2)

}
is even, then

dG1×G2

(
(u, w), V(G1 × [w1, w2])

)
= dG1×G2

(
(u, w), V(u × [w1, w2])

)
= min

{
dG2(w, w1), dG2(w, w2)

}
,

and if min
{

dG2(w, w1), dG2(w, w2)
}

is odd, then

dG1×G2

(
(u, w), V(G1 × [w1, w2])

)
= dG1×G2

(
(u, w), V(u′ × [w1, w2])

)
= min

{
dG2(w, w1), dG2(w, w2)

}
.

In both cases,
dG1×G2

(
(u, w), V(G1 × [w1, w2])

)
≤ diam V(G2),

and i is
(
diam V(G2)

)
-full. By Lemma 1, there exists a

(
diam V(G2) +

1
2
)
-full (1, 1)-quasi-isometry

g : G1 × [w1, w2] −→ G1 × G2.

A subgraph Γ of G is said isometric if dΓ(x, y) = dG(x, y) for any x, y ∈ Γ. One can check that Γ is
isometric if and only if dΓ(u, v) = dG(u, v) for any u, v ∈ V(Γ).

Lemma 3. ([47], Lemma 5) If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G).

A u, v-walk g in G is a shortcut of a cycle C if g ∩C = {u, v} and L(g) < dC(u, v) where dC denotes
the length metric on C.

A cycle C′ is a reduction of the cycle C if both have odd length and C′ is the union of a subarc η of
C and a shortcut of C joining the endpoints of η. Note that L(C′) ≤ L(C)− 2. We say that a cycle is
minimal if it has odd length and it does not have a reduction.

Lemma 4. If C is a minimal cycle of G, then L(C) ≤ 4δ(G).

Proof. We prove first that C is an isometric subgraph of G. Assume that C is not an isometric subgraph.
Thus, there exists a shortcut g of C with endpoints u, v. There are two subarcs η1, η2 of C joining u
and v; since C has odd length, we can assume that η1 has even length and η2 has odd length. If g has
even length, then C′ := g ∪ η2 is a reduction of C. If g has odd length, then C′′ := g ∪ η1 is a reduction
of C. Hence, C is not minimal, a contradiction, and so C is an isometric subgraph of G.

It is easy to show that any isometric cycle C has length 4δ(C). This fact and Lemma 3 give
L(C) = 4δ(C) ≤ 4δ(G).

Given any w0, wk-walk g = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1 and P2 = [v1, v2], if L(g) is
either odd or even, then we define the (w0, v1), (wk, vi)-walk for i ∈ 1, 2,

Γ1g := [(w0, v1), (w1, v2)] ∪ [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ · · · ∪ [(wk−1, v1), (wk, v2)],

Γ1g := [(w0, v1), (w1, v2)] ∪ [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ · · · ∪ [(wk−1, v2), (wk, v1)],

respectively.
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Remark 1. By Proposition 2, if g is a geodesic path in G1, then Γ1g is a geodesic path in G1 × P2.

Let us define the map R : V(G1 × P2) → V(G1 × P2) as R(w, v1) = (w, v2) and R(w, v2) = (w, v1)

for every w ∈ V(G1), and the path Γ2g as Γ2g = R(Γ1g).
Let us define the map (Γ1g)′ : g → Γ1g which is an isometry on the edges and such that

(Γ1g)′(wj) = (wj, v1) if j is even and (Γ1g)′(wj) = (wj, v2) if j is odd. In addition, let (Γ2g)′ : g → Γ2g
be the map defined by (Γ2g)′ := R ◦ (Γ1g)′.

Given a graph G, denote by C the set of minimal cycles of G.

Lemma 5. Let G1 be a connected graph with some odd cycle and P2 = [v1, v2]. Consider a geodesic
g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1. Let us define w′

0 := (Γ1g)′(w0) = (w0, v1)

and w′
k := (Γ2g)′(wk), i.e., w′

k := (wk, v1) or w′
k := (wk, v2) if k is odd or even, respectively. Then,

dG1×P2(w
′
0, w′

k) >
√

dG1

(
wj, C(G1)

)
for every 0 ≤ j ≤ k.

Proof. Fix 0 ≤ j ≤ k. Define

P :=
{

σ | σ is a w0, wk-walk such that L(σ) has a parity different from that of k
}

.

Proposition 2 gives
dG1×P2(w

′
0, w′

k) = min
{

L(σ) | σ ∈ P
}

.

Choose σ0 ∈ P such that L(σ0) = dG1×P2(w
′
0, w′

k). Since L(g) + L(σ0) is odd, we have L(g) +
L(σ0) = 2t + 1 for some positive integer t. Thus, dG1×P2(w

′
0, w′

k) = L(σ0) >
1
2 (2t + 1).

If g ∪ σ0 is a cycle, then let us define C0 := g ∪ σ0. Thus, L(C0) = 2t + 1 and dG1

(
wj, C0

)
= 0 for

every 0 ≤ j ≤ k. Otherwise, we may assume that g ∩ σ0 = [w0wi1 ] ∪ [wi2 wk] for some 0 ≤ i1 < i2 ≤ k.
If σ1 = σ0 \ g, then let us define C0 := [wi1 wi2 ] ∪ σ1 (where [wi1 wi2 ] ⊂ g). Hence, C0 is a cycle,
L(C0) ≤ 2t − 1 and dG1

(
wj, C0

)
< 1

2 (2t + 1).
If C0 is not minimal, then consider a reduction C1 of C0. Let us repeat the process until we obtain

a minimal cycle Cs. Note that L(C1) ≤ L(C0)− 2 and for every point p1 ∈ C0, dG1

(
p1, C1

)
< 1

2 L(C0).
Now, repeating the argument, for every 1 < i ≤ s, L(Ci) ≤ L(Ci−1)− 2 and for every point pi ∈ Ci−1,
dG1

(
pi, Ci

)
< 1

2 L(Ci−1). Therefore,

dG1

(
wj, C(G1)

)
≤ dG1

(
wj, Cs

)
≤ dG1

(
wj, C0

)
+

1
2

L(C0) +
1
2

L(C1) + · · ·+ 1
2

L(Cs)

<
1
2
(2t + 1) +

1
2
(2t − 1) + · · ·+ 5

2
+

3
2

.

Hence,

dG1

(
wj, C(G1)

)
<

1
2

t

∑
i=1

(2i + 1) =
1
2

t2 + t <
(1

2
(2t + 1)

)2
<
(

dG1×P2(w
′
0, w′

k)
)2

.

Corollary 3. Let G1 be a hyperbolic connected graph with some odd cycle and P2 = [v1, v2]. Consider a geodesic
g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1. Let us define w′

0 := (Γ1g)′(w0) = (w0, v1) and
w′

k := (Γ2g)′(wk). Then, we have for every 0 ≤ j ≤ k,

1
2

(
k +

√
dG1

(
wj, C(G1)

) )
≤ dG1×P2(w

′
0, w′

k) ≤ k + 2dG1

(
wj, C(G1)

)
+ 4δ(G1).

Proof. Corollary 1 and Lemma 5 give dG1×P2(w
′
0, w′

k) ≥ k and dG1×P2(w
′
0, w′

k) ≥
√

dG1

(
wj, C(G1)

)
,

and these inequalities provide the lower bound of dG1×P2(w
′
0, w′

k).
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Consider a geodesic γ joining wj and C ∈ C(G1) with L(γ) = dG1(wj, C) = dG1

(
wj, C(G1)

)
and

the w0, wk-walk
g′ := [w0wj] ∪ γ ∪ C ∪ γ ∪ [wjwk].

One can check that Γ1g′ is a w′
0, w′

k-walk in G1 × P2, and so Lemma 4 gives

dG1×P2(w
′
0, w′

k) ≤ L(Γ1g′) = L(g′) = k + 2dG1

(
wj, C(G1)

)
+ L(C) ≤ k + 2dG1

(
wj, C(G1)

)
+ 4δ(G1).

If [v1, v2] is an edge of G, then the point x ∈ [v1, v2] with dG(x, v1) = dG(x, v2) = 1/2 is the
midpoint of the edge [v1, v2]. Denote by J(G) the set of vertices and midpoints of edges in G. Consider
the set T1(G) of geodesic triangles T in G which are cycles and such that the vertices of T are in J(G).
We denote by δ1(G) the infimum of the constants μ such that any triangle in T1(G) is μ-thin.

The following three results are used throughout the paper.

Theorem 5. ([40], Theorem 2.5) For every connected graph G, we have δ1(G) = δ(G).

Theorem 6. ([40], Theorem 2.6) Let G be any connected graph. Then, δ(G) is always a multiple of 1/4.

Theorem 7. ([40], Theorem 2.7) For any hyperbolic connected graph G, there exists a geodesic triangle
T ∈ T1(G) such that δ(T) = δ(G).

Consider the set Tv(G) of geodesic triangles T in G that are cycles and such that the three vertices
of the triangle T are also vertices of G. δv(G) denotes the infimum of the constants μ such that every
triangle in Tv(G) is μ-thin.

Theorem 8. For every connected graph G, we have δv(G) ≤ δ(G) ≤ 4δv(G) + 1/2. Hence, G is hyperbolic if
and only if δv(G) < ∞. Furthermore, if G is hyperbolic, then there are a geodesic triangle T = {a, b, c} ∈ Tv(G)

and q ∈ [ab] ∩ J(G) such that d(p, [ac] ∪ [cb]) = δ(T) = δv(G). In addition, δv(G) is an integer multiple
of 1/2.

Proof. The inequality δv(G) ≤ δ(G) is direct.
Consider the set T′

v(G) of geodesic triangles T in G such that the three vertices of the triangle T
belong to V(G), and denote by δ′v(G) the infimum of the constants μ such that every triangle in T′

v(G)

is μ-thin. The argument in the proof of (ref. [79], Lemma 2.1) gives that δ′v(G) = δv(G).
Let us prove now δ(G) ≤ 4δv(G)+ 1/2. Let us assume that G is hyperbolic. If δ′v(G) = ∞, then the

inequality is trivial. Thus, it suffices to consider the case δ′v(G) < ∞. By Theorem 7, there is a triangle
T = {a, b, c} that is a cycle with a, b, c ∈ J(G) and q ∈ [ab] such that d(q, [ac] ∪ [cb]) = δ(T) = δ(G).
Assume that a, b, c ∈ J(G) \ V(G) (otherwise, the argument is simpler). Let a1, a2, b1, b2, c1, c2 ∈
T ∩ V(G) such that a ∈ [a1, a2], b ∈ [b1, b2], c ∈ [c1, c2] and a2, b1 ∈ [ab], c2, d1 ∈ [cd], d2, a1 ∈ [ac].
Since H := {a2, b1, b2, c1, c2, a1} is a geodesic hexagon with vertices in V(G), it is 4δ′v(G)-thin and every
point w ∈ [b1, b2] ∪ [b2c1] ∪ [c1, c2] ∪ [c2a1] ∪ [a1, a2] verifies d(w, [ac] ∪ [cb]) ≤ 1/2, we have

δ(G) = d(q, [ac] ∪ [cb]) ≤ d(q, [b1, b2] ∪ [b2c1] ∪ [c1, c2] ∪ [c2a1] ∪ [a1, a2]) + 1/2

≤ 4δ′v(G) + 1/2 = 4δv(G) + 1/2.

Assume that G is not hyperbolic. Therefore, for each M > 0 there is a triangle T = {a, b, c} which
is a cycle with a, b, c ∈ J(G) and q ∈ [ab] with d(q, [ac] ∪ [cb]) ≥ M. The previous argument gives
M ≤ 4δv(G) + 1/2 and, since M is arbitrary, we conclude δv(G) = ∞ = δ(G).

Finally, consider any geodesic triangle T = {a, b, c} in Tv(G). Since d(q, [ac] ∪ [cb]) = d(q, ([ac] ∪
[cb]) ∩ V(G)), d(q, [ac] ∪ [cb]) attains its maximum value when q ∈ J(G). Hence, δ(T) is a multiple
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of 1/2 for any triangle T ∈ Tv(G). Since the set of non-negative numbers that are multiple of
1/2 is a discrete set, δ(G) is an integer multiple of 1/2 if G is hyperbolic, and there is a triangle
T = {a, b, c} ∈ Tv(G) and q ∈ [ab] ∩ J(G) with d(q, [ac] ∪ [cb]) = δ(T) = δv(G). This finishes
the proof.

Theorem 9. If G1 is a non-hyperbolic connected graph, then G1 × P2 is not hyperbolic.

Proof. Since G1 is not hyperbolic, by Theorem 8, given any R > 0 there exists a triangle T = {x, y, z}
wich is a cycle, with x, y, z ∈ V(G1) and such that T is not R-thin. Therefore, there exists some point
m ∈ T, let us assume that m ∈ [xy], such that dG1(m, [yz] ∪ [zx]) > R.

Seeking for a contradiction let us assume that G1 × P2 is δ-hyperbolic.
Suppose that for some R > δ, there is a geodesic triangle T = {x, y, z} that is an even cycle in G1,

with x, y, z ∈ V(G1) and such that T is not R-thin. Consider the (closed) path Λ = [xy] ∪ [yz] ∪ [zx].
Then, since T has even length, the path Γ1Λ defines a cycle in G1 × P2. Let γ1, γ2, γ3 be the paths in Γ1Λ
corresponding to [xy], [yz], [zx], respectively. By Corollary 1, the curves γ1, γ2 and γ3 are geodesics,
and dG1×P2

(
(Γ1Λ)′(m), γ2 ∪ γ3

)
> δ, leading to contradiction.

Suppose that, for every R > 0, there is a geodesic triangle T = {x, y, z} which is an odd cycle,
with x, y, z ∈ V(G1) and such that T is not R-thin.

Let T1 = {x, y, z} be a geodesic triangle as above and let us assume that diam(T1) = D > 8δ.
Let T2 = {x′, y′, z′} be another triangle as above such that T2 is not 3(D + 8δ)-thin, this is, there is

a point m in one of the sides, let us call it σ, of T2 such that dG1(m, T2\σ) > 3(D + 8δ).
Let g = [w0wk] with w0 ∈ T1 and wk ∈ T2 be a shortest geodesic in G1 joining T1 and T2 (if T1 and

T2 intersect, just assume that g is a single vertex, w0 = wk, in the intersection). See Figure 2.
Let us assume that w0 ∈ [xz] and wk ∈ [x′z′]. Then, let us consider the closed path C in G1 given

by the union of the geodesics in T1, g, the geodesics in T2 and the inverse of g from wk to w0, this is,

C := [w0x] ∪ [xy] ∪ [yz] ∪ [zw0] ∪ [w0wk] ∪ [wkx′] ∪ [x′y′] ∪ [y′z′] ∪ [z′wk] ∪ [wkw0].

Since T1, T2 are odd cycles, C is an even closed cycle. Therefore, Γ1C defines a cycle in G1 × P2.
Moreover, by Remark 1, Γ1C is a geodesic decagon in G1 × P2 with sides γ1 = (Γ1C)′([w0x]), γ2 =

(Γ1C)′([xy]), γ3 = (Γ1C)′([yz]), γ4 = (Γ1C)′([zw0]), γ5 = (Γ1C)′([w0wk]), γ6 = (Γ1C)′([wkx′]),
γ7 = (Γ1C)′([x′y′]), γ8 = (Γ1C)′([y′z′]), γ9 = (Γ1C)′([z′wk]) and γ10 = (Γ1C)′([wkw0]).

Since we are assuming that G1 × P2 is δ-hyperbolic, then for every 1 ≤ i ≤ 10 and every point
p ∈ γi, dG1×P2(p, C\γi) ≤ 8δ.

Let p := (Γ1C)′(m).
Case 1. Suppose that dG1(m, T1 ∪ g) > 8δ. See Figure 2.
By assumption, dG1(m, T2\σ) > 8δ. If σ = [x′y′] (resp. σ = [y′z′]), then p ∈ γ7 (resp. p ∈ γ8)

and, by Corollary 1, dG1×P2(p, C\γ7) > 8δ (resp. dG1×P2(p, C\γ8) > 8δ) leading to contradiction.
If σ = [x′z′], since [x′z′] = [x′wk] ∪ [wkz′], let us assume m ∈ [x′wk]. Then, since dG1(m, wk) > 8δ,
it follows that dG1(m, [wkz′]) > 8δ. Thus, p ∈ γ6 and, by Corollary 1, dG1×P2(p, C\γ6) > 8δ leading
to contradiction.

Case 2. Suppose that dG1(m, T1 ∪ g) ≤ 8δ and L(g) ≤ 8δ. See the left side of Figure 3.
Then, for every point q in T1 ∪ g, dG1(m, q) ≤ 8δ + D + 8δ. In particular, dG1(m, wk) ≤ 8δ + D + 8δ.
Therefore, m ∈ [x′z′] and let us assume that m ∈ [x′wk]. Since dG1(m, x′) ≥ dG1(m, [x′y′] ∪ [y′z′]) >
3(D + 8δ), there is a point m′ ∈ [x′m] ⊂ [x′wk] such that dG1(m, m′) = 2(D + 8δ). Then,
dG1(m

′, T1 ∪ g) ≥ 2(D + 8δ) − D − 8δ − 8δ = D > 8δ. In addition, it is trivial to check that
dG1(m

′, [x′y′]∪ [y′z′]) > 3(D+ 8δ)− 2(D+ 8δ) > 8δ and since [x′z′] is a geodesic, dG1(m
′, [z′wk]) > 8δ.

Thus, if p′ := (Γ1C)′(m′), then p′ ∈ γ6 and, by Corollary 1, dG1×P2(p′, C\γ6) > 8δ leading
to contradiction.

Case 3. Suppose that dG1(m, T1 ∪ g) ≤ 8δ and L(g) > 8δ. See the right side of Figure 3. Since g is
a shortest geodesic in G1 joining T1 and T2, this implies that dG1(T1, T2) > 8δ and dG1(m, [w0wk]) ≤ 8δ.
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Moreover, dG1(m, wk) ≤ 16δ. Otherwise, there is a point q ∈ [w0wk] such that dG1(m, q) ≤ 8δ and
dG1(q, wk) > 8δ which means that dG1(q, w0) < dG1(w0, wk)− 8δ and dG1(m, w0) < dG1(w0, wk) leading
to contradiction.

Since dG1(m, wk) ≤ 16δ, m ∈ [x′z′]. Let us assume that m ∈ [x′wk]. Since dG1(m, [x′y′] ∪ [y′z′]) >
3(D + 8δ), there is a point m′ ∈ [x′m] ⊂ [x′wk] such that dG1(m, m′) = 2(D + 8δ). Let us see that
dG1(m

′, [w0wk]) > 8δ. Suppose there is some q ∈ [w0wk] such that dG1(m
′, q) ≤ 8δ. Since m′ ∈ T2

and g is a shortest geodesic joining T1 and T2, dG1(q, wk) ≤ 8δ. However, 32δ < 2(D + 8δ) =

dG1(m
′, m) ≤ dG1(m

′, q) + dG1(q, wk) + dG1(wk, m) ≤ 8δ + 8δ + 16δ which is a contradiction. Hence,
dG1(m

′, [w0wk]) > 8δ. In addition, it is trivial to check that dG1(m
′, [x′y′] ∪ [y′z′]) > 3(D + 8δ)− 2(D +

8δ) > 8δ and since [x′z′] is a geodesic, dG1(m
′, [z′wk]) > 8δ. Thus, if p′ := (Γ1C)′(m′), then p′ ∈ γ6 and,

by Corollary 1, dG1×P2(p′, C\γ6) > 8δ leading to contradiction.

x

y

z

y’

z’

g=[w0wk]

w0
wk

m
8δ

x’

T1

T2

Figure 2. Two geodesic triangles, T1, T2, which are odd cycles and a geodesic g joining them define
an even closed path.

Case 2

x’

y’

z’

m

8δ
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m

8δ
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Case 3

Figure 3. If dG1 (m, T1 ∪ g) ≤ 8δ, then m ∈ [x′z′] and there is a point m′ ∈ [x′m] ⊂ [x′wk] such that
dG1 (m, m′) = 2(D + 8δ).

Proposition 3, Lemma 2 and Theorems 3, 4 and 9 have the following consequence.

Corollary 4. If G1 is a non-hyperbolic connected graph and G2 is some non-trivial connected graph,
then G1 × G2 is not hyperbolic.

Proposition 3 and Corollary 4 provide a necessary condition for the hyperbolicity of G1 × G2.
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Theorem 10. Let G1, G2 be non-trivial connected graphs. If G1 × G2 is hyperbolic, then one factor graph is
hyperbolic and the other one is bounded.

Theorems 3 and 4 show that this necessary condition is also sufficient if either G2 has some odd
cycle or G1 and G2 do not have odd cycles (when G1 is a hyperbolic graph and G2 is a bounded graph).
We deal now with the other case, when G1 has some odd cycle and G2 does not have odd cycles.

Theorem 11. Let G1 be a connected graph with some odd cycle and G2 a non-trivial bounded connected graph
without odd cycles. Assume that G1 satisfies the following property: for each M > 0 there exist a geodesic g
joining two minimal cycles of G1 and a vertex u ∈ g ∩ V(G1) with dG1

(
u, C(G1)

)
≥ M. Then, G1 × G2 is

not hyperbolic.

Proof. If G1 is not hyperbolic, then Corollary 4 gives that G1 × G2 is not hyperbolic. Assume now that
G1 is hyperbolic. By Theorem 2 and Lemma 2, we can assume that G2 = P2 and V(P2) = {v1, v2}.

Fix M > 0 and choose a geodesic g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] joining two
minimal cycles in G1 and 0 < r < k with dG1

(
wr, C(G1)

)
≥ M.

Define the paths g1 and g2 in G1 × P2 as g1 := Γ1g and g2 := Γ2g. Since L(g1) = L(g2) = L(g) =
dG1(w0, wk), we have

dG1×P2

(
g1(w0), g1(wk)

)
≤ L(g1) = dG1(w0, wk), dG1×P2

(
g2(w0), g2(wk)

)
≤ L(g2) = dG1(w0, wk).

Corollary 1 gives that

dG1×P2

(
g1(w0), g1(wk)

)
≥ dG1(w0, wk), dG1×P2

(
g2(w0), g2(wk)

)
≥ dG1(w0, wk).

Hence, g1 and g2 are geodesics in G1 × P2. Choose geodesics g3 = [g1(w0)g2(w0)] and g4 =

[g1(wk)g2(wk)] in G1 × P2. Since dP2(v1, v2) = 1 is odd, Proposition 2 gives

dG1×P2

(
g1(w0), g2(w0)

)
= min

{
L(σ) | σ is a w0, w0-walk

}
= min

{
L(σ) | σ cycle of odd length containing w0

}
.

Since w0 belongs to a minimal cycle, L(g3) ≤ 4δ(G1) by Lemma 4. In a similar way, we obtain
L(g4) ≤ 4δ(G1).

Consider the geodesic quadrilateral Q := {g1, g2, g3, g4} in G1 × P2. Thus, dG1×P2

(
g1(wr), g2 ∪

g3 ∪ g4
)
≤ 2δ(G1 × P2). Since max

{
L(g3), L(g4)

}
≤ 4δ(G1), we deduce dG1×P2

(
g1(wr), g2

)
≤ 2δ(G1 ×

P2) + 4δ(G1).
Let 0 ≤ j ≤ k with dG1×P2

(
g1(wr), g2

)
= dG1×P2

(
g1(wr), g2(wj)

)
. Let us define w′

r := g1(wr) and
w′

j := g2(wj). Thus, Lemma 5 gives

√
M ≤

√
dG1

(
wr, C(G1)

)
≤ dG1×P2(w

′
r, w′

j) = dG1×P2(w
′
r, g2) ≤ 2δ(G1 × P2) + 4δ(G1),

and since M is arbitrarily large, we deduce that G1 × P2 is not hyperbolic.

Lemma 6. Let G1 be a hyperbolic connected graph and suppose there is some constant K > 0 such that for
every vertex w ∈ G1, dG1(w, C(G1)) ≤ K. Then, G1 × P2 is hyperbolic.

Proof. Denote by v1 and v2 the vertices of P2. Let i : V(G1) → V(G1 × P2) defined as i(w) := (w, v1)

for every w ∈ G1.
For every x, y ∈ V(G1), by Corollary 1, dG1(x, y) ≤ dG1×P2(i(x), i(y)). By Corollary 3,

dG1×P2(i(x), i(y)) ≤ dG1(x, y) + 2dG1

(
x, C(G1)

)
+ 4δ(G1) ≤ dG1(x, y) + 2K + 4δ(G1).
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Therefore, i : V(G1) → V(G1 × P2) is a
(
1, 2K + 4δ(G1)

)
-quasi-isometric embedding.

Notice that for every (w, v1) ∈ V(G1 × P2), (w, v1) = i(w). In addition, for any (w, v2) ∈
V(G1 × P2), since G1 is connected, there is some edge [w, w′] ∈ E(G1) and we have [(w, v2), (w′, v1)] ∈
E(G1 × P2). Therefore, i : V(G1) → V(G1 × P2) is 1-full.

Thus, by Lemma 1, G1 and G1 × P2 are quasi-isometric and, by Theorem 2, G1 × P2

is hyperbolic.

Theorem 3 and Lemmas 2 and 6 give the following result.

Theorem 12. Let G1 be a hyperbolic connected graph and G2 some non-trivial bounded connected graph. If there
is some constant K > 0 such that for every vertex w ∈ G1, dG1(w, C(G1)) ≤ K, then G1 × G2 is hyperbolic.

We finish this section with a characterization of the hyperbolicity of G1 × G2, under an additional
hypothesis. We present first some lemmas.

Let J be a finite or infinite index set. Now, given a graph G1, we define some graphs related to
G1 which will be useful in the following results. Let Bj := BG1(wj, Kj) with wj ∈ V(G1) and Kj ∈ Z+,
for any j ∈ J, such that supj Kj = K < ∞, Bj1 ∩ Bj2 = ∅ if j1 �= j2, and every odd cycle C in G1 satisfies
C ∩ Bj �= ∅ for some j ∈ J. Denote by G′

1 the subgraph of G1 induced by V(G1) \ (∪jBj). Let Nj :=
∂Bj = {w ∈ V(G1) : dG1(w, wj) = Kj}. Denote by G∗

1 the graph with V(G∗
1 ) = V(G′

1) ∪ (∪j{w∗
j }),

where w∗
j are additional vertices, and E(G∗

1 ) = E(G′
1)∪ (∪j{[w, w∗

j ] : w ∈ Nj}). We have G′
1 = G1 ∩ G∗

1 .

Lemma 7. Let G1 be a connected graph as above. Then, there is a quasi-isometry g : G1 → G∗
1 such that

g(wj) = w∗
j for every j ∈ J.

Proof. Let f : V(G1) → V(G∗
1 ) defined as f (u) = u for every u ∈ V(G′

1), and f (u) = w∗
i for every

u ∈ V(Bi). It is clear that f : V(G1) → V(G∗
1 ) is 0-full.

Now, we focus on proving that f : V(G1) → V(G∗
1 ) is a (K, 2K)-quasi-isometric embedding.

For every u, v ∈ V(G1), it is clear that dG∗
1
( f (u), f (v)) ≤ dG1(u, v).

Let us prove the other inequality. Fix u, v ∈ V(G1) and consider an oriented geodesic γ in G∗
1

from f (u) to f (v).
Assume that u, v ∈ V(G′

1). If L(γ) = dG1(u, v), then dG1(u, v) = dG∗
1
( f (u), f (v)). If L(γ) <

dG1(u, v), then γ meets some w∗
j . Since γ is a compact set, it intersects only a finite number of w∗

j ’s,
which we denote by w∗

j1
, . . . w∗

jr . Since γ is an oriented curve from f (u) to f (v), we can assume that γ

meets w∗
j1

, . . . w∗
jr in this order.

Let us define the following vertices in γ

w1
i = [ f (u)w∗

ji ] ∩ Nji , w2
i = [w∗

ji f (v)] ∩ Nji ,

for every 1 ≤ i ≤ r. Note that [w2
i w1

i+1] ⊂ G′
1 for every 1 ≤ i < r (it is possible to have w2

i = w1
i+1).

Since dG∗
1
(w1

i , w2
i ) = 2 and dG1(w

1
i , w2

i ) ≤ 2K, we have dG∗
1
(w1

i , w2
i ) ≥ 1

K dG1(w
1
i , w2

i ) for every
1 ≤ i ≤ r. Thus,

dG∗
1
( f (u), f (v)) = dG∗

1
( f (u), w1

1) +
r

∑
i=1

dG∗
1
(w1

i , w2
i ) +

r−1

∑
i=1

dG∗
1
(w2

i , w1
i+1) + dG∗

1
(w2

r , f (v))

≥ dG1(u, w1
1) +

1
K

r

∑
i=1

dG1(w
1
i , w2

i ) +
r−1

∑
i=1

dG1(w
2
i , w1

i+1) + dG1(w
2
r , v)

≥ 1
K

(
dG1(u, w1

1) +
r

∑
i=1

dG1(w
1
i , w2

i ) +
r−1

∑
i=1

dG1(w
2
i , w1

i+1) + dG1(w
2
r , v)

)
≥ 1

K
dG1(u, v).

216



Symmetry 2018, 10, 279

Assume that f (u) = f (v). Therefore, there exists j with u, v ∈ Bj and

dG∗
1
( f (u), f (v)) = 0 > dG1(u, v)− 2K.

Assume now that u and/or v does not belong to V(G′
1) and f (u) �= f (v). Let u0, v0 be the

closest vertices in V(G′
1) ∩ γ to f (u), f (v), respectively (it is possible to have u0 = f (u) or v0 = f (v)).

Since u0, v0 ∈ V(G′
1), u0 = f (u0), v0 = f (v0), we have dG1(u, u0) < 2K and dG1(v, v0) < 2K. Hence,

dG∗
1
( f (u), f (v)) = dG∗

1
( f (u), u0) + dG∗

1
(u0, v0) + dG∗

1
(v0, f (v))

≥ dG∗
1
( f (u0), f (v0))

≥ 1
K

dG1(u0, v0)

≥ 1
K

(
dG1(u, v)− dG1(u, u0)− dG1(v, v0)

)
>

1
K

dG1(u, v)− 4.

If K ≥ 2, then dG∗
1
( f (u), f (v)) > 1

K dG1(u, v)− 2K. If K = 1, then dG1(u, u0) ≤ 1, dG1(v, v0) ≤ 1,
and dG∗

1
( f (u), f (v)) ≥ dG1(u, v)− 2.

Finally, we conclude that f : V(G1) → V(G∗
1 ) is a (K, 2K)-quasi-isometric embedding.

Thus, Lemma 1 provides a quasi-isometry g : G1 → G∗
1 with the required property.

Definition 3. Given a connected graph G1 and some index set J, let BJ = {Bj}j∈J be a family of balls where
Bj := BG1(wj, Kj) with wj ∈ V(G1), Kj ∈ Z+ for any j ∈ J, supj Kj = K < ∞ and Bj1 ∩ Bj2 = ∅ if j1 �= j2.
Suppose that every odd cycle C in G1 satisfies that C ∩ Bj �= ∅ for some j ∈ J. If there is some constant M > 0
such that for every j ∈ J, there is an odd cycle Cj such that Cj ∩ Bj �= ∅ with L(Cj) < M, then we say that BJ
is M-regular.

Remark 2. If J is finite, then there exists M > 0 such that {Bj}j∈J is M-regular.

Denote by G∗ the graph with V(G∗) = V(G′
1 × P2)∪ (∪j{w∗

j }), where G′
1 is a graph as above and

w∗
j are additional vertices, and E(G∗) = E(G′

1 × P2) ∪ (∪j{[w, w∗
j ] : π1(w) ∈ Nj}).

Lemma 8. Let G1 be a connected graph as above and P2 with V(P2) = {v1, v2}. If G1 is hyperbolic and BJ as
above is M-regular, then there exists a quasi-isometry f : G1 × P2 → G∗ with f (wj, vi) = w∗

j for every j ∈ J
and i ∈ {1, 2}.

Proof. Let F : V(G1 × P2) → V(G∗) defined as F(v, vi) = (v, vi) for every v ∈ V(G′
1), and F(v, vi) =

w∗
j for every v ∈ V(Bj). It is clear that F : V(G1 × P2) → V(G∗) is 0-full. Recall that we denote by

π1 : G1 × P2 → G1 the projection map. Define π∗ : G∗ → G1 as π∗ = π1 on G′
1 × P2 and π∗(x) = wj

for every x with dG∗(x, w∗
j ) < 1 for some j ∈ J.

Now, we focus on proving that F : V(G1 × P2) → V(G∗) is a quasi-isometric embedding.
For every (w, vi), (w′, vi′) ∈ V(G1 × P2), one can check

dG∗(F(w, vi), F(w′, vi′)) ≤ dG1×P2((w, vi), (w′, vi′)).

To prove the other inequality, let us fix (w, vi), (w′, vi′) ∈ V(G′
1 × P2) (the inequalities in other

cases can be obtained from the one in this case, as in the proof of Lemma 7). Consider a geodesic
γ := [F(w, vi)F(w′, vi′)] in G∗. If L(γ) = dG1×P2((w, vi), (w′, vi′)), then

dG∗(F(w, vi), F(w′, vi′)) = dG1×P2((w, vi), (w′, vi′)).
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If L(γ) < dG1×P2((w, vi), (w′, vi′)), then π∗(γ) meets some Bj. Since γ is a compact set, π∗(γ)
intersects just a finite number of Bj’s, which we denote by Bj1 , . . . Bjr . We consider γ as an oriented
curve from F(w, vi) to F(w′, vi′); thus we can assume that π∗(γ) meets Bj1 , . . . , Bjr in this order.

Let us define the following set of vertices in γ

{w1
i , w2

i } := γ ∩ (Nji × P2),

for every 1 ≤ i ≤ r, such that dG1×P2((w, vi), w1
i ) < dG1×P2((w, vi), w2

i ). Note that [w2
i w1

i+1] ⊂ G′
1 × P2

for every 1 ≤ i < r and dG1×P2(w
2
i , w1

i+1) ≥ 1 since Bji ∩ Bji+1 = ∅.
If dG1(π(w1

i ), π(w2
i )) = dG1×P2(w

1
i , w2

i ) for some 1 ≤ i ≤ r, then dG1×P2(w
1
i , w2

i ) ≤ 2K. Since
dG1×P2(w

2
i , w1

i+1) ≥ 1 for 1 ≤ i < r, we have that dG1×P2(w
1
i , w2

i ) ≤ 2K dG1×P2(w
2
i , w1

i+1) in this case.
If dG1(π1(w1

i ), π1(w2
i )) < dG1×P2(w

1
i , w2

i ) for some 1 ≤ i ≤ r, then dG1(π1(w1
i ), π1(w2

i )) +

dG1×P2(w
1
i , w2

i ) is odd.
Since BJ is M-regular, consider an odd cycle C with C ∩ Bji �= ∅ and L(C) < M, and let

bi ∈ C ∩ Bji and [π1(w1
i )bi], [biπ1(w2

i )] geodesics in G1. Thus, [π1(w1
i )bi] ∪ [biπ1(w2

i )] and
[π1(w1

i )bi] ∪ C ∪ [biπ1(w2
i )] have different parity which means that one of them has different

parity from [π1(w1
i )π1(w2

i )]. Then, dG1×P2(w
1
i , w2

i ) ≤ L([π1(w1
i )bi] ∪ C ∪ [biπ1(w2

i )]) ≤ 4K + M.

Since dG1×P2(w
2
i , w1

i+1) ≥ 1 for 1 ≤ i < r, we have that dG1×P2(w
1
i , w2

i ) ≤
(

4K + M
)

dG1×P2(w
2
i , w1

i+1)

in this case.
Thus, we have that dG1×P2(w

1
i , w2

i ) ≤ 4K + M for every 1 ≤ i ≤ r and dG1×P2(w
1
i , w2

i ) ≤
(

4K +

M
)

dG1×P2(w
2
i , w1

i+1) for every 1 ≤ i < r. Therefore,

dG1×P2 ((w, vi), (w′, vi′ )) ≤ dG1×P2 ((w, vi), w1
1) +

r

∑
i=1

dG1×P2 (w
1
i , w2

i ) +
r−1

∑
i=1

dG1×P2 (w
2
i , w1

i+1)

+ dG1×P2 (w
2
r , (w′, vi′ ))

≤ dG1×P2 ((w, vi), w1
1) + dG1×P2 (w

2
r , (w′, vi′ )) +

(
4K + M + 1

) r−1

∑
i=1

dG1×P2 (w
2
i , w1

i+1)

+ dG1×P2 (w
1
r , w2

r )

= dG∗ (F(w, vi), F(w1
1)) + dG∗ (F(w2

r ), F(w′, vi′ )) +
(

4K + M + 1
) r−1

∑
i=1

dG∗ (F(w2
i ), F(w1

i+1))

+ dG1×P2 (w
1
r , w2

r )

≤
(

4K + M + 1
)(

dG∗ (F(w, vi), F(w1
1)) + dG∗ (F(w2

r ), F(w′, vi′ )) +
r−1

∑
i=1

dG∗ (F(w2
i ), F(w1

i+1))
)
+ 4K + M

≤
(

4K + M + 1
)

dG∗ (F(w, vi), F(w′, vi′ )) + 4K + M.

We conclude that F : V(G1 × P2) → V(G∗) is a quasi-isometric embedding. Thus, Lemma 1
provides a quasi-isometry f : G1 × P2 → G∗ with the required property.

Definition 4. Given a geodesic metric space X and closed connected pairwise disjoint subsets {ηj}j∈J of X,
we consider another copy X′ of X. The double DX of X is the union of X and X′ obtained by identifying the
corresponding points in each ηj and η′

j .

Definition 5. Let us consider H > 0, a metric space X, and subsets Y, Z ⊆ X. The set VH(Y) := {x ∈ X :
d(x, Y) ≤ H} is called the H-neighborhood of Y in X. The Hausdorff distance of Y to Z is defined by
H(Y, Z) := inf{H > 0 : Y ⊆ VH(Z), Z ⊆ VH(Y)}.

The following results in [15,80] will be useful.
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Theorem 13. ([80], Theorem 3.2) Let us consider a geodesic metric space X and closed connected pairwise
disjoint subsets {ηj}j∈J of X, such that the double DX is a geodesic metric space. Then, the following conditions
are equivalent:

(1) DX is hyperbolic.
(2) X is hyperbolic and there exists a constant c1 such that for every k, l ∈ J and a ∈ ηk, b ∈ ηl we have

dX(x,∪j∈Jηj) ≤ c1 for every x ∈ [ab] ⊂ X.
(3) X is hyperbolic and there exist constants c2, α, β such that for every k, l ∈ J and a ∈ ηk, b ∈ ηl we have

dX(x,∪j∈Jηj) ≤ c2 for every x in some (α, β)-quasi-geodesic joining a with b in X.

Theorem 14. ([15], p. 87) For each δ ≥ 0, a ≥ 1 and b ≥ 0, there exists a constant H = H(δ, a, b) with the
following property:

Let us consider a δ-hyperbolic geodesic metric space X and an (a, b)-quasigeodesic g starting in x and
finishing in y. If γ is a geodesic joining x and y, then H(g, γ) ≤ H.

This property is called geodesic stability. It is well-known that hyperbolicity is, in fact,
equivalent to geodesic stability [81].

Theorem 15. Let G1 be a connected graph and Bj := BG1(wj, Kj) with wj ∈ V(G1) and Kj ∈ Z+, for any
j ∈ J, such that supj Kj = K < ∞, Bj1 ∩ Bj2 = ∅ if j1 �= j2, and every odd cycle C in G1 satisfies C ∩ Bj �= ∅
for some j ∈ J. Suppose {Bj}j∈J is M-regular for some M > 0. Let G2 be a non-trivial bounded connected
graph without odd cycles. Then, the following statements are equivalent:

(1) G1 × G2 is hyperbolic.
(2) G1 is hyperbolic and there exists a constant c1, such that for every k, l ∈ J and wk ∈ Bk, wl ∈ Bl there

exists a geodesic [wkwl ] in G1 with dG1(x,∪j∈Jwj) ≤ c1 for every x ∈ [wkwl ].
(3) G1 is hyperbolic and there exist constants c2, α, β, such that for every k, l ∈ J we have dG1(x,∪j∈Jwj) ≤ c2

for every x in some (α, β)-quasi-geodesic joining wk with wl in G1.

Proof. Items (2) and (3) are equivalent by geodesic stability in G1 (see Theorem 14).
Assume that (2) holds. By Lemma 7, there exists an (α, β)-quasi-isometry f : G1 → G∗

1 with
f (wj) = w∗

j for every j ∈ J. Given k, l ∈ J, f ([wkwl ]) is an (α, β)-quasi-geodesic with endpoints w∗
k

and w∗
l in G∗

1 . Given x ∈ f ([wkwl ]), we have x = f (x0) with x0 ∈ [wkwl ] and dG∗
1
(x,∪j∈Jw∗

j ) ≤
αdG1(x0,∪j∈Jwj) + β ≤ αc1 + β. Taking X = G∗

1 , DX = G∗ and ηj = w∗
j for every j ∈ J, Theorem 13

gives that G∗ is hyperbolic. Now, Lemma 8 gives that G1 × P2 is hyperbolic and we conclude that
G1 × G2 is hyperbolic by Lemma 2.

