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Abstract 

In a recent manuscript (Stratification and domination in graphs. Discrete Math. 

272 (2003), 171-185) a new mathematical framework for studying domination is 

presented. It is shown that the domination number and many domination related 

parameters can be interpreted as restricted 2-stratifications or 2-colorings. This 

framework places the domination number in a new perspective and suggests many 

other parameters of a graph which are related in some way to the domination 

number. In this thesis, we continue this study of domination and stratification 

in graphs. 

Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that 

F is rooted at the blue vertex v. An F-coloring of a graph G is a red-blue coloring 

of the vertices of G such that every blue vertex v of G belongs to a copy of F (not 

necessarily induced in G) rooted at v. The F-domination number 7F(GQ of G is the 

minimum number of red vertices of G in an F-coloring of G. 

Chapter 1 is an introduction to the chapters that follow. In Chapter 2, we 

investigate the X-domination number of prisms when X is a 2-stratified 4-cycle 

rooted at a blue vertex where a prism is the cartesian product Cn x i^2, n > 3, of 

a cycle Cn and a Ki. 

In Chapter 3 we investigate the F-domination number when (i) F is a 2-stratified 

path P3 on three vertices rooted at a blue vertex which is an end-vertex of the F3 

and is adjacent to a blue vertex and with the remaining vertex colored red. In 

particular, we show that for a tree of diameter at least three this parameter is at 

most two-thirds its order and we characterize the trees attaining this bound, (ii) 
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We also investigate the F-domination number when F is a 2-stratified K3 rooted at 

a blue vertex and with exactly one red vertex. We show that if G is a connected 

graph of order n in which every edge is in a triangle, then for n sufficiently large 

this parameter is at most (n — y / n) /2 and this bound is sharp. 

In Chapter 4, we further investigate the F-domination number when F is a 2-

stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex 

of the P3 and is adjacent to a blue vertex with the remaining vertex colored red. 

We show that for a connected graph of order n with minimum degree at least two 

this parameter is bounded above by (n —1)/2 with the exception of five graphs (one 

each of orders four, five and six and two of order eight). For n > 9, we characterize 

those graphs that achieve the upper bound of (n — l) /2 . 

In Chapter 5, we define an ^"-coloring of a graph to be a red-blue coloring of the 

vertices such that every blue vertex is adjacent to a blue vertex and to a red vertex, 

with the red vertex itself adjacent to some other red vertex. The ^"-domination 

number ^{G) of a graph G is the minimum number of red vertices of G in an 

^"-coloring of G. Let G be a connected graph of order n > 4 with minimum degree 

at least 2. We prove that (i) if G has maximum degree A where A < n — 2, then 

jr(G) < n - A + 1, and (ii) if G # C7, then ^(G) < 2n/3. 

In Chapter 6, we study total restrained domination in graphs. A set S of vertices 

in a graph G = (V, E) is a total restrained dominating set of G if every vertex 

is adjacent to a vertex in S and every vertex of V \ S is adjacent to a vertex in 

V \ S. The minimum cardinality of a total restrained dominating set of G is the 

total restrained domination number of G, denoted by 7tr(G). Let G be a connected 

graph with minimum degree at least 2. We prove that (i) if G has order n > 4 with 

maximum degree A where A < n — 2, then 7tr(G) < n — 4 — 1, and (ii) if G is a 

bipartite graph of order n > 5 with maximum degree A where 3 < A < n — 2, then 

7ti(G) < n — IA — |V3A — 8 — jj. Both bounds are shown to be sharp. 



iii 

Dedicated 

To my wife, Vanessa. 



iv 

Preface 

The work described in this thesis was carried out under the supervision and direction 

of Professor Michael A. Henning, School of Mathematical Sciences, University of 

KwaZulu-Natal, Pietermaritzburg campus from January 2002 to April 2006. 

The thesis represents original work by the author and has not otherwise been 

submitted in any form for any degree or diploma to any other University. Where 

use has been made of the work of others it is duly acknowledged in the text. 

Signed: 

Jacob Elgin Maritz 

nrv OMn 

Professor Michael A. Henning (Supervisor) 



V 

Acknowledgments 

I wish to thank ... 

Professor Michael Henning, my supervisor, for his time, patience and sacrifice. 

He has made an enormous contribution to the preparation of this thesis. It is only 

because of his complete dedication - those countless times that he drove to Hilton 

College so that we can collaborate on this thesis - that has brought this work into 

fruition. Throughout, he has provided me with guidance and his insight has many a 

times saved me from going down a cul de sac. I regard him not just as my supervisor, 

but as a friend. 

My colleagues and friends at Hilton College, and especially Heather, Mike, Paul, 

Silva, Sue and Tim. In a school that demands an enormous amount of your time, 

they gave me the support and space to produce this thesis. 

Rudi and David. Their company has been a relaxing time away from my work. 

My long time friend, Mark Conelly, who has continued to be a source of strength 

and encouragement although we have been many hundreds of kilometers apart. 

My children, Shannon, Eathon and Tylo, who has reminded me that there is more 

to life than just work. 

And finally, 

To my wife. She has always believed in me, even when at times, I did not believe 

in myself. Her strength, sacrifice and patience has been my source of inspiration. I 

am indebted to her in more ways than words can express. 



Contents 

1 INTRODUCTION 1 

1.1 Basic Definitions 1 

1.2 Background 5 

1.3 Known Results 7 

1.4 Overview 11 

2 STRATIFICATION AND DOMINATION IN PRISMS 13 

2.1 Introduction 13 

2.2 A 2-stratified C4 14 

2.3 Stratification in Prisms 14 

2.3.1 X\-stratification and the domination number 16 

2.3.2 X2-stratification 20 

2.3.3 .^-stratification and the 2-domination number 20 

2.3.4 ^-stratification and the total domination number 21 

2.3.5 .X^-stratification and the double total domination number . . . 25 

3 STRATIFICATION AND DOMINATION IN GRAPHS 30 

vi 



CONTENTS vii 

3.1 Introduction 30 

3.2 The parameter JF3{G) 31 

3.2.1 Paths 31 

3.2.2 The Family T 32 

3.2.3 Trees with maximum 7̂ 3 33 

3.3 A 2-stratified K3 40 

4 STRATIFIED GRAPHS WITH MINIMUM DEGREE TWO 47 

4.1 Introduction 47 

4.2 Main Results 49 

4.3 Preliminary Results 50 

4.3.1 Proof of Observation 4.4 53 

4.3.2 Proof of Proposition 4.5 53 

4.3.3 Proof of Proposition 4.7 54 

4.3.4 Proof of Proposition 4.9 57 

4.3.5 Proof of Lemma 4.14 58 

4.4 Proof of Theorem 4.1 59 

4.4.1 Proof of Lemma 4.18 62 

4.4.2 Proof of Lemma 4.19 64 

4.4.3 Proof of Lemma 4.20 65 

4.4.4 Proof of Lemma 4.21(a) 70 

4.4.5 Proof of Lemma 4.21(b) 71 

4.4.6 Proof of Lemma 4.21(c) 72 



CONTENTS viii 

4.4.7 Proof of Lemma 4.22 72 

4.4.8 Proof of Lemma 4.23 73 

4.4.9 Proof of Lemma 4.24 74 

4.5 Proof of Theorem 4.2 74 

4.6 Proof of Theorem 4.3 75 

5 SIMULTANEOUS STRATIFICATION IN GRAPHS 76 

5.1 Introduction 76 

5.2 Simultaneous stratification 76 

5.2.1 ^"-domination versus total restrained domination 77 

5.2.2 Cycles 79 

5.2.3 Bounds involving maximum degree 80 

5.2.4 Bounds involving the order 85 

6 TOTAL RESTRAINED DOMINATION IN GRAPHS 98 

6.1 Introduction 98 

6.2 Main Results 99 

6.3 Notation 99 

6.4 Proof of Theorem 6.1 100 

6.5 Proof of Theorem 6.2 108 



Chapter 1 

INTRODUCTION 

In the first section of this chapter we present the notation and give some basic 

definitions that will be used throughout this thesis. In Section 1.2, we give some 

background to the concepts of domination and stratification of a graph. We then 

give a formal definition of the concepts domination and stratification of a graph 

and also state some of the many results that have already been established in this 

research field. Finally, in Section 1.4, we give an overview of the remainder of this 

thesis. 

1.1 Basic Definitions 

A graph G consists of a finite nonempty set of vertices (the singular is vertex) and 

a (possibly empty) set of unordered pairs of distinct vertices of G called edges. The 

vertex set of G is denoted by V(G) (or V if no confusion is likely), while the edge 

set of G is denoted by E(G) (or E). The number of vertices in V(G) is denoted by 

n(G) which is also known as the order of the graph G, while the number of edges 

in E(G) is denoted by m(G). A graph G is trivial if n(G) = 1 and non-trivial if 

1 



CHAPTER 1. INTRODUCTION 2 

n(G) > 2. For a graph G, if n{G) = n and m(G) = m, then G is called a (n,m)-

graph. Unless otherwise specified, the symbols n and m (or n(G) and m(G)) will be 

reserved exclusively for the order and number of edges, respectively, of a graph G. 

We write G = (V, E) to mean that the graph G has vertex set V and edge set E. 

The edge e = uv is said to join the vertices u and v. If e = uv is an edge of 

G, then u and v are adjacent vertices, while u and e are incident as are t> and e. 

Furthermore, if e\ and e2 are distinct edges of G incident with a common vertex, 

then ei and &% are adjacent edges. 

A graph G is called complete if every two vertices of G are adjacent. We denote 

a complete graph of order n by Kn. The degree of a vertex v in G is the number 

of edges incident with v and is denoted degGt> (or degt; if there is no confusion). 

The minimum degree (resp., maximum degree) among the vertices of G is denoted 

by 8(G) (resp., A(G)). A vertex of degree k we call a degree-k vertex. If there is a 

vertex v £ V(G) such that deg v = 0, then v is called an isolated vertex, if degt> = 1, 

then v is called an end-vertex and if degv > 2, then v is called an internal vertex of 

G. A vertex is called odd or even depending on whether its degree is odd or even. 

A subgraph if of a graph G is a graph with V(H) C V(G) and E(H) C E(G). A 

proper subgraph of G is a subgraph of G that is different from G. A subgraph H is 

called a spanning subgraph of G if V(# ) = V(G). For a set 5 C F(G), the subgraph 

induced by S is denoted by G[S] and the subgraph obtained from G by deleting the 

vertices in S (and all edges incident with vertices in S) is denoted by G — S. For a 

vertex t> (resp. an edge e) of G we denote by G — v (resp. G — e) the graph obtained 

from G by deleting the vertex v (resp. the edge e). 

Let u and v be (not necessarily distinct) vertices of a graph G. A u-v walk of G 

is a finite, alternating sequence u = «o, ei, V\, ea» • • • j un-i> ^n, vn = i> of vertices and 

edges, beginning with vertex « and ending with vertex v, such that e; = i>j_iVj for 

i — 1,2,. . . , n. The number n (the number of occurrences of edges) is called the 
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length of the walk. A trivial walk contains no edges. Often only the vertices of a 

walk are indicated since the edges present are then evident. A u-v walk is closed 

or open depending on whether u = v or u ^ v. A u-v trail is a u-v walk in which 

no edge is repeated, while a u-v path is a u-v walk in which no vertex is repeated. 

A nontrivial closed trail of a graph G is referred to as a circuit of G, and a circuit 

V\,V2,- •• ,vn,Vi (n > 3) whose n vertices are distinct is called a cycle. A graph of 

order n that is a path (or a cycle) is denoted by Pn (or Cn), respectively. Therefore, 

Pn '• t>i, V2,. • •, vn indicates a path of length n — 1 on the vertices Vi, V2,.. . , vn, while 

Cn indicates a cycle of length n on the same vertices. 

The distance between u and v, denoted by da(u,v) (or d(u,v) if there is no 

confusion) is the length of a shortest u-v path in G if such a path exist. A set S 

of vertices in a graph G is called a packing in G if the vertices in S are pairwise at 

distance at least 3 apart in G, i.e., if u, v € S, then d(u, v) > 3. 

Let u and v be distinct vertices of G. We say that u is connected to v if there 

exist a u-v path in G. The relation 'is connected to' is an equivalence relation on 

the vertex set of every graph G. The graph G is itself connected if u is connected 

to v for every pair u, v of vertices of G. A graph that is not connected is called 

disconnected. The trivial graph, then, is connected. A subgraph H of a graph G 

is a component of G if H is a maximal connected subgraph of G. An edge e of G 

is called a bridge if G — e is disconnected while v is called a cut-vertex if G — v is 

disconnected. 

For a graph G = (V, E),let v €.V and let S C V . The open neighborhood of t> is 

N(v) = {u € V I uv € .£} and the cZosed neighborhood of t) is 7V[u] = {i>}UiV(i>). The 

open neighborhood of S is defined by AT(S') = U„esAT(v), and the closed neighborhood 

of 5 by N[S] = Af(S) U S1. If v € 5, then a vertex w G ^ i s a private neighbor of 

v (with respect to S) if JV[tt;] D 5 = {f}. The private neighbor set of v with respect 

to S, denoted pn(v, S), is the set of all private neighbors of v. The external private 
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neighbor set of v with respect to S is the set epn(t>, S) — pn(t>, 5) D (V \ S). 

A graph G is r-partite, r > 1, if it is possible to partition V into r subsets 

Vi,V2,... ,Vr (called partite sets) such that every element of E joins a vertex of 

Vi to a vertex of Vj,i ^ j . If G is a 1-partite graph of order n, then G = Kn. 

For r = 2, such graphs are called bipartite graphs, and where the specification of r 

is of no significance, an r-partite graph is also referred to as a multipartite graph. 

A complete r-partite graph G is an r-partite graph with partite sets Vj, V2,. . . , Vr 

having the added property that if u G Vi and v G Vj, i ^ j , then ui> G E{G). If 

I Vi| = rii, then this graph is denoted by K(ni,ri2,... ,nr). (The order of the numbers 

m, r i2 , . . . , n r is not important.) A complete bipartite graph with partite sets Vi and 

V2, where |Vi| = m and |V2I = n, is denoted by K(m,n) or ifm,„. 

A tree is a connected graph which has no cycles. A leaf of a tree T is a vertex of 

degree 1, while a support vertex of T is a vertex adjacent to a leaf. A support vertex 

adjacent to two or more leaves is called a strong support vertex. A star is the tree 

Ki,n-i of order n > 2. A subdivided star is a star where each edge is subdivided 

exactly once. A tree is a doublestar if it contains exactly two vertices that are not 

leaves; if one of these vertices is adjacent to r leaves and the other to s leaves, then 

we denote the double star by 5riS. We call a path of maximum length in a tree a 

diametrical path in the tree. 

A prism is the cartesian product G = Cn x K2, n > 3, of a cycle Cn and a Ki. 

Our prism G consists of two n-cycles v 1, i>2,..., vn, v\ and t*i, «2> • • •, ̂ n, ̂ l with UjUj 

an edge for all i = 1,2,. . . , n. 

We define a vertex as small if it has degree 2, and large if it has degree more 

than 2. We define a ray as a path (not necessarily induced) of length 3 the two 

internal vertices of which are small vertices. 

Let G be a graph with minimum degree at least two, and let C be the set of all 

large vertices of G. Suppose |£ | > 1 and let C be any component of G — £; it is a 
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path. If C has only one vertex, or has at least two vertices but the two ends of C are 

adjacent in G to different large vertices, then we say that C is a 2-path. Otherwise 

we say that C is a 2-handle. 

Other definitions will be given where they are needed. For notation and graph 

theory terminology that have not been defined here we in general follow [30]. 

1.2 Background 

The earliest ideas of dominating sets date back to the origins of the game of chess 

in India over 400 years ago, in which one wishes to cover or dominate various 

opposing pieces or various squares of the chessboard. In 1862 de Jaenisch [16] 

posed the problem of finding the minimum number of queens that can be placed on 

a chessboard so that each square of the chessboard is attacked or dominated by at 

least one of the queens. A graph may be formed from an n x n chessboard by taking 

the squares as the vertices and two vertices are adjacent if a chess piece situated on 

one square covers the other. 

The classical problems of covering chessboards with the minimum number of 

chess pieces rekindled interest in dominating concepts. Ultimately the theory of 

domination was formalized by Berge [2] in 1958 and Ore [46] in 1962. Ore coined 

the term 'domination number', but Berge was the first to define it as a parameter 

(coefficient of external stability). 

The notion of domination is a standard one in coding theory. If one defines a 

graph whose vertices are the n-dimensional vectors with coordinates from ( 1 , . . . ,p) 

and two vertices are adjacent if they differ in one coordinate, then sets of vectors 

which are (n,p)-covering sets, single error correcting codes, or perfect covering sets 

are all dominating sets of a graph with certain additional properties. See for example 
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Kalfieisch, Stanton, and Horton [43]. 

As a further example, to illustrate the idea of dominating sets, consider a graph G 

representing a city road system where the vertices correspond to street intersections 

(see Figure 1.1). Two vertices are adjacent if and only if they correspond to adjacent 

intersections. We wish to place law officers at various intersections, so that at every 

intersection, there is a law officer located no more than one block away. This is 

equivalent to locating a dominating set in the graph G. One possible dominating 

set is shown in Figure 1.1, where the vertices in the dominating set of G are darkened. 

Actually, only four law officers are required to dominate G. 

-Q-

o-

-o 

-Q 

-O 

Figure 1.1: A graph G representing a road system with a dominating set. 

In this thesis we continue the study of stratification and domination in graphs 

started by Chartrand, Haynes, Henning and Zhang [8]. A graph G whose vertex 

set has been partitioned is called a stratified graph. If the partition is V(G) = 

{Vi, V2,..., Vfc}, then G is a fc-stratified graph. The sets V\, V2,..., V* are called the 

strata or sometimes the color classes of G. If k = 2, we ordinarily color the vertices 

of V\ red and the vertices of V2 blue. In what follows, we will restrict our attention 

to 2-stratified graphs. 

In [47], Rashidi studied a number of problems involving stratified graphs; while 

distance in stratified graphs was investigated in [5, 6, 11]. 

In [8] a new mathematical framework for studying domination is presented. It 

is shown that the domination number and many domination related parameters 
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can be interpreted as restricted 2-stratifications or 2-colorings, with the red vertices 

forming the dominating set. This framework places the domination number in a 

new perspective and suggests many other parameters of a graph which are related 

in some way to the domination number. The book by Chartrand and Zang [13] 

includes a section on domination and stratification. 

1.3 Known Results 

In this section, we state some of the many known results in the theory on domination 

and 2-stratification of a graph. We begin with a formal definition of a dominating 

set and the domination number of a graph. 

A set S C V(G) of a graph G is a dominating set if every vertex not in S is 

adjacent to a vertex in S. The domination number of G, denoted by 7(G), is the 

minimum cardinality of a dominating set. A dominating set of G of cardinality 7(G) 

is called a j-set of G. A dominating set S in a graph is a minimal dominating set 

if and only if for each v G S, we have pn(i>, S) ^ 0. 

Early work on the topic of domination focussed on properties of minimal 

dominating sets. We give two classical results of Ore [46]. 

Theorem 1.1 (Ore [46]) Let D be a dominating set of a graph G. Then D is a 

minimal dominating set of G if and only if each v € D has at least one of the 

following two properties. 

Pi: There exists a vertex w G V(G) \ D such that N(w) 0 D = {v}; 

P2: The vertex v is adjacent to no other vertex of D. 

Theorem 1.2 (Ore [46]) If G is a graph with no isolated vertex and D is a minimal 

dominating set of G, then V(G) \ D is a dominating set of G. 
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Bollobas and Cockayne [3] established the following property of minimal (or 

minimum) dominating sets in graphs. 

Theorem 1.3 (Bollobas and Cockayne [3]) If G is a graph with no isolated vertex, 

then there exists a minimum dominating set D of vertices ofG in which every vertex 

has property Pi. 

We remark that the result of Theorem 1.3 can be formulated in terms of a set and 

the external private neighborhood of its members. 

Theorem 1.3. If G is a graph with no isolated vertex, then there exists a ry(G)-set 

S such that \epn(v,S)\ > 1 for every v G S. 

As an immediate consequence of Theorems 1.2 and 1.3, we have the following 

upper bound on the domination number of a graph due to Ore [46]. 

Theorem 1.4 (Ore [46]) If G is a graph of order n with no isolated vertex, then 

7(G) < n /2 . 

Let G = (V, E) be a graph. A total dominating set (abbreviated, TDS) in G is 

a subset S C V such that every vertex of G is adjacent to a vertex of S. Every 

graph G without isolated vertices has a total dominating set since S = V(G) is such 

a set. The total domination number 7t(G) is the minimum cardinality of a total 

dominating set. Total domination in graphs was introduced by Cockayne, Dawes, 

and Hedetniemi [14] and further studied, for example, in [1, 15, 21, 22, 34, 35, 49]. 

The following result is due to Cockayne, Dawes, and Hedetniemi [14]. 

Theorem 1.5 (Cockayne, Dawes, and Hedetniemi [14]) If G is a graph of order 

n > 3 with no isolated vertices, then 7t(G) < 2n/3. 
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Let G = (V,E) be a graph. A restrained dominating set (abbreviated, RDS) 

in G is a subset S C V such that every vertex not in S is adjacent to a vertex 

in S and to a vertex in V \ S. The restrained domination number 7r(G) of G is 

the minimum cardinality of a RDS. Restrained domination was introduced by Telle 

and Proskurowski [48], albeit indirectly, as vertex partitioning problem and further 

studied, for example, in [18, 19, 20, 29, 36]. 

Let G — (V, E) be a graph. If a set S of vertices in G is simultaneously a TDS 

and a RDS, then S is called a total restrained dominating set (abbreviated, TRDS). 

Thus if S is a TRDS of G, then every vertex of G is adjacent to a vertex in S and 

every vertex of V \ S is adjacent to a vertex in V \ S. The minimum cardinality 

of a TRDS of G is the total restrained domination number of G, denoted by jti(G). 

The concept of total restrained domination in graphs was also introduced in [48], 

albeit indirectly, as a vertex partitioning problem and has been studied, for example, 

in [28, 17, 50]. 

For k > 1, a k-dominating set in G is a subset S QV such that every vertex not 

in S is adjacent to at least k vertices in S. The k-domination number -y^G) of G is 

the minimum cardinality of a fc-dominating set of G. In particular, the parameter 

72(G) is the minimum cardinality of a 2-dominating set. 

There are many other domination related parameters that are beyond the scope 

of this thesis. The concept of domination in graphs, with its many variations, is 

now well studied in graph theory. The book by Chartrand and Lesniak [12] includes 

a chapter on domination. For a more thorough study of domination in graphs, see 

Haynes, Hedetniemi, and Slater [30, 31]. 