Now, suppose (1) holds. By Lemma 2, G1 × P2 is hyperbolic and, by Theorem 9, G1 is hyperbolic.
Then, Lemma 8 gives that G∗ is hyperbolic and taking X = G∗

1 , DX = G∗ and ηj = w∗
j for every j ∈ J,

by Theorem 13, (2) holds.

Theorem 15 and Remark 2 have the following consequence.

Corollary 5. Let G1 be a connected graph and suppose that there are a positive integer K and a vertex w ∈ G1,
such that every odd cycle in G1 intersects the open ball B := BG1(w, K). Let G2 be a non-trivial bounded
connected graph without odd cycles. Then, G1 × G2 is hyperbolic if and only if G1 is hyperbolic.

4. Bounds for the Hyperbolicity Constant of Some Direct Products

The following well-known result will be useful (see a proof, e.g., in ([47], Theorem 8)).

Theorem 16. In any connected graph G the inequality δ(G) ≤ (diam G)/2 holds.

Remark 3. Note that, if G1 is a bipartite connected graph, then diam G1 = diam V(G1). Furthermore, if G2 is
a bipartite connected graph, then the product G1 × G2 has exactly two connected components, which are denoted
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by (G1 × G2)
1 and (G1 × G2)

2, where each one is a bipartite graph and, consequently, diam(G1 × G2)
i =

diam V((G1 × G2)
i) for i ∈ {1, 2}.

Remark 4. Let Pm, Pn be two path graphs with m ≥ n ≥ 2. The product Pm × Pn has exactly two
connected components, which will be denoted by (Pm × Pn)1 and (Pm × Pn)2. If u, v ∈ V((Pm × Pn)i) for
i ∈ {1, 2}, then d(Pm×Pn)i (u, v) = max

{
dPm(π1(u), π1(v)), dPn(π2(u), π2(v))

}
and diam(Pm × Pn)i =

diam V((Pm × Pn)i) = m − 1.
Furthermore, if m1 ≤ m and n1 ≤ n, then δ(Pm × Pn) ≥ δ(Pm1 × Pn1).

Lemma 9. Let Pm, Pn be two path graphs with m ≥ n ≥ 3, and let γ be a geodesic in Pm × Pn such that there
are two different vertices u, v in γ, with π1(u) = π1(v). Then, L(γ) ≤ n − 1.

Remark 5. Note that the conclusion of Lemma 9 does not hold for n = 2, since we always have L(γ) ≥ 2.

Proof. Let γ := [xy], and let V(Pm) = {v1, . . . , vm}, V(Pn) = {w1, . . . , wn} be the sets of vertices in
Pm, Pn, respectively, such that [vj, vj+1] ∈ E(Pm) and [wi, wi+1] ∈ E(Pn) for 1 ≤ j < m, 1 ≤ i < n.
Seeking for a contradiction, assume that L(γ) > n − 1. Notice that if [uv] denotes the geodesic
contained in γ joining u and v, then π2 restricted to [uv] is injective. Consider two vertices u′, v′ ∈ γ

such that [uv] ⊆ [u′v′] ⊆ γ, π2 is injective in [u′v′] and π2(u′) = wi1 , π2(v′) = wi2 with i2 − i1 maximal
under these conditions. See Figure 4.

Since L(γ) > n − 1 ≥ i2 − i1, either there is an edge [v′, w] in G1 × G2 such that [v′, w] ∩ (γ \
[u′v′]) �= ∅ or there is an edge [u′, w′] in G1 × G2 such that [u′, w′] ∩ (γ \ [u′v′]) �= ∅. In addition,
since L(γ) > n − 1, notice that π2 is not injective in γ. Moreover, since i2 − i1 is maximal, if π2(w) =

wi2+1, then w /∈ γ, and since L(γ) > n− 1, u′ /∈ {x, y} and π2(w′) = wi1+1. Thus, either π2(w) = wi2−1
or π2(w′) = wi1+1.

Hence, let us assume that there is an edge [v′, w] in G1 ×G2 such that [v′, w]∩ (γ \ [u′v′]) �= ∅ with
π2(w) = wi2−1 (otherwise, if there is an edge [u′, w′] in G1 × G2 such that [u′, w′] ∩ (γ \ [u′v′]) �= ∅
with π2(w′) = wi1+1, the proof is similar).

Suppose π1(v′) = vj. Let v′′ be the vertex in [u′v′] such that π2(v′′) = wi2−1. Then, by construction
of G1 × G2, since v′′ �= w, it follows that {π1(v′′), π1(w)} = {vj−1, vj+1}. Therefore, in particular,
1 < j < m.

Assume that v′′ = (vj−1, wi2−1) (if v′′ = (vj+1, wi2−1), then the argument is similar). Therefore,
w = (vj+1, wi2−1).

Consider the geodesic

σ = [(vj+1, wi2−1), (vj, wi2−2)] ∪ [(vj, wi2−2), (vj−1, wi2−3)] ∪ [(vj−1, wi2−3), (vj−2, wi2−4)] ∪ . . .

Since π1(u) = π1(v), there is a vertex ξ of V(Pm × Pn) in [u′v′] ∩ σ. Let s ∈ [v′, w] ∩ γ with s �= v′.
Let σ0 be the geodesic contained in σ joining ξ and w. Let γ0 be the geodesic contained in γ joining ξ

and s. Hence, L(σ0 ∪ [ws]) < L(σ0) + 1 < L(γ0) leading to contradiction.
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Figure 4. For any geodesic γ in Pm × Pn with π1(u) = π1(v) for some different vertices u, v in γ,
then L(γ) ≤ n − 1.

Theorem 17. Let Pm, Pn be two path graphs with m ≥ n ≥ 2. If n = 2, then δ(Pm × P2) = 0. If n ≥ 3, then

min
{m

2
, n − 1

}
− 1 ≤ δ(Pm × Pn) ≤ min

{m
2

, n
}
− 1

2
.

Furthermore, if m ≤ 2n − 3 and m is odd, then δ(Pm × Pn) = (m − 1)/2.

Proof. If m ≥ 2, then Pm × P2 has two connected components isomorphic to Pm, and δ(Pm × P2) = 0.
Assume that n ≥ 3. By symmetry, it suffices to prove the inequalities for δ((Pm × Pn)1). Hence,

Theorem 16 and Remark 4 give δ((Pm × Pn)1) ≤ m−1
2 . By Theorem 7, there exists a geodesic triangle

T = {x, y, z} ∈ T1(Pm × Pn) with p ∈ γ1 := [xy], γ2 := [xz], γ3 := [yz], and δ((Pm × Pn)1) = δ(T) =
d(Pm×Pn)1(p, γ2 ∪ γ3). Let u ∈ V(γ1) such that d(Pm×Pn)1(p, u) ≤ 1/2.

To prove δ((Pm × Pn)1) ≤ n − 1/2, we consider two cases.
Assume first that there is at least a vertex v ∈ V((Pm × Pn)1) ∩ T \ {u} such that π1(u) = π1(v).

If v /∈ γ1, then v ∈ γ2 ∪ γ3 and

δ(T) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ 1/2 + d(Pm×Pn)1(u, v) ≤ n − 1/2.

If v ∈ γ1, then L(γ1) ≤ n − 1 by Lemma 9, and

δ(T) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ d(Pm×Pn)1(p, {x, y}) ≤ (n − 1)/2 < n − 1/2.

Assume now that there is not a vertex v ∈ V((Pm × Pn)1)∩ T \ {u} such that π1(u) = π1(v). Then,
there exist two different vertices v1, v2 in T \ {u} such that d(Pm×Pn)1(u, v1) = d(Pm×Pn)1(u, v2) = 1,
and π1(v1) = π1(v2). If v1 or v2 belongs to γ2 ∪γ3, then δ(T) = d(Pm×Pn)1(p, γ2 ∪γ3) ≤ 3/2 ≤ n− 1/2.
Otherwise, v1, v2 ∈ γ1 \ {u}. Lemma 9 gives L(γ1) ≤ n − 1, and we have that

δ(T) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ d(Pm×Pn)1(p, {x, y}) ≤ (n − 1)/2 < n − 1/2.
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To prove the lower bound, denote the vertices of Pm and Pn by V(Pm) = {w1, w2, w3, . . . , wm}
and V(Pn) = {v1, v2, v3, . . . , vn}, with [wi, wi+1] ∈ E(Pm) for 1 ≤ i < m and [vi, vi+1] ∈ E(Pn) for
1 ≤ i < n.

Let (Pm × Pn)1 be the connected component of Pm × Pn containing (w1, vn−1).
Assume first that m ≥ 2n − 3. Consider the following curves in (Pm × Pn)1:

γ1 := [(w1, vn−1), (w2, vn)] ∪ [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn)] ∪ · · · ∪ [(w2n−4, vn), (w2n−3, vn−1)],

γ2 := [(w1, vn−1), (w2, vn−2)] ∪ [(w2, vn−2), (w3, vn−3)] ∪ · · · ∪ [(wn−2, v2), (wn−1, v1)] ∪ [(wn−1, v1), (wn, v2)]

∪ · · · ∪ [(w2n−4, vn−2), (w2n−3, vn−1)].

Corollary 1 gives that γ1, γ2 are geodesics. If B is the geodesic bigon B = {γ1, γ2}, then Remark 4
gives that

δ(Pm × Pn) ≥ δ(B) ≥ d(Pm×Pn)1((wn−1, v1), γ1) = n − 2.

If m is odd with m ≤ 2n− 3, then n− (m+ 1)/2 ≥ 1 and we can consider the curves in (Pm × Pn)1:

γ1 := [(w1, vn−1), (w2, vn)] ∪ [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn)] ∪ · · · ∪ [(wm−1, vn), (wm, vn−1)],

γ2 := [(w1, vn−1), (w2, vn−2)] ∪ [(w2, vn−2), (w3, vn−3)] ∪ · · · ∪ [(w(m+1)/2−1, vn−(m+1)/2+1), (w(m+1)/2, vn−(m+1)/2)]

∪ [(w(m+1)/2, vn−(m+1)/2), (w(m+1)/2+1, vn−(m+1)/2+1)] ∪ · · · ∪ [(wm−1, vn−2), (wm, vn−1)].

Corollary 1 gives that γ1, γ2 are geodesics. If B = {γ1, γ2}, then Remark 4 gives that

δ(Pm × Pn) ≥ δ(B) ≥ d(Pm×Pn)1((w(m+1)/2, vn−(m+1)/2), γ1) = (m − 1)/2.

By Remark 4, if m is even with m − 1 ≤ 2n − 3, then we have that

δ(Pm × Pn) ≥ δ(Pm−1 × Pn) ≥ (m − 2)/2.

Hence,

δ(Pm × Pn) ≥
{

n − 2, if m ≥ 2n − 3
(m − 2)/2, if m ≤ 2n − 2

}
= min

{
n − 2,

m − 2
2

}
= min

{m
2

, n − 1
}
− 1.

Furthermore, if m ≤ 2n − 3 and m is odd, then we have proven (m − 1)/2 ≤ δ(Pm × Pn) ≤
(m − 1)/2.

Theorem 18. If G1 and G2 are bipartite connected graphs with k1 := diam V(G1) and k2 := diam V(G2)

such that k1 ≥ k2 ≥ 1, then

max
{

min
{ k1 − 1

2
, k2 − 1

}
, δ(G1), δ(G2)

}
≤ δ(G1 × G2) ≤

k1

2
.

Furthermore, if k1 ≤ 2k2 − 2 and k1 is even, then δ(G1 × G2) = k1/2.

Proof. Corollary 1, Theorem 16 and Remark 3 give us the upper bound.
To prove the lower bound, we can see that there exist two path graphs Pk1+1, Pk2+1 which are

isometric subgraphs of G1 and G2, respectively. It is easy to check that Pk1+1 × Pk2+1 is an isometric
subgraph of G1 × G2. By Lemma 3 and Theorem 17, we have

min
{ k1 − 1

2
, k2 − 1

}
≤ δ(Pk1+1 × Pk2+1) ≤ δ(G1 × G2).

Using a similar argument as above, we have δ(P2 × G2) ≤ δ(G1 × G2) and δ(G1 × P2) ≤ δ(G1 × G2).
Thus, since (G1 × P2)

i � G1 and (P2 × G2)
i � G2 for i ∈ {1, 2}, we obtain the first statement.
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Furthermore, if k1 + 1 ≤ 2(k2 + 1)− 3 and k1 + 1 is odd, then Theorem 17 gives δ(Pk1+1 × Pk2+1) =

k1/2, and we conclude δ(G1 × G2) = k1/2.

The following result deals just with odd cycles since otherwise we can apply Theorem 18.

Theorem 19. For every odd number m ≥ 3 and every n ≥ 2,

δ(Cm × Pn) =

⎧⎪⎨
⎪⎩

m/2, if n − 1 ≤ m,
(n − 1)/2, if m < n − 1 < 2m,
m − 1/2, if n − 1 ≥ 2m.

Proof. Let V(Cm) = {w1, . . . , wm} and V(Pn) = {v1, . . . , vn} be the sets of vertices in Cm and Pn,
respectively, such that [w1, wm], [wj, wj+1] ∈ E(Cm) and [vi, vi+1] ∈ E(Pn) for j ∈ {1, . . . , m − 1},
i ∈ {1, . . . , n − 1}. Note that for 1 ≤ j, r ≤ m and 1 ≤ i, s ≤ n, we have dCm×Pn

(
(wj, vi), (wr, vs)

)
=

max{|i − s|, |j − r|}, if |i − s| ≡ |j − r|(mod 2), or dCm×Pn

(
(wj, vi), (wr, vs)

)
= max{|i − s|, m − |j − r|},

if |i − s| �≡ |j − r|(mod 2). Besides, we have diam(Cm × Pn) = diam
(
V(Cm × Pn)

)
, i.e., diam(Cm ×

Pn) = m if n − 1 ≤ m, and diam(Cm × Pn) = n − 1 if n − 1 > m. Thus, by Theorem 16, we have

δ(Cm × Pn) ≤
{

m/2, if n − 1 ≤ m,
(n − 1)/2, if n − 1 > m.

Assume first that n − 1 ≤ m. Note that Cm × P2 � C2m and Cm × Pn′ is an isometric subgraph of
Cm × Pn, if n′ ≤ n. By Lemma 3, we have δ(Cm × Pn) ≥ δ(C2m) = m/2, and we obtain the result in
this case.

Assume now that n− 1 > m. Consider the geodesic triangle T in Cm × Pn defined by the following
geodesics

γ1 :=[(w1, vn), (w2, vn−1)] ∪ [(w2, vn−1), (w3, vn)] ∪ [(w3, vn), (w4, vn−1)] ∪ . . . ∪ [(wm−1, vn−1), (wm, vn)],

γ2 :=[(w(m+1)/2, v1), (w(m−1)/2, v2)] ∪ [(w(m−1)/2, v2), (w(m−3)/2, v3)] ∪ . . . ∪ [(w2, v(m−1)/2), (w1, v(m+1)/2)]∪

[(w1, v(m+1)/2), (wm, v(m+3)/2)] ∪ [(wm, v(m+3)/2), (w1, v(m+5)/2)] ∪ [(w1, v(m+5)/2), (wm, v(m+7)/2)] ∪ . . . ,

γ3 :=[(w(m+1)/2, v1), (w(m+3)/2, v2)] ∪ [(w(m+3)/2, v2), (w(m+5)/2, v3)] ∪ . . . ∪ [(wm−1, v(m−1)/2), (wm, v(m+1)/2)]∪

[(wm, v(m+1)/2), (w1, v(m+3)/2)] ∪ [(w1, v(m+3)/2), (wm, v(m+5)/2)] ∪ [(wm, v(m+5)/2), (w1, v(m+7)/2)] ∪ . . . ,

where (w1, vn)
(
respectively, (wm, vn)

)
is an endpoint of either γ2 or γ3, depending of the parity of n.

Since T is a geodesic triangle in Cm × Pn, we have δ(Cm × Pn) ≥ δ(T). If n − 1 < 2m and M is the
midpoint of the geodesic γ3, then δ(Cm × Pn) ≥ δ(T) = dCm×Pn(M, γ1 ∪ γ2) = L(γ3)/2 = (n − 1)/2.
Therefore, the result for m < n − 1 < 2m follows.

Finally, assume that n − 1 ≥ 2m. Let us consider N ∈ γ3 such that dCm×Pn

(
N, (w(m+1)/2, v1)

)
=

m − 1/2. Thus, δ(Cm × Pn) ≥ δ(T) ≥ dCm×Pn(N, γ1 ∪ γ2) = dCm×Pn

(
N, (w(m+1)/2, v1)

)
= m − 1/2.

To finish the proof, it suffices to prove that δ(Cm × Pn) ≤ m − 1/2. Seeking for a contradiction, assume
that δ(Cm × Pn) > m − 1/2. By Theorems 6 and 7, there is a geodesic triangle $ = {x, y, z} ∈
T1(Cm × Pn) and p ∈ [xy] with dCm×Pn(p, [yz] ∪ [zx]) = δ(Cm × Pn) ≥ m − 1/4. Then, L([xy]) =

dCm×Pn(x, p)+ dCm×Pn(p, y) ≥ 2m− 1/2. Let Vx (respectively, Vy) be the closest vertex to x (respectively,
y) in [xy], and consider a vertex Vp in [xy] such that dCm×Pn

(
p, V(Cm × Pn)

)
= dCm×Pn(p, Vp). Note that

dCm×Pn(p, [yz]∪ [zx]) ≥ m− 1/4 implies that dCm×Pn(p, Vp) ≤ 1/2. Since x, y, z ∈ J(Cm × Pn), we have
dCm×Pn(Vx, Vy) ≥ 2m − 1 > m and, consequently, π2([xy]) is a geodesic in Pn. Since π2([yz] ∪ [zx]) is
a path in Pn joining π2(x) and π2(y), there exists a vertex (u, v) ∈ [xz] ∪ [zy] such that π2(Vp) = v
and u �= π1(Vp). Therefore, dCm×Pn

(
Vp, (u, v)

)
≤ m − 1 and, consequently, dCm×Pn(p, [xz] ∪ [zy]) ≤

dCm×Pn(p, Vp) + dCm×Pn(Vp, [xz] ∪ [zy]) ≤ 1/2 + m − 1, leading to contradiction.
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5. Conclusions

In this paper, we characterize in many cases the hyperbolic direct product of graphs. Here,
the situation is more complex than with other graph products, partly because the direct product of
two bipartite graphs is already disconnected and the formula for the distance in G1 × G2 is more
complicated than in the case of other products of graphs. Although in the study of hyperbolicity in
a general context the hypothesis on the existence (or non-existence) of odd cycles is artificial, in the
study of hyperbolic direct products, it is an essential hypothesis. We have proven that, if G1 × G2 is
hyperbolic, then one factor is hyperbolic and the other one is bounded. Besides, we prove that this
necessary condition is also sufficient in many cases. If G1 is a hyperbolic graph and G2 is a bounded
graph, then we prove that G1 × G2 is hyperbolic when G2 has some odd cycle or G1 and G2 do not
have odd cycles. Otherwise, the characterization of hyperbolic direct products is a more difficult
task. If G1 has some odd cycle and G2 does not have odd cycles, we provide sufficient conditions
for non-hyperbolicity and hyperbolicity, respectively. Besides, we characterize the hyperbolicity of
G1 × G2 under some additional conditions.

A natural open problem is the complete characterization of hyperbolic direct products.
A second open problem is to compute the precise value of the hyperbolicity constant of the graphs

appearing in Theorems 17 and 18 with unknown hyperbolicity constant.
Direct product of graphs is a subject closely related to lift of graphs, which have been intensively

studied (see, e.g., [82] and the references therein). Another interesting problem is to study the
hyperbolicity of lift of graphs. We think that it is possible to obtain some similar results in this
context, although the odd cycles may not play an important role in the study of hyperbolic lifts
of graphs.
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Abstract: Concepts of resolving set and metric basis has enjoyed a lot of success because of
multi-purpose applications both in computer and mathematical sciences. For a connected graph
G(V,E) a subset W of V(G) is a resolving set for G if every two vertices of G have distinct
representations with respect to W. A resolving set of minimum cardinality is called a metric basis
for graph G and this minimum cardinality is known as metric dimension of G. Boron nanotubes
with different lattice structures, radii and chirality’s have attracted attention due to their transport
properties, electronic structure and structural stability. In the present article, we compute the metric
dimension and metric basis of 2D lattices of alpha-boron nanotubes.

Keywords: alpha-boron nanotube; resolving set; metric basis; metric dimension

1. Introduction

In a complex network, one is always interested to uniquely identify the location of nodes by
assigning an address with reference to a particular set. Such a particular set with minimum possible
nodes is known as the metric basis and its cardinality is known as the metric dimension.

These facts have been efficiently utilized in drug design to attack on particular nodes. Some
computational aspects of carbon and boron nanotubes have been summed up in [1]. Similarly, a moving
point in a graph may be located by finding the distance from the point to the collection of sonar stations,
which have been properly positioned in the graph [2]. Thus, finding a minimal sufficiently large set of
labeled vertices, such that a robot can find its position, is a problem known as robot navigation, already
well-studied in [3]. This sufficiently large set of labeled vertices is a resolving set of the graph space and
the cardinality of such a set with minimum possible elements is the metric dimension. Similarly, on
another node, a real-world problem is the study of networks whose structure has not been imposed by
a central authority but is also brought into light from local and distributed processes. Obtaining a map
of all nodes and the links between them is difficult as well as expensive. To have a good approximation
of the real network, a frequently used technique is to attain a local view of network from multiple
dimensions and join them. The metric dimension also has some applications in this respect as well.

In nanomaterials, nanowires, nanocrystals, and nanotubes formulate three main classes.
Boron nanotubes are becoming highly attractive due to their extraordinary features, including work
function, transport properties, electronic structure, and structural stability, [3,4]. Triangular boron and
α-boron are deduced from a triangular sheet and an α-sheet as shown in Figure 1 below.

Symmetry 2018, 10, 300; doi:10.3390/sym10080300 www.mdpi.com/journal/symmetry228
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(a) (b) 

Figure 1. (a) 2D lattice of Triangular Boron Tubes; (b) 2D-lattice of alpha-boron Tubes.

The first boron nanotubes were made, in 2004, from a buckled triangular latticework [4]. The other
famous type, alpha-boron, is constructed from an α-sheet. Both types are more conductive than carbon
nanotubes regardless of their structure and chiralities. Due to an additional atom at the center of
some of the hexagons, alpha-boron nanotubes have a more complex structure than triangular boron
nanotubes [4]. This structure is the most stable known theoretical structure for boron nanotubes.
With this specimen, boron nanotubes should have variable electrical properties, where wider ones
should be metallic conductors, but narrower ones should be semiconductors. These tubes will replace
carbon nanotubes in Nano devices like diodes and transistors. The following figure represents
alpha-boron nanotubes.

The subject matter of the present article is the metric dimension of the 2D-lattices of alpha-boron
nanotubes. An elementary problem in chemistry is to provide a distinct mathematical representation
for the set of atoms, molecules, or compounds in a big structure. Consequently, the huge structure
of a chemical compound under discussion can be represented by a labeled graph whose vertex and
edge labels specify the atom and bond types, respectively. So, a graph-theoretic interpretation of
this problem is to provide unique mathematical representations for the vertices of a graph in such a
way that distinct vertices have distinct representations [5]. Going with a similar idea, we associate a
2D planar graph corresponding to the structure where nodes or vertices are represented for atoms,
and where edges are actually the bonds between them. For the basics of graph theory, we refer to [6].

Let G be a connected graph and u, w be any two vertices of G. The length of the shortest path
between u and w is called the distance between u and w and the number of edges between u and v
in this shortest path is denoted by d(u, v). Let W = {w1, w2, w3, . . . , wn} be an ordered set of vertices
of G and v ∈ V(G). The k-vector (d(v, w1), d(v, w2), d(v, w3), . . . , d(v, wn)) is called the representation
r(v|w) of v with respect to w. If the distinct vertices of G have a distinct representation with respect to
w, then w is called a resolving set of G (see [7–10]). A resolving set of minimum cardinality is called a
basis of G and this minimum cardinality is the metric dimension of G, denoted by dim(G).

The concept of the metric dimension was first crafted for metric spaces of a continuous nature
but later on, these concepts were used for graphs. In fact, Slater initiated the concepts of metric
dimension and resolving sets and these concepts were also studied by Melter and Harary independently
in [11,12]. Resolving sets have been analyzed a lot since then. The resolving sets have applications in
many fields including network discovery and verification [13], connected joins in graphs, strategies
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for the mastermind games [14], applications to problems of pattern recognition, image processing,
combinatorial optimization, pharmaceutical chemistry, and game theory. In [8,10], authors computed
metric dimension of some graphs and proved that it is 1 if and only if graph is the path Pn. The metric
dimension of complete graph Kn is n − 1 for n > 1 and the metric dimension of cycle graph Cn is
2 for n > 1 [8]. In [7], authors computed the metric dimension of the Cartesian products of some
graphs. In [9], Imran et al. computed the metric dimension of the generalized Peterson graph. Also,
generalized Petersen graphs p(n, 2), antiprisms An, and circulant graphs Cn(1, 2) are families of graphs
with a constant metric dimension [15]. In [16], Imran et. al. discussed some families of graphs with a
constant metric dimension. Ali et al. computed partial results about the metrics dimension of classical
Mobius Ladders in [17], whereas Munir et al. computed the exact and full results for this family
in [18]. In [19], authors computed the metric dimension of a generalized wheel graph and ant-web gear
graph. Authors also gave a new family of convex polytopes with an unbounded metric dimension [19].
Recently authors in [20] computed metric dimension of some families of Gear graphs. Manuel et.
al. computed the metric dimension of a honey-comb network in [21]. In [22], the authors computed
the metric dimension of circulant graphs. In [23], authors computed explicit formula for the metric
dimension of a regular bipartite graph. Imran et al. computed the metric dimension of a Jahangir
graph in [24]. Authors discussed the metric dimension of the circulant and Harary graph in [25].

In the present article, we intend to compute the metric dimension of 2D lattices of an α-boron
Nanotube. For the rest of this article, we reserve the symbol Tm,n for the 2D lattice of the α-boron
Nanotube of dimensions m and n. We use the term lattice only to denote the 2D sheet of the alpha-boron
tubes. The vertices of the alpha-boron sheet in the first row are u11, u12, u13, . . . , u1n, in second row
u21, u22, . . . , u2n, in third row u31, u32, u34, u35, u37, u38 . . . , u3n, etc. The representation of vertices is uij,
where i is the row number and j is the column number. For the sake of simplicity, we label the vertices
in Figure 2 as 11, 12, 13 etc. instead of u11, u12, u13 etc. Please see below, Figure 2.

Figure 2. Alpha boron sheet.

In the tubes, m1 and 1n are connected with each other, whereas in the 2D-lattice these vertices are
at n − 1 distance apart, see Figure 3.
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Figure 3. Alpha-boron nanotubes. (a) Sheet view and (b) tube view.

2. Main Results

Theorem 1. For all m, n ∈ Z+ and m < n, we have dim(Tm,n) = 2.

Proof. We consider the following labelling of vertices of 2D-lattice of alpha-boron tubes as depicted in
the above figure. Consider m× n 2D-lattice of α−boron nanotubes. The vertex set of G is partitioned as

{u11, u12, u13, . . . , u1n, u21, u22, . . . , u2n, u41, u42, . . . , u4n, u51, u52, . . . , u5n, u71, u72, . . . , u7n, . . . , um1, um2,

. . . , umn} ∪ {u31, u32, u34, u35, u37, u38 . . . , u3n, u61, u63, u64, u66, u67, u69, . . . , u6n, u91, u92, u94, u95, u97, u98, . . . . . . , u9n}

If m < n

Let W = {u11, u1n}. We prove that W is a resolving set for Tm,n. The representations of different
vertices of Tm,n are

For i = 1, r(u ij|W) = (j − 1, n − j); 1 ≤ j ≤ n

For i = 2, r(u ij|W) =

{
(1, n); j = 1

(j − 1, n + 1 − j); 2 ≤ j ≤ n

In general, for 3 < i ≤ m where i is odd and i �= 3k

r(u ij|W) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, n + i−1
2 − j); 1 ≤ j ≤ i−1

2

(j + i−3
2 , n + i−1

2 − j); i+1
2 ≤ j ≤ n − i−1

2

(j + i−3
2 , i − 1); n − i−3

2 ≤ j ≤ n

In general, for 4 ≤ i ≤ m where i is even and i �= 3k

r(u ij|W) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, n + i
2 − j); 1 ≤ j ≤ i

2

(j + i−4
2 , n + i

2 − j); i+2
2 ≤ j ≤ n − i−2

2

(j + i−4
2 , i − 1); n − i−4

2 ≤ j ≤ n
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For i = 3k, 3k is odd and j �= 3p

r(u ij|W) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, n + i−1
2 − j); 1 ≤ j ≤ i−1

2

(j + i−3
2 , n + i−1

2 − j); i+1
2 ≤ j ≤ n − i−1

2

(j + i−3
2 , i − 1); n − i−3

2 ≤ j ≤ n

For i = 3k, 3k is even and j �= 3p − 1

r(u ij|W) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, n + i
2 − j); 1 ≤ j ≤ i

2

(j + i−4
2 , n + i

2 − j); i+2
2 ≤ j ≤ n − i−2

2

(j + i−4
2 , i − 1); n − i−4

2 ≤ j ≤ n

These representations are distinct. So W is a resolving set for Tm,n and the dim(Tm,n) ≤ 2. Since Tm,n

is not a path so dim(Tm,n) ≥ 2. Hence the dim(Tm,n) = 2 in this case. �

Theorem 2. For all m, n ∈ Z+ and m ≥ n, we have dim(Tm,n) ≤ 3,

Proof. Let W = {u11, u1n, um1}. We prove that W is a resolving set. The representations of vertices uij
with respect to W are

Case I: m is odd with n ≤ m < 2n and m �= 6k + 1

For i = 1, r(u ij|W) =

{
(j − 1, n − j, m − 1); 1 ≤ j ≤ m+1

2(
j − 1, n − j, j + m−3

2
)
; m+3

2 ≤ j ≤ n

For i = 2, r(u ij|W) =

⎧⎪⎪⎨
⎪⎪⎩

(1, n, m − 2); j = 1

(j − 1, n + 1 − j, m − 2); 2 ≤ j ≤ m+1
2(

j − 1, n + 1 − j, j + m−5
2
)
; m+3

2 ≤ j ≤ n

If i is odd and i �= 3k then
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+1

2 ≤ j ≤ m−(i−2)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n − i−1

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−2)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n − i−1

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n

If i is even and i �= 3k then
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for 3 < i ≤
⌈m

2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+2

2 ≤ j ≤ m−(i−3)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ n − i−2

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+3)

2 ); n − i−4
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−3)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); i+2
2 ≤ j ≤ n − i−2

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+3)

2 ); n − i−4
2 ≤ j ≤ n

If m = 6k + 1 with i �= 3k and i is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+1

2 ≤ j ≤ m−i
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i + 1); j = m−(i−2)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n − i−1

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n,

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−i

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, m − i + 1); j = m−(i−2)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n − i−1

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n,

If m = 6k + 1 with i �= 3k and i is even
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+2

2 ≤ j ≤ m−(i−1)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i + 1); j = m−(i−3)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−5)
2 ≤ j ≤ n − i−2

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−4
2 ≤ j ≤ n,
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for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−1)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, m − i + 1); j = m−(i−3)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−5)
2 ≤ j ≤ i

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+2
2 ≤ j ≤ n − i−2

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−4
2 ≤ j ≤ n,

If i = 3k and 3k is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i−1

2 , j �= 3l

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+1

2 ≤ j ≤ m−(i−2)
2 , j �= 3l

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n − i−1

2 , j �= 3l

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n, j �= 3l

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−2)

2 , j �= 3l

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2 , j �= 3l

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n − i−1

2 , j �= 3l

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n, j �= 3l

If i = 3k and 3k is even
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i

2 , j �= 3l − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+2

2 ≤ j ≤ m−(i−3)
2 , j �= 3l − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ n − i−2

2 , j �= 3l − 1

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+3)

2 ); n − i−4
2 ≤ j ≤ n, j �= 3l − 1

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−3)

2 , j �= 3l − 1

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ i

2 , j �= 3l − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); i+2
2 ≤ j ≤ n − i−2

2 , j �= 3l − 1

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+3)

2 ); n − i−4
2 ≤ j ≤ n, j �= 3l − 1

Case II: If m is even and m �= 6k + 2
For i is odd and i �= 3k
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for 3 < i ≤
⌈m

2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+1

2 ≤ j ≤ m−(i−1)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+1)

2 ); m−(i−3)
2 ≤ j ≤ n − i−1

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+1)

2 ); n − i−3
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−1)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+1)

2 ); m−(i−3)
2 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+1)

2 ); i+1
2 ≤ j ≤ n − i−1

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+1)

2 ); n − i−3
2 ≤ j ≤ n

If i is even i �= 3k
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+2

2 ≤ j ≤ m−(i−2)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n − i−2

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−4
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−2)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+2
2 ≤ j ≤ n − i−2

2

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−4
2 ≤ j ≤ n

If m = 6k + 2 with i �= 3k and i is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i−3

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i−1

2 ≤ j ≤ m−(i+1)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i + 1); j = m−(i−1)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−3)
2 ≤ j ≤ n − i−1

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n,
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for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i+1)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, m − i + 1)); j = m−(i−1)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−3)
2 ≤ j ≤ i−3

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i−1
2 ≤ j ≤ n − i−1

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n,

If m = 6k + 2 with i �= 3k and i is even
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+2

2 ≤ j ≤ m−i
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i + 1); j = m−(i−2)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n − i−2

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−4
2 ≤ j ≤ n,

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−i

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, m − i + 1); j = m−(i−2)

2 ,

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−2

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i
2 ≤ j ≤ n − i−2

2 ,

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−4
2 ≤ j ≤ n,

If i = 3k and 3k is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i−1

2 , j �= 3k

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+1

2 ≤ j ≤ m−(i−2)
2 , j �= 3k

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n − i−1

2 , j �= 3k

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n, j �= 3k

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−2)

2 , j �= 3k

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2 , j �= 3k

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n − i−1

2 , j �= 3k

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+2)

2 ); n − i−3
2 ≤ j ≤ n, j �= 3k
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If i = 3k and 3k is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ i

2 , j �= 3k − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m − i); i+2

2 ≤ j ≤ m−(i−3)
2 , j �= 3k − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ n − i−2

2 , j �= 3k − 1

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+3)

2 ); n − i−4
2 ≤ j ≤ n, j �= 3k − 1

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(uij|W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, n +
⌊

i
2

⌋
− j, m − i); 1 ≤ j ≤ m−(i−3)

2 , j �= 3k − 1

(i − 1, n +
⌊

i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ i

2 , j �= 3k − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); i+2
2 ≤ j ≤ n − i−2

2 , j �= 3k − 1

(j +
⌊

i−3
2

⌋
, i − 1, j + m−(i+3)

2 ); n − i−4
2 ≤ j ≤ n, j �= 3k − 1

For i = 2n − 1, r(uij|W) = (2n − 2, 2n − 2, j − 1); 1 ≤ j ≤ n

For i = 2n − 2, r(uij|W) =

{
(2n − 3, 2n − 2, 1); j = 1

(2n − 3, 2n − 3, j − 1); 2 ≤ j ≤ n

If m is odd, r ≥ 2 and rn ≤ m < (r + 1)n
For i = rn + k where 0 ≤ k ≤ n − 1
If i is odd,

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

If i is even,

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−3)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+3)
2

)
; m−(rn+k−5)

2 ≤ j ≤ n

If i = 3k, i is odd and j �= 3p then

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

If i = 3k, i is even and j �= 3p − 1 then

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−3)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+3)
2

)
; m−(rn+k−5)

2 ≤ j ≤ n

If m is even, r ≥ 2 and rn ≤ m < (r + 1)n

237



Symmetry 2018, 10, 300

For i = rn + k where 0 ≤ k ≤ n − 1 If i is odd,

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−1)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+1)
2

)
; m−(rn+k−3)

2 ≤ j ≤ n

If i is even,

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

If i = 3k, i is odd and j �= 3p then

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−1)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+1)
2

)
; m−(rn+k−3)

2 ≤ j ≤ n

If i = 3k, i is even and j �= 3p − 1 then

r(uij|W) =

⎧⎨
⎩

(rn + k − 1, rn + k − 1, m − i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k − 1, rn + k − 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

These representations are distinct. So, W is a resolving set for Tm,n. Therefore, the metric
dimension of Tm,n is ≤3. Now we prove that the metric dimension of Tm,n is greater than 2. For this
we shall prove that any set of cardinality two does not resolve. �

Theorem 3. For all m, n ∈ Z+ and m ≥ n, we have dim(Tm,n) ≥ 3,

Proof. Let W =
{

uij, upq
}

be a resolving set for Tm,n. We consider all possibilities and come up with a
contradistinction in each case. The following three possibilities arise

Possibility 1: If uij, upq lie on the same row then i = p.

If W = {u11, u1n} then r(un+1, n
2
|W) = r(u n+1, n+2

2
|W
)

if n is even and

r(un+1, n+1
2
|W) = r(u n+1, n+3

2
|W
)

, if n is odd so both cases result in contradiction. In all remaining
possibilities, we denote ux instead of r(ux|W) where no confusion arises.

(i) If W =
{

uij, uiq
}

and 1 ≤ i < m and 1 ≤ j < q < n then ui,q+1= ui+1,q+1, a contradiction.

(ii) If W =
{

uij, uiq
}

and 1 ≤ i < m, i = 3k and 1 ≤ j < q < n then ui−1,j= ui+1,j or ui−1,j−1= ui+1,j−1,
a contradiction.

(iii) If W =
{

uij, uiq
}

and 1 ≤ i < m and 1 < j < q = n then ui,j−1= ui+1,j, a contradiction.

(iv) If W =
{

umj, umq
}

and 1 ≤ j < q < n then um,q+1= um−1,q or um,q+1= um−1,q+1, a contradiction.

(v) If W =
{

umj, umq
}

and 1 < j < q = n then um,j−1= um−1,j, a contradiction.

(vi) If W = {ui1, uin} and 1 < i < m then ui−1,1= ui+1,1, a contradiction.
(vii) If W = {um1, umn} and then um−n,3= um−n,4, a contradiction.

Possibility 2: If uij, upq lie on the same column then j = q.

(i) If W = {u11, um1} then u21= u22, a contradiction.
(ii) If W =

{
ui1, uj1

}
and 1 ≤ i < j < m then uj3= uj+1,3 or uj3= uj+1,2, a contradiction.

(iii) If W =
{

ui1, uj1
}

and 1 < i < j = m then ui3= ui−1,2 or ui3= ui−1,3, a contradiction.
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(iv) If W =
{

uiq, ujq
}

, 1 ≤ i < j < m and 1 < q < n then uj+1,q= uj+1,q+1 or uj+1,q = uj+1,q−1,
a contradiction.

(v) If W =
{

uiq, ujq
}

, 1 < i < j ≤ m and 1 < q < n then ui−1,j−1= ui−1,j or ui−1,j= ui−1,j+1,
a contradiction.

(vi) If W =
{

uiq, ujq
}

, i = 1, j = m and 1 < q < n then u2,j = u2,j+1, a contradiction.

(vii) If W =
{

ui,n−1, uj,n−1
}

and i < j < m then uj,n−2= uj+1,n−2 or uj,n−3= uj+1,n−2, a contradiction.

(viii) If W = {u1,n, um,n} then either um−1,n−1= um−1,n or um−2,n−1= um−2,n, a contradiction.

Possibility 3: If uij, upq lie neither on the same row nor the same column so i �= p and j �= q.
Let W =

{
ui,j, up,q

}
. Since i �= p so let i < p.

(i) If j < q then up,q+1= up+1,q+1 or up,q+1= up+1,q, a contradiction
(ii) If j > q then up−1,q= up,q+1 or up−1,q+1= up,q+1, a contradiction
(iii) If i = 1 and p = m then u2,j = u2,j+1 or u1,j+1 = u2,j+1 or um−1,q+1 = um,q−1, a contradiction.