Next, we define the concepts associated with a 2-stratification or 2-coloring of a 

graph. Let F be a 2-stratified graph rooted at some blue vertex v and containing at 

least one red vertex. We define an F-coloring of a graph G to be a red-blue coloring 

of the vertices of G such that every blue vertex v of G belongs to a copy of F rooted 
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at v. The F-domination number JF(G) of G is the minimum number of red vertices 

of G in an F-coloring of G. We call an F-coloring of G that colors JF(G) vertices 

red a ^p-coloring of G. The set of red vertices in a 7F-coloring is called a jp-set. If 

G has order n and G has no copy of F, then certainly JF(G) — n. 

Let F be a Ki rooted at a blue vertex v that is adjacent to a red vertex. An 

F-coloring of G is then a red-blue coloring of the vertices of G with the property 

that every blue vertex is adjacent to a red vertex. Notice that the red vertices of G 

correspond to a dominating set of G. Hence, 7(G) < 1F{G). On the other hand, 

given a 7-set of G we color the vertices in this set red and all remaining vertices 

blue. This red-blue coloring of the vertices of G has the property that every blue 

vertex is adjacent to a red vertex and is therefore an F-coloring of G (where F is a 

2-stratified K2). Thus, 7F(G) < 7(G). Consequently, if F is a 2-stratified K2, then 

7 F ( G 9 = 7 ( G 9 . 

Thus domination can be interpreted as a restricted 2-stratification or 2-coloring, 

with the red vertices forming the dominating set. Clearly, this F-coloring is the only 

well-defined one for connected graphs F with order 2. 

Let F be a 2-stratified F3 rooted at a blue vertex v. The five possible choices for 

the graph F are shown in Figure 1.2. (The red vertices in Figure 1.2 are darkened.) 

V 

9 
< 
4 

1 

• 

Fi 

V 

9 
« » 
0 
F2 

V 
0 
O 

1 
F3 

V 

P\ 
/ \ 

4 6 
F4 

V 

R A 
4 \ 

F5 

Figure 1.2: The five 2-stratified graphs P3. 
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An example of a 7F-coloring of G = P4 o K\ (the darkened vertices are the red 

vertices) is illustrated in Figure 1.3 where F € {F\, F2,..., F5}. 

~tm rm zm rm~ 
7 F l (G) = 4 lF2(G) = 4 7F 3 (G9 = 7 F 4 ( G ) = 4 7 F B ( G ) = 6 

Figure 1.3: A 7.p-coloring of a graph G. 

The following result is established in [8]. 

Theorem 1.6 ([8]) If G is a connected graph of order at least 3, then for i 6 

{1,2,4,5}, the parameter fFt(G) is given by the following table: 

i 

7n(G) = 

1 

7t(G) 

2 

7 (G) 

4 

7r(G) 

5 

72(G) 

Table 1.4: The parameter 7 F 4 ( G ) . 

Since the parameter 7 F I ( G ) is defined for all graphs G, while the parameter 7t(G) 

is defined only for graphs without isolated vertices, Theorem 1.6 suggests that the 

definition of 7Fi(G) may be preferable to that of 7<(G). 

The parameter 7 F 3 ( G ) appears to be new and is further investigated in Chapter 3. 

1.4 Overview 

In Chapter 2, our aim is to determine the X-domination number of a prism when 

X is a 2-stratified cycle G4. 
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In Chapter 3, we investigate the F-domination number when F is a 2-stratified 

path P3 on three vertices rooted at a blue vertex which is an end-vertex of the P3 

and is adjacent to a blue vertex and with the remaining vertex colored red. (See 

Figure 1.2.) We also investigate the F-domination number when F is a 2-stratified 

Kz rooted at a blue vertex and with exactly one red vertex. 

In Chapter 4, we continue the study of the F3-domination number of a graph. We 

have two immediate aims: Firstly to establish an upper bound on the F3-domination 

number of a connected graph with minimum degree at least two in terms of the order 

of the graph and to characterize those graphs achieving equality in this bound. 

Secondly, to characterize connected graphs of sufficiently large order with maximum 

possible F3-domination number. 

In Chapters 5 and 6, we focus on two variations on the domination theme that 

are well studied in graph theory called total domination and restrained domination. 



Chapter 2 

STRATIFICATION AND 

DOMINATION IN PRISMS 

2.1 Introduction 

Recall, a prism is the cartesian product G = Cn x K2, n > 3, of a cycle Cn and 

a Ki. Our prism G consists of two n-cycles vi, i>2,..., vn, v\ and ui, «2, • • •, un, u\ 

with UiVi an edge for all i = 1,2,..., n. In this chapter our aim is to determine the 

X-domination number of a prism when X is a 2-stratified cycle C4. Recall a vertex 

w € V is a private neighbor of v (with respect to S) ii N[w] C\ S — {v}; and the 

private neighbor set of v with respect to S, denoted pn(t>, S), is the set of all private 

neighbors of v. Results on domination in prisms can be found, for example, in [4, 7]. 

13 
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2.2 A 2-stratified C4 

Let X be a 2-stratified C4 rooted at a blue vertex v. The five possible choices for 

the graph X are shown in Figure 2.1. (The red vertices in Figure 2.1 are darkened.) 

v v v v v 
0 0 0 0 0 f 0 0 0 1 

• o o • 
X\ X2 

o • • 
X3 X^ X* 

Figure 2.1: 

2.3 Stratification in Pr isms 

The total domination number of grid graphs (i.e. a graph that is the cartesian 

product of two paths) is given in [26]. We state two important results from [26]. 

Proposition 2.1 (Gravier [26]) For any n > 4, 

Tt(P* x P„) = J 

t 
6n + 8 

5 

< 

6n + 8 
5 

if n= 1,2,4 (mod 5) 

+ 1 if n s 10,3 (mod5). 

Theorem 2.2 (Gravier [26]) If k and n are two integers greater than 16, then 

3kn + 2(k + n) 
12 

< lt{Pk x Pn) < 
(fc + 2)(n + 2) 

- 4 . 

In this chapter, we focus on prisms and we investigate the possible 2-stratifications 

of prisms. In all but one of the five possible choices for a 2-stratified C4 (see 

Figure 2.1), the red vertices form a dominating set in the graph. Hence we have the 

following observation. 

Observation 2.3 Fori € {1,3,4,5} and for any graph G, 7(G) < 7^(G). 
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Theorem 2.4 For n > 3, let G = Cn x K2. Then for i e {1,2,3,4,5}, the 

parameter 7x< (G) is given by the following table: 

i 

1 

2 

3 

4 

5 

IxAG) 

[n/2\ + fn/41 - [n/4j 

f 2 i/n = 4 
1 2n otherwise 

n 

2 "n" 
3 

4n" 
3 

7*(G) 

7(G) 

72(G) 

f 7t(G) + l if n s l(mod6) 

y 7t(G) otherwise. 

f 7x2(G)- l if n s 2 (mod6) 

I 7x2(G) otherwise. 

Table 2.2: The parameter 7xi(G). 

where 72(G) denotes the 2-domination number, 7t(G) denotes the total domination 

number, and 7X2(G) denotes the double total domination number (which we define 

in Subsection 2.3.5). 

Given a graph G = (V, E) and a subset S C V", we call the coloring of G that 

colors the vertices of S red and the vertices of V \ S blue the red-blue coloring 
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associated with S. 

Throughout Section 2.3, we let G = Cn x K2. The proof of Theorem 2.4 follows 

from Propositions 2.6, 2.9, 2.14, 2.15, 2.17, 2.18, 2.21 and 2.22. In some of the proofs 

that follow we will need the following lemma. 

Lemma 2.5 Let S be a set of vertices in G. If G can be partitioned into n/s 

subgraphs H = PsxK2, each containing k vertices that belongs to S, then \S\ = nk/s. 

2.3.1 Xi-stratification and the domination number 

Proposition 2.6 Forn> 3, 7x1(G) = [n/2\ + fn/4] - [n /4 | . 

Proof. The desired result follows from Claims 2.7 and 2.8. 

Claim 2.7 7 X l (G) > [n/2\ + [n/4] - Ln/4j. 

Proof. In any Xi-coloring of a graph, every vertex colored blue is rooted at a copy 

of X\. Hence as an immediate consequence of the definition of an Xi-coloring, any 

Xi-coloring of G colors at least one vertex from every 4-cycle red. 

Suppose n is odd. Consider any given Xi-coloring of G. Renaming vertices if 

necessary, we may assume v\ is colored red. Since G — { u i ^ i } contains (n — l ) /2 

disjoint 4-cycles, each of which contains at least one red vertex, our given Xi-coloring 

contains at least (n + l ) /2 red vertices. Thus, ^xx{G) > (n + l ) /2 . 

Suppose n is even. Then, G has n/2 disjoint 4-cycles, and therefore has at least 

n/2 red vertices. Thus, 7 ^ {G) > n /2 . Further, suppose n = 2 (mod 4) and that 

exactly n/2 vertices are colored red. Then, every 4-cycle in G contains exactly one 

red vertex. In particular, v\ is the only red vertex in the 4-cycle vi,ui,U2,V2,V\. 

Since ui is rooted in a copy of X%, the vertex 113 is colored red, and so U3 is 
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the only red vertex in the 4-cycle U3, v^v^u^uz- Since i>4 is rooted in a copy 

of Xi, the vertex v$ is colored red, and so v& is the only red vertex in the 4-cycle 

^5, U5, Ue, VQ, v&. Proceeding in this manner, vn-\ is the only red vertex in the 4-cycle 

vn-i, un-i, un, vn,vn-i. But then un is not rooted at a copy of X\t a contradiction. 

Hence, if n ~ 2 (mod 4), then at least n/2 + 1 vertices are colored red. • 

Claim 2.8 jXl(G) < \n/2\ + [n/4] - [n/4j. 

Proof. If n = 3, then {^1,̂ 3} is an Xi-coloring of G, and the desired upper bound 

follows. Hence we may assume n > 4. Suppose first that n ^ 2 (mod 4). Let 

[n/4J-l 
S= ( J {t>4i+i,U4i+3}-

i=0 

If n a 0(mod4), let D = S. If n m l(mod4), let D = S U {vn}. If 

n = 3 (mod4), let D = S Li {un,vn-2}- In all cases, coloring the vertices in D 

red and coloring all remaining vertices blue, produces an Xi-coloring of G, and so 

7Xx(G)<|D| = Ln/2j + rn /4 l -Ln/4 j . 

Suppose, secondly, that n = 2 (mod 4). If n = 6, let 5 = 0, while if n > 10, let 

|n/4J-2 

i=Q 

Let R = {un_5, fn-4, un-2, ^n-i}- Coloring the vertices in RU S red and coloring all 

remaining vertices blue, produces an Xi-coloring of G, and so jXi(G) < \R\ + |5 | = 

|n/2j + [n/4] - [n/A\. D 
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Proposition 2.9 For n > 3, 7(G) = 7x1(G). 

Proof. By Observation 2.3, 7(G) < 7x1(G). Hence it suffices for us to show that 

7(G) > 7x1 ((?). Among all 7(G)-sets, let S be chosen so that 

(1) G[S] has minimum size. 

(2) Subject to (1), the red-blue coloring associated with S contains the 

maximum number of blue vertices that are rooted at a copy of X\. 

We proceed further by proving three claims. 

Claim 2.10 \N(v) n S\ < 1 for all veS. 

Proof. Suppose there exists a vertex Vi G S such that \N(vi) D S\ > 2. If m G S, 

then by symmetry we may assume that u<+i G S. But then (5 — {ui,u»}) U {ttj-i} 

is a dominating set of G of cardinality less than 7(G), which is impossible. Hence, 

Ui $. S; that is, {UJ_I, vi+i} C S. Then, tij G pn(t>j, 5), and so itj_i ^ 5 and 14+1 ^ 5 . 

Hence, (S1 — {vi}) U {ttj} is a 7(G)-set that induces a subgraph of G with fewer edges 

than G[S], contradicting our choice of S. • 

Claim 2.11 | { t i i , n } n 5 | < 1 for % = 1,2, . . . ,n. 

Proof. Suppose that {ui,vt} C S for some i, 1 < i < n. By Claim 2.10, 

S n {uj_i, «i_i,iti+i, fj+i} = 0. By the minimality of 5, pn(uj,5) C {ui_i,Vi+i} 

and pn^.iS1) C {tij_!,Uj+1}. Suppose that ty_i G p n ^ S ) and ui+i G pn(tii,5). 

Then, S fl {uj+2,t>j_2} = 0- Hence, (S — {ui,Vi}) U {ui+i,Vi-i} is a 7(G)-set that 

induces a subgraph of G with fewer edges than G[S], contradicting our choice of S. 

Similarly we have a contradiction if vi+i G pn(vi,S) and «j_i G pn(uj,5r). Hence, 

by symmetry, we may assume pn(^j,5) = {VJ+I} and pn(uj,5) = {ui+i}. Hence, 
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{u<_2,v<_2} C S while Sr\{ui+2,vi+2} = 0. But then (S-{vi})l){vi+i} is a7(G)-set 

that induces a subgraph of G with fewer edges than G[S], contradicting our choice 

of S. D 

Claim 2.12 The red-blue coloring associated with S is an X\-coloring of G. 

Proof. Suppose not. Then, renaming vertices if necessary, we may assume that V\ 

is a blue vertex that is not rooted at a copy of X\ in the red-blue coloring associated 

with S. Since S is a dominating set, at least one neighbor of ui is in 5. If v2 G S, 

then by Claim 2.11, u2 ^ S. Since vx is not rooted at a copy of X\ in the red-blue 

coloring associated with S, we must have ui G S. Similarly, if vn G S, then u\ G S. 

Hence, U\ € S. 

If S fl {v2,vn} — 0, then {u2,un} C 5 , and so |iV(«i) fl S\ = 2, contradicting 

Claim 2.10. Hence at least one of V2 and vn is in S. By symmetry, we may assume 

v2 G S. 

By Claim 2.11, u2 $ S1. If «„ G S, then £ — {ui} is a dominating set of cardinality 

less than 7(G), which is impossible. Hence, un <£ S, and so vn G S (since vx is not 

rooted at a copy of X{). If 1/3 G S, then 5 — {v2} is a dominating set, which is 

impossible. If «3 G S, then (5 — {tii, ^2}) U {^2} is a dominating set of cardinality 

less than 7(G), which is impossible. Hence, S fl {^3,^3} = 0. In order to dominate 

U3, we have u± G S. Thus by Claim 2.11,1*4 £ S. 

By Claim 2.11, |STl {u5,t>5}| < 1. If u5 <£ S and v5 G S, then (5 - {ui,ii4,v2}) U 

{«2,t>4} is a dominating set of cardinality less than 7(G), which is impossible. 

If U5 G S and V5 $. S, then (5 — {MI,«4,U2}) U {^2,^3} is a dominating set of 

cardinality less than 7(G), which is impossible. Hence, S D {us,v$} = 0. Let 

S' — (5 — {^2}) U {^3}. Then, S' is a 7(G)-set such that G[S'] has the same size 

as G[S] and the red-blue coloring associated with S' contains one more blue vertex 

that is rooted at a copy of X\ than does the red-blue coloring associated with S. 
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This contradicts our choice of the set S. • 

By Claim 2.12, the red-blue coloring associated with S is an Xi-coloring of G. 

Hence, Jx%(G) < 7(G), thus completing the proof of Proposition 2.9. • 

As a consequence of the proof of Proposition 2.9, we have the following result. 

Corollary 2.13 For n > 3, there exists a ^{G)-set whose associated red-blue 

coloring is a minimum X\-coloring in G. 

2.3.2 ^-strat i f icat ion 

Proposition 2.14 For n > 3, 7x2(G) = 2n, unless n = 4 in which case 

IxAG) = 2. 

Proof. In any X2-coloring of a graph, every vertex colored blue is rooted at a copy 

of X2- Consider an .^-coloring of G. Suppose there is a vertex v of G colored 

blue. Renaming vertices if necessary, we may assume v = v\ and that «i and v<i 

are colored blue and u<i is colored red. If n ^ 4, then t>2 is not rooted at a copy 

of Xii a contradiction. Hence, n = 4. But then V4 is the only other vertex colored 

red. Hence either every vertex is colored red or n = 4 and exactly two vertices (at 

distance 3 apart) are colored red. • 

2.3.3 -^-stratification and the 2-domination number 

Proposition 2.15 For n > 3, 7*3(G) = 72(G) = n. 

Proof. Clearly, 72(G) < 7x3 (G) for all graphs. For a 2-dominating set, every 

P2 x K2 has at least two red vertices, and so by Lemma 2.5, 72(G) > n. For a 
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7x3-set take one red vertex from every rung, alternating sides except possibly for 

the end, and so 7x3 < n. • 

As a consequence of the proof of Proposition 2.15, we have the following result. 

Corollary 2.16 For n > 3, there exists a rf2(G)-set whose associated red-blue 

coloring is a minimum X^-coloring in G. 

2.3.4 ^-strat i f icat ion and the total domination number 

Proposition 2.17 For n > 3, 7x4 (G) = 2 

Proof. In any Xt-coloring of a graph, every vertex colored blue is rooted at a copy 

of Xj . Hence as an immediate consequence of the definition of an X4-coloring, any 

X4-coloring of G colors at least two vertices from every subgraph H = P3 x K2 of 

G red. Consider any given Xt-coloring of G. 

Suppose n = 0(mod3). Then, G contains n /3 disjoint copies of H, and so by 

Lemma 2.5, our given Xt-coloring colors at least 2n/3 = 2 [n/3] vertices red. 

Suppose n = 2 (mod 3). If every vertex of G is colored red, then the required 

lower bound follows. Hence, renaming vertices if necessary, we may assume that 

our given Xt-coloring of G colors Vi blue. Since every blue vertex is rooted at a 

copy of X4, the vertex V\ belongs to a 4-cycle, say VI,«2,M2,MI,UI, containing two 

red vertices. Thus, G — {^1,^2,^1,^2} can be partitioned into (n — 2)/3 disjoint 

copies of H, and so by Lemma 2.5, our given Xt-coloring of G colors at least 

2 + 2(n - 2)/3 = 2(n + l ) /3 = 2 [n/3] vertices red. 

Finally, suppose n = 1 (mod 3). Suppose at most one of Ui and Vi is colored red 

for every % — 1,2,. . . , n. With this assumption, if both Ui and i>j are colored blue 
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for some i, 1 < i < n, then u* or Vi is not rooted at a copy of Xi, a contradiction. 

Thus, exactly one of it; and vi is colored red for every i, and so exactly n vertices 

are colored red. On the other hand, suppose both Ui and Vi are colored red for some 

i — 1,2,... ,n. Now, G — {ui, t>j} can be partitioned into (n — l)/3 disjoint copies of 

H, each of which contains at least two red vertices, and so by Lemma 2.5, our given 

Xi-coloring of G colors at least 2 + 2(n - l)/3 = 2(n + 2)/3 = 2 [n/3] vertices red. 

In all three cases, our given ^-coloring of G colors at least 2 |~n/3] vertices red. 

Thus, 7x4(G) > 2[n/3]. We show next that 7x4(G) < 2\n/3\. Let 

Tn/31-l 
D= I J {^3i+l,"3i+l}-

i=0 

Then coloring the vertices in D red and coloring all remaining vertices blue produces 

an Xj-coloring of G, and so 7x,(G) < \D\ — 2[n/3]. • 

Recall, a set S C V in a graph G = (V, E) is a total dominating set (TDS) if every 

vertex is adjacent to at least one vertex of S. 

Proposition 2.18 For n>3, 

' 7t(G) + l if n= l (mod6) 

7*4(G) = { 

7t(G) otherwise. 

Proof. Any TDS of G contains at least two vertices from every subgraph 

H = P3 x K2 of G (since the two vertices of degree 3 in if have disjoint open 

neighborhoods, each of which contains at least one vertex from any TDS). Let S be 

a 7t(G)-set. 

Suppose, first, that n = 1 (mod 6). Renaming vertices if necessary, we may assume 

V\ $. S. To dominate v\, the set S contains at least one neighbor of V\. If U\ € S, 
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then G — {ui,t>i} can be partitioned into (n — l ) /3 disjoint copies of H, each of 

which contains at least two vertices of S, and so | 5 | > 1 + 2(n — l ) /3 = (2n + l ) /3 . 

If «2 G S, then G — {142,1*2} can be partitioned into (n — l ) /3 disjoint copies of i / , 

and so once again \S\ > (2n + l ) / 3 . Similarly, if vn G S, then | 5 | > (2n + l ) / 3 . 

Hence, 7t(G) > (2n + l ) /3 = 2 [n/3] - 1. On the other hand, the set 

(n-7)/6 \ 

( J {uQi+2, «6i+3, V6i+5, V6i+6} J U {ttj} 
i=0 J 

is a TDS of G of cardinality (2n + l ) /3 , and so 7t(G) < (2n + l ) /3 = 2 [n/3] - 1. 

Consequently, 7t(G) = 2fn/3] — 1, and so, by Proposition 2.17, Jt(G) — 7x4(G) — 1. 

Suppose, then, that n ^ l (mod6). The red vertices in any X4-coloring of G 

form a TDS of G, and so 7t(G) < 7x4(G). Hence it suffices for us to show that 

| S | = 7 t ( G 9 > 7 * 4 ( G ) . 

Suppose n = 0(mod3). Then, G contains n /3 disjoint copies of H, each of 

which contains at least two vertices of S, and so | 5 | > 2n/3 = 2[n/3]. Hence by 

Proposition 2.17, 7t(G) > 7x4(G). 

Suppose n = 2 (mod 3). Renaming vertices if necessary, we may assume Vi $ S. 

If Ui G S, then to totally dominate U\ we may assume by symmetry that u?, G S, 

and so the 4-cycle C':vi,V2,U2,U\,Vi contains at least two vertices of S. On the 

other hand, if u\ £ S, then we may assume by symmetry that t^ G S (to dominate 

vi). To totally dominate V2, at least one of U2 or v% is in S, and so the 4-cycle 

C':v2,v3,U3,U2,V2 contains at least two vertices of S. In both cases the cycle 

C contains at least two vertices of S and G — V(C) can be partitioned into 

(n — 2)/3 disjoint copies of H, each of which contains at least two vertices of S, 

and so \S\ > 2 + 2(n - 2)/3 = 2(n + l ) /3 = 2[n/3l. Hence by Proposition 2.17, 

7 t (G)>7x 4 (G) . 

We show next that if n = 4 (mod 6), then 7*(G) > 2 [n/3] (and so, by 

Proposition 2.17, 7t(G) > 7A-4(G)) . We proceed by induction on n > 4. If n = 4, 



CHAPTER 2. STRATIFICATION AND DOMINATION IN PRISMS 24 

then 7t(G) = 4 = 2[n/3]. This establishes the base case. Assume, then, that n > 10 

and that for all integers n' s 4 (mod 6) with 4 < n' < n that 7t(Cn/ x lf2) > 2 [n' /3]. 

Among all 7t(G)-sets, let S be chosen to contain as many pairs {ui,Vi} as possible. 