So any set with cardinality 2 does not resolve Tm,n. So, the metric dimension of Tm,n is greater
than 2. Hence metric dimension of Tm,n is 3 if m > n. �

3. Conclusions and Discussion

In the present article, we computed the metric dimension of a 2D-lattice of alpha-boron nanotubes,
Tm,n, and have come up with the following summarized result:

dim(Tm,n)=

{
2 if m < n

3 if m ≥ n

It is evident that the dimension depends upon the size of the 2D sheet. These results
have applications in drug design, networking communication, robot navigations, designing
new nano-devices and nano-engineering. Actually, these results are useful for engineer and
hardware-designers that use alpha-boron sheets in different industries. It is overwhelming that
they can capture the whole sheet uniquely if they know the resolving set and metric dimension. It can
save time and cost if they choose only two or three vertices depending upon the size of the sheet using
our results. We can conclude that every atom in the 2D sheet of alpha-boron nanotubes can be uniquely
accessed and controlled by its metric basis whose cardinality is 2 or 3 depending upon the dimensions
of the sheet.
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Abstract: Let G1 and G2 be disjoint copies of a graph G and g : V(G1) → V(G2) be a function.
A functigraph FG consists of the vertex set V(G1) ∪ V(G2) and the edge set E(G1) ∪ E(G2) ∪ {uv :
g(u) = v}. In this paper, we extend the study of distinguishing numbers of a graph to its functigraph.
We discuss the behavior of distinguishing number in passing from G to FG and find its sharp lower
and upper bounds. We also discuss the distinguishing number of functigraphs of complete graphs
and join graphs.

Keywords: distinguishing number; functigraph; complete graph

1. Introduction

Given a key ring of apparently identical keys to open different doors, how many colors are needed
to identify them? This puzzle was given by Rubin [1] for the first time. In this puzzle, there is no need
for coloring to be a proper one. Indeed, one cannot find a reason why adjacent keys must be assigned
different colors, whereas in other problems, like storing chemicals and scheduling meetings, a proper
coloring is needed with a small number of colors required.

Inspired by this puzzle, Albertson and Collins [2] introduced the concept of the distinguishing
number of a graph as follows: a labeling f : V(G) → {1, 2, 3, ..., t} is called t-distinguishing if no
non-trivial automorphism of a graph G preserves the vertex labels. The least integer t such that a
graph G has a labeling which is t-distinguishing for the graph G, is called the distinguishing number of
G and it is denoted by Dist(G). For example, the distinguishing number of a complete graph Kn is n,
the distinguishing number of a path graph Pn is 2 and the distinguishing number of a cyclic graph
Cn, n ≥ 6 is 2. For a graph G of order n, 1 ≤ Dist(G) ≤ n [2].

Harary [3] gave different methods (orienting some of the edges, coloring some of the vertices
with one or more colors and same for the edges, labeling vertices or edges, adding or deleting vertices
or edges) of destroying the symmetries of a graph. Collins and Trenk [4] defined the distinguishing
chromatic number where the authors used proper t-distinguishing for vertex labeling. The authors
have given a comparison between the distinguishing number, the distinguishing chromatic number
and the chromatic number of families like complete graphs, path graphs, cyclic graphs, Petersen graph
and trees, etc. Kalinowski and Pilsniak [5] defined similar graph parameters, the distinguishing
index and the distinguishing chromatic index where the authors labeled edges instead of vertices.
The authors also gave a comparison between the distinguishing number and the distinguishing
index of a connected graph G of order n ≥ 3. Boutin [6] introduced the concept of determining sets.
Albertson and Boutin [7] proved that a graph has a (t − 1)-distinguishable determining set if and only
if the graph is t-distinguishable. The authors also proved that every Kneser graph Kn:k with n ≥ 6 and
k ≥ 2 is 2-distinguishable. A considerable amount of literature has been developed in this area—for
example, see [8–12].

Symmetry 2018, 10, 332; doi:10.3390/sym10080332 www.mdpi.com/journal/symmetry241
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Unless otherwise specified, all graphs considered in this paper are simple, non-trivial and
connected. The set of all vertices that are adjacent to a vertex u ∈ V(G) is called the open neighborhood
of u and it is denoted by N(u). The set of vertices {u} ∪ N(u) is called the closed neighborhood of u
and it is denoted by N[u]. If two distinct vertices u, v of a graph G have the same open neighborhood,
then these are called non-adjacent twins. If the two vertices have the same closed neighborhood, then
these are called adjacent twins. In the both cases, u and v are called twins. A vertex v of a graph
G is called saturated, if it is adjacent to all other vertices of G. A graph H whose vertex set V(H)

and edge set E(H) are subsets of V(G) and E(G), respectively, then H is called a subgraph of graph
G. Let S ⊂ V(G) be any subset of vertices of G. The induced subgraph, denoted by < S >, is the
graph whose vertex set is S and whose edge set is the set of all those edges in E(G) which have
both end vertices in S. A spanning subgraph H of a graph G is a subgraph such that V(H) = V(G)

and E(H) ⊆ E(G). An automorphism α of G, α : V(G) → V(G), is a bijective mapping such that
α(u)α(v) ∈ E(G) if and only if uv ∈ E(G). Thus, each automorphism α of G is a permutation of the
vertex set V(G) which preserves adjacencies and non-adjacencies. The automorphism group of a graph
G, denoted by Γ(G), is the set of all automorphisms of a graph G. A graph with a trivial automorphism
group is called a rigid (or asymmetric) graph. The minimum number of vertices in a rigid graph is 6 [13].
The distinguishing number of a rigid graph is 1.

The idea of a permutation graph was introduced by Chartrand and Harary [14] for the first time.
The authors defined a permutation graph as follows: a permutation graph consists of two identical
disjoint copies of a graph G, say G1 and G2, along with |V(G)| additional edges joining V(G1) and
V(G2) according to a given permutation on {1, 2, ..., |V(G)|}. Dorfler [15] defined a mapping graph as
follows: a mapping graph of a graph G on n vertices consists of two disjoint identical copies of graph G
with n additional edges between the vertices of two copies, where the additional edges are defined by
a function. The mapping graph was rediscovered and studied by Chen et al. [16], where it was called
the functigraph. A functigraph is an extension of a permutation graph. Formally, the functigraph is
defined as follows: let G1 and G2 be disjoint copies of a connected graph G and let g : V(G1) → V(G2)

be a function. A functigraph FG of a graph G consists of the vertex set V(G1) ∪ V(G2) and the edge set
E(G1) ∪ E(G2) ∪ {uv : g(u) = v}. Linda et al. [17,18] and Kang et al. [19] studied the functigraphs for
some graph invariants like metric dimension, domination and zero forcing number. In [20], we have
studied the fixing number of some functigraphs. The aim of this paper is to study the distinguishing
number of functigraphs.

Network science and graph theory are two interconnected research fields that have synonymous
structures, problems and their solutions. The notions ‘network’ and ‘graph’ are identical and these
can be used interchangeably subject to the nature of application. The roads network, railway network,
social networks, scholarly networks, etc are among the examples of networks. In the recent past, the
network science has imparted to a functional understanding and the analysis of the complex real
world networks. The basic premise in these fields is to relate metabolic networks, proteomic and
genomic with disease networks [21] and information cascades in complex networks [22]. Real systems
of quite a different nature can have the same network representation. Even though these real systems
have different nature, appearance or scope, they can be represented as the same network. Since a
functigraph consists of two copies of the same graph (network) with the additional edges described by
a function, a mathematical model involving two systems with the same network representation and
additional links (edges) between nodes (vertices) of two systems can be represented by a functigraph.
The present study is useful in distinguishing the nodes of such pair of the same networks (systems)
that can be represented by a functigraph.

Throughout the paper, we denote the functigraph of G by FG, V(G1) = A, V(G2) = B, g denotes
a function g : A → B, f denotes the distinguishing labeling, and g(V(G1)) = I, |g(V(G1))| = |I| = s.

In order to understand the concept of functigraphs, we consider an example of a functigraph
of G = K9. Take V(G1) = A = {u1, ..., un} and V(G2) = B = {v1, ..., vn} and function g is defined
as follows:

242



Symmetry 2018, 10, 332

g(ui) =

⎧⎪⎨
⎪⎩

v1 i f 1 ≤ i ≤ 3,
v2 i f 4 ≤ i ≤ 5,
vi−3 i f 6 ≤ i ≤ 9.

(1)

The corresponding functigraph is shown in Figure 1.
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Figure 1. The functigraph FG when G = K9 and function g is as defined below.

This paper is organized as follows: in Section 2, we give sharp lower and upper bounds for
the distinguishing number of functigraphs. This section also establishes connections between the
distinguishing number of graphs and their corresponding functigraphs in the form of realizable results.
In Section 3, we compute the distinguishing number of functigraphs of complete graphs and joining of
path graphs. Some useful results related to these families have also been presented in this section.

2. Bounds and Realizable Results

The sharp lower and upper bounds on the distinguishing number of functigraphs are given in the
following result.

Proposition 1. Let G be a connected graph of order n ≥ 2; then,

1 ≤ Dist(FG) ≤ Dist(G) + 1.

Both bounds are sharp.

Proof. Obviously, 1 ≤ Dist(FG) by definition. Let Dist(G) = t and f be a t-distinguishing labeling for
the graph G. In addition, let ui ∈ A and vi ∈ B, 1 ≤ i ≤ n. We extend labeling f to FG as: f (ui) = f (vi)

for all 1 ≤ i ≤ n. We have the following two cases for g:

1. If g is not bijective, then f as defined earlier is a t-distinguishing labeling for FG.
Hence, Dist(FG) ≤ t.

2. If g is bijective, then f as defined earlier destroys all non-trivial automorphisms of FG except
possible flipping of G1 and G2 in FG. Let F′

G and FG be the functigraph of G when g is an identity
function, i.e., g(ui) = vi for all i, 1 ≤ i ≤ n and when g is not identity function, respectively.
The flipping of G1 and G2 is possible in the cases when either g is an identity function or when g
is not the identity function but the corresponding functigraph F′

G is isomorphic to FG. In order to
break this automorphism (flipping), only one vertex of either G1 or G2 must be labeled with an
extra color, and hence Dist(FG) ≤ t + 1.
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For the sharpness of bounds, we consider a rigid graph G on n ≥ 6 vertices. For the sharpness
of the lower bound, take a functigraph FG in which g is a constant function. For the sharpness of the
upper bound, take functigraph FG in which g is an identity function.

We discuss an example for Proposition 1, where we consider a rigid graph G with the smallest
number of vertices i.e., |V(G)| = 6 as shown in Figure 2a. Since Dist(G) = 1, we label its vertices
with a red color. Figure 2b shows FG, when g is a constant function. In this case, FG is a rigid graph
and hence Dist(FG) = 1. Figure 2c shows FG, when g is the identity function. In this case, FG has a
non-trivial automorphism i.e., horizontal flipping of FG. We label vertex v6 of copy G2 with blue color
to break the non-trivial automorphism. Hence, Dist(FG) = 2 = Dist(G) + 1.
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Figure 2. (a) a rigid graph G with six vertices; (b) a functigraph FG when g is a constant function; (c) a
functigraph FG when g is the identity function i.e., g(ui) = vi for all i (1 ≤ i ≤ 6).

Since at least m colors are required to break all automorphisms of a twin-set of cardinality m,
we have the following proposition.

Proposition 2. Let U1, U2, ..., Ut be disjoint twin-sets in a connected graph G of order n ≥ 3 and
m = max{|Ui| : 1 ≤ i ≤ t},

(i) Dist(G) ≥ m,

(ii) If Dist(G) = m, then Dist(FG) ≤ m.

Two vertices in a graph G are said to be similar vertices, if both can be mapped on each other under
some automorphism of graph G.

Lemma 1. Let G be a connected graph of order n ≥ 2 and g be a constant function, then Dist(FG) = Dist(G).

Proof. Let I = {v} ⊂ B. In the functigraph FG, we label the vertices in copy G1 of G with Dist(G)

colors. Now, v is the only vertex of FG with the largest degree (as we can see in Figure 2b I = {v3}
and v3 is the vertex of FG with the largest degree); therefore, it is not similar to any other vertex of
FG and hence it can also be labeled with one of Dist(G) colors. Thus, vertices in A ∪ {v} are labeled
by Dist(G) colors. Since g is a constant function, all vertices in V(FG) \ {A ∪ {v}} are not similar to
any vertex in A ∪ {v} in functigraph FG. If two disjoint subsets of vertices of a graph are such that
every vertex of one set is not similar to any vertex of the other set, then the vertices of both sets can
be labeled by the same set of colors; therefore, the vertices in V(FG) \ {A ∪ {v}} and A ∪ {v} can be
labeled by Dist(G) colors. Hence, Dist(FG) = Dist(G).
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Remark 1. Let G be a connected graph and Dist(FG) = m1, if g is constant and Dist(FG) = m2, if g is not
constant; then, m1 ≥ m2.

Now, we discuss a special type of connected subgraph H of a connected graph G such that
Dist(H) ≤ Dist(G). We define a set S(H) = {u ∈ V(H) : u is similar to v( �= u) for some v ∈ V(H)}.
If the graph G has a connected subgraph H in which all vertices in S(H) are either adjacent to all
vertices in V(G)− V(H) or non-adjacent to all vertices in V(G)− V(H), then we discuss in Remark 2
that Dist(G) ≥ Dist(H).

Lemma 2. Let H be a connected subgraph of a connected graph G such that all vertices in S(H) are
either adjacent to all vertices in V(G)− V(H) or non-adjacent to all vertices in V(G)− V(H), then every
automorphism of H can be extended to an automorphism of G.

Proof. Let α ∈ Γ(H) be an arbitrary automorphism. We define an extension α′ of α on V(G) as:

α′(w) =

{
α(w) i f w ∈ V(H),
w i f w ∈ V(G)− V(H).

Since α′(w) = w for all w ∈ V(H)− S(H), α′ being an identity function preserves the relation
of adjacency among the vertices in V(G) − S(H). In addition, α′ = α being an automorphism of
the subgraph H preserves the relation of adjacency among the vertices in V(H). Next, we will
prove that α′ also preserves the relation of adjacency among the vertices in {V(G)− V(H)} ∪ S(H).
Suppose u ∈ S(H) and y ∈ V(G)− V(H), where both y and u are arbitrary vertices of their sets. Since
α ∈ Γ(H), α(u) ∈ V(H). We discuss two cases for the subgraph H in graph G:

1. All vertices in S(H) are adjacent to all vertices in V(G) − V(H); then, u is adjacent to y in G.
In addition, α′(u) = α(u) being a vertex of H is adjacent to α′(y) = y. Hence, α′ preserves the
relation of adjacency among the vertices in {V(G)− V(H)} ∪ S(H).

2. All vertices in S(H) are non-adjacent to all vertices in V(G)− V(H); then, u is non-adjacent to
y in G. In addition, α′(u) = α(u) being a vertex of H is non-adjacent to α′(y) = y. Hence, α′

preserves the relation of adjacency among the vertices in {V(G)− V(H)} ∪ S(H).

Thus, α′ preserves the relation of adjacency among the vertices of V(G).

Let H be a connected subgraph of a graph G such that H satisfies the hypothesis of Lemma 2,
then every distinguishing labeling of G requires at least Dist(H) colors to break the extended
automorphism g′ of G, therefore Dist(G) ≥ Dist(H) for the subgraph H. It can be seen in Figure 3
that subgraph H of graph G satisfies the hypothesis of Lemma 2 and Dist(G) = 2 = Dist(H). We label
the vertices of the graph with red and white colors.

Remark 2. Let H be a connected subgraph of a connected graph G such that all vertices in S(H)

are either adjacent to all vertices in V(G) − V(H) or non-adjacent to all vertices in V(G) − V(H),
then Dist(G) ≥ Dist(H).

A vertex v of degree at least three in a connected graph G is called a major vertex. Two paths
rooted from the same major vertex and having the same length are called the twin stems.

We define a function ψ : N \ {1} → N \ {1} as ψ(m) = k, where k is the least number such that
m ≤ 2(k

2) + k. For example, ψ(19) = 5. Note that ψ is well-defined.
In the following lemma, we find a lower bound of the distinguishing number of a graph having twin
stems of length 2 rooted at the same major vertex, in terms of the function ψ.

Lemma 3. If a graph G has t ≥ 2 twin stems of length 2 rooted at the same major vertex, then Dist(G) ≥ ψ(t).

Proof. Let x ∈ V(G) be a major vertex and xuiu′
i where 1 ≤ i ≤ t are the twin stems of length

2 attached with x. Let H =< {x, ui, u′
i} > and k = ψ(t). Since xuiu′

i where 1 ≤ i ≤ t are twin
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stems in the graph G, the subgraph H satisfies the hypothesis of Lemma 2. We define a labeling
f : V(H) → {1, 2, ..., k} as:

f (x) = k,

f (ui) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 i f 1 ≤ i ≤ k,
2 i f k + 1 ≤ i ≤ 2k,
3 i f 2k + 1 ≤ i ≤ 3k,
...

...
k i f (k − 1)k + 1 ≤ i ≤ k2.

(2)

f (u′
i) =

{
i mod(k) i f 1 ≤ i mod(k) ≤ k − 1,
k i f i mod(k) = 0.

(3)

Using this labeling, one can see that f is a t-distinguishing labeling for H. With permutations
with a repetition of k colors, when two of them are taken at a time equal to 2(k

2) + k, at least k colors
are needed to label the vertices in t-stems. Thus, k is the least integer for which subgraph H has
k-distinguishing labeling, and hence Dist(H) = k. Thus, Dist(G) ≥ ψ(t) by Remark 2.

It can be seen that the graph G as shown in Figure 3a has four twin stems of length 2 rooted at
the same major vertex; therefore, by Lemma 3, Dist(G) ≥ ψ(4) = 2. The following result gives the
existence of a graph G and its functigaph FG, such that both have the same distinguishing number.

H

S(H)

H

S(H)

(a) (b)

Figure 3. (a) a graph G and its subgraph H such that all vertices of S(H) are non-adjacent to all vertices
of V(G)− V(H); (b) a graph G and its subgraph H such that all vertices of S(H) are adjacent to all
vertices of V(G)− V(H).

Lemma 4. For any integer t ≥ 2, there exists a connected graph G and a function g such that
Dist(G) = t = Dist(FG).

Proof. Construct a graph G as follows: let P(t−1)2+1 : x1x2x3...x(t−1)2+1 be a path graph.
Join (t − 1)2 + 1 twin stems x1uiu′

i where 1 ≤ i ≤ (t − 1)2 + 1 each of length two with vertex
x1 of P(t−1)2+1. This completes construction of G. We first show that Dist(G) = t. For t = 2,
we have two twin stems attached with x1, and hence Dist(G) = 2. For t ≥ 3, we define a labeling
f : V(G) → {1, 2, 3, ..., t} as follows: f (xi) = t, for all i, where 1 ≤ i ≤ (t − 1)2 + 1 :
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f (ui) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i f 1 ≤ i ≤ t − 1,
2 i f t ≤ i ≤ 2(t − 1),
3 i f 2t − 1 ≤ i ≤ 3(t − 1),
...

...
t − 1 i f (t − 1)(t − 2) + 1 ≤ i ≤ (t − 1)2,
t i f i = (t − 1)2 + 1,

f (u′
i) =

⎧⎪⎨
⎪⎩

i mod(t − 1) i f 1 ≤ i mod(t − 1) ≤ t − 2 and i �= (t − 1)2 + 1,
t − 1 i f i mod(t − 1) = 0,
t i f i = (t − 1)2 + 1.

Using this labeling, one can see the unique automorphism preserving this labeling is the identity
automorphism. Hence, f is a t-distinguishing. With permutations with a repetition of t − 1 colors,
when two of them are taken at a time, 2(t−1

2 ) + (t − 1), (t − 1)2 + 1 twin stems can be labeled by at least
t colors. Hence, t is the least integer such that G has a t-distinguishing labeling. Now, we denote the
corresponding vertices of G2 as vi, v′i, yi for all i, where 1 ≤ i ≤ (t − 1)2 + 1 and construct a functigraph
FG by defining g : A → B as follows: g(ui) = g(u′

i) = yi, for all i, where 1 ≤ i ≤ (t − 1)2 + 1 and
g(xi) = yi, for all i, where 1 ≤ i ≤ (t − 1)2 + 1 as shown in Figure 4. Thus, FG has only symmetries of
(t − 1)2 + 1 twin stems attached with y1. Hence, Dist(FG) = t.

u'1

u1

u'2

u2

u'3

u3

x1

x2

y1

y2

v'
1

v'2v'3
v'

v1

v
2v

3
v

u'
(t-1)

2
+1

u
(t-1)2+1

(t-1)2+1

(t-1)
2

+1

x
3

x
(t-1)2+1

y3

y
(t-1)

2
+1

Figure 4. Graph with Dist(G) = t = Dist(FG).

Consider an integer t ≥ 4. We construct a graph G similarly as in the proof of Lemma 4
by taking a path graph P(t−3)2+1 : x1x2...x(t−3)2+1 and attach (t − 3)2 + 1 twin stems x1uiu′

i where
1 ≤ i ≤ (t − 3)2 + 1 with any one of its end vertex, say, x1. Using the similar labeling and arguments
as in the proof of Lemma 4, one can see that f is t − 2 distinguishing and t − 2 is the least integer
such that G has t − 2 distinguishing labeling. Define functigraph FG, where g : A → B is defined by:
g(ui) = g(u′

i) = yi, for all i, where 1 ≤ i ≤ (t − 3)2 + 1, g(xi) = vi, for all i, where 1 ≤ i ≤ (t − 3)2 − 1,
g(xi) = yi, for all i, where (t − 3)2 ≤ i ≤ (t − 3)2 + 1. From this construction, FG has only symmetries
in which two twin stems attached with y1 can be mapped on each other under some automorphism of
FG, and hence Dist(FG) = 2. Thus, we have the following result, which shows that Dist(G) + Dist(FG)

can be arbitrarily large:

Lemma 5. For any integer t ≥ 4, there exists a connected graph G and a function g such that
Dist(G) + Dist(FG) = t.

Consider t ≥ 3. We construct a graph G similarly as in the proof of Lemma 4 by taking a path graph
P4(t−1)2+1: x1x2...x4(t−1)2+1 and attach 4(t− 1)2 + 1 twin stems x1uiu′

i, where 1 ≤ i ≤ 4(t− 1)2 + 1 with
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x1. Using the similar labeling and arguments as in the proof of Lemma 4, one can see that f is 2t − 1
distinguishing labeling and 2t − 1 is the least integer such that G has 2t − 1 distinguishing labeling.
Let us now define g as g(ui) = g(u′

i) = yi, for all i, where 1 ≤ i ≤ 4(t − 1)2 + 1, g(xi) = vi, for all i,
where 1 ≤ i ≤ 3t2 − 4t and g(xi) = yi, for all i, where 3t2 − 4t + 1 ≤ i ≤ 4(t − 1)2 + 1. Thus, FG has
only symmetries of (t− 2)2 + 1 twin stems attached with y1, and hence Dist(FG) = t− 1. After making
this type of construction, we have the following result which shows that Dist(G)− Dist(FG) can be
arbitrarily large:

Lemma 6. For any integer t ≥ 3, there exists a connected graph G and a function g such that
Dist(G)− Dist(FG) = t.

3. The Distinguishing Number of Functigraphs of Some Families of Graphs

In this section, we discuss a distinguishing number of functigraphs on complete graphs,
edge deletion graphs of complete graph and joining of path graphs.

Let G be the complete graph of order n ≥ 3. We use the following terminology for FG in the
proof of Theorem 1: Let I = {v1, v2, ..., vs} and ni = |{u ∈ A : g(u) = vi}| for all i, where 1 ≤ i ≤ s.
In addition, let l = max{ni : 1 ≤ i ≤ s} and m = |{ni : ni = 1, 1 ≤ i ≤ s}|. From the definitions of l
and m, we note that 2 ≤ l ≤ n − s + 1 and 0 ≤ m ≤ s − 1.

In the next result, we find the distinguishing number of functigraphs of complete graphs, when g
is bijective, in terms of function ψ(m) as defined in the previous section.

Lemma 7. Let G be the complete graph of order n ≥ 3 and g be a bijective function; then, Dist(FG) = ψ(n).

Proof. Let A = {u1, u2, ..., un} and I = {g(u1), g(u2), ..., g(un)} = B. In addition, let k = ψ(n).
Let f : V(FG) → {1, 2, ..., k} be a labeling in which f (ui) is defined as in Equation (2) and f (g(ui)) as
in Equation (3) in the proof of Lemma 3. Using this labeling, one can see that f is a k-distinguishing
labeling for FG. With permutations with repetitions of k colors, when two of them are taken at a time
equal to 2(k

2) + k, at least k colors are needed to label the vertices in FG. Hence, k is the least integer for
which FG has k-distinguishing labeling.

Let G be a complete graph and let g : A → B be a function such that 2 ≤ m ≤ s.
Without loss of generality, assume u1, u2, ..., um ∈ A are those vertices of A such that g(ui) �= g(uj),
where 1 ≤ i �= j ≤ m in B. In addition, (uiuj)(g(ui)g(uj)) ∈ Γ(FG) for all i �= j, where 1 ≤ i, j ≤ m.
By using the similar labeling f as defined in Lemma 7, at least ψ(m) colors are needed to break these
automorphisms in FG. Thus, we have the following proposition:

Proposition 3. Let G be a complete graph of order n ≥ 3 and g be a function such that 2 ≤ m ≤ s;
then, Dist(FG) ≥ ψ(m).

The following result gives the distinguishing number of functigraphs of complete graphs.

Theorem 1. Let G = Kn be the complete graph of order n ≥ 3, and let 1 < s ≤ n − 1; then,

Dist(FG) ∈ {n − s, n − s + 1, ψ(m)}.

Proof. We discuss the following cases for l:

1. If l = n − s + 1 > 2, then A contains n − s + 1 twin vertices and B contains n − s twin vertices
(except for n = 3, 4 where B contains no twin vertices). In addition, there are m(= s − 1) vertices
in A which have distinct images in B. By Proposition 3, these m vertices and their distinct
images are labeled by at least ψ(m) colors (only 1 color if m = 1). Since n − s + 1 is the largest
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among n − s + 1, n − s and ψ(m), n − s + 1 is the least number such that FG has (n − s + 1)—
distinguishing labeling. Thus, Dist(FG) = n − s + 1.

2. If l = n − s + 1 = 2, then ψ(m) ≥ max{n − s + 1, n − s}, and hence Dist(FG) = ψ(m).
3. If l < n − s, then B contains the largest set of n − s twin vertices in FG. In addition, there are

m(≤ s − 2) vertices in A, each of which have distinct images in B. Since n − s ≥ ψ(m),
Dist(FG) = n − s.

4. If l = n − s > 2, then both A and B contain the largest set of n − s twin vertices in FG.
In addition, there are m(= s − 2) vertices in A that have distinct images in B. Since n − s ≥ ψ(m),
Dist(FG) = n − s.

5. If l = n − s = 2, then we have the following two subcases:

(a) If 1 < s ≤ � n
2 � + 1, then both A and B contain the largest set of n − s twin vertices

in FG. In addition, there are m(= s − 2) vertices in A that have distinct images in B.
Since n − s ≥ ψ(m) (if ψ(m) exists), Dist(FG) = n − s.

(b) If � n
2 �+ 1 < s ≤ n − 1, then ψ(m) ≥ max{n − s + 1, n − s}, and hence Dist(FG) = ψ(m).

We define a function φ : N → N \ {1} as φ(i) = k, where k is the least number such that i ≤ (k
2).

For instance, φ(32) = 9. Note that φ is well defined.
The following result gives the distinguishing number of functigraphs of a family of spanning

subgraphs of complete graphs.

Theorem 2. For a complete graph G of order n ≥ 5 and Gi, where 1 ≤ i ≤ � n
2 � is the graph deduced from G

by deleting i edges with no common end vertices that join two saturated vertices of G for all i. If g is a constant
function, then

Dist(FGi ) = max{n − 2i, φ(i)}.

Proof. On deleting i edges from G, we have n − 2i saturated vertices and i twin-sets each of cardinality
two (as shown in Figure 5 where G is the complete graph on 7 vertices, i = 2 and g is a constant
function). We will now show that exactly φ(i) colors are required to label vertices of all i twin-sets.
We observe that all vertices in twin sets of cardinality 2 are similar to each other in G. Since two vertices
in a twin-set are labeled by a unique pair of colors out of (k

2) pairs of k colors, at least k colors are
required to label vertices of i twin-sets. Now, we discuss the following two cases for φ(i):

1. If φ(i) ≤ n − 2i, then the number of colors required to label n − 2i saturated vertices is greater
than or equal to the number of colors required to label the vertices of i twin-sets. Thus, we label
n − 2i saturated vertices with exactly n − 2i colors and out of these n − 2i colors, φ(i) colors will
be used to label vertices of i twin-sets.

2. If φ(i) > n − 2i, then the number of colors required to label n − 2i saturated vertices is less than
the number of colors required to label vertices of i twin-sets. Thus, we label vertices of i twin-sets
with φ(i) colors and, out of these φ(i) colors, n − 2i colors will be used to label saturated vertices
in Gi.

Since g is constant, by using the same arguments as in the proof of Lemma 1,
Dist(FGi ) = Dist(Gi).

Suppose that G = (V1, E1) and G∗ = (V2, E2) are two graphs with disjoint vertex sets V1

and V2 and disjoint edge sets E1 and E2. The join of G and G∗ is the graph G + G∗, in which
V(G + G∗) = V1 ∪ V2 and E(G + G∗) = E1 ∪ E2 ∪ { uv: u ∈ V1, v ∈ V2}.

Proposition 4. Let Pn be a path graph of order n ≥ 2; then, for all m, n ≥ 2 and 1 < s < m + n,
1 ≤ Dist(FPm+Pn) ≤ 3.

249



Symmetry 2018, 10, 332

Proof. Let Pm : v1, ..., vm and Pn : u1, ..., un. We discuss the following cases for m, n.

1. If m = 2 and n = 2, then P2 + P2 = K4, and hence 1 ≤ Dist(FK4) ≤ 3 by Theorem 1.
2. If m = 2 and n = 3, then P2 + P3 has three saturated vertices. Thus, 1 ≤ Dist(FP2+P3) ≤ 4 by

Proposition 1. However, for all s where 2 ≤ s ≤ 4 and all possible definitions of g in FP2+P3 ,
one can see 1 ≤ Dist(FP2+P3) ≤ 3.

3. If m = 3 and n = 3, then a labeling f : V(P3 + P3) → {1, 2, 3} defined as:

f (x) =

⎧⎪⎨
⎪⎩

1 i f x = v1, v2,
2 i f x = v3, u3,
3 i f x = u1, u2,

is a distinguishing labeling for P3 + P3, and hence Dist(P3 + P3) = 3. Thus, 1 ≤ Dist(FP3+P3) ≤ 4
by Proposition 1. However, for all s where 2 ≤ s ≤ 5 and all possible definitions of g in FP3+P3 ,
one can see 1 ≤ Dist(FP3+P3) ≤ 3.

4. If m ≥ 2 and n ≥ 4, then a labeling f : V(Pm + Pn) → {1, 2} defined as:

f (x) =

{
1 i f x = v1, u2, ..., un,
2 i f x = u1, v2, ..., vm,

is a distinguishing labeling for Pm + Pn, and hence Dist(Pm + Pn) = 2. Thus, the result follows by
Proposition 1.

Figure 5. Graph G = K7 and FG2 , when g is a constant function. Dist(FG2 ) = φ(2) = n − 2i = 3.

4. Conclusions

In this paper, we have studied the distinguishing number of functigraphs, which is an extension
of the permutation graphs. We have given sharp lower and upper bounds of a distinguishing number
of functigraphs. We have established the connection between the distinguishing number of graphs and
its corresponding functigraph in the form of realizable results. We have computed the distinguishing
number of functigraphs of a complete graph and the joining of path graphs. Furthermore, we have
defined a function φ : N → N \ {1} as φ(i) = k, where k is the least number such that i ≤ (k

2). By using
this function φ, we have found the distinguishing number of functigraphs of spanning subgraphs
of complete graphs. In the future, it would be interesting to work on the distinguishing number of
functigraphs of some well known families of graphs.
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Abstract: A graph operator is a mapping F : Γ → Γ′, where Γ and Γ′ are families of graphs.
The different kinds of graph operators are an important topic in Discrete Mathematics and its
applications. The symmetry of this operations allows us to prove inequalities relating the hyperbolicity
constants of a graph G and its graph operators: line graph, Λ(G); subdivision graph, S(G); total
graph, T(G); and the operators R(G) and Q(G). In particular, we get relationships such as δ(G) ≤
δ(R(G)) ≤ δ(G) + 1/2, δ(Λ(G)) ≤ δ(Q(G)) ≤ δ(Λ(G)) + 1/2, δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1
and δ(R(G))− 1/2 ≤ δ(Λ(G)) ≤ 5δ(R(G)) + 5/2 for every graph which is not a tree. Moreover, we
also derive some inequalities for the Gromov product and the Gromov product restricted to vertices.

Keywords: graph operators; gromov hyperbolicity; geodesics

1. Introduction

In [1], J. Krausz introduced the concept of graph operators. These operators have applications
in studies of graph dynamics (see [2,3]) and topological indices (see [4–6]). Many large graphs
can be obtained by applying graph operators on smaller ones, thus some of their properties are
strongly related. Motivated by the above works, we study here the hyperbolicity constant of several
graph operators.

Along this paper, we denote by G = (V(G), E(G)) a connected simple graph with edges of length
1 (unless edge lengths are explicitly given) and V �= ∅. Given an edge e = uv ∈ E(G) with endpoints
u and v, we write V(e) = {u, v}. Next, we recall the definition of some of the main graph operators.

The line graph, Λ(G), is the graph constructed from G with vertices the set of edges of G, and and
two 19 vertices are adjacent if and only if their corresponding edges are incident in G.

The subdivision graph, S(G), is the graph constructed from G substituting each of its edges by a
path of length 2.

The graph Q(G) is the graph constructed from S(G) byadding edges between adjacent vertices
in Λ(G).

The graph R(G) is constructed from S(G) by adding edges between adjacent vertices in G.
The total graph, T(G),is constructed from S(G) by adding edges between adjacent vertices in G

or Λ(G).
We define:

EE(G) := {{e1, e2} : e1, e2 ∈ E(G), e1 �= e2, |V(e1) ∩ V(e2)| = 1},

and
EV(G) := {{e, u} : e ∈ E(G), u ∈ V(e)}.

Symmetry 2018, 10, 360; doi:10.3390/sym10090360 www.mdpi.com/journal/symmetry252
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So, we have the following:
Λ(G) := (E(G), EE(G)).
S(G) := (V(G) ∪ E(G), EV(G)).
T(G) := (V(G) ∪ E(G), E(G) ∪ EE(G) ∪ EV(G)).
R(G) := (V(G) ∪ E(G), E(G) ∪ EV(G)).
Q(G) := (V(G) ∪ E(G), EE(G) ∪ EV(G).
The Gromov hyperbolic spaces have multiple applications both theoretical and practical

(see [7–10]). A space is geodesic if any two points in it can be joined by a curve whose length is
the distance between them. In this paper we will consider a graph G as a geodesic metric space and
any geodesic joining x and y will be denote by [xy].

Let X be a geodesic metric space and x, y, z ∈ X. A geodesic triangle with vertices x, y, z, denoted
by T = {x, y, z}, is the union of three geodesics [xy], [yz] and [zx]. We write also T = {[xy], [yz], [zx]}.
If the δ-neighborhood of the union of any two sides of T contains the other side, we say that T is δ-thin.
We define δ(T) := inf{δ ≥ 0 : T is δ-thin}. The space X is δ-hyperbolic if all geodesic triangles T in
X are δ-thin. Let us denote the sharp hyperbolicity constant of X, by δ(X), i.e., δ(X) := sup{δ(T) :
T is a geodesic triangle in X}. X is Gromov hyperbolic if X is δ-hyperbolic for some δ ≥ 0; then X is
Gromov hyperbolic if and only if δ(X) < ∞.

In this paper we prove inequalities relating the hyperbolicity constants of a graph G and its graph
operators Λ(G), S(G), T(G), R(G) and Q(G), using their symmetries.

2. Definitions and Background

There are several equivalent definitions for Gromov hyperbolicity (see, e.g., [11–13]), in particular,
the definition that we use in this work has an important geometric meaning and serves as a basis for
multiple applications (see [14–19]).

Given a graph G, the Gromov product of q1, q2 ∈ G with base point q0 ∈ G is defined as

(q1, q2)q0 :=
1
2
(
d(q1, q0) + d(q2, q0)− d(q1, q2)

)
.

For every Gromov hyperbolic graph G, we have

(q1, q3)q0 ≥ min
{
(q1, q2)q0 , (q2, q3)q0

}
− δ (1)

for every q0, q1, q2, q3 ∈ G and some constant δ ≥ 0 ([12,13]).
We denote by δ∗(G) the sharp constant for the inequality (1), i.e.,

δ∗(G) := sup
{

min
{
(q1, q2)q0 , (q2, q3)q0

}
− (q1, q2)q0 : q0, q1, q2, q3 ∈ G

}
.

Indeed, our definition of Gromov hyperbolicity is equivalent to (1); furthermore, we have
δ∗(G) ≤ 4δ(G) and δ(G) ≤ 3δ∗(G) ([12,13]). In [20] (Proposition II.20) we found the following
improvement of the previous inequality: δ∗(G) ≤ 2δ(G).

We denote by δ∗v (G) the constant of hyperbolicity of the Gromov product restricted to the vertices
of G, i.e.,

δ∗v (G) := sup
{

min
{
(q1, q2)q0 , (q2, q3)q0

}
− (q1, q3)q0 : q0, q1, q2, q3 ∈ V(G)

}
.

3. Main Results

The following result is immediate from the definition of S(G).

Proposition 1. Let G be a graph. Then

δ(S(G)) = 2δ(G), δ∗(S(G)) = 2δ∗(G).
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We remark that the equality is not true for δ∗v (G) (e.g., S(C5) = C10 but 2δ∗v (C5) = 1 �= 2 =

δ∗v (S(G))), but inequalities may apply. The next result appears in [21].

Theorem 1. Let B = (V0 ∪ V1, E) be a bipartite graph. We have δB(Vi) ≤ δ∗v (B) ≤ δB(Vi) + 2, where

δB(Vi) = sup{min
{
(x, y)w, (y, z)w

}
− (x, z)w : x, y, z, w ∈ Vi}

for every i ∈ {1, 2}.

Corollary 1. Let G be a graph. Then

2δ∗v (G) ≤ δ∗v (S(G)) ≤ 2δ∗v (G) + 2.

Proof. Note that S(G) can be considered as a bipartite graph, where V(S(G)) = V(G) ∪ V(Λ(G)).
Theorem 1 gives δS(G)(V(G)) ≤ δ∗v (S(G)) ≤ δS(G)(V(G)) + 2. Since δS(G)(V(G)) = 2δ∗v (G),
the desired inequalities hold.

Proposition 2. Let G be a graph. Then

δ∗v (G) ≤ δ∗(G) ≤ δ∗v (G) + 3.

Proof. The inequality δ∗v (G) ≤ δ∗(G) is direct. Let us prove the other inequality.
For every q0, q1, q2 ∈ G there are q′0, q′1, q′2 ∈ V(G) such that d(qi, q′i) ≤ 1/2 for i = 0, 1, 2. Then

∣∣(q1, q2)q0 − (q′1, q′2)q′0

∣∣ = 1
2

∣∣d(q0, q1) + d(q0, q2)− d(q1, q2)− d(q′0, q′1)− d(q′0, q′2) + d(q′1, q′2)
∣∣

≤ 1
2

∣∣d(q0, q1)− d(q′0, q′1)
∣∣+ 1

2

∣∣d(q0, q2)− d(q′0, q′2)
∣∣+ 1

2

∣∣d(q1, q2)− d(q′1, q′2)
∣∣

≤ 3
2

.

Given q0, q1, q2, q3 ∈ G, let q′0, q′1, q′2, q′3 ∈ V(G), with d(qi, q′i) ≤ 1/2 for i = 0, 1, 2, 3. We have

(q1, q3)q0 ≥ (q′1, q′3)q′0
− 3

2
≥ min

{
(q′1, q′2)q′0

, (q′2, q′3)q′0

}
− δ∗v (G)− 3

2

≥ min
{
(q1, q2)q0 −

3
2

, (q2, q3)q0 −
3
2

}
− δ∗v (G)− 3

2
= min{(q1, q2)q0 , (q2, q3)q0} − δ∗v (G)− 3,

and we conclude δ∗(G) ≤ δ∗v (G) + 3.

Let H be a subgraph of G, H is isometric if dH(x, y) = dG(x, y) for every x, y ∈ H. We will need
the following well-known result.

Lemma 1. Let H be an isometric subgraph of G. Then

δ(H) ≤ δ(G),

δ∗(H) ≤ δ∗(G),

δ∗v (H) ≤ δ∗v (G).

Since G is an isometric subgraph of T(G) and R(G), and Λ(G) is an isometric subgraph of T(G)

and Q(G), we have the following consequence of Lemma 1.
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Corollary 2. For any graph G, we have

δ(G) ≤ δ(T(G)), δ∗(G) ≤ δ∗(T(G)), δ∗v (G) ≤ δ∗v (T(G)),

δ(G) ≤ δ(R(G)), δ∗(G) ≤ δ∗(R(G)), δ∗v (G) ≤ δ∗v (R(G)),

δ(Λ(G)) ≤ δ(T(G)), δ∗(Λ(G)) ≤ δ∗(T(G)), δ∗v (Λ(G)) ≤ δ∗v (T(G)),

δ(Λ(G)) ≤ δ(Q(G)), δ∗(Λ(G)) ≤ δ∗(Q(G)), δ∗v (Λ(G)) ≤ δ∗v (Q(G)).

The hyperbolicity of the line graph has been studied previously (see [21–23]). We have the
following results.

Theorem 2. [22] (Corollary 3.12) Let G be a graph. Then

δ(G) ≤ δ(Λ(G)) ≤ 5δ(G) + 5/2.

Furthermore, the first inequality is sharp: the equality is attained by every cycle graph.

Theorem 3. [21] (Theorem 6) Let G be a graph. Then

δ∗v (G)− 1 ≤ δ∗v (Λ(G)) ≤ δ∗v (G) + 1.

Theorem 4. Let G be a graph. Then

δ∗(G)− 4 ≤ δ∗(Λ(G)) ≤ δ∗(G) + 4.

Proof. Proposition 2 and Theorem 3 give δ∗(G) ≤ δ∗v (G) + 3 ≤ δ∗v (Λ(G)) + 4 ≤ δ∗(Λ(G)) + 4,
and δ∗(Λ(G)) ≤ δ∗v (Λ(G)) + 3 ≤ δ∗v (G) + 4 ≤ δ∗(G) + 4.

From Proposition 1, and Theorems 2 and 4 we have:

Corollary 3. Let G be a graph. Then

δ(S(G)) ≤ 2δ(Λ(G)) ≤ 5δ(S(G)) + 5,

δ∗(S(G))− 8 ≤ 2δ∗(Λ(G)) ≤ δ∗(S(G)) + 8.

Corollary 2 and Theorems 2, 3 and 4 have the following consequence.

Corollary 4. Let G be a graph. Then

δ(G) ≤ δ(Q(G)),

δ∗v (G) ≤ δ∗v (Q(G)) + 1,

δ∗(G) ≤ δ∗(Q(G)) + 4.

Theorem 4 improves the inequality δ∗(Λ(G)) ≤ δ∗(G) + 6 in [23].
Given a graph G with multiple edges, we define the graph B(G), obtained from G, substituting

each multiple edge for one of its simple edges of shorter length (see [23]).

Remark 1. By argument in the proof of [24](Theorem 8) we have: If in each multiple edge there is at most
one edge with length greater than j := inf{d(u, v) : u, v are joined by a multiple edge of G}, then δ(G) ≤
max

{
δ(B(G)) + J−j

2 , J+j
4

}
, where, J := sup{L(e) : e is an edge contained in a multiple edge of G}.

Corollary 5. Let G be a graph. Then
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max
{

δ(G),
3
4

}
≤ δ(R(G)) ≤ max

{
δ(G) +

1
2

,
3
4

}
.

Proof. Note that R(G) can be obtained by adding an edge of length 2 to each pair of adjacent vertices
in G, so the graph becomes a graph with multiple edges, with j = 1 and J = 2. Then [24] (Theorem 8)
and Remark 1 give the result.

From [25] (Theorem 11), we have the following result.

Lemma 2. Given the following graphs with edges of length 1, we have

• If Pn is a path graph, then δ(Pn) = 0 for all n ≥ 1.
• If Cn is a cycle graph, then δ(Cn) = n/4 for all n ≥ 3.
• If Kn is a complete graph, then δ(K1) = δ(K2) = 0, δ(K3) = 3/4 and δ(Kn) = 1 for all n ≥ 4.

If G is not a tree, we define its girth g(G) by

g(G) := inf{L(C) : C is a cycle in G}.

From [26] (Theorem 17), we have:

Theorem 5. If G is not a tree, then

δ(G) ≥ g(G)

4
.

Corollary 6. If G is not a tree, then

δ(G) ≥ 3
4

.

Corollary 7. If G is not a tree, then

δ(G) ≤ δ(R(G)) ≤ δ(G) +
1
2

.

Proof. Since G is not a tree, Corollary 6 gives δ(G) ≥ 3/4, and so

max
{

δ(G),
3
4

}
= δ(G), max

{
δ(G) +

1
2

,
3
4

}
= δ(G) +

1
2

,

and Corollary 5 gives the inequalities.

Theorem 2 and Corollary 7 have the following consequence.

Corollary 8. If G is not a tree, then

δ(R(G))− 1
2
≤ δ(Λ(G)) ≤ 5δ(R(G)) +

5
2

.

From Proposition 1 and Corollary 7 we have the following result.

Corollary 9. If G is not a tree, then

δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1.
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Theorem 6. Let G be a graph. Then

δ∗(Λ(G)) ≤ δ∗(Q(G)) ≤ δ∗v (Λ(G)) + 6 ≤ δ∗(Λ(G)) + 6,

δ∗v (Λ(G)) ≤ δ∗v (Q(G)) ≤ δ∗v (Λ(G)) + 6,

δ∗(Λ(G)) ≤ δ∗(T(G)) ≤ δ∗v (Λ(G)) + 9 ≤ δ∗(Λ(G)) + 9,

δ∗v (Λ(G)) ≤ δ∗v (T(G)) ≤ δ∗v (Λ(G)) + 6,

δ∗(G) ≤ δ∗(R(G)) ≤ δ∗v (G) + 6 ≤ δ∗(G) + 6,

δ∗v (G) ≤ δ∗v (R(G)) ≤ δ∗v (G) + 6,

δ∗(G) ≤ δ∗(T(G)) ≤ δ∗v (G) + 9 ≤ δ∗(G) + 9,

δ∗v (G) ≤ δ∗v (T(G)) ≤ δ∗v (G) + 6.

Proof. The lower bounds follow from Corollary 2. We consider the map P : Q(G) → Λ(G) such
that P(q) = q if q ∈ Λ(G), P(q) = vq if q �∈ Λ(G), where vq ∈ V(Λ(G)) and dQ(G)(q, vq) ≤ 1.
If q0, q1, q2, q3 ∈ Q(G), then∣∣dQ(G)(qi, qj)− dΛ(G)(P(qi), P(qj))

∣∣ = ∣∣dQ(G)(qi, qj)− dQ(G)(P(qi), P(qj))
∣∣ ≤ 2,

since Λ(G) is an isometric subgraph of Q(G) and∣∣(qi, qj)q0 − (P(qi), P(qj))P(q0)

∣∣
=

1
2

∣∣dQ(G)(q0, qi) + dQ(G)(q0, qj)− dQ(G)(qi, qj)

−dΛ(G)(P(q0), P(qi))− dΛ(G)(P(q0), P(qj)) + dΛ(G)(P(qi), P(qj))
∣∣ ≤ 3,

for i, j ∈ {1, 2, 3}. Thus,

(q1, q3)q0 ≥ (P(q1), P(q3))P(q0)
− 3

≥ min{(P(q1), P(q2))P(q0)
, (P(q2), P(q3))P(q0)

} − δ∗v (Λ(G))− 3

≥ min{(q1, q2)q0 − 3, (q2, q3)q0 − 3} − δ∗v (Λ(G))− 3

= min{(q1, q2)q0 , (q2, q3)q0} − δ∗v (Λ(G))− 6.

Therefore,
δ∗(Λ(G)) + 6 ≥ δ∗v (Λ(G)) + 6 ≥ δ∗(Q(G)) ≥ δ∗v (Q(G)).

These inequalities allow us to obtain the result for upper bounds of δ∗(Q(G)) and δ∗v (Q(G)). The
other upper bounds can be obtained similarly.

From Theorems 3 and 6 and Corollary 4 we have:

Corollary 10. For all graph G, we have

δ∗v (G)− 1 ≤ δ∗v (Q(G)) ≤ δ∗v (G) + 7,

δ∗(G)− 4 ≤ δ∗(Q(G)) ≤ δ∗v (G) + 7 ≤ δ∗(G) + 7.

From Corollaries 2, 4 and 10, Theorem 6 and the inequalities δ(G) ≤ 3δ∗(G) and δ∗(G) ≤ 2δ(G),
we have:
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Corollary 11. Let G be a graph. Then

δ(Λ(G)) ≤ δ(Q(G)) ≤ 6δ(Λ(G)) + 18,

δ(Λ(G)) ≤ δ(T(G)) ≤ 6δ(Λ(G)) + 27,

δ(G) ≤ δ(T(G)) ≤ 6δ(G) + 27,

δ(G) ≤ δ(Q(G)) ≤ 6δ(G) + 21.

Proof. Corollaries 2 and 4 give the lower bounds. On the other hand, Theorem 6 gives δ(Q(G)) ≤
3δ∗(Q(G)) ≤ 3δ∗(Λ(G)) + 18 ≤ 6δ(Λ(G)) + 18, δ(T(G)) ≤ 3δ∗(T(G)) ≤ 3(δ∗(Λ(G)) + 9) ≤
6δ(Λ(G)) + 27; we obtain the third upper bound in a similar way. Corollary 10 gives 3δ∗(Q(G)) ≤
3(δ∗(G) + 7) ≤ 6δ(G) + 21, obtaining the last upper bound.

Let G be a graph, a family of subgraphs {Gs}s of G is a T-decomposition if ∪sGs = G and Gs ∩ Gr is
either a cut-vertex or the empty set for each s �= r (see [25]).

The following result was proved in [24] (Theorem 3).

Lemma 3. Given a graph G and {Gs}s any T-decomposition of G, then

δ(G) = sup
s

δ(Gs).

The following results improve the inequality δ(Q(G)) ≤ 6δ(Λ(G)) + 18 in Corollary 11.

Theorem 7. Let G be a path graph, then

0 = δ(Λ(G)) ≤ δ(Q(G)) ≤ 3/4.

Proof. Since G is a path graph, Λ(G) is also a path graph, and so 0 = δ(Λ(G)) ≤ δ(Q(G)).
Consider the T-decomposition {Gn} of Q(G). Since each connected component Gn is either a

cycle C3 or a path of length 1, we have δ(Q(G)) = supn{δ(Gn)} ≤ 3/4, by Lemmas 2 and 3.

The union of the set of the midpoints of the edges of a graph G and the set of vertices, V(G),
will be denote by N(G). Let T1 be the set of geodesic triangles T in G such that every vertex of T
belong to N(G) and δ1(G) := inf{λ : every triangle in T1 is λ-thin}.

Lemma 4. [27] (Theorems 2.5 and 2.7) For every graph G, we have δ1(G) = δ(G). Furthermore, if G is
hyperbolic, then there exists T ∈ T1 with δ(T) = δ(G).

The previous lemma allows to reduce the study of the hyperbolicity constant of a graph G to study
only the geodetic triangles of G, whose vertices are vertices of G (i.e., belong to V(G)) or midpoints of
the edges of G.

Theorem 8. If G is not a path graph, then

δ(Λ(G)) ≤ δ(Q(G)) ≤ δ(Λ(G)) + 1/2.

Proof. By Corollary 2 we have the first inequality. We will prove the second one. If δ(Q(G)) = ∞,
then Theorem 6 gives δ(Λ(G)) = ∞, and the second inequality holds. Assume now that δ(Q(G)) < ∞
(and so, δ(Λ(G)) < ∞ by Theorem 6). If G is not a path, then Λ(G) is not a tree and Corollary 6 gives
δ(Λ(G)) ≥ 3/4.

For each v ∈ V(G), let us define Vv := {u ∈ V(Q(G)) : uv ∈ E(Q(G))} = {u ∈ V(Λ(G)) :
uv ∈ E(Q(G))}. Denote by Gv and G∗

v the subgraphs of Q(G) induced by the sets Vv ∪ {v}
and Vv, respectively. Note that both Gv and G∗

v are complete graphs for every v ∈ V(G), and if
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G∗ is a complete graph with r vertices, then Gv is a complete graph with r + 1 vertices. Also,
Q(G) = Λ(G) ∪ (∪v∈V(G)Gv).

By Lemma 4 there exists a geodesic triangle T ∈ T1 in Q(G) with δ(T) = δ(Q(G)). Denote by
γ1, γ2, γ3 the sides of T. Without loss of generality we can assume that there exists p ∈ γ1 with
dQ(G)(p, γ2 ∪ γ3) = δ(T) = δ(Q(G)). Thus, T is a cycle and each vertex of T is either the midpoint of
some edge of Q(G) or a vertex of Q(G).

If Gv contains to T for some v ∈ V(G), then δ(Q(G)) = δ(T) ≤ δ(Gv) ≤ 1 < 3/4 + 1/2 ≤
δ(Λ(G)) + 1/2 by Lemma 2, since Gv is an isometric subgraph of Q(G).

If Λ(G) contains to T, then δ(Q(G)) = δ(T) ≤ δ(Λ(G)) by Lemma 1, since Λ(G) is isometric.
Suppose that T is not contained either in Λ(G) nor Gv with v ∈ V(G).
Note that if T ∩ (Gv \ G∗

v ) �= ∅ for some v ∈ V(G), then there exists at least one vertex of T in
Gv \ Λ(G). In order to form a triangle T∗ ⊂ Λ(G) from T, we define γ∗

i := γi ∩ Λ(G). Note that,
for i ∈ {1, 2, 3}, γ∗

i is a geodesic, since Λ(G) is a isometric subgraph of Q(G).

We denote by xi,j the common vertex of γi and γj and by ui and uj the other vertices of γi and
γj respectively.

We consider the following cases:
Case A. We assume that exactly one vertex of T belongs to Q(G) \ Λ(G). Thus, there exists

v ∈ V(G) such that T ∩ (Gv \ G∗
v ) �= ∅. By Lemma 4, we have two possibilities: the vertex of T is a

vertex of G or a midpoint of an edge in Gv \ G∗
v .

We can suppose that xi,j ∈ T \ Λ(G). Let v be a vertex of V(G) such that xi,j ∈ Gv \ Λ(G). Let xi
(respectively, xj) be the closest point of γ∗

i (respectively, γ∗
j ) to xi,j. Thus, xixj ∈ E(Λ(G)). Let v∗ be

the midpoint of the edge xixj. Let T1 be the connected component of T \ Λ(G) joining xi and xj. Note
that L(T1) = 2. We analyze the two possibilities:

Case A1. Assume that xi,j ∈ V(Q(G)). Let us define σi := γ∗
i ∪ [xiv∗] and σj := γ∗

j ∪ [xjv∗].
We are going to prove that σi and σj are geodesics in Λ(G). In fact, we prove now that if γ∗

j = [zjxj],
then dQ(G)(zj, xj) ≤ dQ(G)(zj, xi). Seeking for a contradiction assume that dQ(G)(zj, xj) > dQ(G)(zj, xi).
Thus,

dQ(G)(zj, xi) + dQ(G)(xi, xi,j) = dQ(G)(zj, xi) + 1 ≤ dQ(G)(zj, xj) + dQ(G)(xj, xi,j)

therefore γj is not a geodesic obtaining the desired contradiction and we conclude dQ(G)(zj, xj) ≤
dQ(G)(zj, xi). Hence, σi is a geodesic in Λ(G).

Case A2. There is an edge e ∈ E(Q(G)) \ E(Λ(G)) such that xi,j is the midpoint of e, thus without
loss of generality we can assume that e = xiv, and we define σi := γ∗

i and σj := γ∗
j ∪ xjxi. Thus, σi is a

geodesic in Λ(G).
Note that γ∗

j ∪ xjv ∪ [vxi,j] and σj ∪ [xixi,j] = γ∗
j ∪ xjxi ∪ [xixi,j] have the same endpoints and

length; therefore, σj is also a geodesic in Λ(G).
Case B. Assume that there are two vertices of T in some connected component of T \ Λ(G). Thus,

there exists v ∈ V(G) such that T ∩ (Gv \ G∗
v ) �= ∅. By Lemma 4, we have two possibilities again: both

vertices of T are midpoints of edges or one vertex of T is a vertex of G and the other is a midpoint of
an edge.

We can assume that ui, uj ∈ Gv \ G∗
v for some v. We denote by x′i (respectively, x′j) the closest point

in γ∗
i (respectively, γ∗

j ) to ui (respectively, uj); then x′i x
′
j ∈ E(Λ(G)). Let v′ be the midpoint of the edge

x′i x
′
j. Let T2 be the connected component of T \ Λ(G) joining x′i and x′j. Note that L(T2) = 2.

We analyze the two possibilities again:
Case B1. The vertices ui, uj of T are the midpoints of x′iv and x′jv. Thus, σi := γ∗

i , σj := γ∗
j and

σk := x′i x
′
j are geodesics in Λ(G).

Case B2. Otherwise, we can assume without loss of generality that uj = v and ui is the midpoint
of xiv. We have dQ(G)(ui, xj) = dQ(G)(ui, xi) + 1 and so, σi := γ∗

i and σj := γ∗
j ∪ x′jx

′
i are geodesics in

Λ(G). In this case we define σk := {x′i}.
Note that the most general possible case is the following: there are at most three vertices

v1, v2, v3 ∈ V(G) such that T ∩ (Gvi \ Gv∗i
) �= ∅, for i = 1, 2, 3. Repeating the previous process at
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most three times we obtain a geodesic triangle T∗ in Λ(G) with sides γ′
1, γ′

2 and γ′
3 containing γ∗

1 , γ∗
2

and γ∗
3 , respectively.

If p ∈ Λ(G), then one can check that δ(Q(G)) = dQ(G)(p, γ2 ∪ γ3) ≤ dQ(G)(p, γ′
2 ∪ γ′

3) + 1/2 ≤
δ(Λ(G)) + 1/2. If p �∈ Λ(G), then δ(Q(G)) = dQ(G)(p, γ2 ∪ γ3) ≤ 5/4; since δ(Λ(G)) ≥ 3/4, we have
δ(Λ(G)) + 1/2 ≥ 5/4 ≥ δ(Q(G)). This finishes the proof.

Proposition 1, Theorems 2 and 8, and Corollary 3 have the following consequence.

Corollary 12. Let G be a graph. If G is not a path graph, then

δ(S(G)) ≤ 2δ(Q(G)) ≤ 5δ(S(G)) + 6.

4. Conclusions

In this paper, we obtained several inequalities and closed formulas relating the hyperbolicity
constants of a graph G and its graph operators Λ(G), S(G), T(G), R(G) and Q(G), by the use of
their symmetries. As a first step, as the basis of our research, we found relations among the Gromov
hyperbolicity constant (satisfying the Rips condition), the Gromov product and the Gromov product
restricted to vertices. In the same direction, we derived inequalities between Gromov products and
graph operators; as examples we mention: δ∗v (G) ≤ δ∗(G) ≤ δ∗v (G) + 3, δ∗v (G) ≤ δ∗v (Q(G)) + 1 and
δ∗(G) ≤ δ∗(R(G)) ≤ δ∗v (G) + 6 ≤ δ∗(G) + 6.

Then, we studied relations between the Gromov hyperbolicity constant of a graph and the
application of given operators to that graph. In this context, we obtained inequalities such as:
δ(G) ≤ δ(R(G)) ≤ δ(G)+ 1/2, δ(Λ(G)) ≤ δ(Q(G)) ≤ δ(Λ(G))+ 1/2, δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1
and δ(R(G))− 1/2 ≤ δ(Λ(G)) ≤ 5δ(R(G)) + 5/2, where G not a tree.

We believe that our work may motivate the investigation of related open problems such as: (i)
the computation of the hyperbolicity constant on geometric graphs; (ii) the analysis of hyperbolicity
on the graph operators reported here (i.e., Λ(G), S(G), T(G), R(G) and Q(G)) when applied to
geometric graphs; (iii) the study of the hyperbolicity constants of additional graph operators; and (iv)
the identification of the properties of graph operations that break or preserve hyperbolicity.
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Abstract: The general (α, t)-path sum-connectivity index of a molecular graph originates from
many practical problems, such as the three-dimensional quantitative structure–activity relationships
(3D QSAR) and molecular chirality. For arbitrary nonzero real number α and arbitrary positive integer
t, it is defined as tχα(G) = ∑Pt=vi1

vi2 ···vit+1
⊆G[dG(vi1)dG(vi2) · · · dG(vit+1)]

α, where we take the sum

over all possible paths of length t of G and two paths vi1 vi2 · · · vit+1 and vit+1 · · · vi2 vi1 are considered
to be one path. In this work, one important class of polycyclic aromatic hydrocarbons and their
structures are firstly considered, which play a role in organic materials and medical sciences. We try
to compute the exact general (α, 2)-path sum-connectivity indices of these hydrocarbon systems.
Furthermore, we exactly derive the monotonicity and the extremal values of these polycyclic aromatic
hydrocarbons for any real number α. These valuable results could produce strong guiding significance
to these applied sciences.

Keywords: topological indices; general (α, t)-path sum-connectivity index; polycyclic aromatic
hydrocarbons

1. Introduction

1.1. Application Background

In many fields (e.g., physics, chemistry, and electrical networks), the boiling point, the melting
point, the chemical bonds, and the bond energy are all important quantifiable parameters.
To understand the physico-chemical properties of chemical compounds or network structures,
we abstractly define different concepts, collectively named the topological descriptors or the
topological indices after mathematical modelings. We called them different names, such as Randić
index and Zagreb index [1–3]. Different index represents its corresponding chemical structures in
graph-theoretical terms via arbitrary molecular graph.

In the past decades, these two-dimensional topological indices have been used as a powerful
approach to discover many new drugs, such as anticonvulsants, anineoplastics, antimalarials,
and antiallergics and Silico generation [4–8]. Therefore, the practice has proven that the topological
indices and the quantitative structure-activity relationships (QSAR) have moved from an attractive
possibility to representing a foundation stone in the process of drug discovery and other
research areas [9–12].

Most importantly, with the further study of chemical indices and drug design and discovery,
three-dimensional molecular features (topographic indices) and molecular chirality are also presented.
It is increasingly urgent to study the three-dimensional quantitative structure-activity relationships
such as molecular chirality. However, so far there have been few results, except for one related
definition that is mentioned generally in [8].
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1.2. Definitions and Notations

In the whole paper, we always let G = (VG, EG) be a simple molecular graph, in which VG and EG
are the vertex set and edge set of G, respectively. We denote |VG| and |EG| as the numbers of vertices
and edges of G, respectively. In physico-chemical graph theory, the atoms and the bonds represent
the vertices and edges, respectively. Two vertices are called adjacent if there is an edge between them
in G. For any vertex u ∈ VG, the number of its adjacent vertices is called its degree in G and denote
dG(u). The set of all neighbors of u is denoted by NG(u), and a vertex of G is called a pendant if its
degree is 1. Similarly, the minimum and maximum degree of G are denoted by δG and ΔG, respectively.
All other notations and terminologies are referred to [13].

In 1975, Randić index was introduced by the chemist M. Randić during his study of
alkanes [1]. As a molecular structure-descriptor and a graphical description of molecular structure,
Randić index is most commonly used in the quantitative structure-property and structure-activity
studies [6,14]. Randić index is defined as the sum over all edges uv ∈ EG of a molecular graph of the
terms [dG(u)dG(v)]−

1
2 . That is,

R(G) = ∑
uv∈EG

[dG(u)dG(v)]−
1
2 .

The first Zagreb index was introduced more than forty years ago by Gutman and
Trinajestić [15,16], and is defined as

M1(G) = ∑
x∈VG

dG(x) = ∑
uv∈EG

[dG(u) + dG(v)].

Later [17], some researchers began to define another new index of a graph G as

χ(G) = ∑
uv∈EG

[dG(u) + dG(v)]−
1
2 ,

which is named the sum-connectivity index and denoted by χ(G).
In 2008, Zhou and Trinajestic [17] proposed the sum-connectivity index, which is a closely related

variant of Randić connectivity index of G. Now we define the general sum-connectivity index χα(G) as

χα(G) = ∑
uv∈EG

[dG(u) + dG(v)]α.

With the intention of extending the applicability of the general sum-connectivity
index, we begin to consider the general (α, t)-path sum-connectivity index of G as where
we take the sum over all possible paths of length t of G:

tχα(G) = ∑
Pt=vi1

vi2 ···vit+1
⊆G

[dG(vi1) + dG(vi2) + · · ·+ dG(vit+1)]
α,

with any nonzero real number α and any positive integer t, and two paths vi1 vi2 · · · vit+1 and
vit+1 · · · vi2 vi1 are considered to be one path.

According to the above definition, the general (α, t)-path sum-connectivity index of an arbitrary graph
is one real constant and an important invariant under graph automorphism. It is closely related to
the structures of a molecular graph. For any molecular material, only by mastering its structure can
we calculate the exact value of its general (α, t)-path sum-connectivity index.

In this work, one important class of polycyclic aromatic hydrocarbons and their structures are
considered which play a role in organic materials and medical sciences. Then, we try to compute
the exact general (α, 2)-path sum-connectivity indices of these hydrocarbon systems. Furthermore,
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we exactly derive its monotonicity and extremal values for these polycyclic aromatic hydrocarbons
for any real number α. These valuable results could produce strong guiding significance to these
applied sciences.

For convenience, it is necessary to simplify some basic concepts and notations in polycyclic
aromatic hydrocarbons. A vertex with degree i is called an i-vertex. An edge between a j-vertex and a
k-vertex is called a (j, k)-edge. Besides, the numbers of i-vertices and (j, k)-edges are denoted as ni and
mjk, respectively.

Let vi0 vi1 · · · vit be a path Pt of length t in polycyclic aromatic hydrocarbons, denoted
Pt = vi0 vi1 · · · vit . (dG(vi0), dG(vi1), · · · , dG(vit)) is called its degree sequence. Obviously, there are in
total two types (i.e., (1, 3, 3) and (3, 3, 3)) of degree sequences of different 2-paths in these polycyclic
aromatic hydrocarbons in Figure 1. Let m133 and m333 denote the numbers of all 2-paths of the degree
sequence types (1, 3, 3) and (3, 3, 3) in polycyclic aromatic hydrocarbons, respectively.

2. Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons are important and ubiquitous combustion materials.
They belong to one class of hydrocarbon molecules. Polycyclic aromatic hydrocarbons have been
considered as an important class of carcinogens. They also play a role in the graphitisation of medical
science and organic materials [18,19].

In the field of chemical materials, polycyclic aromatic hydrocarbons have become molecular
analogues of graphite for interstellar species and building blocks of functional materials for device
applications [20–22]. Thus, detailed descriptions of all these molecular properties are necessary for the
available synthetic routes to polycyclic aromatic hydrocarbons and their specific applications.

In essence, polycyclic aromatic hydrocarbons can be considered as small pieces of graphene
sheets, in which the free valences of the dangling bonds are saturated by hydrocarbons. Vice versa,
a graphene sheet can be interpreted as an infinite polycyclic aromatic hydrocarbon molecule [22].
Many scientists have reported many successful applications of polycyclic aromatic hydrocarbons in
graphite surface modeling. As we know, benzenoid systems are a very famous family of hydrocarbon
molecules and belong to the circumcoronene homologous series of benzenoid, and polycyclic aromatic
hydrocarbons have very similar properties to them.

One important class of polycyclic aromatic hydrocarbons shown in Figure 1 belong to linear and
regular circular polycyclic aromatic hydrocarbons [22]. However, the class of symmetrical poly-aromatic
hydrocarbons is important in sciencesw. For an arbitrary positive integer n, let PAHn be the general
expression of this class of polycyclic aromatic hydrocarbons shown in Figure 1.

Obviously, the first three members of this hydrocarbon family are given in Figure 2, where PAH1

is called benzene, PAH2 coronene, and PAH3 circumcoronene . Obviously, benzene has 6 carbon atoms
and 6 hydrogen atoms, coronene has 24 carbon atoms and 12 hydrogen atoms, and circumcoronene has
54 carbon atoms and 18 hydrogen atoms.
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Figure 1. General representation of a polycyclic aromatic hydrocarbon.

Figure 2. The first three graphs of polycyclic aromatic hydrocarbons.

From Figure 1 above, we know that the class polycyclic aromatic hydrocarbon PAHn contains 6n2

carbon atoms and 6n are hydrogen atoms. Thus, this molecular graph has 6n2 + 6n vertices or atoms
such that 6n2 of them are carbon atoms and 6n are hydrogen atoms. Each hydrogen atom is 1-vertex
and each carbon atom is 3-vertex in PAHn. Therefore, this hydrocarbon molecule PAHn satisfies that
|VPAHn | = 6n2 + 6n. In this hydrocarbon molecule, we have

|EPAHn | =
3 × 6n2 + 1 × 6n

2
= 9n2 + 3n,

in which |EPAHn | means its number of edges (actually chemical bonds).
According to Figure 1, each hydrogen atoms has just one edge/bond between only one carbon

atom in the class of polycyclic aromatic hydrocarbon system. Any other carbon atoms just have three
bonds with carbon atoms or hydrogen atoms. From the structure of Figure 1, it is clear that we can
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divide the edge set of the class of polycyclic aromatic hydrocarbons into two partitions: the (1, 3)-edge
subset and the (3, 3)-edge subset. Thus,

m13 = n1 = 6n

and
m33 = |EPAHn | − n1 = 9n2 − 3n.

3. Main Results on the General (α, 2)-Path Sum-Connectivity Indices of PAHn

In this section, let PAHn be the general representation of the class of polycyclic aromatic
hydrocarbon molecules in Figure 1 for any positive integer n. Then, there are 6n hydrogen atoms
and 6n2 carbon atoms in PAHn. We compute the general (α, 2)-path sum-connectivity index of a family
of polycyclic aromatic hydrocarbons as follows. The indices should directly reflect the material’s
natural properties.

Theorem 1. For an arbitrary real number α, the general (α, 2)-path sum-connectivity index of PAHn is equal to

2χα(PAHn) = 6 · n · [32α+1 · n − 2(9α − 7α)]. (1)

Proof of Theorem 1. According to the structures of PAHn, consider any (1, 3)-edge e. Then, there are
in total two different 2-paths, and each path contains this edge e. Consider any (3, 3)-edge e′. There are
in total four different 2-paths, and each path contains this edge e′. Since we do not distinguish between
the paths vi1 vi2 · · · vit+1 and vit+1 · · · vi2 vi1 , each 2-path of PAHn will compute twice. Then, the total
number of different 2-paths, denoted N(P2), is

N(P2) =
NH · 2 + m33 · 4

2
=

6n · 2 + (9n2 − 3n) · 4
2

= 18n2.

If the degree sequence of a 2-path is the type (1, 3, 3), then this path begins or ends with one
hydrogen atom. Obviously, each hydrogen atom can produce two different P2, and there are 6n
hydrogen atoms in PAHn. Then,

m133 = 2 · m13 = 2 · 6n = 12n.

Since there are in total two types (1, 3, 3) and (3, 3, 3) of degree sequences of 2-paths in PAHn,
we have

m333 + m133 = N(P2),

which induces that
m333 = N(P2)− m133 = 18n2 − 12n.

By usage of the definitions of the general (α, 2)-path sum-connectivity index, we can compute it of
the polycyclic aromatic hydrocarbon in Figure 1 as follows:

2χα(PAHn) = ∑
P2=vi1

vi2 vi3∈G
[dG(vi1) + dG(vi1) + dG(vi1)]

α

= m133 · (1 + 3 + 3)α + m333 · (3 + 3 + 3)α

= (12n) · 7α + (18n2 − 12n) · 9α
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= 6 · n · [32α+1 · n − 2(9α − 7α)].

4. The Monotonicity and the Extremal Values of 2χα(PAHn)

Let PAHn be the general representation of the class of polycyclic aromatic hydrocarbon molecules
shown in Figure 1 for any positive integer n. In this section, we approach the monotonicity and
the extremal values of 2χα(PAHn) for any real number α.

By Equation (1), we can see that 2χα(PAHn) is a strictly increasing function on n. That is, the larger
n is, the larger 2χα(PAHn) is.

Let
2χα(PAHn) = 6 · n · [32α+1 · n − 2(9α − 7α)] = 0. (2)

Then, Equation (2) has two real zeroes n1 = 0 and n2 = 2
3 [1 − ( 7

9 )
α].

It is clear that
n2 =

2
3
[1 − (

7
9
)α] <

2
3

for any real number α. Thus, 2χα(PAHn) is a strictly increasing function on the positive number n and
for any real number α.

Thus, we can conclude the theorem as follows.

Theorem 2. Let PAHn be the general representation of the class of polycyclic aromatic hydrocarbon molecules
shown in Figure 1. Then

1. For any real number α, we have 2χα(PAHn) is strictly increasing with respect to all positive integers n.
2. The smallest general (α, 2)-path sum-connectivity index of Polycyclic aromatic hydrocarbons is

2χα(PAHn)min =2 χα(PAH1) = 6[9α + 2 · 7α] (3)

when and only when n = 1. Of course, PAH1 is benzene (see Figure 1).

5. Conclusions

The general sum-connectivity index χα(PAHn) and its minimum value of the class of polycyclic
aromatic hydrocarbons can be obtained by substituting the specific value t = 1 in the results above.

6. Further Research

In this article, we only consider one important class of symmetrical poly-aromatic hydrocarbons
PAHn (see Figure 1), which belong to linear and regular circular polycyclic aromatic hydrocarbons [22].
However, there are broader and more useful polycyclic aromatic hydrocarbons in the world. There are
many linearly fused circular PAHs with different structures, such as naphthalene, anthracene, tetracene,
and pentacene. On the other hand, there are great nonlinear and irregular or non-symmetrical
aromatic hydrocarbons, such as pyrene, benzopyrene, derivatives of azulene and pentahelicene.
In the future, we intend to conduct scientific research on the relationship between the complicated
aromatic hydrocarbons and their general (α, t)-path sum-connectivity indices. This research will be very
meaningful, interesting and worthwhile.
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Abstract: Let G = (V, E) be a simple, finite, and connected graph. A subset S = {u1, u2, . . . , uk} of
V(G) is called a resolving set (locating set) if for any x ∈ V(G), the code of x with respect to S that is
denoted by CS (x), which is defined as CS (x) = (d(u1, x), d(u2, x), .., d(uk, x)), is different for different x.
The minimum cardinality of a resolving set is called the dimension of G and is denoted by dim(G).
A security concept was introduced in domination. A subset D of V(G) is called a dominating set of G
if for any v in V – D, there exists u in D such that u and v are adjacent. A dominating set D is secure if
for any u in V – D, there exists v in D such that (D – {v}) ∪ {u} is a dominating set. A resolving set R
is secure if for any s ∈ V – R, there exists r ∈ R such that (R – {r}) ∪ {s} is a resolving set. The secure
resolving domination number is defined, and its value is found for several classes of graphs. The
characterization of graphs with specific secure resolving domination number is also done.

Keywords: resolving set; domination; secure resolving set and secure resolving domination

1. Introduction

Let G = (V, E) be a simple, finite, and connected graph. Let S = {u1, u2, . . . , uk} on which the
ordering (u1, u2, . . . , uk) is imposed. For any w ∈ V (G), the ordered k-tuples r (w |S) = (d(u1, w),
d(u2, w), . . . ., d(uk, w)) is known as the metric description of w with respect to S. The set S is called a
resolving set of G if r (u|S) = r (w |S) implies u = w for all u, w ∈ V(G). A resolving set of G of minimum
cardinality is called a minimum resolving set or a basis, and the cardinality of a minimum resolving
set is called the dimension of G, which is denoted by dim(G) [1].

The idea of locating sets in a connected graph is already available in the literature [2,3].
Slater initiated the concept of locating sets (resolving sets) and a reference set (metric dimension) nearly
four decades ago. Later, Harary and Melter found the above-mentioned theory [4] independently.
They adopted the term metric dimension for locating number. Several papers have been published on
resolving sets, resolving dominating sets, independent resolving sets, etc.

Security is a concept that is associated with several types of sets in a graph. For example,
a dominating set D of G is secure set if for any v ∈ V − D there exist u ∈ D such that (D − {u}) ∪ {v}
is a dominating set [5,6]. Secure independent sets, secure equitable sets etc., have been defined and
discussed. In this paper, secure resolving sets and secure resolving dominating sets are introduced
and studied.

In this paper, G refers to a simple, finite, and connected graph. The abbreviations used in this
paper are as follows:

• SR set: Secure resolving set
• SRD set: Secure resolving dominating set

The role of symmetry in the following study:

Symmetry 2018, 10, 439; doi:10.3390/sym10100439 www.mdpi.com/journal/symmetry269
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Regarding the symmetry role, a complete graph has vertex transitivity, which is a symmetry. Km,n

has vertices that have degree symmetry in the partite sets. One more important aspect of symmetry is
present in the concept of the SR set, as well as in SRD sets. In SR sets, every vertex has the opportunity
of being a member of a resolving set. Thus, a symmetry is achieved in the presence of vertices. A similar
thing happens in domination. In practical application, in any Executive Council, equal opportunity is
to be given to all of the members of the General Council for inclusion in the Executive Council. Thus,
the spirit of symmetry is present in the form of equality. That is, there is a symmetry in the treatment
of vertices.

2. Secure Resolving Dimension

Definition 1. A subset T of G is a SR set of G if T is resolving and for any x ∈ V − T, there exists y ∈ T such
that (T − {y}) ∪ {x} is a resolving set of G. The minimum cardinality of a SR set of G is known as the secure
resolving dimension of G, and is marked by sdim(G).

Remark 1. The existence of a SR set is guaranteed.For, in any graph, the vertex set V(G) is a secure set as well
as a resolving set.

Remark 2. dim(G) ≤ sdim (G).

3. Secure Resolving Dimension for Some Well-Known Graphs

1. sdim (Kn) = n − 1 = dim (Kn)
2. sdim (K1, n) = n > dim (K1, n)
3. sdim (Km,n) = m + n − 2 = dim(Km,n) (m, n ≥ 2)
4. sdim (Pn) = 2 > dim (Pn) = 1 (n ≥ 3)
5. sdim(Cn) = 2 = dim(Cn)

6. sdim (Km (a1, a2, . . . , am)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dim(Km(a1, a2, . . . , am)) + 1
i f ai ≥ 2 f or atleast one i
dim (Km(a1, a2, . . . , am))

i f ai = 1 f or all i.

where (Km(a1, a2, . . . , am)) is the multi-star graph formed by joining ai ≥ 1 (1 ≤ i ≤ m) pendant
vertices to each vertex xi of a complete graph Km with V(Km) = {x1, x2, . . . , xm}.

Illustration 1. Consider C5.

let H = {u1, u3}. Then, H is resolving, and for any u ∈ V − H, there exists v ∈ H such that (H − {v}) ∪
{u}) is a resolving set of C5. It can be easily seen that sdim(G) = 2.

4. Secure Resolving Dimension for Special Classes of Graphs

Observation 1. Let order of G ≥ 3. Suppose sdim (G) = 1. Then, dim (G) = (since sdim(G) ≥ dim(G)).
Therefore, G = Pn. However, sdim(Pn) = 2, which is a contradiction. Therefore, sdim(G) ≥ 2.

Observation 2. sdim(G) = 1 if and only if G = P1 or P2.
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Theorem 1. sdim(G) = 2, G is a tree if and only if G = Pn (n ≥ 3).

Proof. If G = Pn (n ≥ 3), then sdim(G) = 2.

Conversely, suppose n ≥ 4. Suppose there are two pendant vertices v1, v2 adjacent with w of G. Take
a vertex t, which is adjacent to w (t �= v1, v2). {v1, w} is not a resolving set, since t and v2 will not have
distinct codes with respect to {v1, w}. Assume that {v1, v2} is a resolving set of G. Then, it is not secure,
since {v1, w} and {v2, w} are not resolving sets. Suppose {v1, t} is resolving. Then, it is not secure (since
{v1, w}, {w, t} are not resolving sets of G). Let {a, b} be a resolving set of G. a, b /∈ {v1, v2, w}. Then, {a, b}
is not secure, since neither {w, b} nor {w, a} is a resolving set of Pn (since d(v1, a) = d(w, a) + 1 = d(v2, a)).
Therefore, no vertex of G supports two or more pendant vertices. Suppose that w is a vertex of G that
supports one pendant vertex and there exists at least two neighbors of w having degrees greater than
or equal to two. Then, we will not get any resolving set with cardinality two containing w. Therefore,
any vertex of G with a pendant neighbor has at most one neighbor of degree greater than or equal to
two. Therefore, G is a path. Suppose that n = 3. Since G is acyclic and connected, G = P3. �

Theorem 2. sdim(Cn) = dim(Cn) = 2.

Proof. Let V(Cn) = {m1, m2, . . . , mn}.

Case (i): n = 2k + 1.

Let M = {m1, m2}. Then, M is a resolving set of Cn. It can be verified that {m1, mi} is a resolving set
where 3 ≤ i ≤ n.

Case (ii): n = 2k.

Then, m1 and mk are diametrically opposite vertices. Let M = {m1, m2}. Clearly, {m1, m2} is a
resolving set of Cn. It can be substantiated that {m1, mi} is resolving when 3 ≤ i ≤ n, i �= k. Also, {mk,
m2} is a resolving set of Cn. Therefore, sdim (G) = 2 = dim(G).

Remark 3. sdim(G) ≤ 1 + dim(G).