We show that S contains at least one such pair. Assume, to the contrary, that 

\S fl {uj,t>j}| < 1 for a lH = 1,2,... ,n. Let C be the red-blue coloring associated 

with S. If every blue vertex in C is rooted at a copy of X4, then 7t(G) > 7x4(G), 

as desired. Hence we may assume, renaming vertices if necessary, that V\ is a blue 

vertex that is not rooted at a copy of X4 in C. If u\ G S, then to totally dominate 

tti, we may assume u2 G S. By assumption, \S fl {142,^2}! < 1, and so i>2 ^ S. But 

then v\ is rooted at a copy of X4, a contradiction. Hence, u\ $ S. 

By symmetry, we may assume v-i € 5 (to dominate i>i), implying that v$ G 5 

and 5 fl {u2, U3} = 0. To dominate t»i, it follows from our choice of the set S that 

S n {rtn-ijitn. v„_i,vn} = {«„_!,«„}. If u4 G S or if v5 G 5, then (5 - {v3}) U {u2} 

is a 7t(G)-set that contains the pair {u2 ,f2}, contrary to our choice of S. Hence, 

sn{u4 ,«5} = 0. 

Claim 2.19 v4 $ S. 

Proof. Suppose i>4 G S. If u5 G S, then (S — {t>4}) U {^5} is a 7t(G)-set that 

contains the pair {us,v5}, contrary to our choice of S. Hence, U5 $ S, and so 

UQ G S (to dominate 1x5). Further, U7 G 5 to totally dominate U6. By our choice 

of S, S fl {t>6,̂ 7} = 0- If u8 G 5, then (S1 — {v4,ue}) U {^5,^5} is a 7t(G)-set that 

contains the pair {145,^5}, contrary to our choice of S. Hence, us £ S. If v$ G 5, 

then (S — {ur}) U {v^} is a 7t(G)-set that contains the pair {ue,ve}, contrary to 

our choice of S. Hence, v$ $ S, implying that S D {ug,uw,vg,vio} = {VQ,VW}. If 

Un G S, then (S — {i>io}) U {1x9} is a 7t(G)-set that contains the pair {1x9,119}, a 

contradiction. Hence, tin £ S. If vu G S, then (5 — {v4,U7,v$}) U {u5,u$,Vs} is a 

7t(G)-set that contains the pair {u$,v$}, a contradiction. Hence, vn $ S, implying 
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that S n {ui2,vi2,ui3,vi3} = {ui2,ui3}. Continuing in this way, we have that for 

each i where 1 < i < (n — 4)/6, 

Sf] I U {"6i+j,^6i+j} I = {«6i, "61+1,^+3, ^6i+4}-

This implies that S C\ {un-i,vn-.i,un,vn} = {vn-i,«n}. But then the vertex u\ is 

not dominated by S, a contradiction. D 

By Claim 2.19, v^ £ 5, implying that S n {U4,V4,U5,V5,UG,V6} — {u5,ue}. 

If v7 € S or if u8 € S, then (S — {UQ}) U {V5} is a 7t(G)-set that contains 

the pair { M S , ^ } , contrary to our choice of S. Hence, S D {VT,US} = 0. Thus 

if u-j $ S, then us € S to dominate i>7. Let V = {tti,Vi, 112.^2,...,Ue,tto}. 

Then, 5" = 5 D V = {^2, V3,«5,«6}, and {un-i,un} C -S. Let G' be the prism 

Cn_6 x K2 obtained from G — V by adding the edges v7vn and uyu„. Since S is 

a TDS of G, the set 5 - S' is a TDS of G'. Thus, by the induction hypothesis, 

\S\ - 4 = \S - S'\ > jt(G') > 2\(n - 6)/3], and so \S\ > 2\n/3], as desired. Hence 

by Proposition 2.17, if n = 4 (mod6), then jt(G) > jx4(G). • 

Since the red vertices in any Xt-coloring of G form a TDS of G, as an immediate 

consequence of Proposition 2.18 we have the following result. 

Corollary 2.20 For n > 3 with n ^ l (mod6) ; there exists a rft(G)-set whose 

associated red-blue coloring is a minimum X^-coloring in G. 

2.3.5 ^-strat i f icat ion and the double total domination 

number 

An 
Proposition 2.21 Forn> 3, 7x5(Cn x K2) = — . 
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Proof. In any ^-coloring of a graph, every vertex colored blue is rooted at a copy 

of X5. Hence as an immediate consequence of the definition of an Xs-coloring, any 

J^-coloring of G colors at least four vertices from every subgraph H = P3 x K2 of 

G red. Furthermore, if it colors a vertex v blue, then v lies on a 4-cycle with three 

red vertices. 

Consider any given X5-coloring of G. If every vertex of G is colored red, then 

the required lower bound follows. Hence, renaming vertices if necessary, we may 

assume that our given .X^-coloring of G colors Vi blue. Thus, v\ lies on a 4-cycle in 

which the other three vertices are colored red. Renaming vertices if necessary, we 

may therefore assume that the vertices ui, u2 and v2 are all colored red. 

If n = 0(mod3), then G contains n /3 disjoint copies of H, each of which 

contains at least four red vertices, and so our given A^-coloring contains at least 

4n/3 = [4n/3l red vertices. If n = 1 (mod3), then G — {u2,V2} can be partitioned 

into (n — l ) /3 disjoint copies of H, each of which contains at least four red vertices, 

and so our given Xs-coloring of G colors at least 2+4(n—1)/3 = (4n+2)/3 = [4n/3] 

vertices red. Finally, if n = 2 (mod3), then G — {u\,U2,V\,v%} can be partitioned 

into (n — 2)/3 disjoint copies of H, each of which contains at least four red vertices, 

and so our given X5-coloring of G colors at least 3+4(n—2)/3 = (4n+l ) /3 = [4n/3] 

vertices red. 

In all three cases, our given .^-coloring of G colors at least [4n/3] vertices red. 

Thus, jxB(G) > [4n/3"|. We show next that 7x5(G) < |"4n/3"|. Let 

Ln/3j-l 

S= [ J {vzi+2,V3i+3}. 
i=0 

If n pi 2 (mod3), let D = V{G) - S. If n = 2 (mod3), let D = V(G) - (5 U {vn}). 

Then coloring the vertices of D red and coloring all remaining vertices of G blue 

produces an X5-coloring of G. Thus, 7^5(G) < \D\ = [4n/3~|. • 
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Next we consider a generalization of total domination in graphs which we call 

double total domination (defined in a similar way as that of double domination 

introduced by Harary and Haynes [27]). Let G = (Vj E) be a graph and let S CV. 

We say that a vertex v € V is double totally dominated by S if \N(v) f) S\ > 2. If 

every vertex of V is double totally dominated by S, then we call S a double total 

dominating set (DTDS) of G. The double total domination number 7x2(G) is the 

minimum cardinality of a DTDS of G. A DTDS of cardinality 7x2(G) we call a 

7x2(G)-set. We shall prove: 

Proposition 2.22 For n > 3, 

{ 7 * 2 ( G ) - 1 if n = 2 (mod6) 

7*2(G
!) otherwise. 

Proof. Let S be any 7*2(G)-set of G. Since every vertex is adjacent to at least 

two vertices in S, the set S contains at least four vertices from every subgraph 

H = Pz x Ki of G (since the two vertices of degree 3 in H have disjoint open 

neighborhoods, each of which contains at least two vertices from any DTDS). 

We show first that if n = 2 (mod 6), then 7x2(<-0 > PW^l + 1- We proceed by 

induction on n > 8. If S contains four vertices that belong to a common 4-cycle 

in G, then removing these vertices from G we can partition the resulting graph 

into (n - 2)/3 disjoint copies of H, and so \S\ > 4 + 4(n - 2)/3 = [4n/3] + 1. 

Hence we may assume that S contains at most three vertices from every 4-cycle 

in G, for otherwise the desired lower bound follows. Suppose that for every vertex 

v ^ S, we have N(v) C S. Then S contains exactly three vertices from every 4-

cycle in G. Since we can partition G into n/2 disjoint 4-cycles, and since n > 8, 

l^l > 3n/2 > 4(n + l ) /3 = |"4n/3] + 1, as desired. Hence, renaming vertices if 
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necessary, we may assume that S D {̂ 3,1*4} = 0 (and still S contains at most three 

vertices from every 4-cycle in G), for otherwise the desired lower bound follows. 

Let V = {ui, vi, «2, Vi,..., ue, v$}. Then, S" = S f) V = V — {tii, v$, t>4, u6}, and 

{vn,Vr} C S. If n — 8, then to double totally dominate each of u-j and «8
 w e must 

have {1x7, ug} C S, whence | 5 | = 12 = [4n/3] + 1, as desired. This establishes the 

base case of the induction. Assume, then, that n > 14 and that for all integers 

ri = 2 (mod 6) with 8 < n' < n that 7*2(C„' x K2) > \±n''/S\ + 1. Let G' be the 

prism Cn_6 X K2 obtained from G — V by adding the edges v-;Vn and U7«n. Since S 

is a DTDS of G, the set 5 - S' is a DTDS of G'. Thus, by the induction hypothesis, 

\S\ - 8 = \S\ - | 5 ' | > 7*a(G') > [4(n - 6)/3] + 1, and so | 5 | > [4n/3] + 1, as 

desired. 

We show next that if n ^ 2 (mod6), then 7*2(G) > \4n/3}. If S = V, then 

5 — {^i} is also a DTDS of G, contradicting the minimality of S. Hence, renaming 

vertices if necessary, we may assume that V\ $. S. To double totally dominate 

the vertex V\, we have \S D {ui,V2,vn}\ > 2. Hence at least one of v% and vn is 

in S. By symmetry, we may assume v% G S. To double totally dominate u2, we 

have {u2,v3} C S. If n = 0(mod3), then G contains n /3 disjoint copies of H, 

each of which contains at least four vertices of S, and so | 5 | > 4n/3 = [4n/3]. If 

n = 1 (mod3), then G — {1/2,1*2} can be partitioned into (n — l ) /3 disjoint copies 

of H, and so | 5 | > 2 + 4(n - l ) / 3 = (4n + 2)/3 « [4n/3]. If n = 2 (mod3), then 

G — {u2,U3,f2,V3} can be partitioned into (n — 2)/3 disjoint copies of H, and so 

| 5 | > 3 + 4(n - 2)/3 = (4n + l ) /3 = [4n/3]. In all three cases, \S\ > \4n/S\, i.e., 

7*2(G) > [4n/3]. Thus we have shown that 

lUG) > { 
[4n/3l + 1 if n= 2 (mod 6) 

[4n/3] otherwise. 
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Next we establish upper bounds on 7^2 (G). Suppose first that n ^ 3 (mod 6). For 

n = 4, let D = V — {v\, v2}. For n = 5, let D — V — {1*1,̂ 2,̂ 4}- For n > 6, let 
|n /6 j - l 

U = ( J {l>6i+l, ̂ 6i+2, «6i+4, «6i+5 } • 
i=0 

If n = 0 or 1 or 2 (mod 6) (and still n > 6), let D = V - U. If n ~ 4 (mod6), let 

.D = V - J 7 - {^-3,^-2}- If n = 5 (mod 6), let D = V-U - {vn-4,vn-3,un-i}. In 

all cases, D is a DTDS of G such that the red-blue coloring associated with D is an 

X5-coloring in G. Furthermore, if n = 2 (mod6), then \D\ = [4n/3] + 1; otherwise, 

\D\ = \4n/S\. 

For n = 3(mod6), let 
n/3-1 

W = ( J {u3i+2,V3i+2}, 
i=0 

and let D = V - W. Then, D is a DTDS of G with |D| = [4n/3]. Thus we have 

shown that 

[4n /3 l+ l if n= 2 (mod 6) 

[4n/3] otherwise. 

[4n/3] + 1 if n = 2 (mod 6) 

[4n/3] otherwise. 

The desired result now follows from Proposition 2.21. • 

As a consequence of the proof of Proposition 2.22, we have the following result. 

Corollary 2.23 Forn > 3 with n ^ 2 or3 (mod6), there exists a 7^2(G)-set whose 

associated red-blue coloring is a minimum X^-coloring in G. 



Chapter 3 

STRATIFICATION AND 

DOMINATION IN GRAPHS 

3.1 Introduction 

Let F be a 2-stratified P3 rooted at a blue vertex v. The five possible choices 

for the graph F are shown in Figure 1.2 and the F-domination number, in each 

case, with the exception of one, is characterized by Theorem 1.6. In this chapter 

our aim is twofold. Firstly, we investigate the F-domination number for a tree G 

where F = F3. In particular, we show that for a tree of diameter at least three this 

parameter is at most two-thirds its order and we characterize the trees attaining this 

bound. Secondly, we investigate the F-domination number when F is a 2-stratified 

Kz that is rooted at a blue vertex with exactly one red vertex. We show that for n 

sufficiently large, if G is a connected graph of order n in which every edge is in a 

triangle, then this parameter is at most (n — \/n)/2 and this bound is sharp. 

30 
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3.2 T h e p a r a m e t e r 7F3(G?) 

The parameter 7 F 3 ( G ) (see Figure 1.2) appears to be new. As pointed out in [8], 

F3-domination is not the same as the distance domination parameter called k-

step domination introduced in [45]. The difference in 2-step domination and F3-

domination is that in F3-domination every blue vertex must have a blue-blue-red 

path (of length two) to some red vertex. Thus, every F3-dominating set is a 2-step 

dominating set, but not every 2-step dominating set is a F3-dominating set. If T is 

a star -ft^n-i of order n > 3, then 7 F 3 ( T ) = n since the central vertex of T must 

be colored red in any F3-coloring of T. However the 2-step domination number of 

T equals 2 (the set consisting of the central vertex and any leaf of T is a 2-step 

dominating set of T). A survey of results on distance domination in graphs can be 

found in §7.4 of [30]. For a more comprehensive survey, the reader is referred to [32]. 

Our aim in this section is to investigate the F3-domination number of a tree. In 

particular, we establish an upper bound on the F3-domination number of a tree in 

terms of its order and we characterize the trees attaining this bound. 

3.2.1 Paths 

First we establish the F3-domination number of a path Pn on n vertices. 

Proposition 3.1 For n > 1, 7F3(Pn) = 
n + 7 

+ 
n 
3J 

n 

Proof. We proceed by induction on the order n of a path Pn. The result is 

straightforward to verify for n < 3. Assume then that n > 4. Consider a path 

P:vi,v2,...,vn. 

We show first that there exists a JF3 -coloring of P that colors vi and v± red and 

i>2 and i>3 blue. Consider a 7^-coloring of P . If v\ is colored blue, then there is a 
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copy of F3 rooted at Vi, and so V2 is colored blue and vs red. But then there is no 

copy of F3 rooted at ^2, a contradiction. Hence, vi is colored red. If V2 is colored 

blue, then since there is a copy of F3 rooted at t>2, V3 is blue and v4 red as desired. 

Suppose then that V2 is colored red. If now ^3 is blue, then v± must be blue and 

V5 red. But then interchanging the colors of u2 and V4 produces a new 7f3-coloring 

of P that colors V\ and V4 red and V2 and v3 blue, as desired. On the other hand, 

if t>3 is red, then u4 must be blue (otherwise if V4 is red we can recolor V2 and i>3 

blue to produce an F3-coloring that colors 7 ^ — 2 vertices red, a contradiction) and 

therefore v$ is blue and VQ is red. But then recoloring v2 and V3 blue and recoloring 

U4 and t>5 red produces a new 7jr3-coloring of P that colors v\ and t>4 red and V2 and 

vs blue, as desired. 

Let C be a 7F3-coloring of P that colors V\ and V4, red and V2 and V3 blue. Let 

P = P — {«!, V2, V3}. Then the restriction of C to the path P' is an F3-coloring of 

P' that colors 7F 3 (-P) — 1 vertices red. Hence, JF3(P') < 7 F 3 ( F ) — 1. On the other 

hand, any 7ii3-coloring of P' colors its end-vertices V4 and vn red and can therefore 

be extended to an F3-coloring of P by coloring V\ red and V2 and 1*3 blue. Thus, 

1F3(P) < 1F3(P') + 1. Consequently, 7 F 3 ( P ) = 7F3(-P ') + 1. Since P = Pn and 

P' = Pn-3, the result now follows by applying the inductive hypothesis to the path 

P'. D 

3.2.2 The Family T 

Let Hi = PQ and for k > 2, let Hk be the tree obtained from the disjoint union of 

a star Ki^+i and a subdivided star K*k by joining a leaf of the star to the central 

vertex of the subdivided star. The tree Hz is illustrated in Figure 3.1. 

Let T = {Hk \ k > 1}. The following lemma establishes some properties of trees 

in the family T. 
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Figure 3.1: 

Lemma 3.2 IfT G T has order n, then diam(T) = 5 and 7F3(r) = 2n/3. Further, 

every vertex ofT belongs to some rfp3-set ofT. 

Proof. If T = Hi, then T = P6 and 7 F 3 ( T ) = 2n/3 and clearly every vertex of T 

belongs to some 7F3-set of T. Suppose then that T = Hk for some k > 2. Then, 

n = 3(k + 1). Let u and u; denote the central vertices of the star and subdivided 

star, respectively. If some F3-coloring of T colors w red, then all vertices of the 

subdivided star must be colored red and at least one leaf of T in the star is colored 

red. On the other hand, if some F3-coloring of T colors w blue, then u and all the 

leaves of T are colored red. Further, at least one neighbor of w must be colored red. 

Hence irrespective of whether w is colored red or blue, any F3-coloring of T colors 

at least 2(k + 1) vertices red. However coloring all vertices of the subdivided star 

red and exactly one leaf of T in the star red and all other vertices blue, produces an 

F3-coloring of T that colors 2(k + 1) vertices red. Hence, 7F3CO = 2n/3. Further, 

coloring all vertices of the star red and exactly one leaf of the subdivided star red 

and all other vertices blue, produces another F3-coloring of T that colors 2 (A; + 1) 

vertices red. Hence every vertex of T belongs to some 7F3-set of T. • 

3.2.3 Trees with maximum 7^ 

As observed earlier, if T is a star -Ki,n_i of order n > 3, then JF3(T) = n. Hence in 

what follows we consider trees of diameter at least 3. Our main result establishes 

an upper bound on the i<3-domination number of a tree of diameter at least 3 in 

<£ 
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terms of its order. 

Theorem 3.3 If T is a tree of order n with diam(T) > 3, then JF3(T) < 2n/3 with 

equality if and only ifTzT. 

Proof. We proceed by induction on the order n > 4 of a tree T with diameter 

at least 3. If n = 4, then T = P4 and 1F3(T) = 2 < 2n/3. This establishes the 

base case. Assume then that n > 5 and that all trees T" of order n' < n with 

diam(r') > 3 satisfy 7 F 3 ( T ' ) < 2n'/3 with equality if and only if V € T. Let T be 

a tree of order n with diam(T) > 3. We proceed further with four claims. 

Claim 3.4 J/diam(T) = 3, then JF3(T) = 2 < n /2 . 

Proof. The tree T is a double star and coloring any two leaves at distance 3 

apart red and coloring all other vertices blue produces an F3-coloring of T. Thus, 

1FS(T) < 2 < n/2. Since 7F 3 (G9 > 2 for any nontrivial tree G, the desired result 

follow. • 

Claim 3.5 7f diam(T) = 4, then 7 F 3 ( T ) < (n + l ) /2 . 

Proof. The tree T can be obtained from k > 2 disjoint nontrivial stars by adding a 

new vertex w and joining w to a vertex of maximum degree in each star and adding 

t > 0 new vertices and joining them to w. For i — 1,2,. . . ,k, let T< = ifi]Tli_i, 

rij > 2, be the fc disjoint stars and let Vj be the vertex of Tj joined to w (if n* > 3, 

then Vi is the central vertex of Tj). Thus, n = £ + 1 + S i=i n *-

Suppose that t > 1. Then, n > 2(fc + 1). We now select any packing S of T 

(i.e., if u,u G 5 , then d(u,v) > 3) that consist of A; + 1 leaves (and so 5 consists of 

one leaf from each of the k stars and one leaf adjacent to w). Coloring each vertex 

of S red and coloring all other vertices blue, produces an -F3-coloring of T. Hence, 
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Suppose that t = 0. We may assume that n\ < n2 < • • • < rik- Coloring all n\ 

vertices in Ti red and one leaf of % red for % — 2 , . . . , k, and coloring all remaining 

vertices blue, produces an F3-coloring of T. Hence, 7F3(TT) < n\ + k — 1. However, 

n + 1 = 2 + ̂ 2k
i=1rii > 2 + 2m + (fc-2)2 = 2(m + fc-l), andso7F3(T) < ( n + l ) / 2 . • 

Claim 3.6 7/diam(T) = 5, then 7F3(r) < 2n/3 with equality if and only ifTeT. 

Proof. If n = 6, then T = P6 and 7 F 3 ( T ) = 2n/3 and T G T. Assume then that 

n > 7. Let P :n ,v , w,x, j / , z b e a diametrical path in T. Let T ,̂ and Tx denote the 

components of T — wx containing w and x, respectively, and let n\ = ^(Tu,)! and 

ni = |V(Ta;)|. We consider three possibilities. 

Suppose degtw > 3 and degx > 3. Then each of Tw and Tx has diameter 3 

or 4. Hence by Claims 3.4 and 3.5, 7F3(T„,) < (in + l ) /2 and 7F 3 (T X ) < (n2 + l ) /2 . 

Combining an F3-coloring of Tw and an F3-coloring of Tx produces an F3-coloring 

of T, and so JF3(T) < (n + 2)/2 < 2n/3. 

Suppose degw — dega; = 2. Then each of Tw and Tx is a star with central vertices 

v and y, respectively. We may assume that n\ < ni, and so n > 2ni. Coloring all 

n\ vertices in Tw red and one leaf of T in Tx red and coloring all other vertices blue, 

produces an F3-coloring of T. Hence, 7F3(2"') < ni + 1 < (n + 2)/2 < 2n/3. 

By symmetry, we may therefore assume that deg w = 2 and deg x > 3. Coloring 

all n2 vertices in Tx red and one leaf of T in Tw red and coloring all other vertices 

blue, produces an F3-coloring of T, and so 7 ^ (T) < n2 + 1 . Thus if n2 < (2n — 4)/3, 

then 7F3(r) < 2n/3. Hence we may assume that n2 > 2n/3 — 1 = 2(ni + n2)/3 — 1 

or, equivalently, n2 > 1n\ — 3. Thus, n = ni + n2 > 3(ni — 1), i.e., n\ < n /3 + 1. 

Suppose diam(Tx) = 3. Then, Tx is a double star with central vertices x and y. 

Coloring all n\ vertices in Tw red and coloring one leaf in Tx at distance 2 from 
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x red, and coloring all other vertices blue, produces an F3-coloring of T, and so 

JF3{T) < ni + 1 < n /3 + 2 < 2n/3. 

Suppose finally that diam(Tx) = 4. Then, Tx — x consists of k > 2 disjoint stars 

each of order at least 2 and possibly isolated vertices. Thus, n2 > 2k + 1. Coloring 

all ni vertices in Tw red and coloring one leaf of T from each of the k disjoint stars 

in Tx — x red, and coloring all other vertices blue, produces an F3-coloring of T, and 

so, since m < n /3 + 1, 7 F 3 ( T ) < ni + k < m + (n2 - l ) /2 = (n + nx - l ) /2 < 

(n + n/3)/2 = 2n/3. Furthermore, if 7 F 3 ( T ) = 2n/3, then we must have equality 

throughout this inequality chain. In particular, n2 = 2k + 1 and n\ = n /3 + 1, and 

so n = 3(fc +1) and m = k + 2. Thus, T„, = Xilfc+i and Tx = JRTJfc, i.e., T = Hk€T 

as desired. • 

Claim 3.7 / /diam(T) = 6, then */&(?) < 2n/3. 

Proof. Among all vertices that belong to a diametrical path and are at distance 2 

from a leaf of this path, let y be chosen to have maximum possible degree. Let 

P: u, v, w, x, y, z, z' be such a diametrical path. Then, x is the central vertex of T. 

Suppose degy > 3. Let T\ and T2 denote the two components of T — xy, 

where y G F(Ti). Then, diam(Ti) € {3,4} and diam(T2) > 3. For i = 1,2, let 

\V(Ti)\ = m. By the inductive hypothesis, 7 F 3 ( 7 I ) < 2ni/3 and 7 F 3 ( T 2 ) < 2n2/3, 

whence JF3(T) < jp^Ti) + 7F3(r2) < 2n/3. Thus we may assume that degy = 2. 

Hence by our choice of y, every vertex adjacent to re on a path of length 3 emanating 

from x has degree 2. In particular, degu; = 2. 

Suppose there is no leaf at distance 2 from x. Then, Tx = T — x consists of 

possibly isolated vertices and k > 2 disjoint stars each of order at least 3 that are 

joined to x by one of their leaves. Let r = |iV[:r]|. If r < n /2 , then coloring x and 

every leaf adjacent to x red and coloring one leaf of T from each of the k disjoint 

stars in Tx — x red, and coloring all other vertices blue, produces an F3-coloring of 
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T that colors exactly r vertices red, and so JF3(T) <r< n/2. On the other hand if 

r > (n + l ) /2 , then coloring all vertices of V — N[x] red and coloring one non-leaf 

neighbor of x red produces an ^-coloring of T that colors exactly n — r + 1 vertices 

red, and so 7 F 3 ( T ) < n — r + 1 < (n + l ) /2 . Hence we may assume that that there 

is at least one leaf at distance 2 from x, i.e., at least one neighbor of a; is a support 

vertex. By our choice of y, every neighbor other than x of such a support vertex is 

a leaf. 

Suppose x has a neighbor x' of degree at least 3. Then x' is a support vertex 

every neighbor of which different from x is a leaf. Let v' be a leaf adjacent to x'. 

Suppose first that there is a strong support vertex at distance 2 from x. We may 

assume z is such a vertex. Consider the tree T" = T — {v', z'} of order n' = n — 2. 

By the inductive hypothesis, 7.F3(T") < (2n' — l ) /3 = (2n — 5)/3. Consider a 7F3-

coloring C of T". If x is colored red, then necessarily y and z are colored blue and 

exactly one leaf adjacent to z in T" is colored red. Hence C can be extended to an 

F3-colormg of T by coloring z1 blue and v' red. On the other hand, suppose x is 

colored blue. Then every support vertex at distance 2 from x is colored red and 

therefore every leaf at distance 3 from x is colored red. Hence we may assume that 

x' is colored blue (since if x' is colored red, we can recolor y, for example, red and 

recolor x' blue). Further exactly one leaf adjacent to x' in T' is colored red. Hence 

C can be extended to an i<3-coloring of T by coloring z' red and v' blue. In both 

cases, 7 F 3(T) < ^Fa(T') + 1 < 2(n - l ) /3 . 

Suppose secondly that every support vertex at distance 2 from x has degree 2. 

In particular, degz = 2. Let T" = T — {v',y,z,z'} and let T" have order n'. Since 

diam(T') G {5,6}, 7 F 3 ( T ' ) < 2n'/3 = 2(n - 4)/3. Consider a 7F3-coloring C of T. 

If a; is colored red, then we can extended C to an F3-coloring of T by coloring v' 

and z' red and coloring y and z blue. On the other hand, if x is colored blue, then 

we can choose C so that x' is colored blue and exactly one leaf adjacent to x' in T" 
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is colored red. Hence we can extended C to an F3-coloring of T by coloring v' and 

y blue and coloring z and z' red. In both cases, 1F3(T) < 7F3(T') + 2 < 2(n — l ) /3 . 

Thus we may assume that every neighbor of x has degree at most 2, for otherwise 

7ir3(T) < 2n/3. In particular, every support vertex adjacent to x has degree 2. Let 

x' be a support vertex adjacent to x and let v' be the leaf adjacent to x'. 

Suppose a support vertex at distance 2 from x has degree 2. We may assume 

that deg z = 2. Let V = T - {«', x', y, z, z'} and let the tree V have order n'. By 

the inductive hypothesis, 7JT3(7V) < 2n'/3. Consider a 7ir3-coloring C of T'. If x is 

colored red, then we can extended C to an F3-coloring of T by coloring v', x' and 

z' red and coloring y and z blue. On the other hand, if x is colored blue, then since 

every neighbor of x has degree at most 2, at least one neighbor of x in T" is colored 

red. Hence we can extended C to an iVcoloring of T by coloring v', z and zf red 

and coloring x' and y blue. In both cases, 7^(T) < 7 F 3 ( T ' ) + 3 < 2n'/3 + 3 < 2n/3. 

Hence we may assume that every support vertex at distance 2 from x is a strong 

support vertex. Further, renaming if necessary, we may assume that z is such a 

strong support vertex of smallest degree. 

Let V = T- {v', x\ z'} and let T have order ri = n - 3 . Then, diam(T') = 6. By 

the inductive hypothesis, 7^3 (T") < 2n'/3. Consider a 7^3-coloring C of T". If x is 

colored red, then necessarily y and z are colored blue and exactly one leaf adjacent 

to z in T" is colored red. Hence we can extended C to an F3-coloring of T by coloring 

u' and x' red and coloring z' blue. On the other hand, if x is colored blue, then since 

every neighbor of x has degree at most 2, at least one neighbor of x in T" is colored 

red. Hence we can extend C to an F3-coloring of T by coloring v' and z' red and 

coloring x' blue. In both cases, 7^3 (T) < 7F 3 (T') + 2 < (2n' - l ) /3 + 2 < 2n/3. This 

completes the proof of Claim 3.7. • 
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We now return to the proof of Theorem 3.3. By Claims 3.4 to 3.7, we may assume 

that diam(T) > 7. We show that 7 F 3 ( T ) < 2n/3. Let P:vi,v2, •.. ,udiam(r)+i be 

a diametrical path in T. Let Ti and T2 denote the two components of T — u4v5 

of orders n\ and n2, respectively, where u4 € V(Ti). For i = 1,2, diam(Tj) > 3. 

Applying the inductive hypothesis to Ti, 7F3(7i) < 2rij/3 with equality if and only 

if Ti € T. Hence, 7F3(T) < 7 F 3 ( T I ) + 7 F 3 ( T 2 ) < 2m/3 + 2n2/3 = 2n/3. Further 

if JF3(T) — 2n/3, then we must have equality throughout this inequality chain. In 

particular for i = 1,2, 7F3(^i) = 2rij/3, and so Ti € 7'. By Lemma 3.2, there is 

a 7F3-coloring C of T2 that colors V5 red. Since Xi G T, Ti = iJfe for some k > 1 

and by Lemma 3.2, 7F3(2"I) = 2(k + l ) / 3 . Let u,v,w,x,y,z be a path in Ti where 

v and a: denote the central vertices of the star and subdivided star, respectively, in 

T\. Since P is a longest path in T, either v± = iu or V4 = x. 

If V4 = u/, then we can extend C to an 7^-coloring of T by coloring all leaves in 

the subdivided star of T\ red, coloring one vertex in the subdivided star adjacent 

to a leaf red, and coloring one leaf of Ti in the star red and coloring all other 

vertices blue. Hence, 7 F 3 ( T ) < k + 2 + 7F3(r2) < 7 F 3 ( T I ) + 7F 3 (T 2 ) = 2n/3. On 

the other hand, if v\ — x, then we can extend C to an 7J?3-coloring of T by coloring 

all leaves in Ti red and coloring v red and coloring all other vertices blue. Hence, 

7 F 3(T) < 2fc + 1 + 7F3(T2) < n /3 . • 

We close this subsection with the following consequence of Theorem 3.3. 

Corollary 3.8 IfT is a tree of order n with diam(T) = l > 6, then^fF3(T) < 2n/3, 

and this bound is best possible for each fixed L 

Proof. By Theorem 3.3, 7 F 3 ( T ) < 2n/3. That this bound is asymptotically best 

possible may be seen as follows: Let £ > 3 be a fixed integer and let A; be a very 

large integer. Let T be the tree obtained from Hk by attaching a path of length t 

to the central vertex, w say, of the subdivided star in Hk. Let P be the resulting 
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path emanating from w (on £ + 1 vertices). Then, diam(T) = £ + 3 > 6 and 

n=\V(T)\=3k + e + 3. 

If some F3-coloring of T colors w red, then all vertices of the subdivided star 

must be colored red, at least one leaf of T in the star is colored red and at least 

(\V(P)\ + 2)/3 = (£ + 3)/3 vertices of P (including w) must be colored red. On the 

other hand, if some i^-coloring of T colors w blue, then all the leaves of T in both 

the subdivided star and the star are colored red, the center of the star is colored 

red, and at least (£ + 2)/3 additional vertices including at least one neighbor of w 

(possibly on P) are colored red. It follows that any i^-coloring of T colors at least 

2k + (£ + 5)/3 vertices red. Hence as k —• oo, 

7 F 3 ( r ) = 6fc + l + 5 = 6 + | + f 2 
n 9fc + 3^ + 9 9 + f + | 3 ' 

Therefore the bound 7F3(71) < 2n/3 is asymptotically best possible. • 

3.3 A 2-stratified K3 

The two 2-stratified graphs Kz rooted at a blue vertex v are shown in Figure 3.2, 

where the red vertices are indicated by darkened vertices. 

V 

< \ 
Fe 

V s\ 
F7 

Figure 3.2: 

Obviously, in any F6-coloring or F7-coloring of G, every vertex not on a triangle 

of G must be colored red. The following two results were established by Chartrand 

et al. [8]. 
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Theorem 3.9 ([8]) If G is a graph of order n in which every vertex is in a triangle, 

then 7 F 6 ( G ) < 2n/3, and this bound is sharp. 

Theorem 3.10 ([8]) IfG is a graph of order n in which every vertex is in a triangle, 

then 7 F 7 ( G ) < n/2, and this bound is asymptotically best possible. 

Our aim in this section is twofold: First to present an alternative proof (using 

counting arguments) of Theorem 3.10 to that presented in [8] (which is by induction 

on the order of a graph in which every vertex is in a triangle), and secondly to show 

that this new proof can be used to obtain a sharp upper bound on the F7-domination 

number of a graph with small domination number relative to its order. We will need 

the following result in [41]. 

Theorem 3.11 ([41]) If G is a graph of order n in which every vertex is in a 

triangle, then 7(G) < n /3 , and this bound is sharp. 

Theorem 3.12 If G is a graph of order n > 3 in which every vertex is in a triangle, 

then 1F7(G) < n /2 . Further, i/2[(7(G) + 1)/2J < {y/8n + 1 - l ) /4 , then 

7 F 7 ( G ) < ! - ^ ( V 8 n ~ T I - l ) , 

and this bound is sharp. 

Proof. Let g(n) = (V8n + 1 - l ) /4 and let / (n) = §(n - g(n)). Then, 

/ (n ) = (<?(n))2. For n > 3, / (n ) is an increasing function in n and / (n ) > n /3 . If 

7(G) = 1, then 7 F 7 ( G ) = 1 = /(3) < / (n ) . Hence in what follows we assume that 

7(G) > 2. Removing edges of G, if any, that do not belong to a triangle produces 

a graph with the same F7-domination number as that of G. Hence in what follows 

we assume that every edge of G is in a triangle. 
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By Theorem 1.3, there exists a 7(G)-set S such that |epn(v,5)| > 1 for every 

v 6 S. Let \S\ = s. We define Si and S2 to be a balanced partition of S if Si and 

S2 is a partition of S into two subsets such that 1511 = f«/2"| and |£2| = [s/2\. 

Consider a balanced partition Si and S2 of S. Let X — {v &V — S \v belongs to 

no triangle that contains two vertices of S}. For each vertex v € X, we select one 

triangle Tv that contains v and a vertex of S. Let Xi = {JJ € X: |V(T„) D Si| = 1} 

and let X2 = X — Xi. Note that every external private neighbor (with respect to 

S) of a vertex of Si (resp., £'2) is in Xi (resp., -X"2). Let 

Y = (J v(r„). 

Then, I U S C 7 . Let C = V — V. Then each vertex of C belongs to a triangle 

that contains two vertices of S. If C — 0, then S is an F7-coloring of G, and so, by 

Theorem 3.11, 7F7(G) < \S\ < n/3 < /(n). Hence we may assume that C ^ 0. For 

each v € C, we select one triangle T„ that contains it and two vertices of S and we 

associate these two vertices of S with v. Let 

E F = ( J E(TW), 
vecux 

and let F be the subgraph of G induced by the subset Ep of edges of G. By 

construction, F is a spanning subgraph of G every vertex of which belongs to a 

triangle (in F) with some vertex of S. Since 7F7(G) < JF7(F), it suffices to prove 

that 7 F 7 ( F ) < n/2 and that if 2 [(5 + 1)/2J < #(n), then 7 F 7 ( F ) < /(n). Let 

£> = {w € V I io is adjacent in F to a vertex of Xi and to a vertex of X?} (possibly, 

D = 0), and let 

A = ( [ J V(TV)) - (D U 5) and B = ( | J V(TV)) - (D U S). 

Every vertex of A is an external private neighbor of some vertex of Si and every 

vertex of B is an external private neighbor of some vertex of 52. Thus A and B are 

disjoint. 
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Let \A\ = a, \B\ = b, \C\ = c, and \D\ = d. Note that V-S = Al)BUCUD, and 

so n = s + a + b + c + d. 

We say that v € C is good relative to Si and 52 if v has one of its associated 

vertices in Si and the other in S'2, and bad otherwise. Hence if Si and S2 is a 

random balanced partition of S, then the probability that v is good is 

(MK> 
Let fc = [(s + 1)/2J. Thus, s = 2A; or s = 2A; — 1 (depending on the parity of s). 

Then the probability that v is good is k/(2k — 1). Hence the expected number of 

good vertices in C relative to Si and S2 is kc/(2k — 1). Now among all balanced 

partitions of S, we choose a balanced partition Si and S'2 with the maximum number 

of good vertices. 

Let Cg denote the set of all good vertices of C (relative to our partition Si and 

S'2) and let G\, denote the set of all bad vertices of C. Let \Cg\ = cg and |C&| = Q,. 

Then, Q, + c5 = c. Furthermore, by our choice of the partition Si and S'2, 

We proceed further by proving the following claim. 

Claim 3.13 W F ) ^ ^ ( „ - - £ _ ) . 

Proof. By construction, every edge of F that joins a vertex of C and a vertex of S 

belongs to a triangle of F that contains two vertices of S, while every edge of F that 

joins two vertices of S belongs to a triangle that contains a vertex of C. In particular, 

each vertex of S that is isolated in G[S] is adjacent to no vertex of C. For i — 1,2, let 

S4- be the set of vertices of Sj that are isolated in G[S]. Let A' be the set of vertices of 

A that are adjacent in F to a vertex in Si, and let B' be the set of vertices of B that 
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are adjacent in F to a vertex in S'2. Since |epn(v, S)\ > 1 for every v e S,\A'\> \S[\ 

and \B'\ > \S'2\. Now the set Si U S'2 U Cb U (B - B') is an F7-coloring of F, and so 

7F7(-F) < k + cb + b + \S'2\-\B'\ < k + Cb + b. Further, the set S2US'1UCbU(A-A') 

is an F7-coloring of F, and so jFr(F) < [s/2\ +cb + a+ \S[\ - \A'\ < [s/2\ +cb + a. 

Suppose s is even. Then, JFT(F) < min(fc + cb + b, k + cb + a). By symmetry, we 

may assume that a > b. Thus, 

7F7(F) < k + cb + b 

< i ( s + a + 6 + c + (i__£_-d) 

Suppose s is odd. Then, "fF7(F) < mm(k + c& + b, k — 1 + cb + a). If 6 < a — 1, 

then, 

7F7(F) < fc + c6 + 6 

< I _ 2 

< I 
_ 2 

1 
2 

On the other hand, if a < 

2k + 2b + c-
2k-1 

12k + (a -1) + 6 + c + d - —°— - d\ 

n — —, — d 
2k-1 

b (and still s is odd), then since JFT(F) < k — l + cb + a, 
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it can readily be established that 

Since d > 0, the desired upper bound follows. • 

We now return to the proof of Theorem 3.12. Since c > 1, it follows from 

Claim 3.13 that 1F7(
F) < n/2-

Suppose further that 2|_(s + 1)/2J < g(n), i.e., suppose that 2k < g(n). If 

c/(2fc — 1) > g(n), then it follows from Claim 3.13 that 7F7(JP1) < / (" ) , as desired. 

Thus we may assume that c/(2k — 1) < g(n), i.e., c < (2k — l)g(n). The set S U C 

is an ^-coloring of F, and so 

lFr(F) <s + c<2k + {2k- l)g(n) < {g(n))2 = f(n), 

as desired. • 

We close this chapter with the following. 

Conjecture 3.14 If G is a graph of order n in which every vertex is in a triangle, 

then 

7 F 7 ( G ) < | - ^ ( V 8 ^ T T - l ) . 

As shown in Theorem 3.12, Conjecture 3.14 is true for graphs with small 

domination number relative to their order. If Conjecture 3.14 is true, then the 

upper bound is sharp as may be seen as follows. For t > 2 even, let G be the graph 

of order n = t+ u) obtained from a complete graph Kt on t vertices by adding a new 

vertex adjacent to each pair of vertices in the complete graph Kt. Then G has t + 1 

different minimal i^-colorings (where an F7-coloring is minimal if no proper subset 
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of the red vertices produces an Fycoloring) up to isomorphism, and depending on 

how many vertices of Kt are colored red. For 0 < x < t, let 

Then a minimal i^-coloring that colors exactly x vertices of Kt red colors exactly 

h{x) vertices of G red. A straightforward calculus argument shows that if a; is a 

real number, then h(x) is minimized when x = (t — l)/2. Hence, since x is an 

integer and t is even, and since h(x) is a quadratic in x, h(x) is minimized when x 

is the nearest integer to (t — l)/2, i.e., when x = (t — 2)/2 or x = t/2. Thus since 

h((t - 2)/2) = h(t/2) = t2/A, 



Chapter 4 

STRATIFIED GRAPHS WITH 

MINIMUM DEGREE TWO 

4.1 Introduction 

In this chapter we continue the study of the iVdomination number of a graph 

by considering connected graphs with minimum degree at least 2. We show that 

7F3(G) < (n — l)/2 for such graphs, where n is their order. Indeed, we show that 

1F3(G) < (n — l)/2 except for five exceptional graphs. The proof rests on what we 

call the F3-minimal graphs. We also characterize connected graphs of sufficiently 

large order with maximum possible F3-domination number. 

We will refer to a graph G as an F3-minimal graph if G is edge-minimal with 

respect to satisfying the following three conditions: (i) 6(G) > 2, (ii) G is connected, 

and (iii) JF3{G) > (n — l)/2, where n is the order of G. To achieve our aims, we 

characterize i^-minimal graphs. To do this, we define four families of graphs. 

A daisy with k > 2 petals is a connected graph that can be constructed from 

k > 2 disjoint cycles by identifying a set of A; vertices, one from each cycle, into one 

47 
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vertex. In particular, if the k cycles have lengths m, n 2 , . • •, nk, we denote the daisy 

by £>(ni,n2). . . ,nf e) . Further, if n\ = n2 = • • • = nk, then we write £>(ni,n2,. . . ,nk) 

simply as Dk(ni). The daisies .0(3,5), 25(4,4) and Dz(h) = 23(5,5,5) are shown in 

Figure 4.1. 

Kl <X> 
23(3,5) 23(4,4) £3(5) 

Figure 4.1: The daisies 23(3,5), 23(4,4) and 233(5). 

For integers ni > n2 > 3 and fc > 0, we define a dumbbell Z36(ni,ri2, A;) to be the 

graph of order n — n\ + n2 + k obtained from the cycles Cni and Cn2 by joining a 

vertex of Cni to a vertex of Cn2 and subdividing the resulting edge k times. The 

dumb-bells Df,(5,4,0) and D(,(5,5,1) are shown in Figure 4.2. 

A,(5,4,0) 
1X1 

06(5,5,1) 

Figure 4.2: The dumb-bells D6(5,4,0) and Db(5,5,1). 

Let Ai(4) = D5(5,4,0) and Ai(5) = Db{5,b,l) be the two dumb-bells shown in 

Figure 4.2. For k > 2, let Ak{4) be the graph obtained from a daisy Dk(5) by adding 

a 4-cycle and joining the central vertex of the daisy to a vertex of the added 4-cycle. 

The graph A2(4) is shown in Figure 4.3(a). For k > 2, let Ak(5) be the graph 

obtained from a daisy Dk(5) by adding a 5-cycle and then adding a new vertex and 

joining it to the central vertex of the daisy and to a vertex of the added 5-cycle. The 

graph A2(5) is shown in Figure 4.3(b). Let A = {Ak(A) \ k > 1} U (Afe(5) | k > 1}. 
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(a) A2(4) (6) A2(5) 

Figure 4.3: The graphs J42(4) and A2(5) in the family A. 

Let B = {Bi, B2, B3, B4, B5} where B\, B2, B3, B4 and B5 are the five graphs 

shown in Figure 4.4. We call each graph in the family B a bad graph. 

Bi B2 B3 B4 B5 

Figure 4.4: The five bad graphs £1, B2, B3, B4 and B5. 

Next we define a subfamily C of cycles and a subfamily P of daisies by 

C = {C3, C4, C5, C7, Cg, Cn} 

and 

V = {Bfc(5) I k > 2} U {B(3,5),£>(4,4)}. 

4.2 Main Results 

The following result, a proof of which is given in Section 4.4, characterizes F3-

minimal graphs. 

Theorem 4.1 A graph G is an F^-minimal graph if and only ifGEAUBUCUV. 
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Let Hi (respectively, H2) be the graph obtained from C% (resp., Cu) by adding 

an edge joining two vertices at distance four apart on the cycle. The graphs H\ and 

Hi are shown in Figure 4.5. 

•—•—t 
n 

Hx H2 

Figure 4.5: The graphs Hi and H2. 