Proof. sdim(G) ≥ dim(G). Suppose that dim(G) < sdim(G). Let T = {u1, u2, . . . ., uk} be a basis of G. Let W =
{u1, u2, . . . , uk, v}. Then, W is a SR set of G. Therefore, sdim(G) ≤ k + 1. However, sdim(G) > dim(G) = k.
Therefore, sdim(G) ≤ 1 + dim(G). Hence the remark. �

Theorem 3. sdim(G) = n − 1 if and only if G = Kn or K1, n − 1.

Proof. Let G = Kn or K1,n − 1. Then, sdim(G) = n − 1. Suppose that sdim(G) = n − 1. Then, dim(G) is n − 1
or n − 2. If dim(G) = n − 1, then G = Kn. Suppose that dim(G) is n − 2. Then, G = Ka, b (a, b≥ 1), Ka + Kb
(b ≥ 2, a ≥ 1), Ka + (K1 ∪ Kb) (b, a ≥ 1). Suppose that G = Ka,b (a, b ≥ 2), sdim(G) = dim(G) = a + b − 2 [1].
Suppose that G = Ka + Kb (b ≥ 2, a ≥ 1), then dim(G) = a + b − 2. If a = 1, then Ka + Kb = K1,b. In this
case, sdim(G) = b and dim(G) = b − 1. If a ≥ 2, then sdim(G) = a + b − 2 = dim(G).

Let G = Ka + (K1∪ Kb), (a, b ≥ 1). When a = 1 and b = 1, G = P3 and sdim(P3) = 2 and dim(P3) = 1.
Clearly, G is a star. When a = 1 and b ≥ 2, sdim(G) = a + b − 1 = dim(G). Suppose that a > 1 and b = 1.
Then, sdim(G) = a = dim(G). Suppose that a, b > 1. Then, sdim(G) = a + b − 1= dim(G). Except when G is
a star, sdim(G) = dim(G) = n − 2. Therefore, G = K1, n − 1. �

Theorem 3. Let T be a connected graph. Let G = TK2. Then, sdim(T) ≤ sdim(TK2) ≤ sdim(T) + 1.

Proof. Refer to Theorem 7 [1]. Let G = T K2, T1, and T2 be the transcripts of T in G. Let X be a basis
of T, and let X1 = {x1, x2, . . . , xk} and X2 = {y1, y2, . . . , yk} be the basis of T1 and T2 respectively,
corresponding to X. Let S = X1 ∪ {y1}. Then, S is a SR set of G. Therefore, sdim(G) ≤ sdim(T) + 1. Let V1,
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V2 be the vertex sets of T1 and T2 respectively. Then, V(G) = V1 ∪ V2. Let X be a secure basis of G.
Let X1 = X ∩ V1, X2 = X ∩ V2. Let S1 ⊆ V (T1) be the union of X1 and the set X’2 consisting of those
vertices of V1 corresponding to X2. Then, S1 is a SR set of T1. Therefore, sdim(T) = sdim(T1) ≤ | S1| =
|X1 ∪ X’2| ≤ |X1| + | X’2| = |X| = sdim(G). Hence, the theorem. �

Corollary 1. Let ε > 0. Then, sdim(G)
sdim(T) < ε where T is a connected induced subgraph of G.

Proof. Let T = K1, 2
n + 1. sdim(T) = 2n + 1. Let G = T K2. Then, we get a graph G containing T as

an induced subgraph [1]. Further, sdim(G) ≤ 2n. Therefore, sdim(G)
sdim(T) ≤ 2n

2n+1 → 0 as n → 0. Hence,
the corollary. �

5. Secure Resolving Domination Number

Definition 2. Let U be a subset of G. U = {u1, u2, . . . ., uk} of V (G) is said to be a SRD set of G if U is a
dominating set of G, U is resolving, and U is secure. The minimum cardinality of a SRD set of G is known as a
secure resolving domination number of G, and is represented by γsr(G).

Remark 4. V is a SRD set of G.

6. Secure Resolving Domination Number for Some Well-known Graphs

1. γsr (Kn) = n − 1, n ≥ 2.
2. γsr (K1, n – 1) = n − 1, n ≥ 2.

3. γsr(Pn) =

{
2 i f n = 3, 4⌈ n
3
⌉
+ 1 i f n ≥ 5.

4. γsr(Cn) =

{
2 i f n = 3, 4⌈ n
3
⌉
+ 1 i f n ≥ 5.

5. γsr(Ka1,a2,...,am) = (a1 + a2 + . . . + am)− m.

6.
γsr(Km(a1, a2, . . . , am)) =

⎧⎪⎨
⎪⎩

m + ak+1 + . . . + am − k
i f a1 = . . . = ak = 1 ai ≥ 2, k + 1 ≤ i ≤ m

m if ai = 1 f or all i

where (Km(a1, a2, . . . , am)) is the multi-star graph formed by joining ai ≥ 1 (1 ≤ i ≤ m) pendant vertices
to each vertex xi of a complete graph Km with V(Km) = {x1, x2, . . . , xm}.

Illustration 2. Consider the following graph K3(1, 1, 1).

let N = {u1, u2, u3}. Then N is a secure, dominating, and resolving set of K3(1, 1, 1). It can be easily seen
that. γsr (K3(1, 1, 1)) = 3.

Proposition 1. Let γs be the minimum cardinality of a secure dominating set of G. Then, max {γs(G), dim(G),
γr(G)} ≤ γsr(G) ≤ γs(G) + dim(G).

Proof. Let L be a minimum secure dominating set of G and W be a basis of G. Then, L ∪ W is a SRD set
of G. Hence, γsr(G) ≤ γs(G) + dim(G). The first inequality is obvious. �

Remark 5. P ∪ {u} is a SRD set of G, P is a minimum resolving dominating set of G.
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Illustration 3. Consider the given graph G.

Here, γ(G) = 2 and dim(G) = 3 (since {u1, u4} is a minimum dominating set, {u5, u7, u8} is a minimum
resolving set of G). γr(G) = 4 (since {u1, u5, u7, u8} is a minimum resolving dominating set of G. {u1,
u4, u5, u7, u8} is a SRD set of G. Let S be a minimum SRD set of G. Consequently, γsr(G) ≤ 5. Since S
is resolving, S must contain two of the pendant vertices. If S contains u2, then u6 and the remaining
pendant vertices are not resolved. If S contains u6, then u2 and the remaining pendant vertices are not
resolved. If S contains u4, then u5 and u3 are not resolved. Therefore, either S contains u5 and two of
the pendant vertices or u3 and two of the pendant vertices. If S contains u5 and two of the pendant
vertices, then the remaining pendant vertex is not resolved. Therefore, the resolving dominating set
contains u1. Therefore, the possibilities of the resolving dominating sets are {u1, u5, u7, u8}, {u1, u5, u8,
u9}, {u1, u5, u7, u9}, {u1, u3, u7, u8}, {u1, u3, u8, u9}, and {u1, u3, u7, u9}. None of these is secure, since u2

and u6 cannot be replaced in all of these sets. Therefore, γsr(G) ≥ 5. Hence, γsr(G) = 5. Thus, γ(G) <
dim(G) < γr(G) < γsr(G). Also, γsr(G) = γ(G) + dim(G). γs(G) = 3, since G has no secure dominating set
with two vertices, and {u1, u4, u3} is a secure dominating set. Therefore, γsr(G) = 5 < γs(G) + dim(G) = 6
and max {γs(G), dim(G), γr(G)} = 4 < γsr(G) = 5.

Remark 6. When G = Kn, γ(G) = 1, γs(G) = 1, dim(G) = n − 1, γr(G) = n − 1, γsr(G) = n − 1. Therefore,
max {γs(G), dim(G), γr(G)} = γsr(G).

Observation 3. γsr(G) ≥ g(m, d), where g(m, d) = min

{
t : t + ∑t

i=1

(
t
i

)
(d − 1)t−i ≥ m

}
, d is a diameter

of G, the order of G is m ≥ 2, and d and m are positive integers with d < m. This follows from proposition 2.1 [6]
and that γsr(G) ≥ γr(G).

Observation 4. For every positive integer k, there are only finitely many connected graphs with secure resolving
domination number k.

Proof. Consider a graph G with order m ≥ 2 and γsr(G) = k. From corollary 2.2 [6] m ≤ k +

∑k
i=1

(
k
i

)
(d − 1)l−i. γ(G) ≤ γsr(G ) = k. Therefore, the diameter of G is not more than 3k − 1. Therefore,

m ≤ k + ∑k
i=1

(
k
i

)
(3k − 2)k−i. Therefore, there are only finitely many connected graphs with

γsr(G) = k.�

Remark 7. Suppose that γsr(G) = 2. Then, the number of connected graphs with γsr(G) = 2 has an order of at
most 11.

Proof. By the above observation, n ≤ 2 + ∑2
i=1

(
2
i

)
(6 − 2)2−i = 2 +

(
2
1

)
4 +

(
2
2

)
4 = 2 + 8 +

1 = 11.
In fact, the above bound for n can be improved. �

Observation 5. For any G with γsr(G) = 2, the order of G is not more than 4.
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Proof. Let γsr(G) = 2. Let X = {p, q} be a γsr—set of G. If d(p, q) ≥ 4, then p and q cannot dominate the
point at a distance 2 from p in the shortest path joining p and q. Therefore, d(p, q) ≤ 3. �

Case (i): Distance between p and q is 1.

As every single vertex in V (G) − X is adjacent with either both p and q or one of them, the distances
of the vertices in V (G) − X from p and q are (1, 2), (2, 1), and (1, 1). Then, G is as follows:

Here, s cannot enter X by removing a vertex of X, since such a resulting set is not a dominating
set. Therefore, G = P4. If both pendants r and t are removed, then the resulting set is K3, for which
γsr(G) = 2. That is, G = K3.

If r, s, and t are present and r is adjacent with s, then the graph is:

Here, r cannot enter X, since resolving fails.
If r, s, and t are existing, r and t are adjacent with s, then the graph is:

Here, s cannot enter X, since resolution fails.
If r and t are adjacent, then the graph H3 is as follows:

In H3, s cannot enter X, since domination fails. If r, s, and t are mutually adjacent, then the graph
H4 is as follows:
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In the above graph, s cannot enter X, since resolution fails. The remaining cases are: (i) s is not
present, and r and t are non-adjacent. In this case, G = P4. (ii) r and t are available, s is not present and
r and t are adjacent. We get G = C4. (iii) r and s are alone present and r and s adjacent. We get C4 with
a diagonal. (iv) r and s are alone and present, and they are not adjacent. We get K3 with a pendant
vertex. Thus, in this case, G = P3, P4, C4, C4 with a diagonal and K3 with a pendant vertex.

Case (ii): d(p,q) = 2.

Since every vertex in V(G) − X is adjacent with at least one of p and q, the distances of the vertices
3 in V(G) − X from p and q are (1, 3), (3, 1), (1, 2), (2, 1), and (1, 1). Therefore, the graph is as follows:

For security in H5, r1 cannot enter {p, q} by removing p or q, since domination fails. Therefore,
only one of r and r1 can be present. Similarly, one of s and s1 can be present. Therefore, the graphs are
as follows:

In graph H9, w cannot enter X = {p, q}. In H6, if w enters X by removing p or q, then the resulting
set is not resolving, although it is dominating. In graph H7, if w enters X, then for domination, q should
be replaced by w. However, the resulting set is not resolving. Same is the graph H8. In graphs H11, H12,
and H13, w cannot enter X, since resolution fails. In graph H14, w cannot enter X, since domination fails.

Case (iii): d(p,q) = 3.

Since vertices in V(G) − X are adjacent with one of p and q, the distances of the vertices in
V (G) − X from p and q are (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), and (4, 1).

Only one of r, r2, and r3 can be present, since {p, q} is an SRD set. Similarly, only one of s and
s2 can be present. If any number of edges among the vertices r3, r, x2, s, and s2 are inserted, then w1

cannot enter X by replacing p or q, since domination fails.
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Subcase (i): r3 is present.
In this case, w1 cannot enter X by replacing p, q, since domination fails.

Subcase (ii): s2 is exist.
In this case, w2 cannot enter X by replacing p, q. (since domination fails).

Subcase (iii): One of r, r2, and s is present.
Then, the graphs are as follows:

In H15, either w1 or w2 cannot enter X by replacing p, q, since resolution fails. In H16, w1 cannot
enter X, since domination fails.

In H17, w1 cannot enter X, since resolution fails. In H18, w1 cannot enter X, since domination fails.

Subcase (iv): Only one of r, r2 is present, and none of s, s2 is present.
Then, the graphs are as follows:

In H19, w1 cannot enter X, since resolution fails. In H20, w2 cannot enter X, since domination fails.
In H21, w1 cannot enter X, since domination fails. Similarly, if only one of s and s2 is present, and none
of r, r1, and r2 is present, then w2 cannot enter X. Therefore, G = P4.

Subcase (v): None of x, x2, x3, y, and y2 is present. Then, G = P4. �

Corollary 2. γsr(G) = 2 if and only if G = P4, P3, C3, C4, and K3 with a pendant vertex and K4 − {e}.

Proposition 2. Let l ≥ 1, m ≥ 2, and n = l + m be three integers. Then, there exists G with γ(G) = l, dim(G) = q
and γsr(G) = n.

Proof. We follow the proof given in proposition 3.1 [6]. Construct a graph G from the path P3l − 1:
v1, v2, . . . , v3l − 1 of order 3l − 1. Join m—pairs of vertices xj, yj, 1 ≤ j ≤ m and join xj and yj for
each j. Consider, Fj—a copy of the path P2: xj yj. Join the vertex of Fj, 1 ≤ j ≤ m to the vertex v3t − 1.
For l = m = 2, the graph is as follows:
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Let V = {v1, v2, . . . , v3l-1}, T = {x1, x2, . . . , xm}, and W = {y1, y2, . . . , ym}. Then, γ(G) = l and
dim(G) = m (since {v2, v5, . . . , v3l − 1} is dominating, and T is a basis of G. Each resolving set of G has
at least one vertex from each set, {xj, yj}, 1 ≤ j ≤ m. All of the vertices xj, yj, and v3l − 1 are dominated
by them. We need at least 3l−2

3 = l vertices to dominate V-{v3l − 1}. As a result, γr(G) ≥ l + m. However,
K = {v2, v5, . . . , v3l − 1} ∪ X is a resolving dominating set for G. Hence, γr(G) ≤|K| = l + m. Therefore,
γr(G) = l + m. Clearly, K is a SRD set of G. Therefore, γsr(G) ≤ l + m. However, γsr(G) ≥ γr(G) = l + m.
Therefore, γsr(G) = l + m = n. �

Theorem 4. Let G be a graph of order n ≥ 2. γsr(G) = n − 1 if and only if G = Kn or K1, n − 1.

Proof. γsr(G) = n − 1. Consequently, no (n − 2) subset of V(G) is a SRD set of G. Suppose that there
exists an (n − 2) resolving subset S of V (G) that is not a secure dominating set of G. Let V (G) − S =
{u, v}. Suppose that S is not a dominating set of G. Since G is connected, exactly one of u and v is not
dominated by S, say u. Clearly, u is a pendant of v. �

Claim: v is adjacent with every vertex of S.
Suppose that v is not adjacent with a vertex w of S. Let T’ = (S − {w})∪{v} = V (G) − {u, w}. Since G

is connected and w is not adjacent with u and v, w is adjacent with some vertex of S. T’ is a dominating
set of G. Therefore, there exists an (n − 2) subset that is a resolving and dominating set of G.

S1 = (T’ ∪ {u}) − {v} is a dominating set of G. Clearly, S is a resolving set, since d (u, v) = 1, d(u,
w) ≥ 2. Therefore, S1 is a secure resolving domination set of G. Therefore, γsr(G) ≤ n − 2, which is a
contradiction. w is adjacent with some vertex x in S. Therefore, S2 = (S ∪ {w}) − {x} is a dominating
set of G. d(u, v) ≥ 2 and d(x, w) = 1. Therefore, S2 is a secure resolving domination set of G. Therefore,
γsr(G) ≤ n − 2, which is a contradiction. Suppose that S is a dominating set of G, but not a secure
dominating set of G. Suppose that u cannot enter S by replacing a vertex of S. Then, any neighbor of u
is either an isolate of S or has private neighbor v. Suppose that every neighbor x of u is an isolate of S.
In this case, if u is not adjacent with v, then G is disconnected, which is a contradiction. If u is adjacent
with v, then (S − N[u]) ∪ {v} is connected. Then, (S − {x}) ∪ {u} is a dominating set of G.

Suppose that (S − N(u)) = φ. Then, either G is a star or G is of the form:

where v is adjacent with some or all of x1, x2, . . . , xk. If G is a star, then γsr(G) = n − 1. If G is not a star,
then the above graph has γsr(G) ≤ n − 2, which is a contradiction.

Suppose that (S − N(u)) �= φ. Then, v is adjacent with at least one vertex, say z of (S − N(u)). d(v,z)
= 1, d(xi, z) �= 1. Therefore, (S − {xi}) ∪ {u} is resolving. Therefore, there exists an (n − 2) SRD set of G,
which is a contradiction.

Suppose that there exists a neighbor x of u which has private neighbor v. Let x be an isolate of S.
Then, G is of the form H1 or of the form H2, where u and v are made adjacent in H1. However, H1 and
H2 have an (n − 2) secure dominating set of G, which is a contradiction.
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If x is not an isolate of S, then either G is complete, or G has (n − 2) SRD set of G, which is a
contradiction. Similarly, v can enter S by replacing a vertex of S. Therefore, any (n − 2) resolving subset
of V (G) is a secure dominating set of G, provided that G is not a star or G is not Kn.

Therefore, the theorem follows.

7. Discussion and Conclusions

A study of SR sets and SRD sets is initiated in this paper. Further work may be done on (i)
conditions for the minimality of SR sets (SRD sets), (ii) uniform SR set (SRD set) (that is to find the least
positive integer t such that every subset of V(G) of cardinality t is an SR set (SRD set)), (iii) a study of
secure metric resolving sets (metric resolving dominating sets) in a graph, and (iv) secure independent
resolving sets (secure independent resolving dominating sets).
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Abstract: Some years ago, the harmonic polynomial was introduced to study the harmonic topological
index. Here, using this polynomial, we obtain several properties of the harmonic index of many
classical symmetric operations of graphs: Cartesian product, corona product, join, Cartesian sum and
lexicographic product. Some upper and lower bounds for the harmonic indices of these operations
of graphs, in terms of related indices, are derived from known bounds on the integral of a product
on nonnegative convex functions. Besides, we provide an algorithm that computes the harmonic
polynomial with complexity O(n2).
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1. Introduction

A single number representing a chemical structure, by means of the corresponding molecular
graph, is known as topological descriptor. Topological descriptors play a prominent role in
mathematical chemistry, particularly in studies of quantitative structure–property and quantitative
structure–activity relationships. Moreover, a topological descriptor is called a topological index if it
has a mutual relationship with a molecular property. Thus, since topological indices encode some
characteristics of a molecule in a single number, they can be used to study physicochemical properties
of chemical compounds.

After the seminal work of Wiener [1], many topological indices have been defined and analysed.
Among all topological indices, probably the most studied is the Randić connectivity index (R) [2].
Several hundred papers and, at least, two books report studies of R (see, for example, [3–7] and
references therein). Moreover, with the aim of improving the predictive power of R, many additional
topological descriptors (similar to R) have been proposed. In fact, the first and second Zagreb indices,
M1 and M2, respectively, can be considered as the main successors of R. They are defined as

M1(G) = ∑
uv∈E(G)

(du + dv) = ∑
u∈V(G)

d2
u, M2(G) = ∑

uv∈E(G)

dudv,

where uv is the edge of G between vertices u and v, and du is the degree of vertex u. Both M1 and M2

have recently attracted much interest (see, e.g., [8–11]) (in particular, they are included in algorithms
used to compute topological indices).
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Another remarkable topological descriptor is the harmonic index, defined in [12] as

H(G) = ∑
uv∈E(G)

2
du + dv

.

This index has attracted a great interest in the lasts years (see, e.g., [13–18]). In particular, in [16]
appear relations for the harmonic index of some operations of graphs.

In [19], the harmonic polynomial of a graph G is defined as

H(G, x) = ∑
uv∈E(G)

xdu+dv−1,

and the harmonic polynomials of some graphs are computed. For more information on the study of
polynomials associated with topological indices and their practical applications, see, e.g., [20–23].

This polynomial owes its name to the fact that 2
∫ 1

0 H(G, x) dx = H(G).
The characterization of any graph by a polynomial is one of the open important problems in

graph theory. In recent years, there have been many works on graph polynomials (see, e.g., [21,24] and
the references therein). The research in this area has been largely driven by the advantages offered
by the use of computers: it is simpler to represent a graph by a polynomial (a vector with dimension
O(n)) than by the adjacency matrix (an n × n matrix). Some parameters of a graph allow to define
polynomials related to a graph. Although several polynomials are interesting since they compress
information about the graphs structure; unfortunately, the well-known polynomials do not solve the
problem of the characterization of any graph, since there are often non-isomorphic graphs with the
same polynomial.

Polynomials have proved to be useful in the study of several topological indices. There are many
papers studying topological indices on graph operations (see, e.g., [25–27]).

Along this work, G = (V, E) = (V(G), E(G)) indicates a finite, undirected and simple
(i.e., without multiple edges and loops) graph with E �= ∅. The main aim of this paper is to
obtain several computational properties of the harmonic polynomial. In Section 2, we obtain closed
formulas to compute the harmonic polynomial of many classical symmetric operations of graphs:
Cartesian product, corona product, join, Cartesian sum and lexicographic product. These formulas are
interesting by themselves and, furthermore, allow to obtain new inequalities for the harmonic index of
these operations of graphs. Besides, we provide in the last section an algorithm that computes this
polynomial with complexity O(n2).

We would like to stress that the symmetry property present in the operations on graphs studied
here (Cartesian product, corona product, join, Cartesian sum and lexicographic product) was an
essential tool in the study of the topological indexes, because it allowed us to obtain closed formulas
for the harmonic polynomial and to deduce the optimal bounds for that index.

2. Definitions and Background

The following result appears in Proposition 1 of [19].

Proposition 1. If G is a k-regular graph with m edges, then H(G, x) = mx2k−1.

Propositions 2, 4, 5, 7 in [19] have the following consequences on the graphs: Kn (the complete graph
with n vertices), Cn (the cycle with n ≥ 3 vertices), Qn (the n-dimensional hypercube), Kn1,n2 (the complete
bipartite graph with n1 + n2 vertices), Pn (the path graph with n vertices), and Wn (the wheel graph with
n ≥ 4 vertices).
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Proposition 2. We have

H(Kn, x) =
1
2

n(n − 1)x2n−3, H(Cn, x) = nx3,

H(Qn, x) = n2n−1x2n−1, H(Kn1,n2 , x) = n1n2xn1+n2−1,

H(Pn, x) = 2x2 + (n − 3)x3, H(Wn, x) = (n − 1)(xn+1 + x5).

In Propositions 2.3 and 2.6 in [28] appear the following result.

Proposition 3. If G is a graph with m edges, then:

• H(k)(G, x) ≥ 0 for every k ≥ 0 and x ∈ [0, ∞);
• H(G, x) > 0 on (0, ∞) and H(G, x) is strictly increasing on [0, ∞);
• H(G, x) is strictly convex on [0, ∞) if and only if G is not isomorphic to a union of path graphs P2; and
• 0 = H(G, 0) ≤ H(G, x) ≤ H(G, 1) = m for every x ∈ [0, 1].

Considering the Zagreb indices, Fath-Tabar [29] defined the first Zagreb polynomial as

M1(G, x) := ∑
uv∈E(G)

xdu+dv .

The harmonic and the first Zagreb indices are related by several inequalities (see [30],
Theorem 2.5 [31] and [32], p. 234). Moreover, the harmonic and the first Zagreb polynomials are
related by the equality M1(G, x) = x H(G, x),

In [33], Shuxian defined the following polynomial related to the first Zagreb index as

M∗
1(G, x) := ∑

u∈V(G)

duxdu .

Given a graph G, let us denote by S(G) its subdivision graph. S(G) is constructed from G by
inserting an additional vertex into each of its edges. Concerning S(G), in Theorem 2.1 of [25],
the following result appears.

Theorem 1. For the subdivision graph S(G) of G, the first Zagreb polynomial is

M1(S(G), x) = x2M∗
1(G, x).

Since the harmonic and the first Zagreb polynomials are related by the equality M1(G, x) =

x H(G, x), we have the following result for the harmonic polynomial of the subdivision graph.

Proposition 4. Given a graph G, the harmonic polynomial of its subdivision graph S(G) is

H(S(G), x) = x M∗
1(G, x).

Similarly, we can obtain the harmonic polynomial for the other operations on graphs appearing
in [25].

Next, we obtain the harmonic polynomial for other classical operations: Cartesian product,
corona product, join, Cartesian sum and lexicographic product. It is important to stress that, since large
graphs are composed by smaller ones by the use of products of graphs (and, as a consequence,
their properties are strongly related), the study of products of graphs is a relevant and timely
research subject.

Let us recall the definitions of these classical products in graph theory.
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The Cartesian product G1 × G2 of the graphs G1 and G2 has the vertex set V(G1 × G2) = V(G1)×
V(G2) and (ui, vj)(uk, vl) is an edge of G1 × G2 if ui = uk and vjvl ∈ E(G2), or uiuk ∈ E(G1) and vj =

vl .
Given two graphs G1 and G2, we define the corona product G1 ◦ G2 as the graph obtained by adding

to G1, |V(G1)| copies of G2 and joining each vertex of the i-th copy with the vertex vi ∈ V(G1).
The join G1 + G2 is defined as the graph obtained by taking one copy of G1 and one copy of G2,

and joining by an edge each vertex of G1 with each vertex of G2.
The Cartesian sum G1 ⊕ G2 of the graphs G1 and G2 has the vertex set V(G1 ⊕ G2) = V(G1)×

V(G2) and (ui, vj)(uk, vl) is an edge of G1 ⊕ G2 if uiuk ∈ E(G1) or vjvl ∈ E(G2).
The lexicographic product G1  G2 of the graphs G1 and G2 has V(G1)×V(G2) as vertex set, so that

two distinct vertices (ui, vj), (uk, vl) of V(G1  G2) are adjacent if either uiuk ∈ E(G1), or ui = uk and
vjvl ∈ E(G2).

Let us introduce another topological index that will be very useful in this work.
The inverse degree ID(G) of a graph G is defined by

ID(G) := ∑
u∈V(G)

1
du

= ∑
uv∈E(G)

( 1
d2

u
+

1
d2

v

)
.

It is relevant to mention that the surmises inferred through the computer program Graffiti [12]
attracted the attention of researchers. Thus, since then, several studies (see, e.g., [34–38]) focusing
on relationships between ID(G) and other graph invariants (such as diameter, edge-connectivity,
matching number and Wiener index) have appeared in the literature.

Let us define the inverse degree polynomial of a graph G as

ID(G, x) = ∑
u∈V(G)

xdu−1.

Thus, we have
∫ 1

0 ID(G, x) dx = ID(G). Note that x(xID(G, x))′ = M∗
1(G, x).

The following result summarizes some interesting properties of the inverse degree polynomial.
Recall that a vertex of a graph is said to be pendant if it has degree 1.

Proposition 5. If G is a graph with n vertices and k pendant vertices, then:

• ID(j)(G, x) ≥ 0 for every j ≥ 0 and x ∈ [0, ∞);
• ID(G, x) > 0 on (0, ∞);
• ID(G, x) is strictly increasing on [0, ∞) if and only if G is not isomorphic to a union of path graphs P2;
• ID(G, x) is strictly convex on [0, ∞) if and only if G is not isomorphic to a union of path graphs; and
• k = ID(G, 0) ≤ ID(G, x) ≤ ID(G, 1) = n for every x ∈ [0, 1].

Proof. Since every coefficient of the polynomial ID(G, x) is non-negative, the first statement holds.
Since every coefficient of the polynomial ID(G, x) is non-negative and ID(G, x) is not identically

zero, we have ID(G, x) > 0 on (0, ∞).
Since every coefficient of the polynomial ID(G, x) is non-negative, we have ID′(G, x) > 0 on

(0, ∞) if and only if there exists a vertex u ∈ V(G) with du ≥ 2, and this holds if and only if G is not
isomorphic to a union of path graphs P2.

Similarly, ID(G, x) is strictly convex on [0, ∞) if and only if there exists a vertex u ∈ V(G) with
du ≥ 3, and this holds if and only if G is not isomorphic to a union of path graphs.

Finally, if x ∈ [0, 1], then
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k = ID(G, 0) ≤ ∑
u∈V(G)

xdu−1 ≤ ∑
u∈V(G)

1 = ID(G, 1) = n.

Proposition 4 has the following consequence, which illustrates how these polynomials associated
to topological indices provide information about the topological indices themselves.

Corollary 1. Given a graph G with maximum degree Δ, the harmonic index of the subdivision graph
S(G) satisfies

H(S(G)) ≤ 2Δ ID(G).

Proof. Proposition 4 gives

H(S(G)) = 2
∫ 1

0
H(S(G), x) dx = 2

∫ 1

0
x M∗

1(G, x) dx = 2
∫ 1

0
x ∑
u∈V(G)

duxdu dx

≤ 2Δ
∫ 1

0
∑

u∈V(G)

xdu−1dx = 2Δ
∫ 1

0
ID(G, x) dx = 2Δ ID(G).

3. Computation of the Harmonic Index of Graph Operations

Let us start with the formula of the harmonic polynomial of the Cartesian product.

Theorem 2. Given two graphs G1 and G2, the harmonic polynomial of the Cartesian product G1 × G2 is

H(G1 × G2, x) = x2H(G1, x) ID(G2, x2) + x2H(G2, x) ID(G1, x2).

Proof. Denote by n1 and n2 the cardinality of the vertices of G1 and G2, respectively.
Note that if (ui, vj) ∈ V(G1 × G2), then d(ui ,vj)

= dui + dvj .
If (ui, vk)(uj, vk) ∈ E(G1 × G2), then the corresponding monomial of the harmonic polynomial is

xdui+dvk+duj+dvk−1
= x2dvk xdui+duj−1.

Hence,

n2

∑
k=1

∑
uiuj∈E(G1)

x2dvk xdui+duj−1
= x2

n2

∑
k=1

(x2)dvk−1 ∑
uiuj∈E(G1)

xdui+duj−1
= x2 ID(G2, x2) H(G1, x).

The same argument gives that the sum of the monomials corresponding to (uk, vi)(uk, vj) ∈
E(G1 × G2) is x2H(G2, x) ID(G1, x2), and the equality holds.

Next, we present two useful improvements (for convex functions) of the well-known
Chebyshev’s inequalities.

Lemma 1 ([39]). Let f1, . . . , fk be non-negative convex functions defined on the interval [0, 1]. Then,

∫ 1

0

k

∏
i=1

fi(x) dx ≥ 2k

k + 1

k

∏
i=1

∫ 1

0
fi(x) dx .
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Lemma 2 (Corollary 5.2 [40]). Let f1, . . . , fk be non-negative convex functions defined on the interval
[0, 1]. Then

∫ 1

0

k

∏
i=1

fi(x) dx ≤ 2
k + 1

(
k

∏
i=1

∫ 1

0
fi(x) dx

)1/k ( k

∏
i=1

(
fi(0) + fi(1)

))1−1/k

.

Theorem 3. Given two graphs G1 and G2 with n1 and n2 vertices, and m1 and m2 edges, respectively, the
harmonic index of the Cartesian product G1 × G2 satisfies

H(G1 × G2) ≥
1
2

H(G1) ID(G2) +
1
2

H(G2) ID(G1),

H(G1 × G2) ≤ min
{2

3

(
m1n2H(G1) ID(G2)

)1/2
,

1
2

(
m2

1n2
2H(G1) ID(G2)

)1/3}
+ min

{2
3

(
m2n1H(G2) ID(G1)

)1/2
,

1
2

(
m2

2n2
1H(G2) ID(G1)

)1/3}
.

Proof. Propositions 3 and 5 give that H(G1, x), ID(G2, x2), H(G2, x), ID(G1, x2) are non-negative
convex functions. Thus, Lemma 1 gives

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≥ 23

3 + 1

∫ 1

0
x dx

∫ 1

0
H(G1, x) dx

∫ 1

0
2xID(G2, x2) dx

= 2
1
2

∫ 1

0
H(G1, x) dx

∫ 1

0
ID(G2, x) dx =

1
2

H(G1) ID(G2).

Similarly, ∫ 1

0
2x2H(G2, x) ID(G1, x2) dx ≥ 1

2
H(G2) ID(G1).

These inequalities, Theorem 2 and H(G1 × G2) = 2
∫ 1

0 H(G1 × G2, x) dx give the lower bound.
Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≤

∫ 1

0
2x H(G1, x) ID(G2, x2) dx

≤ 2
3

(∫ 1

0
H(G1, x) dx

∫ 1

0
2xID(G2, x2) dx

)1/2 (
2H(G1, 1) ID(G2, 1)

)1/2

=
2
3

(
m1n2H(G1) ID(G2)

)1/2
.

In addition, Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≤ 1

2

(∫ 1

0
x dx

∫ 1

0
H(G1, x) dx

∫ 1

0
2xID(G2, x2) dx

)1/3 (
2H(G1, 1) ID(G2, 1)

)2/3

=
1
2

(
m2

1n2
2H(G1) ID(G2)

)1/3
.

These inequalities give

∫ 1

0
2x2H(G1, x) ID(G2, x2) dx ≤ min

{2
3

(
m1n2H(G1) ID(G2)

)1/2
,

1
2

(
m2

1n2
2H(G1) ID(G2)

)1/3}
.

Similarly,

∫ 1

0
2x2H(G2, x) ID(G1, x2) dx ≤ min

{2
3

(
m2n1H(G2) ID(G1)

)1/2
,

1
2

(
m2

2n2
1H(G2) ID(G1)

)1/3}
.
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These inequalities, Theorem 2 and H(G1 ×G2) = 2
∫ 1

0 H(G1 ×G2, x) dx give the upper bound.

Theorem 4. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the corona product G1 ◦ G2 is

H(G1 ◦ G2, x) = x2n2 H(G1, x) + n1x2H(G2, x) + xn2+2 ID(G1, x) ID(G2, x).

Proof. The degree of u ∈ V(G1), considered as a vertex of G1 ◦ G2, is du + n2. The degree of any copy
v′ of v ∈ V(G2), considered as a vertex of G1 ◦ G2, is dv + 1.

If uiuj ∈ E(G1), then the corresponding monomial of the harmonic polynomial of G1 ◦ G2 is

xdui+n2+duj+n2−1
= x2n2 xdui+duj−1.

Hence,

∑
uiuj∈E(G1)

x2n2 xdui+duj−1
= x2n2 ∑

uiuj∈E(G1)

xdui+duj−1
= x2n2 H(G1, x).

If vivj ∈ E(G2), then each corresponding monomial of the harmonic polynomial of G1 ◦ G2 is

xdvi+1+dvj+1−1
= x2xdvi+dvj−1.

Therefore,

∑
vivj∈E(G2)

x2xdvi+dvj−1
= x2 ∑

vivj∈E(G2)

xdvi+dvj−1
= x2H(G2, x).

If we add the corresponding polynomials of the n1 copies of G2, then we obtain n1x2H(G2, x).
If uiv′j ∈ E(G1 ◦ G2) with ui ∈ V(G1) and vj ∈ V(G2), then the corresponding monomial of the

harmonic polynomial is

xdui+n2+dvj+1−1
= xn2+2xdui−1xdvj−1.

Hence,

n1

∑
i=1

n2

∑
j=1

xn2+2xdui−1xdvj−1
= xn2+2

n1

∑
i=1

xdui−1
n2

∑
j=1

xdvj−1
= xn2+2 ID(G1, x) ID(G2, x).

Thus, the equality holds.

Theorem 5. Given two graphs G1 and G2 with n1 and n2 vertices, m1 and m2 edges, and k1 and k2 pendant
vertices, respectively, the harmonic index of the corona product G1 ◦ G2 satisfies

H(G1 ◦ G2) ≥
4

3(2n2 + 1)
H(G1) +

4n1

9
H(G1) +

4
n2 + 3

ID(G1) ID(G2),

H(G1 ◦ G2) ≤
2
3

( 2m1

2n2 + 1
H(G1)

)1/2
+

2n1

3

(2m2

3
H(G2)

)1/2

+
( 1

n2 + 3
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

Proof. Lemma 1 gives

∫ 1

0
2x2n2 H(G1, x) dx ≥ 4

3

∫ 1

0
x2n2 dx

∫ 1

0
2 H(G1, x) dx =

4
3(2n2 + 1)

H(G1),∫ 1

0
2n1x2H(G2, x) dx ≥ 4n1

3

∫ 1

0
x2dx

∫ 1

0
2 H(G1, x) dx =

4n1

9
H(G1),
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∫ 1

0
2xn2+2 ID(G1, x) ID(G2, x) dx ≥ 8

4

∫ 1

0
2xn2+2dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

=
4

n2 + 3
ID(G1) ID(G2).

These inequalities, Theorem 4 and H(G1 ◦ G2) = 2
∫ 1

0 H(G1 ◦ G2, x) dx give the lower bound.
Lemma 2 and Proposition 3 give

∫ 1

0
2x2n2 H(G1, x) dx ≤ 2

3

(∫ 1

0
x2n2 dx

∫ 1

0
2 H(G1, x) dx

)1/2 (
2H(G1, 1)

)1/2

=
2
3

( 2m1

2n2 + 1
H(G1)

)1/2
.

In addition, Lemma 2 and Proposition 3 give

∫ 1

0
2n1x2H(G2, x) dx ≤ 2n1

3

(∫ 1

0
x2dx

∫ 1

0
2 H(G2, x) dx

)1/2 (
2H(G2, 1)

)1/2

=
2n1

3

(2m2

3
H(G2)

)1/2
.

Lemma 2 and Proposition 5 give

∫ 1

0
2xn2+2 ID(G1, x) ID(G2, x) dx ≤ 2

4
2
(∫ 1

0
xn2+2dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

)1/3

·
(
(ID(G1, 1) + ID(G1, 0))(ID(G2, 1) + ID(G2, 0))

)2/3

=
( 1

n2 + 3
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

These inequalities, Theorem 4 and H(G1 ◦ G2) = 2
∫ 1

0 H(G1 ◦ G2, x) dx give the upper bound.

Theorem 6. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the join G1 + G2 is

H(G1 + G2, x) = x2n2 H(G1, x) + x2n1 H(G2, x) + xn1+n2+1 ID(G1, x) ID(G2, x).

Proof. The degree of u ∈ V(G1), considered as a vertex of G1 +G2, is du + n2. The degree of v ∈ V(G2),
considered as a vertex of G1 + G2, is dv + n1.

If uiuj ∈ E(G1), then the corresponding monomial of the harmonic polynomial of G1 + G2 is

xdui+n2+duj+n2−1
= x2n2 xdui+duj−1.

Hence,

∑
uiuj∈E(G1)

x2n2 xdui+duj−1
= x2n2 ∑

uiuj∈E(G1)

xdui+duj−1
= x2n2 H(G1, x).

If vivj ∈ E(G2), then the corresponding monomial of the harmonic polynomial of G1 + G2 is

xdvi+n1+dvj+n1−1
= x2n1 xdvi+dvj−1.

Therefore,

∑
vivj∈E(G2)

x2n1 xdvi+dvj−1
= x2n1 ∑

vivj∈E(G2)

xdvi+dvj−1
= x2n1 H(G2, x).
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If uivj ∈ E(G1 + G2) with ui ∈ V(G1) and vj ∈ V(G2), then the corresponding monomial of the
harmonic polynomial is

xdui+n2+dvj+n1−1
= xn1+n2+1xdui−1xdvj−1.

Hence,

n1

∑
i=1

n2

∑
j=1

xn1+n2+1xdui−1xdvj−1
= xn1+n2+1

n1

∑
i=1

xdui−1
n2

∑
j=1

xdvj−1
= xn1+n2+1 ID(G1, x) ID(G2, x),

Thus, the equality holds.

Theorem 7. Given two graphs G1 and G2 with n1 and n2 vertices, m1 and m2 edges, and k1 and k2 pendant
vertices, respectively, the harmonic index of the join G1 + G2 satisfies

H(G1 + G2) ≥
4

3(2n2 + 1)
H(G1) +

4
3(2n1 + 1)

H(G2) +
4

n1 + n2 + 2
ID(G1) ID(G2),

H(G1 + G2) ≤
2
3

( 2m1

2n2 + 1
H(G1)

)1/2
+

2
3

( 2m2

2n1 + 1
H(G2)

)1/2

+
( 1

n1 + n2 + 2
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

Proof. We have seen in the proof of Theorem 5 that

4
3(2n2 + 1)

H(G1) ≤
∫ 1

0
2x2n2 H(G1, x) dx ≤ 2

3

( 2m1

2n2 + 1
H(G1)

)1/2
.

Similarly, we obtain

4
3(2n1 + 1)

H(G2) ≤
∫ 1

0
2x2n1 H(G2, x) dx ≤ 2

3

( 2m2

2n1 + 1
H(G2)

)1/2
.