As a consequence of Theorem 4.1 we have our first main result, a proof of which 

is given in Section 4.5. 

Theorem 4.2 If G is a connected graph of order n with 5(G) > 2, then 7 F 3 ( G ) < 

(n — l ) /2 unless G G {^2,64, C$,Hi}, in which case JF3(G) = n/2, or G — C5, in 

which case 1F3(G) = (n + l ) /2 . 

Our second main result provides a characterization of connected graphs with 

minimum degree at least two and order at least nine that have maximum possible 

iVdomination number. A proof of Theorem 4.3 is given in Section 4.6. 

Theorem 4.3 If G is a connected graph of order n > 9 with 5(G) > 2, then 

7i%(G) < (*»- l ) /2 with equality if and only if G G AD (V - {£>(3,5),D(4,4)}) 

or G €{B4,B6,Cn,H2}. 

4.3 Preliminary Results 

Our aim in this section is to establish some preliminary results that we will need 

later when proving our main results. We begin with the following observation, a 

proof of which is presented in Subsection 4.3.1. 
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Observation 4.4 Let G be a connected graph with 5(G) > 2 and let F be obtained 

from, G by subdividing any edge four times. Then, 1F3(F) < 7F 3 (G9 + 2. 

Next we establish the value of 7F 3 (C , „) for a cycle Cn. A proof of Proposition 4.5 

is presented in Subsection 4.3.2. 

Proposition 4.5 For n > 3, 7 F 3 ( C „ ) = \(n - l) /3] + \n/3] - | n / 3 j . 

Equivalently, Proposition 4.5 states that 7F 3 (C , „) = \n/3\ + 1 if n = 2 (mod3) 

and 7F 3 (C , „) = [n/3] otherwise. For an example of a 7F3-coloring of an n-cycle 

Cn'Vi,V2,..., vn, vi, let R = {vi \ i = l (mod3)} , and so \R\ = [n/3]. If 

n = 2 (mod 3), then coloring the vertices of R U {vn} red and coloring all other 

vertices blue produces an F3-coloring of Cn. If n ^ 2 (mod 3), then coloring the 

vertices of R red and coloring all other vertices blue produces an i*3-coloring of Cn. 

As an immediate consequence of Proposition 4.5 we can characterize the F3-minimal 

graphs that are cycles. 

Corollary 4.6 A cycle G is an F^-minimal graph if and only if G 6 C. 

Next we characterize the i<3-:minimal graphs that are daisies. A proof of 

Proposition 4.7 is presented in Subsection 4.3.3. 

Proposition 4.7 If G is a daisy of order n, thenjF3(G) < (n —1)/2. Furthermore, 

7 F 3 ( G ) = (n - l ) /2 if and only if G = D(3,5), G = D(4,4) or G = Dk(5) for some 

k>2. 

As an immediate consequence of Proposition 4.7 we can characterize the F3-

minimal graphs that are daisies. 

Corollary 4.8 A daisy G is an F^-minimal graph if and only if G € P . 
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Next we characterize the F3-minimal graphs that are dumb-bells. We begin with 

the following result, a proof of which is presented in Subsection 4.3.4. 

Proposition 4.9 If G is a dumbbell of order n, then 7 F 3 ( G ) < (n — l) /2 with 

equality if and only if G G {Ai(4), Ai(5)}. 

Corollary 4.10 A dumbbell G is an F^-minimal graph if and only if G € 

{A1(A),A1(5)}. 

The following two observations about graphs in the families A U B U CUV will 

prove to be useful. 

Observation 4.11 Let G G AU BuCWD have order n. Then, G is a connected 

graph with 5(G) = 2, and 

( n+1 an r —— ifG = C5, 

~ ifG€{B2,C4,C8}, 

n - 1 
—-— otherwise. 

Corollary 4.12 Each graph in A U B U C U V is an Fa-minimal graph. 

Observation 4.13 Let G G AU BUCliV. Then for any vertex v of G, there is 

a minimum F^-coloring in which v is colored blue and in which every blue vertex is 

adjacent to a red vertex. Further for any vertex v of G, except for the central vertex 

of a daisy Dk(5), there is a minimum F^-coloring of G in which v is colored red. 

We close our preliminary results with a characterization of F3-minimal graphs of 

small order. A proof of Lemma 4.14 is presented in Subsection 4.3.5. 



CHAPTER 4. STRATIFIED GRAPHS WITH MINIMUM DEGREE TWO 53 

Lemma 4.14 If G is an F^-minimal graph of order n, 3 < n < 6, then G £ 

{B\,B2,Cz, C^Cs}. 

4.3.1 Proof of Observation 4.4 

Let uv be the edge of G that is subdivided four times to obtain the graph F, and 

let u, ui,U2, «3, Ui, v be the resulting path in F. Any minimum i^-coloring of G can 

be extended to an F3-coloring of F as follows. If both u and v are colored red, then 

color tti and it4 red and u2 and U3 blue. If exactly one of u and v, say u, is colored 

red, then color U3 and U4 red and u\ and it2 blue. Suppose both u and v are colored 

blue. If each of u and v has a neighbor colored red, then color u<i and u$ red and ui 

and U4 blue. If exactly one of u and u, say u, has a neighbor colored red, then color 

«2 red, color tii, U3 and u4 blue, and recolor v red (note that in any F3-coloring of a 

graph H that colors a vertex w and all its neighbors blue, we can recolor w red and 

leave all other vertices unchanged to produce a new F3-coloring of H). If neither u 

nor v has a neighbor colored red, then color u\ and U4 red and U2 and 113 blue. In 

all cases, we produce an i<3-coloring of F that colors exactly two more vertices red 

than does the original F3-coloring of G. It follows that 7F3(-F) < 7F3(G) + 2. 

4.3.2 Proof of Proposition 4.5 

We proceed by induction on the order n of a cycle Cn. The result is straightforward 

to verify for n G {3,4,5}. Assume then that n > 6 and that the result of 

the proposition is true for all cycles on fewer than n vertices. Consider a cycle 

C: vi, i>2,..., vn, Vi. Let C be a 7f3-coloring of C. Since every blue vertex is rooted 

at a copy of F3, every blue vertex on the cycle is adjacent to a red vertex and a blue 

vertex. Renaming if necessary, we may assume that C colors v-i and t>3 blue, and 

therefore colors vx and V4 red. Let C' be the cycle obtained from C by deleting the 

vertices Vi, v2 and v% and adding the edge v±vn, i.e., C = (C — {vi, v2,1*3}) U {viVn}. 
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Then C" is a cycle of order n — 3 > 3 and the restriction of C to C is an F3-coloring 

of C that colors 7F3(G) — 1 vertices red. Hence, 7F3(G') < 7F3(G) — 1. On the other 

hand, any 7F3-coloring C of C' can be extended to a 7F3-coloring of C by coloring 

exactly one of V\, v2 and v$ red: If C colors vn and u4 blue, then color v% red and V\ 

and vz blue. If C colors vn red and v4 blue or if C colors vn and u4 red, then color V\ 

and V2 blue and vz red. If C colors vn blue and i>4 red, then color v\ red and v2 and 

u3 blue. Thus, 7F3(G) < 7F3(C") + 1. Consequently, 7F 3 (C) = 7F3(C") + 1. Since 

C = Cn and C = Cn_3, the result now follows by applying the inductive hypothesis 

to the cycle C". 

4.3.3 Proof of Proposition 4.7 

We proceed by induction on the order n > 5 of a daisy G to show that 7F3(G) < 

(n - l)/2. If n = 5, then G = £>(3,3) and 7F3(G) = 1 < (n - l)/2, while if 

n = 6, then G = £>(3,4) and 7F3(G) = 2 < (n - l)/2. This establishes the base 

cases. Assume, then, that n > 7 and that if G' is a daisy of order n' < n, then 

7F3(G') < (n' — l)/2. Let G be a daisy of order n with fc > 2 petals. 

Suppose first that k = 2. Let G = £>(ni +1,712 +1), and so n = n\ +ri2 +1 . Let v 

denote the vertex of degree 4 in G and let Fi and F2 denote the two cycles passing 

through v, where Fj = Gni+i for i = 1,2. Let Fi be the cycle v, Vi, v2,..., vni, v and 

let F2 be the cycle v,Ui,U2,...,un2,v. We consider four possibilities. 
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Case 1. n; = 2 (mod 3) for i = 1 or i — 2. 

We may assume n\ = 2 (mod 3). Let Ri = {«< ) i = 0(mod3)}, and so 

|-Ri| = («i _ 2)/3. Let Ci be a 7F3-coloring of Fi that colors v red. By 

Proposition 4.5, if ri2 ^ l(mod3), then C2 colors at most (n2 + 3)/3 vertices 

red, while if n2 = l(mod3), then C2 colors (712 + 5)/3 vertices red. We can 

extend Ci to an F3-coloring C of G by coloring the vertices in R± red and all 

remaining uncolored vertices of F\ blue. If 712 ̂  1 (mod 3), then C colors at most 

(ni - 2)/3 + (n2 + 3)/3 = n/3 < (n - l)/2 vertices red. If n2 = 1 (mod3), then 

C colors (ni - 2)/3 + (n2 + 5)/3 = (n + 2)/3 < (n - l)/2 vertices red with strict 

inequality if n > 7. Hence, 7F3(G) < (n — l)/2 unless G = £>(3,5), in which case 

7 f t ( G ) = 3 = ( n - l ) / 2 . 

Case 2. n̂  = 0 (mod 3) for i = 1,2. 

Let i?i = {UJ I z = l(mod3)}, and so |i?i| = ni/3. Let C2 be a 7F3-coloring of 

F2 that colors v red. By Proposition 4.5, C2 colors (n2 + 3)/3 vertices red. We can 

extend C2 to an F3-coloring C of G by coloring the vertices in i?i red and all remaining 

uncolored vertices of Fi blue. Then, C colors (n!-|-n2 + 3)/3 = (n + 2)/3 < (n —1)/2 

vertices red with strict inequality if n > 7. Hence, 7F3(G) < (n — l)/2 unless 

G = £>(4,4), in which case 7F3(G) = 3 = (n - l)/2. 

Case 3. ni = 0 (mod3) and n^ = 1 (mod3). 

Then, n > 8. Let R1 = {vi \ i = 2(mod3)}, and so |i?i| = m/3. Let 

R2 = {ui \ i = 1 (mod3)}, and so |i?2| = («2 + 2)/3. Then coloring the vertices in 

Ri U i?2 red and all remaining uncolored vertices blue produces an F3-coloring of G 
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that colors (ni + n2 + 2)/3 = (n + l)/3 < (n — l)/2 vertices red. 

Case 4. n» = 1 (mod 3) for i = 1,2. 

Then, n > 9. Let i?i = {«< | i = l(mod3)}, and so \RX\ = (nx + 2)/3. Let 

-R2 = {«i I t = 2 (mod3)} U {«„2_i}, and so |i?2| = («2 + 2)/3. Then coloring 

the vertices in Ri U -R2 red and all remaining uncolored vertices blue produces an 

F3-coloring of G that colors (ni + n2 + 4)/3 = (n + 3)/3 < (n — l)/2 vertices red 

with strict inequality if n > 9. Hence, 7F3(G) < (n — l)/2 unless G — £>(5,5), in 

which case JF3(G) = 4 = (n — l)/2. 

Hence we may assume A; > 3. Let t> denote the vertex of degree 2k in G, and 

let Fi,F2, • • • ,-Ffc denote the fc cycles passing through v, where Fj S Cni+i for 

i = 1,2,...,k. Thus, n = 1 + 2<-i n»- ^ e t ^i ^e t^ie cYcle u>ui)^2, • • •,nni,f. 

Let G' = L>(n2,... ,nfe). Then, G' is a daisy of order n' = n — ni. Applying 

the inductive hypothesis to G', JF3(G') < (ri - l)/2 = (n - m - l)/2. Let C 

be a 7.F3-coloring of G'. Note that if C colors v blue, then v must be adjacent to 

at least one vertex colored red under C. We extend C to an ^-coloring of G as 

follows. If m s 2 (mod3), let i? = {vt | i = 0 (mod3)}, and so \R\ = (m - 2)/3. 

If ni = 0 (mod 3) and v is colored blue in C, let i? = {i»j | i = 2 (mod3)}, and so 

\R\ = ni/3. In all other cases, let R = {Vi \ i = 1 (mod3)}, and so \R\ — [ni/3]. 

Then, C can be extended to an F3-coloring C of G by coloring the vertices in R 

red and all remaining uncolored vertices of Fi blue. If ni = 2 (mod 3), then C 

colors at most \R\ + (ri - l)/2 = (m - 2)/3 + (n - m - l)/2 < (n - l)/2 vertices 

red. If ni = 0 (mod3), then C colors at most ni/3 + (n — n\ — l)/2 < (n — l)/2 

vertices red. If m = 1 (mod 3), then C colors at most {n\ + 2)/3 + (n — ni — l)/2 = 

(3n — ni + l)/6 < (n — l)/2 vertices red with strict inequality if n\ > 4. Hence in 

all cases, C colors strictly less than (n — l)/2 vertices red unless n\ — 4 (and so, 
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Fx — G5) and 7 F 3 ( G ' ) = (n' — l ) /2 . An identical argument shows that if n* 7̂  4 

for some i, 1 < i < k, then there is an i^-coloring of G that colors strictly less 

than (n — l) /2 vertices red. Thus we have shown that 7 F 3 ( G ) < (n — l) /2 unless 

G = Dfe(5), in which case 7 F 3 ( G ) < (n - l ) /2 . 

We show next that 7 F 3(G) = (n - l ) /2 if and only if G = £>(3,5), G = £>(4,4) 

or G = Ac(5) for some A; > 2. The result is proven if G is a daisy with two petals. 

Hence we may assume G has at least three petals. If 7 F 3 ( G ) = (n — l) /2 , then 

we have shown that G = A,(5). Conversely, suppose G = Ac(5). Then G has 

order n = 4fc + 1 and any ^-coloring of G colors at least two vertices from each Fh 

1 < i < k, red, and so 7 F 3 ( G ) > Ik = (n — l) /2 . On the other hand, if v denotes 

the vertex of degree 2k in G and if ^,^1,^2,^3,^4,1' denotes a 5-cycle in G, then 

coloring all vertices in (N[v] — {^1,^4}) U {^2,^3} blue and all remaining vertices 

red, produces an F3-coloring of G that colors exactly 2k = (n — l ) /2 vertices red, 

and so 7 F 3 ( G ) < (n — l) /2 . Consequently, 7 F 3 ( G ) = (n — l ) /2 . 

4.3.4 Proof of Proposition 4.9 

We proceed by induction on the order n > 6. If n = 6, then G — .Db(3,3,0) 

and 7 F 3 ( G ) = 2 = (n — 2)/2. Let n > 7, and assume that the result is true for 

all dumb-bells of order n', where n' < n. Let G = Db(ni,ri2, k) be a dumbbell of 

order n = n\ +ri2 + k. Suppose G contains a path on six vertices each internal vertex 

of which has degree 2 in G and whose end-vertices, say u and v, are not adjacent. 

Let G' be the graph obtained from G by removing the four internal vertices of this 

path and adding the edge uv. Then, G' is a dumbbell of order n' — n — 4. By 

Observation 4.4, 7 F 3 ( G ) < 7 F , ( G ' ) + 2. Applying the inductive hypothesis to G', 

7 F 3 ( G ' ) < ( n ' - l ) / 2 . If7F3(G') < ( n ' - l ) / 2 , then 7 F 3 ( G ) < ( n - l ) / 2 . On the other 

hand, if 7 F 3 ( G ' ) = (nf -1)/2, then by the inductive hypothesis, G' G {^i(4), ^ i (5)} . 

Now G is obtained from G' by subdividing the edge uv of G' four times. Irrespective 
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of whether the edge uv is a cycle edge or a bridge of G', it is straightforward to check 

that 7 F 3 ( G ) < (n — 3)/2. Hence we may assume that G contains no path on six 

vertices each internal vertex of which has degree 2 in G and whose end-vertices are 

not adjacent, for otherwise 7 F 3 ( G ) < (n—1)/2. With this assumption, 3 < n%, n,2 < 6 

and 0 < k < 3. It is now a simple exercise to check that 7 F 3 ( G ) < (n — l) /2 with 

equality if and only if (m, ri2, k) G {(5,4,0), (5,5,1)}. 

4.3.5 Proof of Lemma 4.14 

Let G = (V, E). Let u be a vertex of maximum degree in G. If n € {3,4}, then 

G = Cn. Suppose n — 5. If A(G) = 4, then coloring u red and coloring all other 

vertices blue produces an F3-coloring of G, and so 7 F 3 ( G ) = 1 < (n — l) /2 , a 

contradiction. If A(G) = 3, then it follows from Observation 4.11 that G = B\. If 

A(G) = 2, then G = C5. 

Suppose n = 6. If A(G) = 2, then 7 F 3 ( G ) < 2 < (n — l) /2 , a contradiction. If 

A(G) = 4, let y — iV[u] = {v}. Then, u and v have at least two common neighbors. 

Coloring v and any neighbor of u red and coloring all other vertices blue produces 

an F3-coloring of G, and so 7 F 3 ( G ) < 2 < (n — l) /2 , a contradiction. If A(G) = 5, 

then coloring u red and coloring all other vertices blue produces an F3-coloring 

of G, and so 7 F 3 ( G ) = 1 < (n — l) /2 , a contradiction. Hence, A(G) = 3. Let 

V — N[u] — {v,w}. If v and w have a common neighbor x, let y € N(u) — {x}. 

Coloring v and y red and coloring all other vertices blue produces an i<3-coloring of 

G, and so 7 F 3 ( G ) < 2 < (n —1)/2, a contradiction. Hence, v and to have no common 

neighbor, whence G — Bi. 
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4.4 Proof of Theorem 4.1 

The sufficiency follows from Corollary 4.12. To prove the necessary, we proceed by 

induction on the order n > 3 of an i^-minimal graph. By Lemma 4.14, the result 

is true for n < 6. Let n > 7, and assume that the result is true for all F3-minimal 

graphs of order less than n. Let G — (V, E) be an F3-minimal graph of order n. If e 

is an edge of G, then 7 F 3 ( G — e) > JF3(G). Hence, by the minimality of G, we have 

the following observation. 

Observation 4.15 If e € E, then either e is a bridge of G or S(G — e) = 1. 

Since the F3-domination number of a graph cannot decrease if edges are removed, 

the next result is a consequence of the inductive hypothesis. 

Observation 4.16 / / G' is a connected subgraph of G of order n' < n with 

5(G') > 2, then either G € AUBllCUV or JF3(G') < (n' - l ) /2 . 

The following observation will prove useful. 

Observation 4.17 Let G' be a graph and let v be a vertex of G' all of whose 

neighbors have degree at most 2 in G'. Then in any F^-coloring of G', at least 

one vertex in N[v] is colored red. 

Proof. If every vertex in N[v] is colored blue in some F3-coloring of G', then there 

must be a red vertex at distance 2 from v. But then the neighbor of v that is 

adjacent to such a red vertex is not rooted at a copy of F3, a contradiction. • 

We now return to the proof of Theorem 4.1. If G = Cn, then, by Corollary 4.6, 

G EC. If G is a daisy, then by Corollary 4.8, G G V. If G is a dumbbell, then, by 
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Corollary 4.10, G £ {Ai(4),Ai(5)}. So we may assume that G is neither a cycle, 

nor a daisy, nor a dumbbell. Hence, G contains at least two vertices of degree 

at least 3. Let S = {v € V \ deg v > 3}. Then, |5 | > 2 and each vertex of V - S 

has degree 2 in G. 

For each v € 5, we define the 2-graph of v to be the component of G — (S — {v}) 

that contains v. So each vertex of the 2-graph of v has degree 2 in G, except for v. 

Furthermore, the 2-graph of v consists of edge-disjoint cycles through v, which we 

call 2-graph cycles, and paths emanating from v, which we call 2-graph paths. 

Using the inductive hypothesis, we shall prove the following lemma, a proof of 

which is given in Subsection 4.4.1. 

Lemma 4.18 If S is not an independent set, then G = A^{A) for some k>2. 

By Lemma 4.18, we may assume that S is an independent set, for otherwise 

G G A. Let u and v be two vertices of S that are joined by a path u, t»i,..., um, v 

every internal vertex of which has degree 2 in G. By assumption, d(u, v) > 2, 

whence m > 1. If m is large, then the following result, a proof of which is presented 

in Subsection 4.4.2, shows that G = B4. 

Lemma 4.19 If m>4, then G — £4. 

By Lemma 4.19, we may assume that every 2-graph path has length at 

most 3. In particular, m < 3. Let P denote the path U\,..., um. Let H = G—V{P). 

Then, H has order n' = n — m and 5(H) > 2. Possibly, H is disconnected in which 

case H has two components, one containing u and the other v. Since S is an 

independent set, we observe that each neighbor of a vertex of S has degree 2 in G. 

In particular each neighbor of u and v in H has degree 2. Thus any F3-coloring of H 

that colors u (respectively, v) blue must color at least one neighbor of u (respectively, 

v) red. A proof of the following lemma is given in Subsection 4.4.3. 
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Lemma 4.20 If H is disconnected, then G = Ak(5) for some k > 2. 

By Lemma 4.20, we may assume that removing the vertices in V — S from any 

2-graph path in G produces a connected graph, for otherwise G E A. In particular, 

H is connected. 

In what follows, for each vertex u E S, let Gu — G — N[u\. A proof of Lemma 4.21 

is given in Subsections 4.4.4, 4.4.5 and 4.4.6. 

Lemma 4.21 / / every 2-graph path has length exactly 1, then: 

(a) There is no 2-graph cycle in G. 

(b) Ifu,v€ S, then N(u) % N(v). 

(c) 5(GU) — 1 for every u G S. 

A proof of Lemma 4.22 is given in Subsection 4.4.7. 

Lemma 4.22 At least one 2-graph path has length 2 or 3. 

By Lemma 4.22, we may assume that m £ {2,3}. By Observation 4.16, 

H e A U B U C U V or JF3(H) < (n' - l ) /2 . Let CH be a minimum F3-coloring of 

H. A proof of the following two lemmas are given in Subsections 4.4.8 and 4.4.9. 

Lemma 4.23 If m = 3, then G — B5. 

Lemma 4.24 Ifm — 2, then G = 5 3 . 

This completes the proof of Theorem 4.1. 
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4.4.1 Proof of Lemma 4.18 

Let e = uv be an edge, where u, v € S. By Observation 4.15, e must be a bridge 

of G. Let Gi = (V\, Ei) and G2 = (V2, F2) be the two components of G — e where 

u G V\. For t = 1,2, let |VJ| = n*. Each Gj satisfies <5(Gj) > 2 and is connected. 

Hence by Observation 4.16, G* € .4 U B U C U V or 7 ^ (Gj) < (n< - l ) /2 for i = 1,2. 

If lF3{Gi) < (n< - l ) /2 for i = 1,2, then 7F3(G) < 7 F 3 ( G I ) + 7 F 3 ( G 2 ) < (n - l ) /2 , a 

contradiction. Hence at least one of Gi and G2, say G\, must belong to ^4.U^UCUl>. 

Claim 4.25 G i ^ G 5 . 

Proof. Suppose G\ = G5. By assumption, G is not a dumbbell, and so G2 

is not a cycle. Thus if 7 F 3 ( G 2 ) > n2/2, then, by Observation 4.11, G2 = B2. 

But then G is not an F3-minimal graph (either we contradict Observation 4.15 or 

7 F 3 ( G ) < (n - l)/2), a contradiction. Thus, 7 F 3 ( G 2 ) < (n2 - l ) /2 . 

Suppose 7 F 3 ( G 2 ) = (n2 — l ) /2 (and still G2 is not a cycle). Then, G2 € 

(A U B U P ) — {B2}. Suppose G2 = £>fe(5) for some k > 2 and u is the central 

vertex of G2. Then a minimum F3-coloring of G2 can be extended to an F3-coloring 

of G by coloring the two neighbors of u in G\ red and the three remaining vertices of 

G\ blue. Thus, 7 F 3 ( G ) < (n2 — l ) /2 + 2 = (n — 2)/2, a contradiction. If v is not the 

central vertex of a daisy .Dfc(5), then by Observation 4.13, there is a minimum Fa-

coloring of G2 in which v is colored red. Such an F3-coloring of G2 can be extended 

to an F3-coloring of G by coloring u and its two neighbors in G\ blue and coloring 

the remaining two vertices of Gi red. Thus, 7 F 3 ( G ) < (n2 — l ) /2 + 2 = (n — 2)/2, a 

contradiction. Hence, 7 F 3 ( G 2 ) < (n2 — 2)/2. 

If 7 F 3 ( G 2 ) < (n2 - 3)/2, then lF,{G) < ^(G^ + 7 F 3 ( G 2 ) < 3 + (n2 - 3)/2 = 

(n — 2)/2, a contradiction. Hence, 7 F 3 ( G 2 ) = (n2 — 2)/2. If there exists a minimum 

-F3-coloring of G2 in which v or a neighbor of v is colored red, then such an F3-coloring 

of G2 can be extended to an F3-coloring of G by coloring exactly two vertices of G\ 
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red, and so 7 F 3 ( G ) < (n2 — 2)/2 + 2 = (n — 3)/2, a contradiction. On the other 

hand, suppose that every minimum F3-coloring of G2 colors v and all its neighbors 

blue. Then at least one neighbor w of v in G2 must have degree at least 3, and 

so w G S. By Observation 4.15, the edge vw must be a bridge of G. Let Hi and 

Hi be the two components of G — vw where v G V(H\). For i = 1,2, let Hi have 

order n^. Each ifj satisfies <5(iJj) > 2 and is connected. Hence by Observation 4.16, 

Hi e AUBUCUV or iF3(Hi) < ( n{ - l ) /2 fo r i = 1,2. Since # i g {B2,Ci,C6 lC8}, 

7F3(i?i) < (ni — l ) /2 . If # 2 ^ {5 2 , G4, G5, C8}, then there would exists a minimum 

F3-coloring of G<i in which w is colored red, contrary to our earlier assumption that 

there is no such minimum F3-coloring of G%. Hence, 7^3(^2) < (n'2 — l ) /2 . Thus, 

1F3{G) < JF3(HI) +JF3(H2) < (n — l) /2 , a contradiction. • 

By Claim 4.25, Gi # C5. Similarly, G2 7̂  C6. 

Claim 4.26 G i ^ { B 2 , C 8 } . 

Proof. Suppose Gi G {5 2 , G8}. If G2 G {B2, G4, G8}, then G is not an F3-minimal 

graph (either we contradict Observation 4.15 or 7 F 3 ( G ) < (n—1)/2), a contradiction. 

If 7 F 3 ( G 2 ) < (n 2 -2 ) /2 , then7F3(G) < m / 2 + ( n a - 2 ) / 2 < ( n - l ) / 2 , a contradiction. 

Hence, 7 F 3 ( G 2 ) = (n2 - l ) /2 , and so G2 G (A U B U C U V) - {B2, G4, G5, G8}. By 

Observation 4.13, there is a minimum F3-coloring & of G2 in which v is colored blue 

and is adjacent to a vertex colored red. 

Suppose G\ — B2. If u is a vertex of degree 2 in Gi, then at least one of the 

two edges incident with u in G\ joins two vertices of S but is not a bridge of G, 

contradicting Observation 4.15. Hence the vertex u must be a vertex of degree 3 

in G\. The F3-coloring C\ of G2 can be extended to an F3-coloring of G as follows: 

Color one neighbor of u on the 4-cycle in G\ red, color the neighbor of u in Gi that 

does not belong to the 4-cycle red, and color the remaining four vertices of G\ blue. 

Thus, 7 F 3 ( G ) < 7 F 3 ( G 2 ) + 2 = (n2 - l ) /2 + 2 = (n - 3)/2, a contradiction. 
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Suppose Gi = G8. The ^-coloring C\ of G2 can be extended to an F3-coloring 

of G by coloring the two neighbors of u in G\ red, coloring the vertex at maximum 

distance 4 from u in G\ red, and coloring the remaining five vertices of G\ (including 

u) blue. Thus, 7F3(G) < (n2 - l)/2 + 3 = (n - 3)/2, a contradiction. • 

By Claim 4.26, Gx $ {B2, G8}. Similarly, G2 i {B2, G8}. If neither Gx nor G2 is a 

4-cycle, then for i = 1,2, 7F3(GJ) < (n4 —1)/2, andso7F3(G) < 7 F 3 ( G I ) + 7 F 3 ( G 2 ) < 

(n — l)/2, a contradiction. Hence at least one of G\ and G2, say Gi, is a 4-cycle. 

If G2 = G4, then 7F3(G) = (n — 2)/2, contradicting the fact that G is an Fa-

minimal graph. If7F3(G2) < (n2-2)/2,then7F3(G) < m/2+(n2-2) /2 < (n- l ) /2 , 

a contradiction. Hence, 7F3(G2) = (n2 — l)/2, and so G2 € (A U fi U C U 

V) — {52,G4,G5,G8}. If t; is not the central vertex of a daisy £>fc(5), then by 

Observation 4.13, there is a minimum i<3-coloring of G2 in which v is colored red. 

Such an i^-coloring of G2 can be extended to an F3-coloring of G by coloring the 

vertex in Gi at distance 2 from u with the color red and coloring the remaining three 

vertices of Gi blue. Thus, 7F3(G) < (n2 —l)/2+l = (n—3)/2, a contradiction. Thus, 

v must be the central vertex of a daisy Dk{5) for some k > 2, whence G = Afc(4). 

4.4.2 Proof of Lemma 4.19 

Let G' be the graph obtained from G by removing the vertices ui,u2,1*3,1*4, and 

either adding the edge 11115 if m > 5 or adding the edge uv if m = 4. Then, G' 

is a connected graph of order n' = n — 4 with 5(G') > 2. By Observation 4.4, 

7F3(G) < 7F3(G') + 2. If 7F3(G') < (n' - l)/2, then 7F3(G) < (n - l)/2, a 

contradiction. Hence, 7F3(G') > (n' — l)/2. Since G is an i<3-minimal graph, it 

follows that G' is an F3-minimal graph. Since G is neither a cycle nor a dumbbell, 

G' is not a cycle or a dumbbell. Further the degree of each vertex of S is unchanged 

in G and G', and so G' has at least two vertices of degree at least 3. Hence applying 
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the inductive hypothesis to G', G' G A U {Bi,B2,..., B5}. A straightforward check 

confirms that if G' ^ B\, then JF3(G) < (n — l)/2. Therefore, G' = B\, whence 

G = B4. 

4.4.3 Proof of Lemma 4.20 

Let Hi and H2 be the two components of H, where u £ V(H\). For i = 1,2, let Hi 

have order n*. Each i/* is a connected graph with 5(Hi) > 2. By Observation 4.16, 

HiEAuBUCuVoi iF3{Hi) < {rii - l)/2. 

Claim 4.27 »fo(Hi) > rk/2 for i = 1 or i = 2. 

Proof. Suppose 7^ (Hi) < (n* —1)/2 for i = 1,2. Let C\2 be a minimum F3-coloring 

of HiDH2. Then the restriction of C\i to V(.ffj) is a minimum i^-coloring of H< for 

% = 1,2, and so C12 colors at most (n\ + ri2)/2 — 1 vertices of H red. 

Suppose m = 3. Then, ni +712 = n — 3. If at least one of u and v, say u, is colored 

red in C12, then C12 can be extended to an F3-coloring of G by coloring the vertex uz 

red and the vertices U\ and «2 blue. On the other hand, if both u and v are colored 

blue in Cu, then C12 can be extended to an F3-coloring of G by coloring the vertex 

U2 red and the vertices u\ and u3 blue. Hence, 7F3(G) < (n — 3)/2, a contradiction. 

Suppose m — 2. Then, ni + n2 — n — 2. If « and t; are colored with the same 

color in C12, then C\2 can be extended to an F3-coloring of G by coloring both u\ 

and u2 blue, whence JF3(G) < (n — 4)/2, a contradiction. If u and v are colored 

with different colors in C12, say u is colored red and v blue, then C\2 can be extended 

to an F3-coloring of G by coloring u\ red and u2 blue, and so 7F3(G) < (n — 2)/2, a 

contradiction. Hence, m = 1 and ni + ri2 = n — 1. 

If u or v is colored blue in C12, then C12 can be extended to an F3-coloring of 

G by coloring u\ blue, whence JF3{G) < (n — 3)/2, a contradiction. Hence in 
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every minimum F3-coloring of H, the vertices u and v are colored red. There is 

therefore no minimum F3-coloring of Hi that colors u blue, and so it follows from 

Observation 4.13 that 7 F 3 ( # I ) < (rai - 2 ) / 2 . Similarly, 7j%(ffa) < ( n 2 - 2 ) / 2 . Thus, 

C\i colors at most (ni +ri2 — 4)/2 = (n — 5)/2 vertices of # red. The coloring C12 can 

be extended to an F3-coloring of G by coloring u\ red, and so 7ir3(G) < (n — 3)/2, 

a contradiction. • 

By Claim 4.27 and Observation 4.11, we may assume that H\ € {B2, C4, C5, C8}. 

We consider each possibility in turn. 

Claim 4.28 / / Hi = CB, tfien G = Afc(5) /or some fc > 2. 

Proof. Since G is not a dumbbell, H2 is not a cycle. If H2 = B2, then v must be 

one of the two vertices of degree 3 in B2 and it is easy to check that for each value 

of m G {1,2,3}, 7 F 3 ( G ) < (n — l) /2 , a contradiction. Hence, by Observation 4.16, 

H2 G A\J(B-{B2})\JV ox -yF3(H2) < ( n 2 - l ) / 2 . In particular, 7^(H2) < ( n 2 - l ) / 2 . 

Let C2 be a minimum F3-coloring of H2. 

Suppose m = 3. If v is colored red in the coloring C2, then C2 can be extended 

to an F3-coloring of G by coloring ui and the two vertices in Hi not adjacent to u 

with the color red and coloring all remaining uncolored vertices of G blue. On the 

other hand, if v is colored blue in C2, then C2 can be extended to an F3-coloring of 

G by coloring u2 and the two neighbors of u in Hi with the color red and coloring 

all remaining uncolored vertices of G blue. In both cases we color at most (n — 3)/2 

vertices red, and so 7 F 3 ( G ) < (n — 3)/2, a contradiction. 

Suppose m = 2. If v is colored red in C2, then C2 can be extended to an F3-coloring 

of G by coloring u and its two neighbors in Hi with the color red and coloring all 

remaining uncolored vertices of G blue. On the other hand, if v is colored blue in C2, 

then C2 can be extended to an F3-coloring of G by coloring ui and the two vertices 
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in Hi not adjacent to u with the color red and coloring all remaining uncolored 

vertices of G blue. In both cases we color at most (n — 2)/2 vertices red, and so 

7 F 3 ( G ) < (n — 2)/2, a contradiction. Hence, m — 1. 

If v is colored red in Ci, then Ci can be extended to an 2<3-coloring of G by 

coloring the two neighbors of u in Hi with the color red and coloring all remaining 

uncolored vertices of G blue, whence 7F 3 (G9 < (« — 3)/2, a contradiction. Hence, 

by Observation 4.13, either Hi — Dk(5) for some k > 2 with t> the central vertex of 

this daisy, or 7^(#2) < («2 — 2)/2 and v is colored blue in Ci. In the latter case, Ci 

can be extended to an F3-coloring of G by coloring u and its two neighbors in Hi 

with the color red and coloring all remaining uncolored vertices of G blue, whence 

7 F 3 ( G ) < (n — 2)/2, a contradiction. Hence, # 2 = Dk(5) for some fc > 2 with v the 

central vertex of this daisy. Thus, G = Ak(5) for some fc > 2. O 

By Claim 4.28, we may assume that neither Hi nor Hi is a 5-cycle, for otherwise 

the desired result follows. Hence, ^Fi{Hi) < ni/2. 

Claim 4.29 Hi^B2. 

Proof. Suppose Hi = Bi. Let C2 be a minimum F3-coloring of Hi. Suppose m = 3. 

If v is colored red in the coloring Ci, then C2 can be extended to an i^-coloring of 

G by coloring ui and the two vertices in Hi not adjacent to u with the color red 

and coloring all remaining uncolored vertices of G blue. On the other hand, if v is 

colored blue in Ci, then Ci can be extended to an F3-coloring of G by coloring ui 

and two neighbors of u in Hi that lie on a common 5-cycle with the color red and 

coloring all remaining uncolored vertices of G blue. In both cases we color at most 

(n — 3)/2 vertices red, and so 7 F 3 ( G ) < (n — 3)/2, a contradiction. 

Suppose m = 2. If v is colored red in Ci, then Ci can be extended to an F3-coloring 

of G by coloring u and two neighbors of u in Hi that lie on a common 5-cycle with 
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the color red and coloring all remaining uncolored vertices of G blue. On the other 

hand, if v is colored blue in C2, then C2 can be extended to an F3-coloring of G 

by coloring u\ and the two vertices in H\ not adjacent to u with the color red and 

coloring all remaining uncolored vertices of G blue. In both cases we color at most 

(n — 2)/2 vertices red, and so 7F 3 (G9 < (n — 2)/2, a contradiction. 

Suppose m = l. If v is colored red in C2, then C2 can be extended to an Fa-

coloring of G by coloring two neighbors of u in H\ that lie on a common 5-cycle 

with the color red and coloring all remaining uncolored vertices of G blue, and so 

7F3(G) < (n — 3)/2, a contradiction. Hence we may assume that every minimum 

F3-coloring of Hi colors v blue, for otherwise we reach a contradiction. Thus by 

Observations 4.11 and 4.13, 7ir3(iJ2) < (n2 — l ) /2 . Since v is colored blue in C2, 

the coloring C2 can be extended to an F3-coloring of G by coloring u\ and the 

two vertices in H\ not adjacent to u with the color red and coloring all remaining 

uncolored vertices of G blue, whence JF3(G) < (n — 2)/2, a contradiction. • 

By Claim 4.29, HX^B2. Similarly, H2 ^ B2. 

Claim 4.30 ffi ^ C4. 

Proof. Suppose Hi — C4. Let Hi be the 4-cycle u,w,x,y,u. Since G is not a 

dumbbell, H2 is not a cycle. Hence, 7F3 (H2) < (n2 — l ) /2 . Let C2 be a minimum 

F3-coloring of H2. 

Suppose m — 3. Iff is colored red in C2, then C2 can be extended to an F3-coloring 

of G by coloring ui and x red and coloring all remaining uncolored vertices of G 

blue. On the other hand, if v is colored blue in C2, then C2 can be extended to an 

F3-coloring of G by coloring the vertices u2, x and y red, and coloring all remaining 

uncolored vertices of G blue. Hence, 7F 3 (G9 < (n — 2)/2, a contradiction. 
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Suppose m = 2. If v is colored red in C2, then CQ. can be extended to an Fa-

coloring of G by coloring u and w red and coloring all remaining uncolored vertices 

of G blue. On the other hand, if v is colored blue in C2, then C<i can be extended to 

an Fa-coloring of G by coloring the vertices u\ and x red, and coloring all remaining 

uncolored vertices of G blue. Hence, JF3(G) < (n — 3)/2, a contradiction. 

Suppose m = 1. If v is colored red in C2, then C2 can be extended to an Fa-

coloring of G by coloring x and y red and coloring all remaining uncolored vertices 

of G blue. On the other hand, if v is colored blue in C2, then C2 can be extended to 

an F3-coloring of G by coloring the vertices u and w red, and coloring all remaining 

uncolored vertices of G blue. Hence, 7 F 3 ( G ) < (n — 2)/2, a contradiction. • 

We now return to the proof of Lemma 4.20 By Claim 4.30, H\ ^ C4. Similarly, 

H2 7̂  C4. Hence, Hi = Cs- Let i/i be the 8-cycle u — u>i,W2,... ,w$,u. Since G 

is not a dumbbell, H2 is not a cycle. Hence, JF3 (-"a) < (^2 — l) /2 . Let C2 be a 

minimum F3-coloring of H2. 

Suppose m = 3. If u is colored red in C2, then C2 can be extended to an Fa-

coloring of G by coloring the vertices in the set {ui, W3, W4, W7} red and coloring all 

remaining uncolored vertices of G blue. On the other hand, if v is colored blue in 

C2, then C2 can be extended to an F3-coloring of G by coloring the vertices in the set 

{ti2, w2, w5, ws} red, and coloring all remaining uncolored vertices of G blue. Hence, 

1F3(G) < (n — 4)/2, a contradiction. 

Suppose m = 2. If v is colored red in C2, then C2 can be extended to an Fa-

coloring of G by coloring the vertices in the set {wi, W2,Ws, Ws} red and coloring all 

remaining uncolored vertices of G blue. On the other hand, if v is colored blue in 

C2, then C2 can be extended to an F3-coloring of G by coloring the vertices in the set 

{«i, w3, W4, w7} red, and coloring all remaining uncolored vertices of G blue. Hence, 

7 F 3 ( G ) < (n — 3)/2, a contradiction. 
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Suppose m — 1. If v is colored red in Ci, then C<i can be extended to an Fa-

coloring of G by coloring the vertices in the set {u^ t i^ ius} red and coloring all 

remaining uncolored vertices of G blue. On the other hand, if v is colored blue in 

C-i, then C<i can be extended to an F3-coloring of G by coloring the vertices in the set 

{wi,W2, w$, ws} red, and coloring all remaining uncolored vertices of G blue. Hence, 

1F3(G) < (n — 2)/2, a contradiction. This completes the proof of Lemma 4.20. 

4.4.4 Proof of Lemma 4.21(a) 

Suppose that there is a 2-graph cycle in G. Since l^l > 2, each vertex of S that has 

a 2-graph cycle also has a 2-graph path. Hence we may assume that the vertex u 

(defined earlier) has a 2-graph cycle Cu of order n\ +1. Let Hu = G—(V(CU) — {u}) 

have order n<i. Then, Hu is a connected graph of order n2 = n — n\. If degG(u) = 3, 

then the graph H = G — u\ (defined earlier) is disconnected, contrary to assumption. 

Hence, degG(it) > 4, and so 5{HU) > 2. By Observation 4.16, HueAllBUC\JT> 

or jF3(Hu)<{n2- 1)/2. 

Since v is a vertex of degree at least 3 in Hu, the graph Hu is not a cycle. Further 

by our earlier assumptions (that every 2-graph path has length exactly 1; that 

the set S is an independent set with |S | > 2; that removing the vertices not 

in S of any 2-graph path from G produces a connected graph), it follows that 

Hu i A U {B - {Si}) U C U {V - F>(4,4)}. Hence by Observation 4.11, either 

Hu e {BUD(A,A)} or 7 F 3 ( # U ) < (n2 - 2)/2. 

Let C* be a minimum F3-coloring of Hu. If n\ ^ 4 (i.e., if Cu is not a 5-cycle), 

then irrespective of whether u is colored is red or blue in C*, the coloring C* can be 

extended to an F3-coloring of G by coloring at most (n\ — l ) /2 additional vertices 

in Cu red, and so JF3(G) < (n — 2)/2, a contradiction. If n\ = 4, then C* can be 

extended to an F3-coloring of G by coloring n i /2 additional vertices red. Thus, if 

1F3(HU) < (n.2 — 2)/2, then 7F3(G!) < (n — 2)/2, a contradiction. Hence, ni — 4 and 
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Hu E {J5i,D(4,4)}. But once again, 7 F 3 ( G ) < (n — 3)/2, a contradiction. 

4.4.5 Proof of Lemma 4.21(b) 

By Lemma 4.21(a), G is a bipartite graph with partite sets S and V — S. Every 

vertex in V — S has degree exactly 2, while every vertex in S has degree at least 3. 

Suppose that N(u) C N(v) for some pair of vertices u,v € S. If \S\ = 2 (and still 

n > 7), then coloring u and one neighbor of u red and coloring all remaining vertices 

blue produces an F3-coloring of G, and so JF3(G) = 2 < (n — 3)/2, a contradiction. 

Hence, | 5 | > 3, and so at least one neighbor of v is not a neighbor of u. 

Suppose degG(i>) = degG(«) + 1. Let G' — G — N[v] — u have order n'. 

Then, n' < n — 6 and G' is an induced subgraph of G with 5(G') > 2. Since 

G' is a bipartite graph, G' has no 5-cycles, and so, by the inductive hypothesis, 

1F3(G') < n'/2 < (n — 6)/2. Any minimum F3-coloring of G' can be extended to an 

F3-coloring of G by coloring u and one neighbor of u red and coloring all remaining 

uncolored vertices blue. Thus, 7 F 3 ( G ) < 2 + 7 F 3 ( G ' ) < (n — 2)/2, a contradiction. 

On the other hand, suppose degG(i>) > degG(u) + 2. Let G* = G — N[u] have 

order n*. Then, n* < n — 4 and G* is an induced subgraph of G with 5{G*) > 2. 

Since G* is a bipartite graph, G* has no 5-cycles, and so, by the inductive hypothesis, 

7F 3 (G*) < n*/2 < (n — 4)/2. Any minimum F3-coloring of G* that colors v red can 

be extended to an F3-coloring of G by coloring one neighbor of u red (and coloring 

all remaining uncolored vertices blue), while any minimum F3-coloring of G* that 

colors v blue can be extended to an F3-coloring of G by coloring the vertex u red. 

Hence, 7 F 3 ( G ) < 1 + 7F 3 (G*) < (n — 2)/2, a contradiction. We deduce, therefore, 

that for any pair of vertices u,v 6 S, N(u) % N(v). 
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4.4.6 Proof of Lemma 4.21(c) 

Suppose 5(GU) > 2 for some vertex u € S. Then, Gu is an induced subgraph 

(possible disconnected) of G. Since Gu is a bipartite graph, Gu is C^-iree. Hence 

by the inductive hypothesis, each component of Gu has ^-domination number at 

most one-half its order, and so 7F3(G
f
u) < |V(Gu)|/2 < (n — 4)/2. 