Lemma 1 gives

∫ 1

0
2xn1+n2+1 ID(G1, x) ID(G2, x) dx ≥ 8

4

∫ 1

0
2xn1+n2+1dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

=
4

n1 + n2 + 2
ID(G1) ID(G2).

Lemma 2 and Proposition 5 give

∫ 1

0
2xn1+n2+1 ID(G1, x) ID(G2, x) dx ≤ 2

4
2
(∫ 1

0
xn1+n2+1dx

∫ 1

0
ID(G1, x) dx

∫ 1

0
ID(G2, x) dx

)1/3

·
(
(ID(G1, 1) + ID(G1, 0))(ID(G2, 1) + ID(G2, 0))

)2/3

=
( 1

n1 + n2 + 2
ID(G1) ID(G2)(n1 + k1)

2(n2 + k2)
2
)1/3

.

These inequalities, Theorem 6 and H(G1 + G2) = 2
∫ 1

0 H(G1 + G2, x) dx give the bounds.

Theorem 8. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the Cartesian sum G1 ⊕ G2 is

H(G1 ⊕ G2, x) = x2n1+n2−1H(G1, xn2) ID2(G2, xn1) + xn1+2n2−1H(G2, xn1) ID2(G1, xn2)

− xn1+n2−1H(G1, xn2) H(G2, xn1).
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Proof. Note that if (ui, vj) ∈ V(G1 ⊕ G2), then d(ui ,vj)
= n2dui + n1dvj .

If (ui, vj)(uk, vl) ∈ E(G1 ⊕ G2), then the corresponding monomial of the harmonic polynomial is

xn2dui+n1dvj+n2duk+n1dvl−1
= x2n1+n2−1(xn2)dui+duk−1(xn1)

dvj−1
(xn1)dvl−1

= xn1+n2−1(xn2)dui+duk−1(xn1)
dvj+dvl−1.

Hence, the sum of the corresponding monomials with uiuk ∈ E(G1) is

n2

∑
j,l=1

∑
uiuk∈E(G1)

x2n1+n2−1(xn2)dui+duk−1(xn1)
dvj−1

(xn1)dvl−1

= x2n1+n2−1
n2

∑
j=1

(xn1)
dvj−1

n2

∑
l=1

(xn1)dvl−1 ∑
uiuk∈E(G1)

(xn2)dui+duk−1

= x2n1+n2−1H(G1, xn2) ID2(G2, xn1).

Similarly, the sum of the corresponding monomials with vjvl ∈ E(G2) is

xn1+2n2−1H(G2, xn1) ID2(G1, xn2).

If we add these two terms, then we take into account twice the corresponding monomials with
uiuk ∈ E(G1) and vjvl ∈ E(G2):

∑
uiuk∈E(G1)

∑
vjvl∈E(G2)

xn1+n2−1(xn2)dui+duk−1(xn1)
dvj+dvl−1

= xn1+n2−1 ∑
uiuk∈E(G1)

(xn2)dui+duk−1 ∑
vjvl∈E(G2)

(xn1)
dvj+dvl−1

= xn1+n2−1H(G1, xn2) H(G2, xn1).

Hence, the equality holds.

Theorem 9. Given two graphs G1 and G2 with n1 and n2 vertices, and m1 and m2 edges, respectively,
the harmonic index of the Cartesian sum G1 ⊕ G2 satisfies

H(G1 ⊕ G2) ≥
16

15n2
1n2

H(G1) ID2(G2) +
16

15n1n2
2

H(G2) ID2(G1)

− 2
3

(m1m2

n1n2
H(G1) H(G2)

)1/2
,

H(G1 ⊕ G2) ≤
n2

2

(4m2
1

n2
1

H(G1) ID2(G2)
)1/3

+
n1

2

(4m2
2

n2
2

H(G2) ID2(G1)
)1/3

− 1
2n1n2

H(G1) H(G2).

Proof. Lemma 1 gives

∫ 1

0
2x2n1+n2−1H(G1, xn2) ID2(G2, xn1) dx ≥ 16

5

∫ 1

0
x2dx

∫ 1

0
2xn2−1H(G1, xn2) dx

·
∫ 1

0
xn1−1 ID(G2, xn1) dx

∫ 1

0
xn1−1 ID(G2, xn1) dx

=
16

15n2
1n2

H(G1) ID2(G2),
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∫ 1

0
2xn1+n2−1H(G1, xn2) H(G2, xn1) dx ≥ 8

4

∫ 1

0
x dx

∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
xn1−1H(G2, xn1) dx

=
1

2n1n2
H(G1) H(G2).

The same argument gives

∫ 1

0
2xn1+2n2−1H(G2, xn1) ID2(G1, xn2) dx ≥ 16

15n1n2
2

H(G2) ID2(G1).

Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2n1+n2−1H(G1, xn2) ID2(G2, xn1) dx ≤

∫ 1

0
2xn2−1H(G1, xn2) x2n1−2 ID2(G2, xn1) dx

≤ 2
4

(∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
xn1−1 ID(G2, xn1) dx

∫ 1

0
xn1−1 ID(G2, xn1) dx

)1/3

·
(
2H(G1, 1) ID(G2, 1) ID(G2, 1)

)2/3
=

1
2

( 1
n2n2

1
H(G1) ID2(G2)

)1/3(
2m1n2

2
)2/3

=
n2

2

(4m2
1

n2
1

H(G1) ID2(G2)
)1/3

.

The same argument gives

∫ 1

0
2xn1+2n2−1H(G2, xn1) ID2(G1, xn2) dx ≤ n1

2

(4m2
2

n2
2

H(G2) ID2(G1)
)1/3

.

In addition, Lemma 2 and Proposition 3 give

∫ 1

0
2xn1+n2−1H(G1, xn2) H(G2, xn1) dx ≤ 1

2

∫ 1

0
2xn2−1H(G1, xn2) 2xn1−1H(G2, xn1) dx

≤ 1
2

2
3

(∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
2xn1−1H(G2, xn1) dx

)1/2(
2H(G1, 1) 2H(G2, 1)

)1/2

=
2
3

(m1m2

n1n2
H(G1) H(G2)

)1/2
.

These inequalities, Theorem 8 and H(G1 ⊕ G2) = 2
∫ 1

0 H(G1 ⊕ G2, x) dx give the
desired bounds.

Theorem 10. Given two graphs G1 and G2, with n1 and n2 vertices, respectively, the harmonic polynomial of
the lexicographic product G1  G2 is

H(G1  G2, x) = x2n2 ID(G1, x2n2) H(G2, x) + xn2+1H(G1, xn2) ID2(G2, x).

Proof. Note that if (ui, vj) ∈ V(G1  G2), then d(ui ,vj)
= n2dui + dvj .

If (ui, vj)(ui, vk) ∈ E(G1  G2), then the corresponding monomial of the harmonic polynomial is

xn2dui+dvj+n2dui+dvk−1
= x2n2(x2n2)dui−1xdvj+dvk−1.

Hence,

n1

∑
i=1

∑
vjvk∈E(G2)

x2n2(x2n2)dui−1xdvj+dvk−1
= x2n2

n1

∑
i=1

(x2n2)dui−1 ∑
vjvk∈E(G2)

xdvj+dvk−1

= x2n2 ID(G1, x2n2) H(G2, x).
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If (ui, vj)(uk, vl) ∈ E(G1  G2) with uiuk ∈ E(G1), then the corresponding monomial of the
harmonic polynomial is

xn2dui+dvj+n2duk+dvl−1
= xn2+1(xn2)dui+duk−1xdvj−1xdvl−1.

Hence, the sum of their corresponding monomials is

∑
uiuk∈E(G1)

n2

∑
j,l=1

xn2+1(xn2)dui+duk−1xdvj−1xdvl−1

= xn2+1 ∑
uiuk∈E(G1)

(xn2)dui+duk−1
n2

∑
j=1

xdvj−1
n2

∑
l=1

xdvl−1

= xn2+1H(G1, xn2) ID2(G2, x).

We obtain the desired equality by adding these two terms.

Theorem 11. Given two graphs G1 and G2 with n1 and n2 vertices, m1 and m2 edges, and k1 and k2 pendant
vertices, respectively, the harmonic index of the lexicographic product G1  G2 satisfies

H(G1  G2) ≥
1

2n2
ID(G1) H(G2) +

16
15n2

H(G1) ID2(G2)

H(G1  G2) ≤
2
3

(n1m2

n2
ID(G1) H(G2)

)1/2
+

1
2

(4m2
1

n2
H(G1) ID2(G2)(n2 + k2)

4
)1/3

.

Proof. Lemma 1 gives

∫ 1

0
2x2n2 ID(G1, x2n2) H(G2, x) dx ≥ 8

4

∫ 1

0
x dx

∫ 1

0
x2n2−1 ID(G1, x2n2) dx

∫ 1

0
2H(G2, x) dx

=
1

2n2
ID(G1) H(G2),∫ 1

0
2xn2+1H(G1, xn2) ID2(G2, x) dx ≥ 16

5

∫ 1

0
x2 dx

∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
ID(G2, x) dx

∫ 1

0
ID(G2, x) dx

=
16

15n2
H(G1) ID2(G2).

Lemma 2 and Propositions 3 and 5 give

∫ 1

0
2x2n2 ID(G1, x2n2) H(G2, x) dx ≤

∫ 1

0
x2n2−1 ID(G1, x2n2) 2H(G2, x) dx

≤ 2
3

(∫ 1

0
x2n2−1 ID(G1, x2n2) dx

∫ 1

0
2H(G2, x) dx

)1/2 (
ID(G1, 1) 2H(G2, 1)

)1/2

=
2
3

(n1m2

n2
ID(G1) H(G2)

)1/2
,

∫ 1

0
2xn2+1H(G1, xn2) ID2(G2, x) dx ≤

∫ 1

0
2xn2−1H(G1, xn2) ID2(G2, x) dx

≤ 2
4

(∫ 1

0
2xn2−1H(G1, xn2) dx

∫ 1

0
ID(G2, x) dx

∫ 1

0
ID(G2, x) dx

)1/3

·
(
2H(G1, 1) (ID(G2, 1) + ID(G2, 0))2)2/3

=
1
2

(4m2
1

n2
H(G1) ID2(G2)(n2 + k2)

4
)1/3

.

These inequalities, Theorem 10 and H(G1  G2) = 2
∫ 1

0 H(G1  G2, x) dx give the bounds.
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4. Algorithm for the Computation of the Harmonic Polynomial

The procedure shown in Algorithm 1 allows to compute the harmonic polynomial of a graph
G with n vertices. This algorithm for computing the harmonic polynomial of a graph shows a
complexity O(n2).

Algorithm 1 procedure Harmonic-Polynomial

Require: AM(G)—Adjacency matrix of G.
1: n = order(AM(G))
2: HPolynomial = [0] ∗(2 ∗ (n − 1))
3: let D be a list with the degree of each vertex
4: for all i with i ∈ {1, 2, ...n − 1} do
5: for all j with j ∈ {i + 1, i + 2, ...n} do
6: if AM[i][j] == 1 then
7: v = D[i]
8: u = D[j]
9: HPolynomial[v + u − 1] = HPolynomial [v + u − 1] + 1

10: end if
11: end for
12: end for
13: return HPolynomial

Author Contributions: The authors contributed equally to this work.

Funding: This work was supported in part by two grants from Ministerio de Economía y Competititvidad, Agencia
Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and
MTM2017-90584-REDT), Spain.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [CrossRef]
[PubMed]
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Abstract: A Topological index also known as connectivity index is a type of a molecular descriptor
that is calculated based on the molecular graph of a chemical compound. Topological indices
are numerical parameters of a graph which characterize its topology and are usually graph
invariant. In QSAR/QSPR study, physico-chemical properties and topological indices such as
Randić, atom-bond connectivity (ABC) and geometric-arithmetic (GA) index are used to predict
the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of
research. In this paper, we study HDCN1(m,n) and HDCN2(m,n) of dimension m, n and derive
analytical closed results of general Randić index Rα(G) for different values of α. We also compute the
general first Zagreb, ABC, GA, ABC4 and GA5 indices for these Hex derived cage networks for the
first time and give closed formulas of these degree-based indices.

Keywords: general randić index; atom-bond connectivity (ABC) index; geometric-arithmetic (GA)

index; Hex-Derived Cage networks; HDCN1(m, n), HDCN2(m, n)

1. Introduction

A graph is formed by vertices and edges connecting the vertices. A network is a connected simple
graph having no multiple edges and loops. A topological index is a function Top : ∑ → R where
R is the set of real numbers and ∑ is the finite simple graph with property that Top(G1) = Top(G2)

if G1 and G2 are isomorphic. A topological index is a numerical value associated with chemical
constitution for correlation of chemical structure with various physical properties, chemical reactivity
or biological activity. Many tools, such as topological indices has provided by graph theory to the
chemists. Cheminformatics is new subject which is a combination of chemistry, mathematics and
information science. It studies Quantitative structure-activity (QSAR) and structure-property (QSPR)
relationships that are used to predict the biological activities and properties of chemical compounds.
In the QSAR /QSPR study, physico-chemical properties and topological indices such as Wiener index,
Szeged index, Randić index, Zagreb indices and ABC index are used to predict bioactivity of the
chemical compounds. “In terms of graph theory, the structural formula of a chemical compound
represents the molecular graph, in which vertices are represents to atoms and edges as chemical bonds”.
A molecular descriptor is a numeric number, which represents the properties of a chemical graph.
Basically, a molecular descriptor and topological descriptor are different from each other. A molecular
descriptor represents the underlying chemical graph but a topological descriptor are the representation
of physico-chemical properties of underlying chemical graph in addition to show the whole structure.
Topological indices have many applications in the field of nanobiotechnology and QSAR/QSPR study.
Topological indices were firstly introduced by Wiener [1], he named the resulting index as path number
while he was working on boiling point of Paraffin. Later on, it renamed as Wiener index [2]. Consider
“n” Hex-Derived networks (HDN1(1, 1)),(HDN1(2, 2)) and so on to (HDN1(m, n)). Connect every

Symmetry 2018, 10, 619; doi:10.3390/sym10110619 www.mdpi.com/journal/symmetry294
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boundary vertices of (HDN1(1, 1)) to its mirror image vertices in (HDN1(2, 2)) by an edge and so on
to (HDN1(m, n)). As a result, we found a graph, which is called Hex-Derived Cage networks with “n”
layers. In this article, the notations which we used take from the books [3,4].

In this article, Graph (G) is considered to be a graph with vertex set V(G) and edge set E(G), the
d(a) is the degree of vertex a ∈ V(G) and S(a) = ∑

b∈NG (a)
d(b) where NG(a) = {b ∈ V(G) | ab ∈ E(G)}.

Let G be a graph. Then the Wiener index is written as

W(G) = 1
2 ∑

(a,b)
d(a, b) (1)

The Randić index [5] is the oldest degree-based topological index invented by Milan Randić,
denoted as R− 1

2
(G) and defined as

R− 1
2
(G) = ∑

ab∈E(G)

1√
d(a)d(b)

(2)

Rα(G) is a general Randić index and it is defined as

Rα(G) = ∑
ab∈E(G)

(d(a)d(b))α for α ∈ R (3)

A topological index which has a great importance was introduced by Ivan Gutman and Trinajstić
is Zagreb index and defined as

M1(G) = ∑
ab∈E(G)

(d(a) + d(b)) (4)

Estrada et al. in [6] invented a very famous degree-based topological index ABC and defined as

ABC(G) = ∑
ab∈E(G)

√
d(a) + d(b)− 2

d(a)d(b)
(5)

GA index is also a very famous connectivity topological descriptor, which invented by
Vukičević et al. [7] and denoted as

GA(G) = ∑
ab∈E(G)

2
√

d(a)d(b)
(d(a) + d(b))

(6)

ABC4 and GA5 indices find only if we find the edge partition of interconnection networks
each edge in the graphs depend on sum of the degrees of end vertices. ABC4 index invented by
Ghorbani et al. [8] and written as

ABC4(G) = ∑
ab∈E(G)

√
S(a) + S(b)− 2

S(a)S(b)
(7)

The latest version of index is GA5 invented by Graovac et al. [9] and defined as

GA5(G) = ∑
ab∈E(G)

2
√

S(a)S(b)
(S(a) + S(b))

(8)

For any graph G for α = 1, the general Randić index is second Zagreb index.
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2. Main Results

Hex-Derived Cage networks HDCN1(m, n) (show in Figure 1) and HDCN2(m, n) (show
in Figure 2) give closed formulas of that indices, we study the general Randić, first Zagreb, ABC, GA,
ABC4 and GA5 indices of certain graphs in [10]. These days there is a broad research activity on ABC
and GA indices and their variants, for additionally investigation of topological indices of different
families see, [1,11–23].

Figure 1. Hex-Derived Network (HDCN1(3, n)).

Figure 2. Hex-Derived Network (HDCN2(3, n)).

2.1. Results for Hex-Derived Cage Networks

We compute specific degree-based topological indices of Hex-Derived Cage networks. In this
paper, we calculate Randić index Rα(G) with α = 1,−1, 1

2 ,− 1
2 , M1, ABC, GA, ABC4 and GA5 for

Hex-Derived Cage networks HDCN1(m, n) and HDCN2(m, n).

Theorem 1. Let G1
∼= HDCN1(m, n) be the Hex-Derived Cage network, then its general Randić index is

equal to

Rα(G1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18(108n3 − 219n2 + 25n + 91), α = 1;
6(36n3 + 3(7

√
3 − 34)n2 + (4

√
21 + 6

√
7+

28
√

6 − 84
√

3 + 12
√

2 + 35)n + 2
√

42−
8
√

21 − 12
√

7 − 56
√

6 + 100
√

3 + 39), α = 1
2 ;

11907n3 − 17003n2 + 12343n−3051
21168 , α = −1;

15n3

4 + ( 8√
3
− 125

12 )n2 + ( 4√
7
+

4
√

6 − 32√
3
+
√

2 + 5
√

3
7 + 109

21 )n−
8√
7
− 8

√
6 + 38√

3
+ 3

√
2 + 2

√
6
7−

10
√

3
7 + 13

14 , α = − 1
2 .
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Proof. Let G1 be the Hex-Derived Cage network (HDCN1(m, n)) where m = n ≥ 5. The edge set
of HDCN1(m, n) are divided into seventeen partitions based on the degree of end vertices shows
in Table 1. Thus from Equation (3), is follows that

Rα(G1) = ∑
ab∈E(G)

(d(a)d(b))α

For α = 1

R1(G1) =
17

∑
j=1

∑
ab∈Ej(G)

deg(u) · deg(v)

By using the edge partition given in Table 1, we have
R1(G1)=18|E1(G1)|+ 21|E2(G1)|+ 24|E3(G1)|+ 27|E4(G1)|+ 36|E5(G1)|+ 42|E6(G1)|+ 48|E7(G1)|+
72|E8(G1)| + 49|E9(G1)| + 63|E10(G1)| + 84|E11(G1)| + 64|E12(G1)| + 72|E13(G1)| + 96|E14(G1)| +
81|E15(G1)|+ 108|E16(G1)|+ 144|E17(G1)|

After simplification, we have

R1(G1) = 18(108n3 − 219n2 + 25n + 91)

For α = 1
2

R 1
2
(G1) =

17

∑
j=1

∑
ab∈Ej(G)

√
d(a) · d(b)

Using the edge partition from Table 1, we have
R 1

2
(G1)=3

√
2|E1(G1)| +

√
21|E2(G1)| + 2

√
6|E3(G1)| + 3

√
3|E4(G1)| + 6|E5(G1)| +

√
42|E6(G1)| +

4
√

3|E7(G1)| + 6
√

2|E8(G1)| + 7|E9(G1)| + 3
√

7|E10(G1)| + 2
√

21|E11(G1)| + 8|E12(G1)| +

6
√

2|E13(G1)|+ 4
√

6|E14(G1)|+ 9|E15(G1)|+ 6
√

3|E16(G1)|+ 12|E17(G1)|
After simplification, we have

R 1
2
(G1)=6(36n3 + 3(7

√
3 − 34)n2 + (4

√
21 + 6

√
7 + 28

√
6 − 84

√
3 + 12

√
2 + 35)n + 2

√
42 − 8

√
21 −

12
√

7 − 56
√

6 + 100
√

3 + 39)

For α = −1

R−1(G1) =
17

∑
j=1

∑
ab∈Ej(G)

1
d(a) · d(b)

R−1(G1)= 1
18 |E1(G1)|+ 1

21 |E2(G1)|+ 1
24 |E3(G1)|+ 1

27 |E4(G1)|+ 1
36 |E5(G1)|+ 1

42 |E6(G1)|+ 1
48 |E7(G1)|+

1
72 |E8(G1)| + 1

49 |E9(G1)| + 1
63 |E10(G1)| + 1

84 |E11(G1)| + 1
64 |E12(G1)| + 1

72 |E13(G1)| + 1
96 |E14(G1)| +

1
81 |E15(G1)|+ 1

108 |E16(G1)|+ 1
144 |E17(G1)|

After simplification, we have

R−1(G1) =
11907n3 − 17003n2 + 12343n − 3051

21168

For α = − 1
2

R− 1
2
(G1) =

17

∑
j=1

∑
ab∈Ej(G)

1√
d(a) · d(b)
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R− 1
2
(G1) =

√
2

6 |E1(G1)| +
√

21
21 |E2(G1)| +

√
6

12 |E3(G1)| +
√

3
9 |E4(G1)| + 1

6 |E5(G1)| +
√

42
42 |E6(G1)| +

√
3

12 |E7(G1)| +
√

2
12 |E8(G1)| + 1

7 |E9(G1)| +
√

7
21 |E10(G1)| +

√
21

42 |E11(G1)| + 1
8 |E12(G1)| +

√
2

12 |E13(G1)| +√
6

24 |E14(G1)|+ 1
9 |E15(G1)|+

√
3

18 |E16(G1)|+ 1
12 |E17(G1)|

After simplification, we have

R− 1
2
(G1)= 15n3

4 + ( 8√
3
− 125

12 )n2 + ( 4√
7
+ 4

√
6 − 32√

3
+

√
2 + 5

√
3
7 + 109

21 )n − 8√
7
− 8

√
6 + 38√

3
+ 3

√
2 +

2
√

6
7 − 10

√
3
7 + 13

14

In the below theorem, we calculate the Zagreb index of G1(m,n).

Theorem 2. The first Zagreb index of hex-derived cage network HDCN1(m, n) is equal to

M1(G1) = 18(27n3 − 51n2 + 10n + 14)

Proof. With the help of Table 1, we calculate the Zagreb index as

M1(G1) = ∑
ab∈E(G)

(d(a) + d(b)) =
17

∑
j=1

∑
ab∈Ej(G)

(d(a) + d(b))

M1(G1) = 9|E1(G1)|+ 10|E2(G1)|+ 11|E3(G1)|+ 12|E4(G1)|+ 15|E5(G1)|+ 13|E6(G1)|+ 14|E7(G1)|+
18|E8(G1)| + 14|E9(G1)| + 16|E10(G1)| + 19|E11(G1)| + 16|E12(G1)| + 17|E13(G1)| + 20|E14(G1)| +
18|E15(G1)|+ 21|E16(G1)|+ 24|E17(G1)|

After some calculations, we get

M1(G1) = 18(27n3 − 51n2 + 10n + 14)

Table 1. Edge partition of Hex-Derived Cage network (HDCN1) based on degrees of end vertices of
each edge.

(du, dv) where ab ∈ E(G1) Number of Edges (du, dv) where ab ∈ E(G1) Number of Edges

E1 = (3, 6) 24 E10 = (7, 7) 6n − 18
E2 = (3, 7) 2(6n − 12) E11 = (7, 9) 2(6n − 12)
E3 = (3, 8) 6(6n − 12) E12 = (7, 12) 6n − 12
E4 = (3, 9) 18n2 − 72n + 72 E13 = (8, 8) 2(6n − 18)

E5 = (3, 12) 18n3 − 54n2 + 42n E14 = (8, 9) 2(6n − 12)
E6 = (6, 7) 12 E15 = (8, 12) 4(6n − 12)
E7 = (6, 8) 24 E16 = (9, 9) 12n2 − 60n + 72
E8 = (6, 12) 12 E17 = (9, 12) 12n2 − 48n + 48

E9 = (12, 12) 9n3 − 33n2 + 30n

In the next theorem, we calculate the ABC, GA, ABC4 and GA5 indices of Hex-Derived Cage
network HDCN1(m, n).

Theorem 3. Let HDCN1(m,n) be Hex-Derived Cage network, then we have

• ABC(G1) = 3
4 (4

√
13 +

√
22)n3 + 1

12 (8
√

57 + 24
√

30 − 33
√

22 − 108
√

13 + 64)n2 + (− 80
3 + 8

√
6
7 +

4
√

2 + 54
√

3
7 + 3

√
7
2 + 5

√
11
2 + 9

√
6 − 8

√
19
3 +

√
51
7 + 7

√
13 − 7

√
30)n + 44 − 16

√
6
7 − 4

√
2 −

120
√

3
7 −

√
7
2 − 18

√
6 + 8

√
19
3 − 2

√
51
7 + 2

√
66
7 + 6

√
30.
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• GA(G1)) = 117n3

5 + 3
35 (185

√
3 − 749)n2 + ( 108

5 + 144
√

2
17 − 444

√
3

7 + 1248
√

6
55 + 9

√
7

2 + 348
√

21
95 )n +

24
√

42
13 − 696

√
21

95 − 9
√

7 − 2496
√

6
55 + 540

√
3

7 + 120
√

2
17 + 18.

• ABC4(G1) = 6
5

√
38
7 (n − 4)2 + 2

√
69
79 (n − 2) + 1

3

√
62
5 n(3n2 − 15n + 19) + 1

15

√
89
2 n(3n2 − 17n +

24) +
√

177
14 (n2 − 5n + 6) + 2

√
115
77 (n2 − 5n + 6) + 2

√
86

105 (n
2 − 5n + 6) + 2

√
2
5 (n

2 − 5n + 6) +

1
7

√
83
2 (n2 − 6n + 8) + 8

23

√
34(n2 − 9n + 20) + 2

√
113
79 (n − 2) +

√
334
395 (n − 2) + 4

√
30
79 (n − 2) +

6
√

15
79 (n − 2) + 6

√
58
41 (n − 3) + 4

√
34
41 (n − 3) + 12

√
7

41 (n − 3) + 18
√

6
287 (n − 3) + 20(n−4)2

√
253

+

2
√

194
115 (n − 4)2 + 2

√
151
161 (n − 4)2 + 144(n−4)√

5293
+ 48(n−4)√

85
+ 3

5

√
254
79 (n − 4) + 54

41

√
2(n − 4) +

2
√

114
67 (n − 4) + 2

√
447
469 (n − 4) + 3

√
22
29 (n − 4) + 4

√
6
23 (n − 4) + 12

√
6
29 (n − 4) + 6

√
93
469 (n −

4) + 12
√

138
1189 (n − 4) + 30

√
2

119 (n − 4) + 18
√

5
391 (n − 4) + 28

√
6

737 (n − 4) + 3
17

√
134(n − 5) +

6
29

√
114(n − 5) + 24

67

√
33(n − 5) + 21

25

√
2(n − 5) + 206

√
194

385 + 4

√
678
11

7 + 6
√

41
7 + 24√

29
+ 2

√
110
19 +

3
√

43
14 + 3

√
53
19 + 4

√
138
77 + 4

√
94
55 + 4

√
786
737 + 4

√
78
79 + 4

√
74
77 + 2

√
82
95 + 6

√
190
287 +

24
√

22
41

7 + 6
√

65
133 +

60
√

3
7

7 + 12
√

10
41 + 6

√
115
779 + 12

√
10
77 + 12

√
34
287 + 12

√
2
17 + 12

√
78

779 + 24
√

5
91 + 60

√
2

247 + 36
√

2
553 .

• GA5(G1) = 40
13

√
14(n − 4)2 + 48

163

√
1659(n − 2) + 12

7

√
10n(3n2 − 15n + 19) + 24

29

√
210(n2 −

5n + 6) + 16
13

√
77(n2 − 5n + 6) + 12

19

√
70(n2 − 5n + 6) + 18

5

√
21(n2 − 5n + 6) + 9n3 − 33n2 −

66n + 3
14

√
2607(n − 2) + 36

169

√
790(n − 2) + 48

107

√
553(n − 2) + 144

115

√
79(n − 2) + 24

55

√
574(n −

3) + 72
43

√
205(n − 3) + 216

59

√
82(n − 3) + 64

19

√
41(n − 3) + 6

17

√
253(n − 4)2 + 8

11

√
230(n − 4)2 +

16
17

√
161(n − 4)2 + 12

73

√
5293(n − 4) + 3

17

√
4623(n − 4) + 6

25

√
2211(n − 4) + 24

97

√
2010(n − 4) +

48
151

√
1407(n − 4) + 24

35

√
1189(n − 4) + 48

137

√
1173(n − 4) + 8

21

√
986(n − 4) + 48

101

√
561(n −

4) + 48
49

√
510(n − 4) + 48

95

√
469(n − 4) + 48

43

√
406(n − 4) + 24

19

√
357(n − 4) + 20

43

√
158(n − 4) +

40
39

√
134(n− 4) + 32

15

√
29(n− 4) + 12(n− 4) + 36(n− 5) + 48

√
5214

145 + 48
√

4422
133 + 48

√
1558

79 + 48
√

1122
67 +

48
√

1066
67 + 16

√
779

39 + 96
√

574
97 + 16

√
494

17 + 48
√

462
47 + 32

√
287

23 + 16
√

266
11 + 96

√
231

61 + 32
√

203
19 + 72

√
190

83 +
48
√

154
25 + 96

√
91

41 + 21
√

79
16 + 336

√
66

115 + 3
√

55 + 28
√

41
15 + 32

√
38

9 + 36
√

19
7 + 192

√
7

11 + 1336
√

2
33 + 258.

Proof. From Table 1 we calculate the ABC(G1) as

ABC(G1) = ∑
ab∈E(G)

√
d(a) + d(b)− 2

d(a) · d(b)
=

17

∑
j=1

∑
ab∈Ej(G)

√
d(a) + d(b)− 2

d(a) · d(b)

ABC(G1)=
√

14
6 |E1(G1)| + 2

√
42

21 |E2(G1)| +
√

6
4 |E3(G1)| +

√
30
9 |E4(G1)| +

√
13
6 |E5(G1)| +

√
462
42 |E6(G1)| +

1
2 |E7(G1)| +

√
2

3 |E8(G1)| + 2
√

3
7 |E9(G1)| +

√
2

3 |E10(G1)| +
√

357
42 |E11(G1)| +

√
14
8 |E12(G1)| +√

30
12 |E13(G1)|+

√
3

4 |E14(G1)|+ 4
9 |E15(G1)|+

√
57

18 |E16(G1)|+
√

22
12 |E17(G1)|.

After simplification, we have

ABC(G1)= 3
4 (4

√
13+

√
22)n3 + 1

12 (8
√

57+ 24
√

30− 33
√

22− 108
√

13+ 64)n2 + (− 80
3 + 8

√
6
7 + 4

√
2+

54
√

3
7 + 3

√
7
2 + 5

√
11
2 + 9

√
6 − 8

√
19
3 +

√
51
7 + 7

√
13 − 7

√
30)n + 44 − 16

√
6
7 − 4

√
2 − 120

√
3

7 −
√

7
2 −

18
√

6 + 8
√

19
3 − 2

√
51
7 + 2

√
66
7 + 6

√
30.

Now we calculate GA from Equation (6) as

GA(G1) = ∑
ab∈E(G)

2
√

d(a)d(b)
(d(a) + d(b))

=
17

∑
j=1

∑
ab∈Ej(G)

2
√

d(a)d(b)
(d(a) + d(b))

From Table 1 calculate GA(G1) as
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GA(G1)= 2
√

2
3 |E1(G1)| +

√
21
5 |E2(G1)| + 4

√
6

11 |E3(G1)| +
√

3
2 |E4(G1)| + 4

5 |E5(G1)| + 2
√

42
13 |E6(G1)| +

4
√

3
7 |E7(G1)| + 2

√
2

3 |E8(G1)| + 1|E9(G1)| + 3
√

7
8 |E10(G1)| + 4

√
21

19 |E11(G1)| + 1|E12(G1)| +
12
√

2
17 |E13(G1)|+ 2

√
6

5 |E14(G1)|+ 1|E15(G1)|+ 4
√

3
7 |E16(G1)|+ 1|E17(G1)|.

After simplification, we have
GA(G1) = 117n3

5 + 3
35 (185

√
3 − 749)n2 + ( 108

5 + 144
√

2
17 − 444

√
3

7 + 1248
√

6
55 + 9

√
7

2 + 348
√

21
95 )n + 24

√
42

13 −
696

√
21

95 − 9
√

7 − 2496
√

6
55 + 540

√
3

7 + 120
√

2
17 + 18.

If we consider an edge partition based on degree sum of neighbors of end vertices; then the edge
set E(HDCN1(m, n)) are divided into sixtynine edge partition Ej(HDCN1(m, n)), 18 ≤ j ≤ 86 shows
in Table 2.

From Equation (7), we have

ABC4(G1) = ∑
ab∈E(G)

√
S(a) + S(b)− 2

S(a)S(b)
=

86

∑
j=18

∑
ab∈Ej(G)

√
S(a) + S(b)− 2

S(a)S(b)
.

From Table 2 we use edge partition, we get
ABC4(G1) =

2
√

1066
67 |E18(G1)|+

√
1456
41 |E19(G1)|+

√
1976
51 |E20(G1)|+ 2

√
1372
77 |E21(G1)|+

√
1400
39 |E22(G1)|+√

1568
42 |E23(G1)| +

√
1624
43 |E24(G1)| +

√
1848
47 |E25(G1)| + 2

√
1876
95 |E26(G1)| + 2

√
2212

107 |E27(G1)| +√
2296
55 |E28(G1)| +

√
1980
48 |E29(G1)| + 2

√
2010
97 |E30(G1)| +

√
2040√

49
|E31(G1)| + 2

√
2070
99 |E32(G1)| +

√
2520
57 |E33(G1)| +

√
1792
44 |E34(G1)| +

√
1856
45 |E35(G1)| +

√
2432
54 |E36(G1)| +

√
2624
57 |E37(G1)| +

2
√

2178
99 |E38(G1)| +

√
2211
50 |E39(G1)| + 2

√
2244

101 |E40(G1)| +
√

2277
51 |E41(G1)| +

√
2607
3 |E56(G1)| +

2
√

2772
117 |E43(G1)| +

√
2736
56 |E44(G1)| + 2

√
2844

115 |E45(G1)| +
√

2952
59 |E46(G1)| +

√
3024
60 |E47(G1)| +√

3240
63 |E48(G1)| +

√
2009
45 |E49(G1)| + 2

√
2296
97 |E50(G1)| + 2

√
3116

117 |E51(G1)| + 2
√

2450
99 |E52(G1)| +

2
√

3234
115 |E53(G1)|+

√
3871
64 |E54(G1)|+ 1|E55(G1)|+ 2

√
3350

117 |E56(G1)|+ 2
√

3950
129 |E57(G1)|+

√
3248
57 |E58(G1)|+√

3696
56 |E59(G1)| +

√
4256
66 |E60(G1)| +

√
4292
69 |E61(G1)| +

√
3364
58 |E62(G1)| +

√
3944
63 |E63(G1)| +√

4756
70 |E64(G1)| + 2

√
4422

133 |E65(G1)| +
√

4488
67 |E66(G1)| + 2

√
5214

145 |E67(G1)| +
√

5544
75 |E68(G1)| +√

4489
67 |E69(G1)| +

√
4623
68 |E70(G1)| +

√
5293
73 |E71(G1)| + 2

√
5628

151 |E72(G1)| +
√

4624
68 |E73(G1)| +

2
√

4692
137 |E74(G1)| +

√
5712
76 |E75(G1)| +

√
4761
69 |E76(G1)| + 2

√
5796

153 |E77(G1)| +
√

6232
79 |E78(G1)| +√

6840
83 |E79|(G1) + 2

√
6636

163 |E80(G1)| + 2
√

7110
169 |E81(G1)| +

√
4724
82 |E82(G1)| +

√
7380
86 |E83(G1)| +√

7056
84 |E84(G1)|+

√
7560
87 |E85(G1)|+ 1|E86(G1)|.

After simplification, we get

ABC4(G1) = 6
5

√
38
7 (n − 4)2 + 2

√
69
79 (n − 2) + 1

3

√
62
5 n(3n2 − 15n + 19) + 1

15

√
89
2 n(3n2 − 17n + 24) +√

177
14 (n2 − 5n + 6) + 2

√
115
77 (n2 − 5n + 6) + 2

√
86
105 (n

2 − 5n + 6) + 2
√

2
5 (n

2 − 5n + 6) + 1
7

√
83
2 (n2 −

6n + 8) + 8
23

√
34(n2 − 9n + 20) + 2

√
113
79 (n − 2) +

√
334
395 (n − 2) + 4

√
30
79 (n − 2) + 6

√
15
79 (n − 2) +

6
√

58
41 (n − 3) + 4

√
34
41 (n − 3) + 12

√
7
41 (n − 3) + 18

√
6

287 (n − 3) + 20(n−4)2
√

253
+ 2

√
194
115 (n − 4)2 +

2
√

151
161 (n − 4)2 + 144(n−4)√

5293
+ 48(n−4)√

85
+ 3

5

√
254
79 (n − 4) + 54

41

√
2(n − 4) + 2

√
114
67 (n − 4) + 2

√
447
469 (n −

4) + 3
√

22
29 (n − 4) + 4

√
6
23 (n − 4) + 12

√
6

29 (n − 4) + 6
√

93
469 (n − 4) + 12

√
138

1189 (n − 4) + 30
√

2
119 (n −

4) + 18
√

5
391 (n − 4) + 28

√
6

737 (n − 4) + 3
17

√
134(n − 5) + 6

29

√
114(n − 5) + 24

67

√
33(n − 5) + 21

25

√
2(n −

5) + 206
√

194
385 + 4

√
678
11

7 + 6
√

41
7 + 24√

29
+ 2
√

110
19 + 3

√
43
14 + 3

√
53
19 + 4

√
138
77 + 4

√
94
55 + 4

√
786
737 + 4

√
78
79 +

4
√

74
77 + 2

√
82
95 + 6

√
190
287 +

24
√

22
41

7 + 6
√

65
133 +

60
√

3
7

7 + 12
√

10
41 + 6

√
115
779 + 12

√
10
77 + 12

√
34

287 + 12
√

2
17 +

12
√

78
779 + 24

√
5

91 + 60
√

2
247 + 36

√
2

553
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Now we find GA5(G1) as

GA5(G1) = ∑
ab∈E(G)

2
√

S(a)S(b)
(S(a) + S(b))

=
86

∑
j=18

∑
ab∈Ej(G)

2
√

S(a)S(b)
(S(a) + S(b))

.

Using the edge partition from Table 2, we get

GA5(G1) =
√

65
1066 |E18(G1)| +

√
5

91 |E19(G1)| + 5√
494

|E20(G1)| +
√

75
1372 |E21(G1)| +

√
19

350 |E22(G1)| +√
41
784 |E23(G1)| +

√
3

58 |E24(G1)| +
√

23
462 |E25(G1)| +

√
93

1876 |E26(G1)| +
√

105
2212 |E27(G1)| +√

27
574 |E28(G1)| +

√
47
990 |E29(G1)| +

√
19

402 |E30(G1)| +
√

4
85 |E31(G1)| +

√
97

2070 |E32(G1)| +√
14
315 |E33(G1)| +

√
43

896 |E34(G1)| +
√

11
232 |E35(G1)| +

√
53

1216 |E36(G1)| +
√

7
164 |E37(G1)| +√

97
2178 |E38(G1)| +

√
98

2211 |E39(G1)| +
√

9
204 |E40(G1)| +

√
10

2277 |E41(G1)| +
√

110
2607 |E56(G1)| +√

115
2772 |E43(G1)| +

√
55

1368 |E44(G1)| +
√

113
2844 |E45(G1)| +

√
29

738 |E46(G1)| +
√

59
1512 |E47(G1)| +√

31
810 |E48(G1)| +

√
88

2009 |E49(G1)| +
√

95
2296 |E50(G1)| +

√
115

3116 |E51(G1)| +
√

97
2450 |E52(G1)| +√

113
3234 |E53(G1)| +

√
126
3871 |E54(G1)| +

√
98

50 |E55(G1)| +
√

23
670 |E56(G1)| +

√
127

3950 |E57(G1)| +√
7

203 |E58(G1)| +
√

5
154 |E59(G1)| +

√
65

2128 |E60(G1)| +
√

17
574 |E61(G1)| +

√
57

1682 |E62(G1)| +√
31
952 |E63(G1)| +

√
69

2378 |E64(G1)| +
√

131
4422 |E65(G1)| +

√
33

1122 |E66(G1)| +
√

143
5214 |E67(G1)| +√

37
1344 |E68(G1)| +

√
132

4489 |E69(G1)| +
√

134
4623 |E70(G1)| +

√
144

5293 |E71(G1)| +
√

149
5628 |E72(G1)| +√

67
2312 |E73(G1)| +

√
135

4692 |E74(G1)| +
√

75
4856 |E75(G1)| +

√
136

4761 |E76(G1)| +
√

151
5796 |E77(G1)| +√

159
6232 |E78(G1)| +

√
41

1710 |E79|(G1) +
√

161
6384 |E80(G1)| +

√
167

7110 |E81(G1)| +
√

81
6724 |E82(G1)| +√

17
738 |E83(G1)|+

√
83

3528 |E84(G1)|+
√

86
3785 |E85(G1)|+

√
89
450 |E86(G1)|.