Let Su = {w € S | dG(u,w) = 2}. By Lemma 4.21(b), \SU\ > 2. Let Cu be 

a minimum F3-coloring of Gu. Suppose Cu colors a vertex x in Su red. Let x' 

be a common neighbor of u and x. Then, Cu can be extended to an i^-coloring 

of G by coloring one vertex in N(u) — {x'} red (and coloring all other vertices in 

N[u] blue). On the other hand, if Cu colors no vertex in Su red, then it follows 

by Observation 4.17 that Cu can be extended to an F3-coloring of G by coloring 

the vertex u red (and coloring all remaining uncolored vertices blue). Hence, 

7F3(G) < 1 + ^FS{GU) < (n — 2)/2, a contradiction. 

4.4.7 Proof of Lemma 4.22 

Suppose that every 2-graph path has length exactly 1. Let u € S. By Lemma 4.21, 

8(GU) = 1 and G is a bipartite graph with partite sets S and V — S. We may assume 

that v has degree 1 in Gu. Thus, u and v have at least two common neighbors. Let 

c be one such common neighbor of u and v. Let v' be the neighbor of v in Gu, and 

let N(v') = {v,w}. Then, w € S — {u,v} and w has degree at least 2 in Gv. Since 

<5(Gt,) = 1 by Lemma 4.21(c), the vertex u must have degree 1 in G„. Let u' be the 

neighbor of u in G„, and let Ar(tx') = {u, z}. Then, z £ S — {u,v} and z has degree 

at least 2 in Gv (possibly, z = w). Let G' = G — N[u] — N[v] have order n'. Then, 

n' < n — 6 and G' is an induced subgraph of G. In particular, G' has no 5-cycles. 

Let C be a minimum i^-coloring of G'. We now consider two possibilities. 

Suppose z T̂  w. Then, S(G') > 2. It follows from the inductive hypothesis 
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that JF3{G') < n'/2 < (n — 6)/2. If C colors both w and z red, then C can 

be extended to an F3-coloring of G by coloring the vertex c red and coloring all 

remaining uncolored vertices blue. If C colors both w and z blue, then it follows 

from Observation 4.17 that C can be extended to an F3-coloring of G by coloring 

the vertices c and u red and coloring all remaining uncolored vertices blue. Suppose, 

finally, that C colors exactly one of w and z red. By symmetry, we may assume 

that w is colored red. Then C can be extended to an F3-coloring of G by coloring 

the vertices c and u red and coloring all remaining uncolored vertices blue. Thus, 

7F3(G)<2 + 7F 3 (G' )<(n-2) /2 . 

Suppose, on the other hand, that z = w. If degG(w) — 3, then S(GW) > 2, which 

contradicts Lemma 4.21(c). Hence, degG(it;) > 4. Then, 5(G') > 2. It follows 

from the inductive hypothesis that 7F3(G!') < n'/2 < (n — 6)/2. If C colors w red, 

then C can be extended to an F3-coloring of G by coloring the vertex c red and 

coloring all remaining uncolored vertices blue. If C colors w blue, then it follows 

from Observation 4.17 that C can be extended to an F3-coloring of G by coloring 

the vertices c and u red and coloring all remaining uncolored vertices blue. Thus, 

7F3(G)<2 + 7 F 3 (G ' )< (n -2 ) /2 . 

4.4.8 Proof of Lemma 4.23 

Suppose 7F3 (H) < {n' —1)/2 = (n — 4)/2. If at least one of u and v, say u, is colored 

red in CH, then CH can be extended to an F3-coloring of G by coloring the vertex n3 

red and the vertices ui and ui blue. On the other hand, if both u and v are colored 

blue in CH, then CH can be extended to an F3-coloring of G by coloring the vertex 

ui red and the vertices u\ and u3 blue. Hence, 7F3(G) < (n — 2)/2, a contradiction. 

Thus, 7 F 3 ( # ) > n'/2, whence H G {B2,C4,C5,C8}. If if € {-B2,C4,C5}, then it is 

easily checked that 7F3(G) < (n — l)/2, a contradiction. If H = C8 and if u and v 

are at distance 2 or 3 apart in H, then 7F3(G) < (n — l)/2, a contradiction. Thus, 
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H = C% and the vertices u and v are at distance 4 apart in H, and so G = B5. 

4.4.9 Proof of Lemma 4.24 

Note that n' = n — 1 > 5. If if € {B2,C§,C%}, then it is easily checked that 

7F3(G) < (n - l)/2, a contradiction. Hence, 7 F 3 ( # ) < (n; - l)/2 = (n - 3)/2. If 

u and v are both colored with the same color in CH, then C# can be extended to 

an F3-coloring of G by coloring both u\ and ui blue, and so JF3{G) < (n — l)/2, a 

contradiction. Hence every minimum F3-coloring of H colors u and v with different 

colors. We may assume that u is colored red in CH- If JF3{H) < (n — 4)/2, then 

C^ can be extended to an i*3-colormg of G by coloring u\ red and U2 blue, and so 

1F3{G) < (n — 2)/2, a contradiction. Hence, ^F3(H) = (n' — l)/2. Since the set 

S is independent and since u and t> must receive different colors in every minimum 

Fa-coloring of H, it therefore follows that H € {Bi,B2,B3, A^b),D(4,4),D2(5)}. 

If H ^ Bi, then it is easily checked that 7F3(G) < (n —1)/2, a contradiction. Hence, 

H = Bi, and so G = 5 3 . 

4.5 Proof of Theorem 4.2 

The proof of Theorem 4.2 follows readily from Theorem 4.1. Since the F3-domination 

number of a graph cannot decrease if edges are removed, it follows from Theorem 4.1 

and Observation 4.11 that the F3-domination number of G is at most (n + l)/2. 

Further suppose 7F3(G) > n/2. Then by removing edges of G, if necessary, 

we produce an F3-minimal graph G'. By Theorem 4.1 and Observation 4.11, 

G' € {B2,C4,C5,Cs}. In all cases it can be readily checked that G = G' unless 

possibly if G' = C& in which case G G {C8, Hi}. 
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4.6 Proof of Theorem 4.3 

The proof of Theorem 4.3 follows readily from Theorem 4.1. Since the F3-domination 

number of a graph cannot decrease if edges are removed, and since n > 9, it follows 

from Theorem 4.1 and Observation 4.11 that the F3-domination number of G is at 

most (n — l)/2. Further suppose 7F3(G) = (n — l)/2. Then by removing edges 

of G, if necessary, we produce an F3-minimal graph G'. By Theorem 4.1 and 

Observation 4.11, G' e A U (V - {£>(3,5),£>(4,4)}) or G' € {B4,B5,Cn}. In 

all cases it is straightforward to check that G = G' unless possibly if G' = Cn in 

which case G € {Cn, Hi}-



Chapter 5 

SIMULTANEOUS 

STRATIFICATION IN GRAPHS 

5.1 Introduction 

In this chapter we focus on two variations on the domination theme that are well 

studied in graph theory called total domination and restrained domination. Let 

G = (V, E) be a graph. Recall, a set S C V is a total dominating set (or TDS) in G 

if every vertex of G is adjacent to a vertex of S and 5 is a restrained dominating set 

(or RDS) in G if every vertex not in S is adjacent to a vertex in S and to a vertex 

in V \ S. 

5.2 Simultaneous stratification 

The concepts of stratification and domination in graphs explored by Chartrand et 

al. [10] and others (see for example, [9, 37]) may be extended in a number of ways. 

In [10], the following extension is considered. 

76 
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Let T — {F\, • • •, Fm}, where Fi, 1 < i < m, is a 2-stratified graph rooted at 

some blue vertex v. We define an /"-coloring of a graph G to be a red-blue 

coloring of the vertices of G such that every blue vertex v of G belongs to a 

copy of Ft rooted at v for every i = 1 , . . . , m. We define the J7-domination 

number 7 F ( G ) of G as the minimum number of red vertices of G in an T-

coloring of G, and we define a ^-coloring of G as an ^"-coloring of G that 

colors 7 -̂(C?) vertices red. 

Throughout the rest of this chapter we take T = {F\, F4}, where Fi and F4 are 

the 2-stratified graphs shown in Figure 1.2. Hence in our ./-coloring of a graph G, 

every blue vertex v is rooted at both a copy of F\ and a copy of F4. 

We remark that our /-coloring can be thought of as a 2-stratified P4 coloring: If 

F is a 2-stratified P4 given by «i,U2,173,1/4 where v\ and i>2 are colored blue and v3 

and t>4 are colored red that is rooted at the blue vertex v = V2, then our ^"-coloring 

is precisely an F-coloring. 

5.2.1 ^"-domination versus total restrained domination 

The following observation shows that the ^"-domination number is bounded below 

by the restrained domination number and by the total domination number, and is 

bounded above by the total restrained domination number. 

Observation 5.1 For every graph G without isolated vertices, 

max{7 r(G),7t(G)} < lT(G) < 7 t r (G). 

Proof. Coloring the vertices of a minimum TRDS of G red and the remaining 

vertices blue produces an ^"-coloring of G, and so 7^-(G) < 7tr(G). This establishes 
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the upper bound. To prove the lower bound, notice that the set of red vertices in 

an ^"-coloring of a graph G is a RDS of G, whence 7r(G) < 7 F ( G ) . Observe that 

the set of red vertices in an ^"-coloring of a graph G without isolated vertices is not 

necessarily a TDS of G, since there may be isolated vertices in the subgraph induced 

by the red vertices. However, every ^"-coloring of G is by definition an i*\-coloring 

of G. Hence there exists an i*\-coloring of G with 7F(G) red vertices. Among all 

Fi-colorings of G with 7:F(G) red vertices, choose one to minimize the number of 

isolated vertices in the subgraph induced by its red vertices. Then, as shown in the 

proof of Proposition 1 in [10], every red vertex in such an Fx-coloring is adjacent to 

some other red vertex, and so the red vertices form a TDS of G. This implies that 

7t(G) < MG). • 

Our next example illustrates that the bounds in Observation 5.1 can be strict 

even for the family of trees. 

Example 1. Let T be the tree obtained from two disjoint paths PQ by joining a 

vertex at distance 2 from a leaf on one path to a vertex at distance 2 from a leaf on 

the other path, and then subdividing the resulting edge once. Then, 7tr(T) = 10, 

7:F(T) = 9, 7t(T) = 8, and 7r(T) = 7 as illustrated in Figure 5.1. 

o •-o-o-o • • 
<> 

O • - 0 - 6 - 0 • • 
7tr(T) = 10 7^C0 = 9 7t(r) = 8 7r(r) = 7 

Figure 5.1: 

Example 2. For k > 2, an integer, let T\, T2,. . . , Tk be k disjoint copies of the tree 

T defined in Example 1 and let Vi be a vertex of degree 3 in Tj. Let G be the tree 

obtained from the disjoint union of the trees Tj, 1 < i < k, by adding a new vertex 

v and the edges Wi for i = 1,2,..., k. Then, 7tr(G) = 10k and 7^(G) = 9fc + 1. 

This example serves to illustrate that there exists trees G such that 7tr(G) — 7;F(G) 
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can be made arbitrarily large. 

5.2.2 Cycles 

In this section, we compute the ^"-domination number of a cycle. 

Proposition 5.2 For n > 3 and for i = 0,1,2,3, jr(Cn) = (n + i)/2 where 

n = i (mod 4). 

Proof. We proceed by induction on the order n > 3 of a cycle Cn. The result is 

straightforward to verify for n E {3,4,5,6}. Assume then that n > 7 and that the 

result of the proposition is true for all cycles on fewer than n vertices. Consider a 

cycle C: Vi, tfe,..., vn, Vi. Let C be a 7^-coloring of C. Then every blue vertex is 

adjacent to a blue vertex and to a red vertex, with the red vertex itself adjacent to 

some other red vertex. Renaming vertices if necessary, we may assume that C colors 

V\ and i>2 red, and v3 and t>4 blue. Hence, ^5 and v§ are colored red under C. Let C 

be the cycle obtained from C by deleting the vertices v\, u2, t>3 and u4 and adding 

the edge v$vn, i.e., C" = (C — {wi ,^ ,^ ,*^}) U {vc,vn}. Then, C is a cycle of order 

n — 4 > 3 and the restriction of C to C is an ^"-coloring of C that colors yy(C) — 2 

vertices red. Hence, f?(C) < 7 F ( C ) — 2. On the other hand, let C be a 7^-coloring 

of C". If C colors U5 blue and vn red, then color v\ and i>2 blue and ^3 and v4 red. If 

C colors V5 red and vn blue, then color V\ and t>2 red and V3 and t>4 blue. If C color 

both ^5 and vn red, then color -Ui and v4 red and i>2 and 1*3 blue. If C color both v$ 

and t)n blue, then color vi and u4 blue and color u2 and v$ red. In all four cases, C 

can be extended to an ^"-coloring of C by coloring an additional two vertices red. 

Thus, 7^(C) < TF(C") + 2. Consequently, jT(C) = jr(C) + 2. The result now 

follows by applying the inductive hypothesis to the cycle C = Cn_4. • 
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5.2.3 Bounds involving maximum degree 

Let G be a connected graph of order n and maximum degree A. Berge [2] was 

the first to observe that 7(G) < n — A, and graphs achieving this bound were 

characterized in [23]. Cockayne, Dawes and Hedetniemi [14] observed that if n > 3 

and A < n — 2, then 7t(G) < n — A. Recently it was shown in [15] that if 5(G) > 2, 

then 7r(G) < n — A. Hence if 5(G) > 2, then both the total domination and the 

restrained domination numbers are bounded above by n—A. Our aim in this section 

is to show that if A < n — 2 and the minimum degree of G is at least two, then 

1T(G) < n - A + 1. 

Recall, by a proper subgraph of a graph G we mean a subgraph of G different 

from G. We also defined a vertex as small if it has degree 2, and large if it has 

degree more than 2 and we defined a ray as a path (not necessarily induced) of 

length 3 the two internal vertices of which are small vertices. Let G be a graph with 

minimum degree at least two, and let C be set of all large vertices of G. Recall also 

that if |£ | > 1 and C is any component of G — £; it is a path. Then, if C has only 

one vertex, or has at least two vertices but the two ends of C are adjacent in G to 

different large vertices, we say that C is a 2-path. Otherwise we say that C is a 

2-handle. 

Theorem 5.3 If G is a connected graph of order n, size m, maximum degree A 

where A < n — 2, and minimum degree at least 2, then 

1T(G) < n - A + 1, 

and this bound is sharp. 

Proof. We proceed by induction on £ = n + m. For notational convenience, we 

let <j)(n,A) = n - A + 1. We wish to show that -yr(G) < <j>(n,A). Note that 

n > 4 and m > 4, and so t > 8. When t = 8, the graph G is a 4-cycle and so 
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7:F(G) = 2 < <£(4,2) = 4>(n, A). This establishes the base case. For the inductive 

hypothesis, let £ > 9 and assume that for all connected graphs G' of order n! and 

size m' with n' + m' < £ that have maximum degree A' where A' < n' — 2 and 

minimum degree at least 2 that 7^(G') < </>(n', A'). Let G be a connected graph 

of order n and size m with £ = n + m, maximum degree A where A < n — 2 and 

minimum degree at least 2. 

Observation 5.4 Ŵe may assume that G contains no ray. 

Proof. Suppose that G contains a ray P:v,Vi,V2,w. Thus, both V\ and V2 are 

small vertices of G. If A = n — 2, then v or w, say u, is a vertex of maximum 

degree A in G. Coloring v and V\ red and every other vertex blue produces an T-

coloring of G, and so 7 F ( G ) = 2 = <f>(n, n — 2) — 1 < 0(n, A). Hence we may assume 

that A < n — 3. Let G' be the graph obtained from G by removing the vertex 

vi and adding the edge WQ.. Then, G' is a connected graph of order n' = n — 1 

and size m' = m — 1, with maximum degree A' = A with A' < n' — 2, and 

with minimum degree at least 2. Applying the inductive hypothesis to G', we have 

that 7jr(G') < <j>(n',A') = </>(n - 1, A) = <j>(n,A) - 1. Any 7^-coloring of G' can 

be extended to an jF-coloring of G by coloring the vertex Vi red, unless v and 

t>2 are both colored blue, in which case recolor v<± red and color v\ blue. Hence, 

1f{G) < 7^(G') + 1 < 4>(n, A), as desired. D 

By Observation 5.4, every 2-path in G has order 1, while every 2-handle of G has 

order 2. Hence every large vertex in G is either adjacent to a large vertex or at 

distance 2 from some large vertex. 

Observation 5.5 / / G' is a connected proper subgraph of G oj order n', with 

maximum degree A' = A where A < n' — 2, and minimum degree at least 2, then 

7F(G)<<Kn,A). 
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Proof. Let n' = n — k, where k > 0, and let G' have size m!. Then, n' + m' < L 

Applying the inductive hypothesis to G', we have that 7 F ( G ' ) < <fi(n',A') = 

(j)(n — A;, A) = cp(n, A) — k. Any 7^-coloring of G' can be extended to an T-

coloring of G by coloring every vertex in V{G) \ V(G') with the color red. Hence, 

MG)<M^) + k<(f>(n,A).D 

Let v be a vertex of maximum degree A. 

Observation 5.6 We may assume that no vertex of £\{v} is adjacent with an end 

of a 2-handle. 

Proof. Suppose that w € C \ {v} is adjacent with an end of a 2-handle x,y. 

Thus, w,x,y,w is a cycle in G. By definition, x and y are small vertices. If 

degG(w) > 4, then G — {x,y} is a connected subgraph of G that satisfies the 

statement of Observation 5.5, and so 7^(G) < 4>(n, A). Hence we may assume that 

degG(t/;) = 3. Let u be the neighbor of w different from x and y. 

Let G' be obtained from G by removing the vertex w and adding the edges ux 

and uy. Then, G' is a connected graph of order n' = n — 1 and size m! — m — 1, 

with maximum degree A' where A' G {A,A + 1}, and with minimum degree at 

least 2. If A' = n' — 1, then u = v and v is adjacent in G' to every other 

vertex. But then coloring v and w red, and coloring all other vertices blue, produces 

an ^-coloring of G, and so 7^(G) = 2 < <j)(n, A). Thus, we may assume that 

A' < n' — 2. Applying the inductive hypothesis to G', we have that T F ( G ' ) < 

4>{n', A') = <j)(n— 1, A') = (f>(n, A') — 1. Any T^-coloring of G' can be extended to an 

^•-coloring of G by coloring the vertex w red, and so jp(G) < 7^-(G') + 1 < 4>{n, A'). 

Now either A' = A, in which case 4>(n, A') = (j)(n, A), or A' = A + 1, in which case 

<f>(n, A') = <£(n, A + 1) = <j>(n, A) - 1. In both cases, 7^((7) < <f>(n, A) (with strict 

inequality if A' = A + 1), as desired. • 
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Observation 5.7 We may assume that the subgraph G[C] induced by the large 

vertices contains no cycle. 

Proof. Suppose that the subgraph G[C] induced by the large vertices contains a 

cycle. Such a cycle necessarily contains an edge whose removal produces a connected 

(spanning) subgraph of G that satisfies the statement of Observation 5.5, and so 

7 ^ ( G ) < 0 ( n , A ) . D 

Observation 5.8 We may assume that C \ {v} is an independent set. 

Proof. Suppose e = uw is an edge of G joining two vertices u and w of £\{v}. If e is 

a cycle edge, then G — e is a connected subgraph of G that satisfies the statement of 

Observation 5.5, and so 7^-(G) < <f>(n, A). Hence we may assume that e is a bridge of 

G. Let Gu be the component of G—e containing u, and Gw the component containing 

w. We may assume that v € V(GU). Then, Gu is a connected subgraph of G of 

order n' with maximum degree A and minimum degree at least 2. If A < n' — 2, 

then Gu satisfies the statement of Observation 5.5, and so 7^(G) < 0(n, A). Hence 

we may assume that v dominates Gu. Let x € N(u) \ {v, w}. Then, x € V(GU) 

and, since G[C] contains no cycles, a; is a small vertex. Coloring the vertices in 

(V(GW) \ {w}) U {v,x} red, and coloring all other vertices blue produces an T-

coloring of G, and so 7^(G) < n — A = cf>(n, A) — 1. • 

By Observation 5.8, the only edges in G[C], if any, are incident with v. 

Observation 5.9 We may assume that no two vertices in C\ {v} have a common 

neighbor that is a small vertex. 

Proof. Suppose two vertices u and w in £ \ {v} have a common neighbor y that 

is a small vertex. If G — y is connected, then G — y satisfies the statement of 
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Observation 5.5, and so 7 F ( G ) < (f>(n, A). Hence we may assume that y is a cut-

vertex of G. Let Gu be the component oiG — y containing u, and Gw the component 

containing w. We may assume that v E V(GU). Then, Gu is a connected subgraph of 

G of order n' with maximum degree A and minimum degree at least 2. If A < n' — 2, 

then Gu satisfies the statement of Observation 5.5, and so 7^(G) < <j>(n, A). Hence 

we may assume that u dominates Gu. Let a: € N(u) \ {v,w}. Then, x G V(GU) and 

a; is a small vertex. Coloring the vertices in V(Gw)L){v, x} red, and coloring all other 

vertices blue produces an ^"-coloring of G, and so 7^(G) < n — A = </>(n, A) — 1. D 

By Observation 5.9, we may assume that every neighbor of a large vertex, different 

from v, is a small vertex adjacent with v. If v is the only large vertex, then G can be 

constructed from disjoint triangles by identifying one vertex from each triangle into 

one vertex v. But then A = n—1, contrary to assumption. Hence, there are least two 

large vertices. If every large vertex different from v is adjacent to v, then A = n — 1, 

a contradiction. Hence there exists at least one large vertex u that is not adjacent 

to v. Suppose there exists k > 1 such large vertices. Then A = n — k — 1. Coloring v 

and exactly one neighbor of every large vertex red and coloring all remaining vertices 

blue produces an ^"-coloring of G. Hence, 7^(G) — k + 1 — n — A = (f>(n, A) — 1. 

This establishes the proof of the upper bound. 

It remains for us to establish that the upper bound is sharp. For t > 2 an integer, 

let G be the graph constructed from t disjoint 6-cycles by identifying a set of t 

vertices, one from each cycle, into one vertex v and then joining v to every vertex at 

distance 2 from it in the resulting graph. Then, G has order n = 5t + 1, maximum 

degree A = 4t, and jjr(G) = t + 2 = n — A + l. This completes the proof of the 

theorem. • 
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5.2.4 Bounds involving the order 

Let G be a connected graph of order n and minimum degree 5(G) > 2. It is shown 

in [34] that jt(G) < An/7, unless G 6 {CZ,C^C&,CW}. Domke et al. [19] showed 

that 7r(G) < (n — l) /2 , apart for eight exceptional graphs (one of orders four, five 

and six, and five of order eight). Our aim in this section is to establish an upper 

bound on the ^-domination number of a connected graph with minimum degree at 

least two in terms of only the order of the graph. We shall prove: 

Theorem 5.10 IfG ^ CV is a connected graph of order n > 4 with minimum degree 

at least 2, then ^(G) < 2n/3. 