After simplification, we get
GA5(G1) = 40

13

√
14(n − 4)2 + 48

163

√
1659(n − 2) + 12

7

√
10n(3n2 − 15n + 19) + 24

29

√
210(n2 − 5n + 6) +

16
13

√
77(n2 − 5n + 6) + 12

19

√
70(n2 − 5n + 6) + 18

5

√
21(n2 − 5n + 6) + 9n3 − 33n2 − 66n + 3

14

√
2607(n −

2) + 36
169

√
790(n − 2) + 48

107

√
553(n − 2) + 144

115

√
79(n − 2) + 24

55

√
574(n − 3) + 72

43

√
205(n − 3) +

216
59

√
82(n− 3)+ 64

19

√
41(n− 3)+ 6

17

√
253(n− 4)2 + 8

11

√
230(n− 4)2 + 16

17

√
161(n− 4)2 + 12

73

√
5293(n−

4) + 3
17

√
4623(n − 4) + 6

25

√
2211(n − 4) + 24

97

√
2010(n − 4) + 48

151

√
1407(n − 4) + 24

35

√
1189(n − 4) +

48
137

√
1173(n− 4)+ 8

21

√
986(n− 4)+ 48

101

√
561(n− 4)+ 48

49

√
510(n− 4)+ 48

95

√
469(n− 4)+ 48

43

√
406(n−

4) + 24
19

√
357(n − 4) + 20

43

√
158(n − 4) + 40

39

√
134(n − 4) + 32

15

√
29(n − 4) + 12(n − 4) + 36(n − 5) +

48
√

5214
145 + 48

√
4422

133 + 48
√

1558
79 + 48

√
1122

67 + 48
√

1066
67 + 16

√
779

39 + 96
√

574
97 + 16

√
494

17 + 48
√

462
47 + 32

√
287

23 +
16
√

266
11 + 96

√
231

61 + 32
√

203
19 + 72

√
190

83 + 48
√

154
25 + 96

√
91

41 + 21
√

79
16 + 336

√
66

115 + 3
√

55 + 28
√

41
15 + 32

√
38

9 +
36
√

19
7 + 192

√
7

11 + 1336
√

2
33 + 258
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Table 2. Edge partition of Hex-Derived Cage network (HDCN1) based on degrees of end vertices of
each edge.

(Su, Sv) where ab ∈ E(G1) Number of Edges (Su, Sv) where ab ∈ E(G1) Number of Edges

E18 = (26, 41) 24 E53 = (49, 66) 24
E19 = (26, 56) 24 E54 = (49, 79) 12
E20 = (26, 76) 24 E55 = (50, 50) 6n − 30
E21 = (28, 49) 24 E56 = (50, 67) 2(6n − 24)
E22 = (28, 50) 2(6n − 24) E57 = (50, 79) 6n − 24
E23 = (28, 56) 24 E58 = (56, 58) 24
E24 = (28, 58) 4(6n − 24) E59 = (56, 66) 24
E25 = (28, 66) 24 E60 = (56, 76) 24
E26 = (28, 67) 2(6n − 24) E61 = (56, 82) 24
E27 = (28, 79) 2(6n − 12) E62 = (58, 58) 2(6n − 30)
E28 = (28, 82) 2(6n − 18) E63 = (58, 68) 2(6n − 24)
E29 = (30, 66) 24 E64 = (58, 82) 4(6n − 24)
E30 = (30, 67) 2(6n − 24) E65 = (66, 67) 24
E31 = (30, 68) 4(6n − 24) E66 = (66, 68) 24
E32 = (30, 69) 12n2 − 96n + 192 E67 = (66, 79) 24
E33 = (30, 84) 6n2 − 30n + 36 E68 = (66, 84) 24
E34 = (32, 56) 24 E69 = (67, 67) 2(6n − 30)
E35 = (32, 58) 2(6n − 24) E70 = (67, 69) 2(6n − 24)
E36 = (32, 76) 24 E71 = (67, 79) 2(6n − 24)
E37 = (32, 82) 4(6n − 18) E72 = (67, 84) 2(6n − 24)
E38 = (33, 66) 24 E73 = (68, 68) 2(6n − 30)
E39 = (33, 67) 2(6n − 24) E74 = (68, 69) 2(6n − 24)
E40 = (33, 68) 2(6n − 24) E75 = (68, 84) 4(6n − 24)
E41 = (33, 69) 6n2 − 48n + 96 E76 = (69, 69) 12n2 − 108n + 240
E42 = (33, 79) 2(6n − 12) E77 = (69, 84) 12n2 − 96n + 192
E43 = (33, 84) 12n2 − 60n + 72 E78 = (76, 82) 24
E44 = (36, 76) 24 E79 = (76, 90) 12
E45 = (36, 79) 2(6n − 12) E80 = (79, 84) 2(6n − 12)
E46 = (36, 82) 6(6n − 18) E81 = (79, 90) 6n − 12
E47 = (36, 84) 18n2 − 90n + 108 E82 = (82, 82) 2(6n − 24)
E48 = (36, 90) 18n3 − 90n2 + 114n E83 = (82, 90) 4(6n − 18)
E49 = (41, 49) 12 E84 = (84, 84) 6n2 − 36n + 48
E50 = (41, 56) 24 E85 = (84, 90) 12n2 − 60n + 72
E51 = (41, 76) 12 E86 = (90, 90) 9n3 − 51n2 + 72n
E52 = (49, 50) 12

2.2. Results for Hex-Derived Cage Network (HDCN2(m,n))

In this portion, we find some degree-based topological indices for Hex-Derived Cage network
(HDCN2(m, n)). We calculate the general Randić index Rα(G) with α = {1,−1, 1

2 ,− 1
2}, ABC, GA,

ABC4 and GA5 in the the below theorems for (HDCN2(m, n)).
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Theorem 4. Let G2 ∼= HDCN2(m, n) be the Hex-Derived Cage network, then its general Randić index is
equal to

Rα(G2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6(486n3 − 1068n2 + 312n + 293), α = 1;
6(9(2

√
2 + 3)n3 + (2

√
30 + 2

√
15 + 3

√
6 + 6

√
5+

12
√

3 − 60
√

2 − 81)n2 + 2(
√

35 − 2
√

30 +
√

21−√
15 + 4

√
10 + 3

√
7 + 2

√
6 − 12

√
5 − 20

√
3

+30
√

2 + 14)n + 2
√

42 − 4
√

35 + 4
√

30 − 4
√

21−
16
√

10 − 12
√

7 − 20
√

6 + 24
√

5 + 48
√

3−
12
√

2 + 39), α = 1
2 ;

297675n3 − 445655n2 + 282283n − 40155
529200 , α = −1;

3
4 (2

√
2 + 3)n3 + ( 4√

5
+ 2√

3
− 5

√
2 + 2

√
6
5 +

√
2
3+√

3
5 − 83

12 )n
2 + ( 461

105 ) + 6
√

2
5 +

√
3
7 −

√
3
5 −

√
2
3−

4
√

6
5 + 5

√
2 − 5√

3
− 16√

5
+ 4√

7
+ 12√

35
)n − 24√

35
−

8√
7
+ 16√

5
+ 8√

3
−
√

2 + 4
√

6
5 + 2

√
6
7 − 2

√
2
3−

2
√

3
7 − 12

√
2
5 + 13

14 , α = − 1
2 .

Proof. Let G2 be the Hex-Derived Cage network (HDCN2(m, n)) where m = n≥ 5. The edge set of
HDCN2(m, n) is divided into twenty partitions based on the degree of end vertices. Table 3 shows
these edge partition of HDCN2(m, n).

Rα(G2) = ∑
ab∈E(G)

(d(a)d(b))α

For α = 1

R1(G2) =
20

∑
j=1

∑
ab∈Ej(G)

deg(u) · deg(v)

Using the edge partition from Table 3, we get
R1(G2) = 25|E1(G2)|+ 30|E2(G2)|+ 35|E3(G2)|+ 40|E4(G2)|+ 45|E5(G2)|+ 60|E6(G2)|+ 36|E7(G2)|+
42|E8(G2)| + 48|E9(G2)| + 54|E10(G2)| + 72|E11(G2)| + 49|E12(G2)| + 63|E13(G2)| + 84|E14(G2)| +
64|E15(G2)|+ 72|E16(G2)|+ 96|E17(G2)|+ 81|E18(G2)|+ 108|E19(G2)|+ 144|E20(G2)|

After simplification, we get

R1(G2) = 6(486n3 − 1068n2 + 312n + 293)

For α = 1
2

R 1
2
(G2) =

20

∑
j=1

∑
ab∈Ej(G)

√
d(a) · d(b)

Using edge partition from Table 3, we get
R 1

2
(G2) = 5|E1(G2)|+

√
30|E2(G2)|+

√
35|E3(G2)|+ 2

√
10|E4(G2)|+ 3

√
5|E5(G2)|+ 2

√
15|E6(G2)|+

6|E7(G2)| +
√

42|E8(G2)| + 4
√

3|E9(G2)| + 3
√

6|E10(G2)| + 6
√

2|E11(G2)| + 7|E12(G2)| +

3
√

7|E13(G2)| + 2
√

21|E14(G2)| + 8|E15(G2)| + 6
√

2|E16(G2)| + 4
√

6|E17(G2)| + 9|E18(G2)| +

6
√

3|E19(G2)|+ 12|E20(G2)|
After simplification, we get

R 1
2
(G2) = 6(9(2

√
2 + 3)n3 + (2

√
30 + 2

√
15 + 3

√
6 + 6

√
5 + 12

√
3 − 60

√
2 − 81)n2 + 2(

√
35 − 2

√
30 +

√
21 −

√
15 + 4

√
10 + 3

√
7 + 2

√
6 − 12

√
5 − 20

√
3 + 30

√
2 + 14)n + 2

√
42 − 4

√
35 + 4

√
30 − 4

√
21 −

16
√

10 − 12
√

7 − 20
√

6 + 24
√

5 + 48
√

3 − 12
√

2 + 39)
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For α = −1

R−1(G2) =
20

∑
j=1

∑
ab∈Ej(G)

1
d(a) · d(b)

R−1(G2)= 1
25 |E1(G2)|+ 1

30 |E2(G2)|+ 1
35 |E3(G2)|+ 1

40 |E4(G2)|+ 1
45 |E5(G2)|+ 1

60 |E6(G2)|+ 1
36 |E7(G2)|+

1
42 |E8(G2)| + 1

48 |E9(G2)| + 1
54 |E10(G2)| + 1

72 |E11(G2)| + 1
49 |E12(G2)| + 1

63 |E13(G2)| + 1
84 |E14(G2)| +

1
64 |E15(G2)|+ 1

72 |E16(G2)|+ 1
96 |E17(G2)|+ 1

81 |E18(G2)|+ 1
108 |E19(G2)|+ 1

144 |E20(G2)|
After simplification, we get

R−1(G2) =
297675n3 − 445655n2 + 282283n − 40155

529200

For α = − 1
2

R− 1
2
(G2) =

20

∑
j=1

∑
ab∈Ej(G)

1√
d(a) · d(b)

R− 1
2
(G2) = 1

5 |E1(G2)| + 1√
30
|E2(G2)| + 1√

35
|E3(G2)| + 1

2
√

10
|E4(G2)| + 1

3
√

5
|E5(G2)| + 1

2
√

15
|E6(G2)| +

1
6 |E7(G2)|+ 1√

42
|E8(G2)|+ 1

4
√

3
|E9(G2)|+ 1

3
√

6
|E10(G2)|+ 1

6
√

2
|E11(G2)|+ 1

7 |E12(G2)|+ 1
3
√

7
|E13(G2)|+

1
2
√

21
|E14(G2)|+ 1

8 |E15(G2)|+ 1
6
√

2
|E16(G2)|+ 1

4
√

6
|E17(G2)|+ 1

9 |E18(G2)|+ 1
6
√

3
|E19(G2)|+ 1

12 |E20(G2)|
After simplification, we get

R− 1
2
(G2)= 3

4 (2
√

2+ 3)n3 +( 4√
5
+ 2√

3
− 5

√
2+ 2

√
6
5 +

√
2
3 +

√
3
5 − 83

12 )n
2 +( 461

105 )+ 6
√

2
5 +

√
3
7 −

√
3
5 −√

2
3 − 4

√
6
5 + 5

√
2 − 5√

3
− 16√

5
+ 4√

7
+ 12√

35
)n − 24√

35
− 8√

7
+ 16√

5
+ 8√

3
−

√
2 + 4

√
6
5 + 2

√
6
7 − 2

√
2
3 −

2
√

3
7 − 12

√
2
5 + 13

14

In this theorem, we find the first Zagreb index for hex-derived cage network G2.

Theorem 5. For Hex-Derived Cage Network (G2), the first Zagreb index is equal to

M1(G2) = 12(54n3 − 109n2 + 34n + 21)

Proof. Let G2 be the Hex-Derived Cage Network (G2). Using the edge partition from Table 3, we have

M1(G2) = ∑
ab∈E(G)

(d(a) + d(b)) =
20

∑
j=1

∑
ab∈Ej(G)

(d(a) + d(b))

M1(G2) = 10|E1(G2)|+ 11|E2(G2)|+ 12|E3(G2)|+ 13|E4(G2)|+ 14|E5(G2)|+ 17|E6(G2)|+ 12|E7(G2)|+
13|E8(G2)| + 14|E9(G2)| + 15|E10(G2)| + 18|E11(G2)| + 14|E12(G2)| + 16|E13(G2)| + 19|E14(G2)| +
16|E15(G2)|+ 17|E16(G2)|+ 20|E17(G2)|+ 18|E18(G2)|+ 21|E19(G2)|+ 24|E20(G2)|.

After simplification, we get

M1(G2) = 12(54n3 − 109n2 + 34n + 21)

In below theorem, we calculate the ABC, GA, ABC4 and GA5 indices of Hex-Derived Cage
Network G2.

Theorem 6. Let G2 be the Hex-Derived Cage Network for every positive integer m = n ≥ 5; then we have
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• ABC(G2) =2
√

2(3n3 − 10n2 + 8n + 2) + 1
2

√
11
2 n(3n2 − 11n + 10) +

√
5
2 n(3n2 − 11n + 10) +

6
√

6
5 (n

2 − 2n + 2) + 16
3 (n2 − 5n + 6) + 3n(n − 1) + 12

√
2n

5 + 6n +
√

26
3 (n − 2)2 + 2

√
19
3 (n −

2)2 + 8
√

3
5 (n − 2)2 +

√
30(n − 2) +

√
51
7 (n − 2) + 6

√
22
5 (n − 2) + 6

√
3(n − 2) + 4

√
2(n − 2) +

12
√

2
7 (n − 2) + 3

√
7
2 (n − 3) + 12

7

√
3(n − 3) + 2

√
66
7

• GA(G2)=4
√

2(3n3 − 10n2 + 8n + 2) + 24
11

√
30(n2 − 2n + 2) + 18n3 − 54n2 + 24

17

√
15(n − 1)n +

48
√

3n
7 + 12n + 12

5

√
6(n − 2)2 + 36

7

√
5(n − 2)2 + 48

7
√

3
(n − 2)2 + 2

√
35(n − 2) + 24

19

√
21(n − 2) +

96
13

√
10(n − 2) + 9

2

√
7(n − 2) + 48

5

√
6(n − 2) + 144

17

√
2(n − 2) + 12(n − 3) + 24

√
42

13 + 54.

• ABC4(G2)= 1
18

√
107

2 n(3n2 − 17n + 24) + 1
9

√
53
2 (3n3 − 13n2 + 16n − 10) + 4

9

√
5n(3n2 − 15n +

19) + 2
7

√
534
7 (n2 − 5n + 6) + 3

√
102
101 (n

2 − 5n + 6) + 2
√

69
101 (n

2 − 5n + 6) + 24
7

√
37

101 (n
2 − 5n +

6) + 3
√

94
707 (n

2 − 5n + 6) + 60
101

√
2(n2 − 6n + 8) + 15

19

√
6(n2 − 9n + 20) + 7

√
2

95 (3n − 8) +

1
7

√
202
3 (n − 2)2 + 4

7

√
258
13 (n − 2) + 4

13

√
19(n − 2) + 5

3

√
2(n − 2) + 12

7

√
142
95 (n − 2) +

√
67
95 (n − 2) +

12
√

194
9595 (n − 2) + 24

√
11

1235 (n − 2) +
√

129
5 (n − 3) + 2

√
302
33 (n − 3) + 4

3

√
205
33 (n − 3) +

√
274
55 (n −

3) + 2
√

145
33 (n − 3) + 3

7

√
123
19 (n − 4)2 + 2

√
174
133 (n − 4)2 + 30

√
7

1919 (n − 4)2 + 4
35

√
366(n − 4) +

2
5

√
447
19 (n − 4) + 6

5

√
206
13 (n − 4) + 2

3

√
14(n − 4) + 4

√
46
35 (n − 4) + 2

√
42
37 (n − 4) + 12

5

√
46
65 (n − 4) +

24
5

√
58

101 (n− 4) + 3
√

37
65 (n− 4) + 6

√
2
13 (n− 4) + 6

√
38

259 (n− 4) + 6
√

2
19 (n− 4) + 6

√
334
3515 (n− 4) +

6
√

346
3737 (n − 4) + 66

7

√
2

37 (n − 4) + 72
√

2
715 (n − 4) + 56

33 (n − 4) + 6
37

√
146(n − 5) + 8

25

√
37(n −

5) + 96
65

√
2(n − 5) + 32√

37
+ 2
√

249
37 + 8

√
6

5 + 2
√

202
35 + 2

√
109
21 +

8
√

106
35

3 +
√

66
23 + 183

√
2

37 + 4
√

678
511 +

2
√

70
53 +

48
√

30
73

7 + 8
√

14
37 + 8

√
330
949 + 8

√
134
511 + 8

√
6
23 + 12

√
127
851 + 6

√
3
23 +

32
√

10
77

3 + 12
√

290
2701 +

12
√

17
161 + 12

√
21

253 + 24
√

30
689 + 24

√
2
65 + 12

√
146

5035 + 24
√

166
6935 + 16

√
6

265 + 48
√

31
3869 + 48

√
43

7373 .

• GA5(G2)=3n(3n2 − 17n + 24) + 4
√

2n(3n2 − 15n + 19) + 12
143

√
4242(n2 − 5n + 6) + 28

25

√
101(n2 −

5n + 6) + 24
13

√
42(n2 − 5n + 6) + 2424

209 (n2 − 5n + 6) + 36
149

√
570(3n − 8) + 9n3 − 21n2 − 90n +

252
103

√
6(n − 2)2 + 6

49

√
9595(n − 2) + 12

67

√
3705(n − 2) + 72

203

√
285(n − 2) + 7

6

√
95(n − 2) +

21
11

√
39(n − 2) + 144

17

√
2(n − 2) + 144

139

√
110(n − 3) + 72

17

√
66(n − 3) + 9120

√
33(n−3)

1127 + 48
11

√
30(n −

3) + 16
59

√
1919(n − 4)2 + 24

59

√
798(n − 4)2 + 168

125

√
19(n − 4)2 + 24

175

√
7474(n − 4) + 24

169

√
7030(n −

4) + 24
113

√
2886(n − 4) + 8

25

√
1406(n − 4) + 12

29

√
777(n − 4) + 36

41

√
715(n − 4) + 15

11

√
303(n −

4) + 1350
791

√
195(n − 4) + 9

8

√
111(n − 4) + 56

41

√
74(n − 4) + 240

151

√
57(n − 4) + 1496

217

√
26(n − 4) +

80
13

√
14(n − 4) + 210

31

√
3(n − 4) + 12(n − 4) + 36(n − 5) + 8

√
7373
29 + 2

√
6935
7 + 16

√
5402

49 + 6
√

5035
37 +

8
√

3869
21 + 48

√
3066

115 + 3
√

2847
7 + 12

√
2067

23 + 32
√

851
43 + 18

√
511

17 + 9
√

455
8 + 72

√
318

107 + 36
√

265
49 + 36

√
259

25 +
288

√
253

191 + 60
√

219
37 + 72

√
185

41 + 288
√

161
155 + 144

√
138

73 + 144
√

115
137 + 192

√
111

85 + 8
√

77
3 + 168

√
73

61 + 288
√

70
103 +

732
√

69
175 + 4

√
35 + 192

√
21

37 + 258.

Proof. Using the edge partition from Table 3, we find ABC as

ABC(G2) = ∑
ab∈E(G)

√
d(a) + d(b)− 2

d(a) · d(b)
=

20

∑
j=1

∑
ab∈Ej(G)

√
d(a) + d(b)− 2

d(a) · d(b)

ABC(G2) = 2
√

2
5 |E1(G2)| +

√
3
10 |E2(G2)| +

√
2
7 |E3(G2)| +

√
11

2
√

10
|E4(G2)| + 2

√
3

3
√

5
|E5(G2)| + 1

2 |E6(G2)| +√
5
18 |E7(G2)| +

√
11
42 |E8(G2)| + 1

2 |E9(G2)| +
√

13
54 |E10(G2)| +

√
2

3 |E11(G2)| + 2
√

3
7 |E12(G2)| +

305
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√
14
63 |E13(G2)| +

√
17
84 |E14(G2)| +

√
7
32 |E15(G2)| +

√
5

24 |E16(G2)| +
√

3
16 |E17(G2)| +

√
16
81 |E18(G2)| +√

19
108 |E19(G2)|+

√
11
72 |E20(G2)|.

After simplification, we get

ABC(G2)=2
√

2(3n3 − 10n2 + 8n + 2) + 1
2

√
11
2 n(3n2 − 11n + 10) +

√
5
2 n(3n2 − 11n + 10) + 6

√
6
5 (n

2 −
2n + 2) + 16

3 (n2 − 5n + 6) + 3n(n − 1) + 12
√

2n
5 + 6n +

√
26
3 (n − 2)2 + 2

√
19
3 (n − 2)2 + 8

√
3
5 (n − 2)2 +

√
30(n− 2) +

√
51
7 (n− 2) + 6

√
22
5 (n− 2) + 6

√
3(n− 2) + 4

√
2(n− 2) + 12

√
2
7 (n− 2) + 3

√
7
2 (n− 3) +

12
7

√
3(n − 3) + 2

√
66
7

Using the edge partition from Table 3, we find GA as
GA(G2) = 1|E1(G2)| + 2

√
30

11 |E2(G2)| +
√

35
6 |E3(G2)| + 4

√
10

13 |E4(G2)| + 3
√

5
7 |E5(G2)| + 4

√
15

17 |E6(G2)| +
1|E7(G2)| + 2

√
42

13 |E8(G2)| + 2
√

12
7 |E9(G2)| + 2

√
54

15 |E10(G2)| + 2
√

2
3 |E11(G2)| + 1|E12(G2)| +

3
√

7
8 |E13(G2)| + 4

√
21

19 |E14(G2)| + 1|E15(G2)| + 12
√

2
17 |E16(G2)| +

√
23
5 |E17(G2)| + 1|E18(G2)| +

2
√

3
7 |E19(G2)|+ 1|E20(G2)|.

After simplification, we get
GA(G2) =4

√
2(3n3 − 10n2 + 8n + 2) + 24

11

√
30(n2 − 2n + 2) + 18n3 − 54n2 + 24

17

√
15(n − 1)n + 48

√
3n

7 +

12n + 12
5

√
6(n − 2)2 + 36

7

√
5(n − 2)2 + 48

7
√

3
(n − 2)2 + 2

√
35(n − 2) + 24

19

√
21(n − 2) + 96

13

√
10(n − 2) +

9
2

√
7(n − 2) + 48

5

√
6(n − 2) + 144

17

√
2(n − 2) + 12(n − 3) + 24

√
42

13 + 54.

If we suppose an edge partition based on degree sum of neighbors of end vertices, then the edge
set E(G2) can be divided into seventy six edge partition Ej(G2), 21 ≤ j ≤ 96. Table 4 shows these edge
partitions.

From Equation (7), we get

ABC4(G2) = ∑
ab∈E(G)

√
S(a) + S(b)− 2

S(a)S(b)
=

96

∑
j=21

∑
ab∈Ej(G)

√
S(a) + S(b)− 2

S(a)S(b)
.

Using the edge partition from Table 3, we get

ABC4(G2) =
√

72
1369 |E21(G2)|+ 4√

333
|E22(G2)|+

√
83

1776 |E23(G2)|+
√

98
2321 |E24(G2)|+

√
127

3404 |E25(G2)|+√
74

1443 |E26(G2)| +
√

86
1911 |E27(G2)| +

√
90

2067 |E28(G2)| +
√

42
2106 |E29(G2)| +

√
110

2847 |E30(G2)| +√
111
2886 |E31(G2)| +

√
44

1235 |E32(G2)| +
√

43
940 |E33(G2)| +

√
101

2520 |E34(G2)| +
√

103
2600 |E35(G2)| +√

137
3960 |E36(G2)| +

√
89

2058 |E37(G2)| +
√

113
3066 |E38(G2)| +

√
17

1554 |E39(G2)| +
√

115
3150 |E40(G2)| +√

29
798 |E41(G2)| +

√
141

4242 |E42(G2)| +
√

96
2385 |E43(G2)| +

√
106

2835 |E44(G2)| +
√

27
558 |E45(G2)| +

5√
648

|E46(G2)| +
√

109
3024 |E47(G2)| +

√
111
3120 |E48(G2)| +

√
69

228 |E49(G2)| +
√

145
4752 |E50(G2)| +√

101
2646 |E51(G2)| +

√
120
3577 |E52(G2)| + 11√

3626
|E53(G2)| +

√
122
3675 |E54(G2)| +

√
123

3724 |E55(G2)| +√
142
4655 |E56(G2)| +

√
148

4949 |E57(G2)| +
√

105
2862 |E58(G2)| +

√
124

3869 |E59(G2)| +
√

146
5035 |E60(G2)| +√

53
1458 |E61(G2)| +

√
63

1998 |E62(G2)| +
√

105
621 |E63(G2)| +

√
147

5130 |E64(G2)| +
√

151
5346 |E65(G2)| +√

153
5454 |E66(G2)| +

√
20

729 |E67(G2)| +
√

126
4095 |E68(G2)| +

√
134

4599 |E69(G2)| +
√

153
5796 |E70(G2)| +√

160
6237 |E71(G2)| +

√
128

4225 |E72(G2)| +
√

46
1625 |E73(G2)| +

√
54

2145 |E74(G2)| +
√

145
5402 |E75(G2)| +√

116
5475 |E76(G2)| +

√
166

6935 |E77(G2)| +
√

172
7373 |E78(G2)| +

√
73

2738 |E79(G2)| +
√

37
1406 |E80(G2)| +√

167
7030 |E81(G2)| +

√
173

7474 |E82(G2)| +
√

148
5625 |E83(G2)| +

√
149

5700 |E84(G2)| +
√

58
2525 |E85(G2)| +√

75
2888 |E86(G2)| +

√
175

7676 |E87(G2)| +
√

189
9108 |E88(G2)| +

√
99

4948 |E89(G2)| +
√

194
9595 |E90(G2)| +

306
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√
201

10260 |E91(G2)| + 14√
9801

|E92(G2)| +
√

205
10692 |E93(G2)| +

√
200

10201 |E94(G2)| +
√

207
10908 |E95(G2)| +√

3
162 |E96(G2)|.

After simplification, we have

ABC4(G2) = 1
18

√
107

2 n(3n2 − 17n + 24) + 1
9

√
53
2 (3n3 − 13n2 + 16n − 10) + 4

9

√
5n(3n2 − 15n +

19) + 2
7

√
534
7 (n2 − 5n + 6) + 3

√
102
101 (n

2 − 5n + 6) + 2
√

69
101 (n

2 − 5n + 6) + 24
7

√
37

101 (n
2 − 5n + 6) +

3
√

94
707 (n

2 − 5n + 6) + 60
101

√
2(n2 − 6n + 8) + 15

19

√
6(n2 − 9n + 20) + 7

√
2

95 (3n − 8) + 1
7

√
202
3 (n − 2)2 +

4
7

√
258
13 (n − 2) + 4

13

√
19(n − 2) + 5

3

√
2(n − 2) + 12

7

√
142
95 (n − 2) +

√
67
95 (n − 2) + 12

√
194

9595 (n − 2) +

24
√

11
1235 (n − 2) +

√
129

5 (n − 3) + 2
√

302
33 (n − 3) + 4

3

√
205
33 (n − 3) +

√
274
55 (n − 3) + 2

√
145
33 (n − 3) +

3
7

√
123
19 (n − 4)2 + 2

√
174
133 (n − 4)2 + 30

√
7

1919 (n − 4)2 + 4
35

√
366(n − 4) + 2

5

√
447
19 (n − 4) + 6

5

√
206
13 (n −

4) + 2
3

√
14(n − 4) + 4

√
46
35 (n − 4) + 2

√
42
37 (n − 4) + 12

5

√
46
65 (n − 4) + 24

5

√
58
101 (n − 4) + 3

√
37
65 (n −

4) + 6
√

2
13 (n − 4) + 6

√
38
259 (n − 4) + 6

√
2

19 (n − 4) + 6
√

334
3515 (n − 4) + 6

√
346

3737 (n − 4) + 66
7

√
2

37 (n −
4) + 72

√
2

715 (n − 4) + 56
33 (n − 4) + 6

37

√
146(n − 5) + 8

25

√
37(n − 5) + 96

65

√
2(n − 5) + 32√

37
+ 2
√

249
37 +

8
√

6
5 + 2

√
202
35 + 2

√
109
21 +

8
√

106
35

3 +
√

66
23 +

183
√

2
37 + 4

√
678
511 + 2

√
70
53 +

48
√

30
73

7 + 8
√

14
37 + 8

√
330
949 + 8

√
134
511 +

8
√

6
23 + 12

√
127
851 + 6

√
3
23 +

32
√

10
77

3 + 12
√

290
2701 + 12

√
17
161 + 12

√
21

253 + 24
√

30
689 + 24

√
2

65 + 12
√

146
5035 +

24
√

166
6935 + 16

√
6

265 + 48
√

31
3869 + 48

√
43

7373
From Equation (8), we get

GA5(G2) = ∑
ab∈E(G)

2
√

S(a)S(b)
(S(a) + S(b))

=
96

∑
j=21

∑
ab∈Ej(G)

2
√

S(a)S(b)
(S(a)S(b))

.

Table 3. Edge partition of Hex-Derived Cage network (HDCN2) based on degrees of end vertices of
each edge.

(du, dv) where ab ∈ E(G2) Number of Edges (du, dv) where ab ∈ E(G2) Number of Edges

E1 = (5, 5) 6n E11 = (6, 12) 18n3 − 60n2 + 48n + 12
E2 = (5, 6) 12n2 − 24n + 24 E12 = (7, 7) 6n − 18
E3 = (5, 7) 2(6n − 12) E13 = (7, 9) 2(6n − 12)
E4 = (5, 8) 4(6n − 12) E14 = (7, 12) 6n − 12
E5 = (5, 9) 12n2 − 48n + 48 E15 = (8, 8) 2(6n − 18)

E6 = (5, 12) 6n2 − 6n E16 = (8, 9) 2(6n − 12)
E7 = (6, 6) 9n3 − 33n2 + 30n E17 = (8, 12) 4(6n − 12)
E8 = (6, 7) 12 E18 = (9, 9) 12n2 − 60n + 72
E9 = (6, 8) 12n E19 = (9, 12) 12n2 − 48n + 48
E10 = (6, 9) 6n2 − 24n + 24 E20 = (12, 12) 9n3 − 33n2 + 30n

Using the edge partition from Table 4, we get
GA5(G2) = 1|E21(G2)| +

√
1665
41 |E22(G2)| + 2

√
1776
85 |E23(G2)| +

√
2331
50 |E24(G2)| + 2

√
3404

129 |E25(G2)| +√
1443
38 |E26(G2)| +

√
1911
44 |E27(G2)| +

√
2067
46 |E28(G2)| + 2

√
2106
93 |E29(G2)| +

√
2847
56 |E30(G2)| +

2
√

2886
113 |E31(G2)| +

√
3705
67 |E32(G2)| +

√
1920
44 |E33(G2)| + 2

√
2520

103 |E34(G2)| + 2
√

2600
105 |E35(G2)| +

2
√

3960
139 |E36(G2)| + 2

√
2058
91 |E37(G2)| + 2

√
3066

115 |E38(G2)| +
√

3108
58 |E39(G2)| + 2

√
3150

117 |E40(G2)| +√
3192
59 |E41(G2)| + 2

√
4242

143 |E42(G2)| +
√

2385
49 |E43(G2)| +

√
2835
54 |E44(G2)| + 2

√
4140

137 |E45(G2)| +√
2592
51 |E46(G2)| + 2

√
3024

111 |E47(G2)| + 2
√

3120
113 |E48(G2)| +

√
4416
70 |E49(G2)| + 2

√
4752

147 |E50(G2)| +
2
√

2646
103 |E51(G2)| +

√
3577
61 |E52(G2)| + 2

√
3626

123 |E53(G2)| +
√

3675
62 |E54(G2)| + 2

√
3724

125 |E55(G2)| +√
4655
72 |E56(G2)| +

√
4949
75 |E57(G2)| + 2

√
2862

107 |E58(G2)| +
√

3869
63 |E59(G2)| +

√
5035
74 |E60(G2)| + 1|E61(G2)| +

307
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√
3996
64 |E62(G2)| +

√
4968
73 |E63(G2)| + 2

√
5130

149 |E64(G2)| + 2
√

5346
153 |E65(G2)| + 2

√
5454

155 |E66(G2)| +√
5832
81 |E67(G2)| +

√
4095
64 |E68(G2)| +

√
4599
68 |E69(G2)| + 2

√
5796

155 |E70(G2)| +
√

6237
81 |E71(G2)| +

1|E72(G2)| +
√

4875
70 |E73(G2)| +

√
6435
82 |E74(G2)| + 2

√
5402

147 |E75(G2)| +
√

5475
74 |E76(G2)| +

√
6935
84 |E77(G2)| +√

7373
87 |E78(G2)| + 1|E79(G2)| +

√
5624
75 |E80(G2)| + 2

√
7030

169 |E81(G2)| + 2
√

7474
175 |E82(G2)| + 1|E83(G2)| +

2
√

5700
151 |E84(G2)|+

√
7575
88 |E85(G2)|+ 1|E86(G2)|+ 2

√
7676

177 |E87(G2)|+ 2
√

9108
191 |E88(G2)|+

√
9936
100 |E89(G2)|+√

9595
98 |E90(G2)| + 2

√
10260
203 |E91(G2)| + 1|E92(G2)| + 2

√
10692
207 |E93(G2)| + 1|E94(G2)| + 2

√
10908
209 |E95(G2)| +

1|E96(G2)|.
After simplification, we get

GA5(G2) =3n(3n2 − 17n + 24) + 4
√

2n(3n2 − 15n + 19) + 12
143

√
4242(n2 − 5n + 6) + 28

25

√
101(n2 − 5n +

6)+ 24
13

√
42(n2 − 5n+ 6)+ 2424

209 (n2 − 5n+ 6)+ 36
149

√
570(3n− 8)+ 9n3 − 21n2 − 90n+ 252

103

√
6(n− 2)2 +

6
49

√
9595(n− 2)+ 12

67

√
3705(n− 2)+ 72

203

√
285(n− 2)+ 7

6

√
95(n− 2)+ 21

11

√
39(n− 2)+ 144

17

√
2(n− 2)+

144
139

√
110(n − 3) + 72

17

√
66(n − 3) + 9120

√
33(n−3)

1127 + 48
11

√
30(n − 3) + 16

59

√
1919(n − 4)2 + 24

59

√
798(n −

4)2 + 168
125

√
19(n − 4)2 + 24

175

√
7474(n − 4) + 24

169

√
7030(n − 4) + 24

113

√
2886(n − 4) + 8

25

√
1406(n − 4) +

12
29

√
777(n − 4) + 36

41

√
715(n − 4) + 15

11

√
303(n − 4) + 1350

791

√
195(n − 4) + 9

8

√
111(n − 4) + 56

41

√
74(n −

4) + 240
151

√
57(n − 4) + 1496

217

√
26(n − 4) + 80

13

√
14(n − 4) + 210

31

√
3(n − 4) + 12(n − 4) + 36(n − 5) +

8
√

7373
29 + 2

√
6935
7 + 16

√
5402

49 + 6
√

5035
37 + 8

√
3869
21 + 48

√
3066

115 + 3
√

2847
7 + 12

√
2067

23 + 32
√

851
43 + 18

√
511

17 + 9
√

455
8 +

72
√

318
107 + 36

√
265

49 + 36
√

259
25 + 288

√
253

191 + 60
√

219
37 + 72

√
185

41 + 288
√

161
155 + 144

√
138

73 + 144
√

115
137 + 192

√
111

85 + 8
√

77
3 +

168
√

73
61 + 288

√
70

103 + 732
√

69
175 + 4

√
35 + 192

√
21

37 + 258.

The Comparison graphs for ABC, GA, ABC4 and GA5 in case of a Hex Derived Cage networks
HDCN1(m, n) and HDCN2(m, n) of dimension m and n are shown in Figures 3 and 4 respectively.

Table 4. Edge partition of Hex-Derived Cage network (HDCN2) based on sum of degrees of end
vertices of each edge.

(Su, Sv) where ab ∈ E(G2) Number of Edges (Su, Sv) where ab ∈ E(G2) Number of Edges

E21 = (37, 37) 12 E59 = (53, 73) 24
E22 = (37, 45) 24 E60 = (53, 95) 12
E23 = (37, 48) 24 E61 = (54, 54) 9n3 − 39n2 + 48n − 30
E24 = (37, 63) 24 E62 = (54, 74) 2(6n − 24)
E25 = (37, 92) 24 E63 = (54, 92) 24
E26 = (37, 39) 6n − 12 E64 = (54, 95) 3(6n − 16)
E27 = (39, 49) 2(6n − 12) E65 = (54, 99) 6(6n − 18)
E28 = (39, 53) 24 E66 = (54, 101) 18n2 − 90n + 108
E29 = (39, 54) 2(6n − 24) E67 = (54, 108) 18n3 − 90n2 + 114n
E30 = (39, 73) 24 E68 = (63, 65) 24
E31 = (39, 74) 2(6n − 24) E69 = (63, 73) 24
E32 = (39, 95) 2(6n − 12) E70 = (63, 92) 24
E33 = (40, 48) 4(6n − 18) E71 = (63, 99) 24
E34 = (40, 63) 24 E72 = (65, 65) 2(6n − 30)
E35 = (40, 65) 4(6n − 24) E73 = (65, 75) 2(6n − 24)
E36 = (40, 99) 2(6n − 18) E74 = (65, 99) 4(6n − 24)
E37 = (42, 49) 12n2 − 60n + 72 E75 = (73, 74) 24
E38 = (42, 73) 24 E76 = (73, 75) 24
E39 = (42, 74) 2(6n − 24) E77 = (73, 95) 24
E40 = (42, 75) 4(6n − 24) E78 = (73, 101) 24
E41 = (42, 76) 12n2 − 96n + 192 E79 = (74, 74) 2(6n − 30)

E42 = (42, 101) 6n2 − 30n + 36 E80 = (74, 76) 2(6n − 24)
E43 = (45, 53) 12 E81 = (74, 95) 2(6n − 24)
E44 = (45, 63) 24 E82 = (74, 101) 2(6n − 24)
E45 = (45, 92) 12 E83 = (75, 75) 2(6n − 30)
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Table 4. Cont.

(Su, Sv) where ab ∈ E(G2) Number of Edges (Su, Sv) where ab ∈ E(G2) Number of Edges

E46 = (48, 54) 2(6n − 12) E84 = (75, 76) 2(6n − 24)
E47 = (48, 63) 24 E85 = (75, 101) 4(6n − 24)
E48 = (48, 65) 2(6n − 24) E86 = (76, 76) 12n2 − 108n + 240
E49 = (48, 92) 24 E87 = (76, 101) 12n2 − 96n + 192
E50 = (48, 99) 4(6n − 18) E88 = (92, 99) 24
E51 = (49, 54) 6n2 − 24n + 24 E89 = (92, 108) 12
E52 = (49, 73) 24 E90 = (95, 101) 2(6n − 12)
E53 = (49, 74) 2(6n − 24) E91 = (95, 108) 6n − 12
E54 = (49, 75) 2(6n − 24) E92 = (99, 99) 2(6n − 24)
E55 = (49, 76) 6n2 − 48n + 96 E93 = (99, 108) 4(6n − 18)
E56 = (49, 95) 2(6n − 12) E94 = (101, 101) 6n2 − 36n + 48
E57 = (49, 101) 12n2 − 60n + 72 E95 = (101, 108) 12n2 − 60n + 72
E58 = (53, 54) 12 E96 = (108, 108) 9n3 − 51n2 + 72n
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Figure 3. Comparison of ABC, GA, ABC4 and GA5 for HDCN1(m, n).
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Figure 4. Comparison of ABC, GA, ABC4 and GA5 for HDCN2(m, n).
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3. Conclusions

In this paper, certain degree-based topological indices, namely the general Randić index,
atomic-bond connectivity index (ABC), geometric-arithmetic index (GA) and first Zagreb index were
studied for the first time and analytical closed formulas for HDCN1(m, n) and HDCN2(m, n) cage
networks were determined which will help the people working in network science to understand and
explore the underlying topologies of these networks.

For the future, we are interested in designing some new architectures/networks and then study
their topological indices which will be quite helpful to understand their underlying topologies.
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Appl. Math. Comput. 2015, 251, 154–161. [CrossRef]
14. Baig, A.Q.; Imran, M.; Ali, H. Computing Omega, Sadhana and PI polynomials of benzoid carbon nanotubes,

Optoelectron. Adv. Mater. Rapid Commun. 2015, 9, 248–255.
15. Baig, A.Q.; Imran, M.; Ali, H. On Topological Indices of Poly Oxide, Poly Silicate, DOX and DSL Networks.

Can. J. Chem. 2015, 93, 730–739. [CrossRef]
16. Caporossi, G.; Gutman, I.; Hansen, P.; Pavlovíc, L. Graphs with maximum connectivity index.

Comput. Biol. Chem. 2003, 27, 85–90. [CrossRef]
17. Imran, M.; Baig, A.Q.; Ali, H. On topological properties of dominating David derived graphs. Can. J. Chem.

2016, 94, 137–148. [CrossRef]

310



Symmetry 2018, 10, 619

18. Imran, M.; Baig, A.Q.; Ali, H. On molecular topological properties of hex-derived graphs. J. Chemom. 2016,
30, 121–129. [CrossRef]

19. Imran, M.; Baig, A.Q.; Ali, H.; Rehman, S.U. On topological properties of poly honeycomb graphs.
Period. Math. Hung. 2016, 73, 100–119. [CrossRef]

20. Iranmanesh, A.; Zeraatkar, M. Computing GA index for some nanotubes. Optoelectron. Adv. Mater.
Rapid Commun. 2010, 4, 1852–1855.

21. Lin, W.; Chen, J.; Chen, Q.; Gao, T.; Lin, X.; Cai, B. Fast computer search for trees with minimal ABC index
based on tree degree sequences. MATCH Commun. Math. Comput. Chem. 2014, 72, 699–708.

22. Manuel, P.D.; Abd-El-Barr, M.I.; Rajasingh, I.; Rajan, B. An efficient representation of Benes networks and its
applications. J. Discret. Algorithms 2008, 6, 11–19. [CrossRef]

23. Palacios, J.L. A resistive upper bound for the ABC index. MATCH Commun. Math. Comput. Chem. 2014,
72, 709–713.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

311



symmetryS S

Article

Binary Locating-Dominating Sets in
Rotationally-Symmetric Convex Polytopes

Hassan Raza 1, Sakander Hayat 2,* and Xiang-Feng Pan 1

1 School of Mathematical Sciences, Anhui University, Hefei 230601, China; hassan_raza783@yahoo.com (H.R.);
xfpan@ahu.edu.cn (X.-F.P.)

2 Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi,
Swabi 23460, Pakistan

* Correspondence: sakander1566@gmail.com; Tel.: +92-342-4431402

Received: 16 November 2018; Accepted: 4 December 2018; Published: 6 December 2018

Abstract: A convex polytope or simply polytope is the convex hull of a finite set of points in
Euclidean space Rd. Graphs of convex polytopes emerge from geometric structures of convex
polytopes by preserving the adjacency-incidence relation between vertices. In this paper, we study
the problem of binary locating-dominating number for the graphs of convex polytopes which
are symmetric rotationally. We provide an integer linear programming (ILP) formulation for the
binary locating-dominating problem of graphs. We have determined the exact values of the binary
locating-dominating number for two infinite families of convex polytopes. The exact values of the
binary locating-dominating number are obtained for two rotationally-symmetric convex polytopes
families. Moreover, certain upper bounds are determined for other three infinite families of convex
polytopes. By using the ILP formulation, we show tightness in the obtained upper bounds.

Keywords: dominating set; binary locating-domination number; rotationally-symmetric convex
polytopes; ILP models

MSC: 05C69; 05C90

1. Introduction

Graphs considered in this paper are all simple, finite and undirected.
We consider a graph G = (V, E) having no isolated vertices. For any vertex x ∈ V, the set

NG(x) = {y ∈ V|(x, y) ∈ E} is called the open neighborhood of x. Moreover, NG[x] = NG(x) ∪ {x}
is called the closed neighborhood of x. Cardinality of the open neighborhood of a vertex is called its
degree/valency. Whenever it is cleared from the context, we omit G from the notations V(G), E(G),
NG(v), NG[v] and dG(v). A subset D ⊆ V is said to be a dominating set of G, if for any x ∈ V \ D,
we have N[x] ∩ S �= ∅. The minimum cardinality of a dominating set in G is called its domination
number denote by γ(G). The book by Haynes et al. [1] covers all the literature on domination related
parameters of graphs until 1980.

An alternative approach to study a dominating set is a binary assignment of 1 (resp. 0) to a vertex
if it belongs (resp. does not belong) to D. In this terminology, D is called dominating set if the sum
of weights of closed neighborhoods of any vertex in G is at least one. In other words, any vertex
x ∈ V satisfies |D ∩ N[x]| ≥ 1. For a dominating set S, if additionally every pair of distinct vertices
x, y ∈ V\S satisfies N(x) ∩ S �= N(y) ∩ S, then S is called a binary locating-dominating set. In a similar
fashion, the minimum cardinality of a binary-locating set is called the binary locating-dominating number
of G usually denoted by γl−d(G). It is important to notice that the concept of locating-dominating
number in the literature is similar to the binary locating-dominating number. Locating-domination
related parameters have been studied relatively more than the other varieties of dominations.

Symmetry 2018, 10, 727; doi:10.3390/sym10120727 www.mdpi.com/journal/symmetry312
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Haynes et al. [2] have studied the problems of locating-dominating number and total dominating
numbers for trees. Charon et al. [3] studied the minimum cardinalities of r-locating-dominating and
r-identifying codes for cycles and chains. Moreover, they characterized the extremal values for these
parameters. For more details on this study, we refer the reader to [4,5]. The concepts of fault-tolerant
locating-dominating and open neighborhood locating-dominating sets in trees have been studied by
Seo et al. [6,7] and Salter [8]. For more on locating-dominating sets and related parameters, we suggest
the reader to [5,9–11].

Note that computational complexity of the binary locating-dominating and the identifying
code problems is NP-hard—see, for example, [12,13]. For a positive integer k and a graph G,
Charon et al. [12] showed that the problem of finding an r-locating-dominating code and r-identifying
code is NP-complete, where r is a positive integer. We refer the interested readers to [14] by Lobstein
where a comprehensive list of references on identifying codes and binary locating-dominating sets
is provided.

The following result by Slater [11] gives us a tight lower bound for the binary locating-dominating
number for regular graphs.

Theorem 1. [11] Let G be a k-regular graph on n vertices. Then,

γl−d(G) ≥
⌈

2n
k + 3

⌉
.

A graph of a convex polytope is formed from its vertices and edges having the same incidence
relation. Graphs of convex polytopes were first considered by Bača in [15,16]. He studied graceful and
anti-graceful labeling problems for these geometrically important graphs. Imran et al. [17–19] studied the
problem of minimum metric dimension for different infinite families of convex polytopes. Malik et al. [20]
also computed the metric dimension of two infinite families of convex polytopes. Kratica et al. [21]
considered minimal double resolving sets and the strong metric dimension problem for some families of
convex polytopes. Samlan et al. [22] considered three optimization problems, known as the local metric,
the fault-tolerant metric and the strong metric dimension problem, for two infinite families of convex
polytopes. Simić et al. [23] studied the problem of binary locating-dominating number of some convex
polytopes. The ILP model presented in the next section was essentially given by Simić et al. [23]. Other
graph-theoretic parameters having potential applications in chemistry are studied in [24–27].

2. An Integer Linear Programming Model

In this section, we present an integer linear programming (ILP) model of minimum binary-locating
domination problem. This model will be used to show tightness in upper bounds for different families
of graphs which are studied in the next sections.

Bange et al. [28] provided an ILP formulation of minimum identifying code problem. For an
identifying set S, the decision variables vi are defined as:

vi =

{
1, i ∈ S;
0, i /∈ S.

Then, the ILP formulation by Bange et al. [28] for minimum identifying code problem is as follows:

min ∑
i∈V

vi, (1)
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subject to the following constraints

∑
j∈N[i]

vi ≥ 1, i ∈ V, (2)

∑
j∈N[i]∇N[k]

vi ≥ 1, i, k ∈ V, i �= k, (3)

vi ∈ {0, 1}, i ∈ V. (4)

In the above formulation, the minimal cardinality for the identifying code set is ensured by
the objective function (1). Dominating set S is defined by constraints (2), constraints (3) represent
identifying feature, whereas constraints (4) provide the binary nature of decision variables vi.

Next, we modify this formulation for the binary-locating domination problem. We achieve this
goal by changing constrains (3) into the following constraints:

vi + vk + ∑
j∈N[i]∇N[k]

vi ≥ 1, i, k ∈ V, i �= k. (5)

Note that constraints (3) and (5) are the same when vertices i and k are not adjacent, e.g.,
N[i]∇N[k] = {i, j} ∪

(
N(i)∇N(k)

)
. We can only see the change between constraints (3) and (5),

when i and k are adjacent, i.e., i ∈ N(k). Then, by constraints (5), at least one of vertices i, k or some
j ∈ N(i)∇N(k) must be in S. When i and k are not neighbors, then N[i]∇N[k] = {i, j} ∪

(
N(i)∇N(k)

)
,

so constraints (3) and (5) are equal.
Sweigart et al. [29] showed that, for any two vertices u and v if d(u, v) ≥ 3, then both u and v

have no common neighbors. This implies that we do not need to check the set N(u) ∩ S �= N(v) ∩ S
for equivalence, since it permits us to reduce the number of constraints that the locating requirements
generate. Therefore, this becomes computationally important for large graphs. By employing this idea,
we improve constraints (5) as follows:

vi + vk + ∑
j∈N(i)∇N(k)

vi ≥ 1, i, k ∈ V, i �= k, d(i, k) ≤ 2. (6)

Note that, by using the proposed formulation comprising a reduced number of constraints,
we can find exact optimal values for problems with small dimensions. Furthermore, in order to obtain
suboptimal solutions for large dimensions, ILP formulation can be optimized by efficient metaheuristic
approaches (see, for example, [30]).

3. The Exact Values

In this section, we find the exact values of the binary locating-dominating number of two infinite
families of convex polytopes.

3.1. The Graph of Convex Polytope Hn

3.1.1. Construction

In 1999, Bača [31] studied the labeling problem of a family of convex polytopes denoted by Bn

(n ≥ 3). Figure 1 depicts the graph of convex polytope Bn. Imran and Siddiqui [32] studied a variation
of Bn by generalizing it to the family of two parametric convex polytope denoted by Qm

n , see [32],
Figure 1. Note that the Bn is a special case of Qm

n with m = 2.
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Figure 1. The graph of convex polytope Bn.

For a given planar graph G, the dual of G denoted by du(G) is obtained by adding a vertex in
each internal face of G and then joining any two of them if their corresponding faces share an edge.
Miller et al. [33] considered another variation of Bn by defining its dual. They denoted this new family
of polytopes with Rn. Figure 2 shows the graph of Rn.

Figure 2. The graph of convex polytope Rn.

Note that the family Rn can also be obtained by adding a layer of hexagons between two pentagonal
layers in the graph of Dn. The graph of Dn can be viewed in Figure 3. Miller et al. [33] studied the
vertex-magic total labeling of Rn. Imran et al. [34] studied the minimum metric dimension problem for
the family of Rn.
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Figure 3. The graph of convex polytope Dn.

In this paper, we propose two further variations of Dn and study their binary locating-dominating
number. In a similar fashion to Miller et al. [33], we add an extra layer of hexagons between the lower
hexagonal layer and the outer pentagonal layer. We denote this new family of convex polytope with
Hn. Figure 4 depicts the graph of convex polytope Hn. The weights’ assignment to the vertices in
Figure 4 helps to trace the binary locating-dominating sets in this family of convex polytopes.

The graph of convex polytope Hn comprises 2n pentagonal faces, 2n hexagonal faces and a pair
of n-gonal faces.

Figure 4. The graph of convex polytope Hn.

Mathematically, the graph of convex polytope Hn consists of the vertex set

V(Hn) = {sj, tj, uj, vj, wj, xj, yj, zj | j = 0, . . . , n − 1} (7)

and the edge set

E(Hn) = {sjsj+1, sjtj, tjuj, ujtj+1, ujvj, vjwj, vjwj+1, wjxj, xjyj, xj+1yj, yjzj, zjzj+1 | j = 0, . . . , n − 1}. (8)

Note that arithmetic in the subscripts is performed modulo n.
Next, we validate the vertex and edge sets of the convex polytope Hn. In order to do that, we fix

n = 6 and draw the graph H6. According to expressions (7) and (8), we obtain the following vertex
and edge sets for H6:

V(H6) = {s0, . . . , s5, t0, . . . , t5, u0, . . . , u5, v0, . . . , v5, w0, . . . , w5, x0, . . . , x5, y0, . . . , y5, z0, . . . , z5},
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E(H6) = {s0s1, s1s2, s2s3, s3s4, s4s5, s5s0, s0t0, s1t1, s2t2, s3t3, s4t4, s5t5, t0u0, t1u1, t2u2, t3u3, t4u4, t5u5,

u0t1, u1t2, u2t3, u3t4, u4t5, u5t0, u0v0, u1v1, u2v2, u3v3, u4v4, u5v5, v0w0, v1w1, v2w2, v3w3,

v4w4, v5w5, v0w1, v1w2, v2w3, v3w4, v4w5, v5w0, w0x0, w1x1, w2x2, w3x3, w4x4, w5x5, x0y0,

x1y1, x2y2, x3y3, x4y4, x5y5, y0x1, y1x2, y2x3, y3x4, y4x5, y5x0, y0z0, y1z1, y2z2, y3z3,

y4z4, y5z5, z0z1, z1z2, z2z3, z3z4, z4z5, z5z0}.

By using these vertex and edge sets, we construct the graph of the convex polytope H6.
Figure 5 shows the graph of H6. This validates the vertex and edge sets presented in Equations (7) and
(8).

Figure 5. The graph of convex polytope H6.

The following problems are open for this newly proposed family of convex polytopes.

Problem 1. Let G be the family of convex polytopes Hn, where n ≥ 3 is an integer. Then,

(1) Study vertex-face magic, edge-face magic, vertex-face anti-magic, edge-face anti-magic and vertex/edge
total labeling of G. See the references [15,16,31,33] for similar research on other family of convex
polytopes.

(2) Study the minimum metric dimension problem for G. This problem is studied in [17–19,32,34] for other
families of regular and non-regular convex polytopes.

(3) Study fault-tolerant resolvability of G. A similar study for other classes of convex polytopes is conducted
by Raza et al. [35] and Salman et al. [22].

3.1.2. Rotational Symmetry of the Convex Polytopes

The convex polytopes considered in this paper possess two kind of rotational symmetries: one is
geometrical symmetry and the other is structural symmetry. By geometrical symmetry, we mean
the symmetry possessed by the underlying geometrical convex polytopes. By structural symmetry,
we mean the symmetry of the graphs of the underlying convex polytopes. We discuss both of these
symmetries in details.

Erickson and Kim [36] studied various geometrical properties of certain convex polytopes. One of
the perspectives of his study is different symmetries possessed by certain classes of convex polytopes.
In particular, they showed the following result:
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Theorem 2. For any integer positive integer n, there is a neighborly family of n congruent convex 3-polytopes,
each with a plane of bilateral symmetry, a line of 180◦ rotational symmetry, and a point of central symmetry.

Let Hn denote the infinite point set {hn(t) | t ∈ Z}. The rotational symmetry is based on the
fact that: a 180o rotation about the y-axis maps hn(t) to hn(−t) and thus preserves the point set Hn.
This implies that the Voronoi region of the underlying polytope is rotationally symmetric about the
y-axis. Erickson and Kim [36] used the symmetry group of the convex polytope to show Theorem 2.
In this scenario, the underlying geometrical shapes of convex polytopes considered in this paper
possess rotational symmetry studied by Erickson and Kim [36].

Now, we discuss the structural symmetry possessed by the graphs of the convex polytopes
considered in this paper. By structure-wise rotational symmetry, we mean that a fixed unit of a convex
polytope can be rotated along a circle, by following the structural similarity, to obtain the complete
graph of the convex polytope. Let us fixed a convex polytope, say Hn studied in the next subsubsection.
In Figure 6, a unit of the graph of convex polytope Hn is presented. By rotating this unit along the
dotted circle with center O, we can obtain the whole graph Hn. The part with bold edges shows the
unit of this convex polytope, which is rotated along the dotted circle. The complete graph is obtained
by completing one revolution of the unit (bold part) along the dotted circle having center O.

Figure 6. Unit of convex polytope Hn.

Note that this graph-theoretic structural similarity is common among all the families of convex
polytopes considered in the subsequent subsections.

3.1.3. Binary Locating-Dominating Number of Hn

In this subsubsection, we present the main result for the family of convex polytope Hn. We find
the exact value of the binary locating-dominating number for this family of convex polytope.

The following theorem presents the exact value of the binary locating-dominating number of Hn.

Theorem 3. The binary locating-dominating number of Hn is given by the following expression:

γl−d(Hn) =

⌈
8n
3

⌉
.

Proof. Note that Hn is a family of regular graphs of degree 3 on 8n vertices. By Theorem 1, we find
the following lower bound on the binary locating-dominating number of Hn:

γl−d(Hn) ≥
⌈

2(8n)
6

⌉
=

⌈
8n
3

⌉
. (9)
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Let S be a subset of the vertex set of Hn, such that

S =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{s3j+1, t3j, u3j+1, v3j+2, w3j+1, x3j+2, y3j, z3j+2 | j = 0, ..., m − 1}, n = 3m;
{s3j+2, t3j, u3j+1, v3j, w3j+2, x3j+1, y3j+2, z3j}

⋃
{t3m, v3m, y3m | j = 0, ..., m − 1}, n = 3m + 1;
{s3j, t3j+1, u3j+2, v3j, w3j+2, x3j+1, y3j+2, z3j+1}

⋃
{s3m, t3m+1, v3m, w3m+1, y3m+1, z3m | j = 0, ..., m − 1}, n = 3m + 2.

Next, we show that S is a binary locating-dominating set of Hn. In order to prove that, we need to
discuss the following three possible cases:

Case 1: When n = 3m.
In order to show S to be a binary locating-dominating set, we need to show that the
neighborhoods of all vertices in V\S are non-empty and distinct. Table 1 shows these
neighborhoods and their intersections. Although some formulas for some intersections can
be somewhat similar, but they are distinct.

Case 2: When n = 3m + 1.
As in the previous case, the neighborhoods of all vertices in V\S are non-empty and distinct
shown in Table 1.

Case 3: When n = 3m + 2.
Similar to the previous two cases, Table 1 shows that the neighborhoods of all vertices in
V\S are non-empty and distinct.

It is easily seen that |S| =
⌈ 8n

3
⌉
. This shows that

γl−d(Hn) ≤
⌈

8n
3

⌉
. (10)

By combining Inequalities (9) and (10), we obtain the result.

Table 1. Binary locating-dominating vertices in Hn.

n v ∈ V\S S ∩ N[v] v ∈ V\S S ∩ N[v]

3m s3j {s3j+1, t3j} s3j+2 {s3j+1}
t3j+1 {s3j+1, u3j+1} t3j+2 {u3j+1}
u3j {t3j} u3j+2 {t3(j+1), v3j+2}
v3j {w3j+1} v3j+1 {w3j+1, u3j+1}
w3j {v3j−1} w3j+2 {v3j+2, x3j+2}
x3j {y3j} x3j+1 {y3j, w3j+1}

y3j+1 {x3j+2} y3j+2 {x3j+2, z3j+2}
z3j {y3j, z3j−1} z3j+1 {z3j+2}

3m + 1 s3j+1 {s3j+2} s3(j+1) {s3j+2, t3(j+1)}
t3j+1 {u3j+1} t3j+2 {u3j+1, s3j+2}
u3j {t3j, v3j} u3j+2 {t3(j+1)}

v3j+1 {u3j+1, w3j+2} v3j+2 {w3j+2}
w3j+1 {v3j, x3j+1} w3(j+1) {v3(j+1)}
x3j+2 {w3j+2, y3j+2} x3(j+1) {y3j+2}

y3j {x3j+1, z3j} y3j+1 {x3j+1}
z3j+2 {y3j+2, z3j+3} z3j+1 {z3j}

s0 {t0} u3m {t0, t3m, v3m}
w0 {v0, v3m} x0 {y3m}
z3m {y3m, z0}
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Table 1. Cont.

n v ∈ V\S S ∩ N[v] v ∈ V\S S ∩ N[v]

3m + 2 s3j+1 {s3j, t3j+1} s3j+2 {s3(j+1)}
t3j+2 {u3j+2} t3(j+1) {s3(j+1), u3j+2}
u3j {t3j+1, v3j} u3j+1 {t3j+1}

v3j+1 {w3j+2} v3j+2 {u3j+2, w3j+2}
w3j {v3j} w3j+1 {v3j, x3j+1}

x3j+2 {w3j+2, y3j+2} x3(j+1) {y3j+2}
y3j+1 {x3j+1, z3j+1} y3j {x3j+1}

z3j {z3j+1} z3j+2 {y3j+2, z3j+1}
s3m+1 {s3m, s0, t3m+1} t0 {s0}
u3m+1 {t3m+1} u3m {t3m+1, v3m}
v3m+1 {w3m+1} w3m {v3m}

x0 {y3m+1} x3m+1 {w3m+1, y3m+1}
y3m {z3m} z3m+1 {y3m+1, z3m}

3.2. The Graph of Convex Polytope H′
n

3.2.1. Construction

By following the same construction as for Hn, we define another variation of convex polytopes
Rn and Dn. We add an extra layer of hexagons between the outer pentagonal layer and the next
hexagonal layer of Hn. In other words, H′

n can be obtained by adding three hexagonal layers in Rn

between outer pentagonal and inner hexagonal layers and four hexagonal layers in Dn between the
two pentagonal layers.

The graph of convex polytope Hn comprises 2n pentagonal faces, 4n hexagonal faces and a pair
of n-gonal faces. Figure 7 shows the graph of this family of convex polytopes. Mathematically, it has
the vertex set

V(H′
n) = {oj, pj, qj, rj, sj, tj, uj, vj, wj, xj, yj, zj | j = 0, . . . , n − 1}, (11)

and the edge set

E(H′
n) = {ojoj+1, oj pj, qj pj, qj pj+1, qjrj, rjsj, rjsj+1, sjtj, tjuj, tj+1uj, ujvj, (12)

vjwj, vjwj+1, wjxj, xjyj, xj+1yj, yjzj, zjzj+1 | j = 0, . . . , n − 1}.

Note that arithmetic in the subscripts is performed modulo n.
Next, we validate the vertex and edge cardinalities of the graph of convex polytope H′

n. We do
that by fixing a value of n = 6, and we construct the graph of H′

6 from (11) and (12). We obtain the
following vertex and edge set cardinalities for H′

6:

V(H′
6) = {o0, . . . , o5 p0, . . . , p5q0, . . . , q5r0, . . . , r5s0, . . . , s5, t0, . . . , t5, u0, . . . , u5, v0, . . . , v5, w0, . . . , w5,

x0, . . . , x5, y0, . . . , y5, z0, . . . , z5},

E(H′
6) = {o0o1, o1o2, o2o3, o3o4, o4o5, o5o0, o0 p0, o1 p1, o2 p2, o3 p3, o4 p4, o5 p5, p0q0, p1q1, p2q2, p3q3,

p4q4, p5q5, q0 p1, q1 p2, q2 p3, q3 p4, q4 p5, q5 p0, q0r0, q1r1, q2r2, q3r3, q4r4, q5r5, s0r0, s1r1, s2r2,

s3r3, s4r4, s5r5, r0s1, r1s2, r2s3, r3s4, r4s5, r4s0, s0t0, s1t1, s2t2, s3t3, s4t4, s5t5, t0u0, t1u1, t2u2,

t3u3, t4u4, t5u5, u0t1, u1t2, u2t3, u3t4, u4t5, u5t0, u0v0, u1v1, u2v2, u3v3, u4v4, u5v5, v0w0,

v1w1, v2w2, v3w3, v4w4, v5w5, v0w1, v1w2, v2w3, v3w4, v4w5, v5w0, w0x0, w1x1, w2x2, w3x3,

w4x4, w5x5, x0y0, x1y1, x2y2, x3y3, x4y4, x5y5, y0x1, y1x2, y2x3, y3x4, y4x5, y5x0, y0z0,

y1z1, y2z2, y3z3, y4z4, y5z5, z0z1, z1z2, z2z3, z3z4, z4z5, z5z0}.
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Figure 7. The graph of convex polytope H′n.

By using these vertex and edge sets, we construct the graph of the convex polytope H′
6.

Figure 8 shows the graph of H′
6. This validates the vertex and edge sets presented in (11) and (12).

Figure 8. The graph of convex polytope H′
6.
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3.2.2. Binary Locating-Dominating Number of H′
n

This subsubsection presents the main result for H′
n. We find the exact value of the the

binary locating-dominating number of H′
n. In the following theorem, it is shown that the binary

locating-dominating number of the family H′
n is exactly 4n.

Theorem 4. The binary locating-dominating number of H′
n is exactly 4n, i.e.,

γl−d(H′
n) = 4n.

Proof. As the graph H′
n is regular with degree 3. By Theorem 1, we obtain

γl−d ≥
⌈

2(12n)
6

⌉
= 4n.

Let S ⊂ V(H′
n) such that S = {pj, sj, vj, yj | j = 0, . . . , n − 1}. Next, we show that S is a binary

locating-dominating number of H′
n. It can be seen that

S ∩ N[oj] = [pj], S ∩ N[qj] = [pj−1, pj], S ∩ N[rj] = [sj, sj+1], S ∩ N[tj] = [sj], S ∩ N[uj] = [vj],

S ∩ N[wj] = [vj−1, vj], S ∩ N[xj] = [yj−1, yj] and S ∩ N[zj] = [yj].

Note that all these intersections have at least one element and they are distinct as well. This shows
that S is a binary locating dominating set of (H′

n) and therefore γl−d(H′
n) ≤ 4n. By combining it with

the fact γl−d(H′
n) ≥ 4n, we obtain that γl−d(H′

n) = 4n.

4. Tight Upper Bounds

In this section, we find tight upper bounds on the binary locating-dominating number of three
infinite families of convex polytopes.

4.1. The Graph of Convex Polytope Sn

The graph of convex polytope Sn consists of 2n trigonal faces, 2n 4-gonal faces and a pair of
n-sided faces (see Figure 9). Mathematically, it has the vertex set

V(Sn) = {wj, xj, yj, zj | j = 0, . . . , n − 1},

and the edge set

E(Sn) = {wjwj+1, xjxj+1, yjyj+1, zjzj+1 | j = 0, . . . , n − 1} ∪ {wj+1xj, wjxj, xjyj, yjzj | j = 0, . . . , n − 1}.

Imran et al. [19] showed that the metric dimension of Sn is 3. The graph of convex polytope
Sn can also be obtained from the graph of convex polytope Qn, defined in [16], by adding the
edges wj+1xj, yjyj+1 and then deleting the edges xj+1, yj i.e., V(Sn) = V(Qn) and E(Sn) =

(
E(Qn) ∪

{wj+1xj, yjyj+1 | j = 0, . . . , n − 1}
)
\ {xj+1yj | j = 0, . . . , n − 1}. "
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Figure 9. The graph of convex polytope Sn.

The following theorem gives a tight upper bound on the binary locating-dominating number of Sn.

Theorem 5. Let G be the graph of convex polytope Sn. Then,

γl−d(G) ≤
⌈

7n
5

⌉
,

and this upper bound is tight.

Proof. Let S ⊂ V be a proper subset of the vertex set of Sn such that

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3 | j = 0, . . . , m − 1}, n = 5m;
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3

⋃
{x5m, z5m} | j = 0, ..., m − 1}, n = 5m + 1;
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3

⋃
{x5m, x5m+1, z5m+1} | j = 0, ..., m − 1}, n = 5m + 2;
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3

⋃
{x5m, x5m+1, x5m+2, z5m, z5m+2}, n = 5m + 3;
{x5m, x5m+1, x5m+2, x5m+3, z5m+1, z5m+3}

⋃
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3 | j = 0, . . . , m − 1}, n = 5m + 4.

Next, we show that S is a locating-dominating set of G. To do that, we discuss the following five
possible cases:

Case 1: When n = 5m.
Table 2 depicts all vertices in V\S and the intersections of their closed neighborhoods with S.
From the second column, we can see that all these intersections are nonempty and distinct.
Thus, for any two vertices u, v ∈ V\S, we have S

⋂
N[v] �= S

⋂
N[u] �= ∅. This shows that

S is a binary locating-dominating set of Sn.
Case 2: When n = 5m + 1.

Similar to the argument in Case 1, we see from Table 2 that all the intersections are nonempty
and distinct. This shows that S is a binary locating-dominating set for Sn, if n = 5m + 1.

Case 3: When n = 5m + 2.
Similar to the argument in Case 1 and Case 2, we see from Table 2 that all the intersections
are nonempty and distinct. This shows that S is a binary locating-dominating set for Sn,
if n = 5m + 2.
Thus, from the above discussion, we can say that Case 4 and Case 5 are analogous to above
mentioned cases.
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Note that |S| =
⌈ 7n

5
⌉
; therefore, we have γl−d(G) ≤

⌈ 7n
5
⌉
.

In order to show tightness in the upper bound from Theorem 5, we use the CPLEX solver for
the ILP formulation with constraints (1), (2), (4) and (6). As a result, we obtain the following optimal
solutions: γl−d(S6) = 9, γl−d(S7) = 10, γl−d(S8) = 12, γl−d(S9) = 13, . . . , γl−d(S21) = 30, . . . ,
γl−d(S29) = 41. This shows the upper bound in Theorem 5 is tight.

Table 2. Binary locating-dominating vertices in Sn.

n v ∈ V\S S ∩ N[v] v ∈ V\S S ∩ N[v]

5m w5j {x5j, x5(j−1)+4} w5j+1 {x5j, x5j+1}
w5j+2 {x5j+1, x5j+2} w5j+3 {x5j+2, x5j+3}
w5j+4 {x5j+3, x5j+4} y5j {x5j}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3}

5m + 1 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}
w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}

w5(j+1) {x5j+4, x5(j+1)} y5j {x5j}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m}
y5m {x5m, z5m}

5m + 2 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}
w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}

w5(j+1) {x5j+4, x5(j+1)} y5j {x5j}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m+1}

w5m+1 {x5m, x5m+1} y5m {x5m}
y5m+1 {x5m+1, z5m+1} z5m {z5m+1}

5m + 3 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}
w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}

w5(j+1) {x5j+4, x5(j+1)} y5j {x5j}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m+2}

w5m+1 {x5m, x5m+1} w5m+2 {x5m+1, x5m+2}
y5m {x5m, z5m} y5m+1 {x5m+1}

y5m+2 {x5m+2, z5m+2} z5m+1 {z5m, z5m+2}
5m + 4 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}

w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}
w5(j+1) {x5j+4, x5(j+1)} y5j {x5j}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m+3}

w5m+1 {x5m, x5m+1} w5m+2 {x5m+1, x5m+2}
w5m+3 {x5m+2, x5m+3} y5m {x5m}
y5m+1 {x5m+1, z5m+1} y5m+2 {x5m+2}
y5m+3 {x5m+3, z5m+3} z5m {z5m+1}
z5m+2 {z5m+1, z5m+3}
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4.2. The Graph of Convex Polytope Bn

The graph of convex polytope Bn comprises 2n 4-gonal faces, n trigonal faces, n pentagonal faces
and a pair of n-gonal faces (see Figure 10). It can also be obtained by the combination of graph of
convex polytope Qn [16] and a graph of prism Dn [15]. Alternatively, it has the vertex set

V(Bn) = {vj, wj, xj, yj, zj | j = 0, . . . , n − 1},

and the edge set

E(Bn) = {vjvj+1, wjwj+1, yjyj+1, zjzj+1 | j = 0, . . . , n − 1}∪
{vjwj, wjxj, wj+1xj, xjyj, yjzj | j = 0, . . . , n − 1}.

Figure 10. The graph of convex polytope Bn.

"Imran et al. [18] showed that the metric dimension of the convex polytope Bn is three. Next, we
prove a tight upper bound on the binary locating-dominating number of Bn."

Theorem 6. The binary locating-dominating number of Bn is bounded above by 2n, i.e.,

γl−d(Bn) ≤ 2n,

and this upper bound is tight.

Proof. Let S ⊂ V(Bn) such that S = {wj, yj | j = 0, ..., n − 1}. Next, we show that S is a binary
locating-dominating number of Bn. It can be seen that

S ∩ N[vj] = [wj], S ∩ N[xj] = [wj, wj+1, yj], and S ∩ N[zj] = [yj].

Note that all these intersections have at least one element and they are distinct as well. This shows
that S is a binary locating-dominating set of Bn. Therefore, we obtain that γl−d(G) ≤ 2n.

Using the CPLEX solver on the integer linear programming formulation with constraints (1), (2), (4)
and (6), we obtain the optimal solutions: γl−d(B7) = 14, γl−d(B8) = 16, γl−d(B9) = 18, . . . , γl−d(S15) =

30. This shows that the upper bound is tight.
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4.3. The Graph of Convex Polytope Tn

The graph of convex polytope Tn consists of 4n trigonal faces, n 4-gonal faces and a pair of n-sided
faces (see Figure 11). Mathematically, we have

V(Tn) = {wj, xj, yj, zj | j = 0, . . . , n − 1}

and
E(Tn) = {wjwj+1, xjxj+1, yjyj+1, zjzj+1 | j = 0, . . . , n − 1}∪
{wj+1xj, wjxj, xjyj, yizj, yj+1zj | j = 0, . . . , n − 1}.

It can also be obtained by the combination of the graph of convex polytope Rn [15,19] and the
graph of an antiprism.

Figure 11. The graph of convex polytope Tn.

Theorem 7. For the graph of convex polytope Tn, we have

γl−d(Tn) ≤
⌈

7n
5

⌉
,

and this upper bound is tight.

Proof. Let S be a proper subset of the vertex set of Tn, such that

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3 | j = 0, . . . , m − 1}, n = 5m;
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3

⋃
{x5m, z5m} | j = 0, ..., m − 1}, n = 5m + 1;
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3

⋃
{x5m, x5m+1, z5m+1} | j = 0, ..., m − 1}, n = 5m + 2;
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3

⋃
{x5m, x5m+1, x5m+2, z5m, z5m+2}, n = 5m + 3;
{x5m, x5m+1, x5m+2, x5m+3, z5m+1, z5m+3}

⋃
{x5j, x5j+1, x5j+2, x5j+3, x5j+4, z5j+1, z5j+3 | j = 0, . . . , m − 1}, n = 5m + 4.

We show that S is a binary locating-dominating set of Tn. We need to discuss the following two
possible cases:

Case 1: When n = 5m.
In order to show S to be a binary locating-dominating set, we need to show that the
neighborhoods of all vertices in V\S are non-empty and distinct. Table 3 shows these
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neighborhoods and their intersections. Although some formulas for some intersections can
be somewhat similar, but they are distinct.

Case 2: When n = 5m + 1.
As in the previous case, the the neighborhoods of all vertices in V\S are non-empty and
distinct shown in Table 3. Thus, from the above discussion, we can say that Case 3, Case 4
and Case 5 are analogous to the above-mentioned cases.

Note that |S| =
⌈ 7n

5
⌉
. This implies that γl−d(Tn) ≤

⌈ 7n
5
⌉
.

Next, we use the CPLEX solver for the ILP formulation with constraints (1), (2), (4) and (6) and
obtain the following optimal solutions: γl−d(T6) = 9, γl−d(T7) = 10, γl−d(T8) = 12, γl−d(T9) = 13,
. . . , γl−d(T21) = 30, . . . , γl−d(T29) = 41. This shows the upper bound in Theorem 7 is tight.

Table 3. Binary locating-dominating vertices in Tn.

n v ∈ V\S S ∩ N[v] v ∈ V\S S ∩ N[v]

5m w5j {x5j, x5(j−1)+4} w5j+1 {x5j, x5j+1}
w5j+2 {x5j+1, x5j+2} w5j+3 {x5j+2, x5j+3}
w5j+4 {x5j+3, x5j+4} y5j {x5j, z5j+1}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2, z5j+3}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3}

5m + 1 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}
w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}

w5(j+1) {x5j+3, x5(j+1)} y5j {x5j, z5j+1}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2, z5j+3}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m}
y5m {x5m, z5m}

5m + 2 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}
w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}

w5(j+1) {x5j+3, x5(j+1)} y5j {x5j, z5j+1}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2, z5j+3}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m+1}

w5m+1 {x5m, x5m+1} y5m {x5m, z5m}
y5m+1 {x5m+1, z5m} z5m {z5m+1}

5m + 3 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}
w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}

w5(j+1) {x5j+3, x5(j+1)} y5j {x5j, z5j+1}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2, z5j+3}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m+2}

w5m+1 {x5m, x5m+1} w5m+2 {x5m+1, x5m+2}
y5m {x5m, z5m} y5m+1 {x5m+1, z5m+2}

y5m+2 {x5m+2, z5m+2} z5m+1 {z5m, z5m+2}
5m + 4 w5j+1 {x5j, x5j+1} w5j+2 {x5j+1, x5j+2}

w5j+3 {x5j+2, x5j+3} w5j+4 {x5j+3, x5j+4}
w5(j+1) {x5j+3, x5(j+1)} y5j {x5j, z5j+1}
y5j+1 {x5j+1, z5j+1} y5j+2 {x5j+2, z5j+3}
y5j+3 {x5j+3, z5j+3} y5j+4 {x5j+4}

z5j {z5j+1} z5j+2 {z5j+1, z5j+3}
z5j+4 {z5j+3} w0 {x0, x5m+2}

w5m+1 {x5m, x5m+1} w5m+2 {x5m+1, x5m+2}
w5m+3 {x5m+2, x5m+3} y5m {x5m, z5m}
y5m+1 {x5m+1, z5m+1} y5m+2 {x5m+2, z5m+3}
y5m+3 {x5m+3, z5m+3} z5m {z5m+1}
z5m+2 {z5m+1, z5m+3}
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5. Conclusions

In this paper, we focus on a class of geometric graphs which naturally arise from the structures
of convex polytopes. Besides finding exact values for the binary locating-dominating number of two
infinite families of graphs of convex polytopes, we also find tight upper bounds on other three infinite
families of convex polytopes. An integer linear programming model for binary locating-locating number
is used to find tightness in the obtained upper bounds.

Generalized Petersen graphs and certain families of strongly regular graphs can be considered for
further research on this problem.
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23. Simić, A.; Bogdanović, M.; Milošević, J. The binary locating-dominating number of some convex polytopes.
ARS Math. Cont. 2017, 13, 367–377. [CrossRef]

24. Hayat, S. Computing distance-based topological descriptors of complex chemical networks: New theoretical
techniques. Chem. Phys. Lett. 2017, 688, 51–58. [CrossRef]

25. Hayat, S.; Imran, M. Computation of topological indices of certain networks. Appl. Math. Comput. 2014, 240,
213–228. [CrossRef]

26. Hayat, S.; Malik, M.A.; Imran, M. Computing topological indices of honeycomb derived networks. Rom. J.
Inf. Sci. Tech. 2015, 18, 144–165.

27. Hayat, S.; Wang, S.; Liu, J.-B. Valency-based topological descriptors of chemical networks and their
applications. Appl. Math. Model. 2018, 60, 164–178. [CrossRef]

28. Bange, D.W.; Barkauskas, A.E.; Host, L.H.; Slater, P.J. Generalized domination and efficient domination in
graphs. Discret. Math. 1996, 159, 1–11. [CrossRef]

29. Sweigart, D.B.; Presnell, J.; Kincaid, R. An integer program for open locating dominating sets and its results
on the hexagon-triangle infinite grid and other graphs. In Proceedings of the 2014 Systems and Information
Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 25 April 2014; pp. 29–32.
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