Proof. We proceed by induction on the order n > 4 of a connected graph G with 

minimum degree at least 2. For n € {4,5,6} the result is straightforward to verify. 

This establishes the base case. For the inductive hypothesis, let n > 7 and assume 

that for all connected graphs G' ^ CV of order n', where 4 < n' < n, that have 

minimum degree at least 2 that 7 F ( C ) < 2n' /3. 

Let G 7̂  CV be a connected graph of order n > 4 with 5(G) > 2. Since the T-

domination number of a graph cannot increase if edges are added, 7^(G) < 7JF(G—e) 

for every edge e G E(G). Hence we may assume that G is edge-minimal with respect 

to satisfying the conditions that 5(G) > 2 and G is connected. 

Let C denote the set of large vertices of G. If G is a cycle, then the desired result 

follows from Proposition 5.2. Hence we may assume that |£ | > 1. 

Observat ion 5.11 We may assume that G cannot be obtained from a graph H by 

subdividing an edge four times. 

Proof. Suppose that G is obtained from a graph H by subdividing an edge four 

times. By assumption, G is not a cycle, and so H ^ C7. Let uv be an edge of 
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H that is subdivided four times to obtain the graph G, and let u,ui,U2,us,U4,v 

be the resulting path in G. Any minimum ^"-coloring of H can be extended to an 

^"-coloring of G as follows. If both u and v are colored red, then color tti and -u4 

red and u-i and uz blue. If both u and v are colored blue, then color ui and u$ 

red and u\ and U4 blue. If exactly one of u and v, say u, is colored red and has 

a red neighbor, then color u3 and U4 red and «i and «2 blue. If exactly one of 

u and v, say u, is colored red and has no red neighbor, then recolor u blue and 

color tij, «2 and uz red and 1*4 blue. In all cases, we produce an ^"-coloring of G 

that colors exactly two more vertices red than does the original ^"-coloring of H. It 

follows that 7 F ( G ) < 1?(H) + 2. Applying the inductive hypothesis to H, we have 

1F{H) < 2(n - 4)/3, whence 7^(G) < 2n/3. O 

By Observation 5.11, G contains no induced path on six vertices, every internal 

vertex of which has degree 2 in G. Hence, every 2-path has at most three vertices 

and every 2-handle has at most five vertices. 

Observation 5.12 We may assume that the set C is an independent set in G. 

Proof. Suppose G contains an edge e = uv joining two large vertices. By the 

edge-minimality of G, e is a bridge of G. Let Gu and Gv be the components of 

G — e containing u and v, respectively. Then, S(GU) > 2 and S(GV) > 2. If 

both Gu and Gv are cycles, then a simple check shows that */F(G) < 2n/3. Hence 

at least one of Gu and Gv, say Gv, is not a cycle. Then, |V(G„)| > 4. By the 

inductive hypothesis, 7;F(G„) < 2|V(G„)|/3. If Gu £ {G3, G7}, then by the inductive 

hypothesis, ^{Gu) < 2|Vr(G„)|/3J and so 7^-(G) < ^{GU)+^{GV) < 2n/3. Hence 

we may assume that Gu = G3. 

Suppose that Gu = G3. We extend a 7^-set of Gv to an ^"-coloring of G by 

coloring at most two vertices of Gu red: If v is colored red (resp., blue), then color 
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u red (resp., blue) and the remaining two vertices of Gu blue (resp., red). Hence, 

lAG) ^ 1F{GV) + 2 < 2(n - 3)/3 + 2 = 2n/3, as desired. • 

Observation 5.13 We may assume that every 2-path has at most two vertices. 

Proof. By our earlier assumptions, every 2-path has at most three vertices. Assume 

that there is a 2-path P:vi,v2,V3. Let u be the large vertex adjacent to vi and v 

the large vertex adjacent to i*. Let G' = G - V(P). Then, 5(G') > 2. By 

Observation 5.12, u and v are not adjacent, and so G' has order at least 4. If 

G' = CV, then G consists of two vertices u and v joined by three 2-paths (one on 

two vertices and two on three vertices), and so 7y(G) = 4 < 2n/3. Hence we may 

assume that G' ^ CV. If G' is disconnected, let Gu and Gv be the components of G' 

containing u and v, respectively. Then, 8(GU) > 2 and 8(GV) > 2. By assumption 

every 2-handle has at most five vertices, and so neither Gu nor Gv is a 7-cycle. 

If G' is connected, or if G' is disconnected and both Gu and Gv have order at 

least 4, then applying the inductive hypothesis to G' or to each component of 

G', T F ( G ' ) < 2(n — 3)/3. Every 7^-set of G' can be extended to an ^-coloring 

of G by coloring at most two vertices of P red: If u and v are both colored 

red (resp., blue), then color v\ and vi blue (resp., red) and V3 red (resp., blue), 

while if u is colored red and v blue, then color Vi and v2 red and Vz blue. Hence, 

1F{G) < iriG') + 2 < 2(n - 3)/3 + 2 = 2n/3. 

Hence we may assume that G' is disconnected and that at least one of Gu and Gv 

is a 3-cycle, say Gu. If Gv — C3, then n = 9 and 7^(G) < 5 < 2n/3. Hence we may 

assume that |V(G„)| > 4. By the inductive hypothesis, 7^-(Gt,) < 2|V(G„)|/3 = 

2(n — 6)/3. Every 7^-set of Gv can be extended to an ^"-coloring of G by coloring 

at most three vertices in V(G) \ V(GV) red: If v is colored red, then color u and 

Vi red and the remaining four uncolored vertices blue, while if v is colored blue, 

then color u, v\ and v% red and the remaining three uncolored vertices blue. Hence, 
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lAG) < lAGv) + 3 < 2n/3 - 1. D 

Observation 5.14 We may assume that every 2-handle has two vertices, and that 

the large vertex adjacent to these two vertices has degree at least 4. 

Proof. Let C be a 2-handle of G. Let v £ £ be the common neighbor of its ends. 

By our earlier assumptions, |F(C) | < 5. 

Suppose first that degu = 3. Let P be the 2-path with an end adjacent to v 

and that contains a small vertex not on C. By Observation 5.13, 1^(^)1 < 2. Let 

u be the large vertex, different from v, adjacent to an end of P. Let e be the 

edge joining P and u, and let Gu and Gv be the components of G — e containing 

u and v, respectively. If Gu is a cycle, then it is straightforward to check that 

7 F ( G ) < 2n/3. Hence we may assume that Gu is not a cycle. By the inductive 

hypothesis, ^(Gu) < 2\V(Gu)\/3 = 2(n - \V(Gv)\/3. Every 7^-set of Gu can be 

extended to an ^"-coloring of G by coloring less than two-thirds of the vertices of 

Gv red, and so 7^(G) < 2n/3. Hence we may assume that degu > 4. 

Suppose that C has at least three vertices. Let G' = G — V(C). Then, 

8(G') > 2. If G' = C3, then G can be constructed from two disjoint cycles 

by identifying two vertices, one from each cycle, into one vertex v. But then 

7 F ( G 9 < 2n/3. Hence we may assume that |V(G')| > 4. By the inductive 

hypothesis, jF(G') < 2\V(G')\/3 = 2(n - \V(C)\)/3. Since \V(C)\ > 3, every 

7^-set of G' can be extended to an ^"-coloring of G by coloring at most two-thirds 

of the vertices of C red, and so 7 F ( G ) < 2n/3. • 

Before proceeding further, we introduce some additional notation. For each v € £, 

let Hv denote the graph obtained from G by deleting v and all 2-paths and 2-handles 

that have an end adjacent with v, and let nv = |VYU„)|. 
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Observation 5.15 For every vertex v G C, we may assume that 5(HV) < 1 or Hv 

has a C^-component or Hv has a C7-component. 

Proof. Let v G £ and suppose that 5{HV) > 2 and that Hv has neither a 

C3-component nor a C7-component. Applying the inductive hypothesis to Hv, 

jy(Hv) < 2nv/3. Let C be a 7^-coloring of Hv. Let Ry (respectively, Bv) denote 

the set of vertices of Hv that are colored red (respectively, blue) under C and are 

adjacent in G to a vertex of V(G) \ V(HV). Observe that Ry C C, and so every 

neighbor of a vertex in Ry has degree 2, implying that at least one neighbor of every 

vertex in Ry in Hv must be colored red. 

We now write the set V(G) \ (V(HV) U {v}) as the disjoint union of five sets 

(some of which may possibly be empty), B\, B%, R\, R% and H as follows. Let H 

be the set of vertices that belong to a 2-handle that has an end adjacent with v. 

Let i?i (respectively, Bi) denote the set of vertices that belong to a 2-path on one 

vertex that is adjacent in G with v and a vertex of Ry (respectively, Bv). Let R2 

(respectively, B2) denote the set of vertices that belong to a 2-path on two vertices 

that has one end adjacent with v and the other end adjacent with a vertex of Ry 

(respectively, Bv). For i = 1,2, let \Ri\ = r* and let \Bi\ = 6j. Let \H\ = h. Then, 

n — nv — 61 + 62 + ^ + f*i+7*2 + 1. We now extend C to an ^-coloring of G that 

colors at most 2n/3 vertices red, implying that ^(G) < 2n/3, as desired. 

Case 1. ri + 1 < 2(6i + h + r2) + b2/2. We observe then that r : + 1 + b2/2 < 

2(n — nv)/3. We now color v red. On the one hand, suppose that rx + b% = 0. If 

by — 0, then every 2-path that has an end adjacent with v has order 2. In this case, 

color both vertices on one 2-path red and color all remaining (at least four) uncolored 

vertices blue. In this way we extend C to an ^-coloring of G that colors at most 

2n„/3 + 3 < 2(n — 7)/3 + 3 < 2n/3 vertices red. If 61 > 1, then color one vertex in 

B\ red and color all remaining (at least two) uncolored vertices blue. In this way we 

extend C to an ^"-coloring of G that colors at most 2n„/3+2 < 2(n—4)/3+2 < 2n/3 
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vertices red. On the other hand, suppose that r\ + b2 > 1- Then color every vertex 

in R\ red, color every neighbor of v in B2 red, and color all remaining uncolored 

vertices blue. In this way we extend C to an ^"-coloring of G that colors at most 

2nv/3 + ri + 1 + 62/2 < 2n„/3 + 2(n — nv)/3 = 2n/3 vertices red, as desired. 

Case 2. r1 + l>2(bi + h+r2) + b2/2. Then, n + 1 > (b1 + b2 + h)/2-r2/A, and so 

4(ri + l ) + r 2 > 2(6i + 62 + /i). Hence, 4(&1 + 62 + / i + r i + r 2 + l) > 6(6i + 62 + /i)+3r2, 

implying that 2(n - n„)/3 > fei + b2 + h + r 2 /2 . We now color v blue. On 

the one hand, suppose that bi + b2 + h — 0. Then, r\ + 1 > 2r2. We color 

every vertex of R2 that is at distance 2 from v red and color one neighbor of 

v red. In this way we extend C to an ^"-coloring of G that colors at most 

2n„ /3+r 2 /2 + l < 2n„/3 + 2(n — n„)/3 = 2n/3 vertices red, as desired. On the other 

hand, suppose that b\ + b2 + h> 1. Then we color every vertex in B\ U B2 U H red 

and every vertex of R2 that is at distance 2 from v red and we color all remaining 

uncolored vertices blue. In this way we extend C to an ^"-coloring of G that colors 

at most 2nt,/3 + 61 + b2 + h + r2/2 < 2n„/3 + 2(n — nv)/3 = 2n/3 vertices red, as 

desired. • 

Observation 5.16 For every vertex v G C, we may assume that Hv has no C7-

component. 

Proof. Let v E C and suppose that Hv has a C7-component, say C : vi,v2,... ,v7. 

Renaming vertices if necessary, we may assume that there exist 2-paths joining v 

with each of vi, v$ and VQ (i.e., we have a 2-path with one end adjacent to v and 

the other end adjacent to v^ for each i € {1,3,6}). Hence, v\, v% and v§ are large 

vertices in G. Let i E {1,3,6}. Then, HVi is connected and has minimum degree 

at least 2. By Observation 5.15, HVi must therefore be a 7-cycle. Hence, there are 

exactly three 2-paths with an end adjacent to v in G, one of order 2 and the other 

two each of order 1. Thus, G is the graph shown in Figure 5.2 of order 12, and so 

7JT(G) < 6 < 2n/3. • 
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Figure 5.2: 

Observation 5.17 For every vertex v G C, we may assume that Hv has no C3-

component. 

Proof. Let v G C and suppose that Hv has a C3-component C: u, Ui,U2, u. We may 

assume that u G C (and so, u\ and u2 are small vertices). By Observation 5.14, 

degG u > 4. Every neighbor of u not on C is on a 2-path (of order 1 or 2) that has 

an end adjacent to u and an end adjacent to v. 

Suppose that v, i>i, V2, u is a path (and so, Vi, i>2 is a 2-path). Let G' — G—{v:, V2}. 

Then, G' is a connected graph of order at least 4 with 5(G') > 2 and G' ^ C7. 

Applying the inductive hypothesis to G', JF(G') < 2(n — 2)/3. Let C be a minimum 

^•-coloring of G'. Since degGu > 4, we observe that there is a 2-path distinct from 

Vi, vi- If C colors both u and v blue, then u\ and it2 are colored red and all vertices 

on a 2-path that has an end adjacent with u are colored red. But then u has no 

blue neighbor, contradicting the fact that C is an ^"-coloring of G'. Hence at least 

one of u and v is colored red under C. We now extend C to an ^-coloring of G 

as follows: If both u and v are colored red, color v^ and v2 blue; if u is colored red 

and v blue, color V\ blue and v% red; if u is colored blue and v red, color v\ red 

and V2 blue. In this way we extend C to an ^"-coloring of G that colors at most 

2(n — 2)/3 + 1 < 2n/3 vertices red. Thus we may assume that every 2-path that 

has an end adjacent with u has order 1. 
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Suppose that there are three or more 2-paths that have an end adjacent with 

u. Let x be a vertex of such a 2-path (and so, v,x,u is a path in G) and let 

G' = G — x. Then, G' is a connected graph of order at least 4 with S(G') > 2 and 

G' ^ G7. Applying the inductive hypothesis to G', JF(G') < 2(n - l ) / 3 . Let C 

be a minimum ^"-coloring of G'. If C colors both u and v red, then every common 

neighbor of u and v in G' is colored red, while u\ and u^ are colored blue. Recoloring 

u and all but one of its neighbors on a 2-path blue and recoloring u\ and ui red 

produces a new ^"-coloring of G' that colors at most as many vertices red as does C. 

Hence we may assume that exactly one of u and v is colored red under C. But then 

C can be extended to an ^"-coloring of G by coloring x blue. In this way we extend 

C to an ^-coloring of G that colors at most 2(n — l ) /3 vertices red. Thus we may 

assume that there are exactly two 2-paths (of order 1) that have an end adjacent 

with u. Let U3 and U4 be the vertices of these 2-paths adjacent with u. 

Suppose that degGv > 4. Let G' = G — N[u]. Then, G' is a connected graph 

with 8(G') > 2 and G' ^ C7. If G' = G3, then n = 8 and 7^(G) < 4 < 2n/3. 

Hence we may assume that G' ^ C3. Applying the inductive hypothesis to G', 

7^r(G') < 2(n — 5)/3. Let C be a minimum ^"-coloring of G'. We now extend C 

to an ^"-coloring of G as follows: If v is colored red, color U\ and u2 red and the 

remaining three uncolored vertices blue; if v is colored blue, color u, U3 and u4 red 

and color u\ and u<i blue. In this way we extend C to an ^-coloring of G that colors 

at most 2(n — 5)/3 + 3 < 2n/3 vertices red. Hence we may assume that degG v = 3. 

Let Q be the 2-path that has an end adjacent with v and an end adjacent with a 

large vertex w different from u and v. Let G' = G — N[u] — {i>} — V(Q). Then, G' is 

a connected graph with <5(G') > 2 and G' ^ G7. If G' = G3, then n € {10,11} and 

7^(Gr) = 4 < 2n/3. Hence we may assume that G' 7̂  G3. Applying the inductive 

hypothesis to G', iF(G') < 2 ( n - 6 - |V(Q)|)/3 < 2 (n -7 ) /3 . A minimum ^"-coloring 

of G' can be extended to an ^"-coloring of G by coloring u and U3 red, coloring the 
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vertices on Q red, and coloring the remaining four vertices blue. This produces an 

^"-coloring of G that colors at most 2(n — 7)/3 + 4 < 2n/3 vertices red. • 

As a consequence of Observation 5.15, 5.16 and 5.17, for every vertex v £ C we 

have that 5(HV) < 1 and Hv has neither a C3-component nor a CV-component. 

Observation 5.18 There is a unique partition of the set C into 2-elements subsets 

{u, v} such that degHu v < 1 and degH<) u < 1. 

Proof. Let v e £ and let u be a vertex of minimum degree in Hv. Since S(HV) < 1, 

we have that degHjj u < 1 and u E C However, 6(HU) < 1, implying that v is the 

unique vertex in C such that degHu u < 1. This in turn implies that u is the unique 

vertex in C such that degHr u < 1. • 

Observation 5.19 There is no 2-handle. 

Proof. Suppose that C is a 2-handle of G. Let v € £ be the common neighbor 

of its ends. Then, degH uv > 2 for every vertex u € C \ {v}, contradicting 

Observation 5.18. • 

Observation 5.20 We may assume that \C\ > 4. 

Proof. By Observation 5.18, |£ | is even. Suppose \C\ = 2. Let C = {u,v}. Then 

for some integers r and s where r + s > 3, G is the graph of order n = 2 + 2s + r 

obtained from i^2,r+s by subdividing s edges incident with a large vertex once (and 

so, there are r 2-paths of order 1 and s 2-paths of order 2). If s > 1, then color v 

red, color both vertices on one 2-path red, color every end of a 2-path of order 2 

that is adjacent with v red, and color all remaining uncolored vertices blue. In this 

way we produce an ^"-coloring of G that colors s + 2 < 2n/3 vertices red. Hence we 
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may assume that s = 0 (and so, G = i^2,r)- We now color v and one of its neighbors 

red and color all remaining uncolored vertices blue. In this way we produce an 

JF-coloring of G that colors 2 < 2n/3 vertices red. • 

Observation 5.21 We may assume that 5(HV) — 1 for every vertex v G £. 

Proof. Let v G C and suppose that 5(HV) = 0. Let u be the unique vertex 

such that d e g ^ u < 1 and <legHuv < 1. Then, &egHvu = 0. Let P be a 2-

path that has one end adjacent with u and the other end adjacent with v. Let 

G' = G- V(P). Then, 5{G') > 2 and G' ^ C7. Applying the inductive hypothesis 

to G', 7JT(G') < 2(n - |V(P) |) /3. Let C be a minimum ^-coloring of G'. 

Suppose first that P has order 2. Since C is an ^"-coloring of G', at least one 

of u and u is colored red under C. Hence we can extend C to an .F-coloring of 

G by coloring at most one additional vertex of P red; that is, by coloring at most 

2(n — 2)/3 + 1 < 2n/3 vertices red. Hence we may assume that every 2-path that 

has one end adjacent with u is of order 1. In particular, P has order 1. 

If both u and v are colored red under C, then every vertex on a 2-path in G' 

that has an end adjacent with u is colored red. But then recoloring u and one of its 

neighbors in G' blue, produces an ^"-coloring of G' that colors fewer vertices red than 

does C, a contradiction. Hence at most one of u and v is colored red. If both u and 

v are colored blue, then u would have no blue neighbor (and no red neighbor that is 

adjacent to a red vertex), contradicting the fact that C is an ^"-coloring of G'. Hence 

exactly one of u and v is colored red. But then C can be extended to an ^"-coloring 

of G by coloring the vertex of P blue, and so 7JF(G) < 2(n - l ) / 3 < 2n/3. • 

Let v G £ and let u be the unique vertex such that degHu v < 1 and degHt) u < 1. 

By Observation 5.21, d e g ^ u = 1 and deg#u v = 1. Let Pv (resp., Pu) be the 2-path 

that has an end adjacent with v (resp., u) and an end adjacent with a large vertex 
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v' (resp., u') different from u and v. Let |F(P„)| = a and |V(PU)| = 6 (and so, 

1 < a,b < 2). We may assume that a < 6. Let R (resp., S) be the set of vertices 

that belong to a 2-path of order 1 (resp., 2) that has an end adjacent with v and an 

end adjacent with u. Let |P | = r and \S\ = 2s. 

Let G' be the graph of order n' obtained from G by deleting u and v and all 2-paths 

with an end adjacent to u or v. If u' = v', then we contradict Observation 5.18. 

Hence, v! ^ v', and so 5(G') > 2. Further, it follows from Observation 5.21 that G' 

is connected. Applying the inductive hypothesis to G', 7^-(G') < 2n'/3. Let C be a 

minimum ^"-coloring of G'. 

Observation 5.22 We may assume that s = 0. 

Proof. Suppose that s > 1. If r = 0, then s > 2 and n' — n — 2s — 2 — a — b. 

We now extend C to an ^"-coloring of G as follows: Color u and v red, color 

every vertex on Pv and Pu red, and color all remaining uncolored vertices blue. In 

this way we produce an ^"-coloring of G that colors at most 2n'/3 + 2 + a + b < 

2(n — 2s — 2 — a — b)/3 + 2 + a + b< 2n/3 vertices red. Hence we may assume that 

r > 1 (and still s > 1). 

Suppose 6 = 2. Then, n' = n — 2s — r — a — 4 < n — 2s — 6. We now extend 

C to an ^"-coloring of G as follows: Color u red, color every neighbor of u in S 

red, and color the vertices of Pv red. If u' is colored blue under C, then color the 

neighbor of u on Pu red. If a = 1, then color one neighbor of u in R red. Color 

all remaining uncolored vertices blue. In this way (irrespective of whether a = 1 or 

a = 2) we color at most s + 4 additional vertices red and produce an ^"-coloring of 

G that colors at most 2n'/3 + s + 4 < 2 ( n - 2 s - 6 ) / 3 + s + 4 < 2n/3 vertices red. 

Hence we may assume that 6 = 1 (and so, a = 1). Then, n' = n — 2s — r — 4. 

Suppose at least one of u' and v' is colored red under C, say v'. Since every 

neighbor of v' has degree 2, at least one neighbor of v' in G' must be colored 
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red. We now extend C to an ^"-coloring of G as follows: Color u red, color 

every neighbor of u in S red, color one neighbor of u in R red, color the vertex 

of Pu red, and color all remaining uncolored vertices blue. In this way we color an 

additional s + 3 vertices red and produce an ^"-coloring of G that colors at most 

2n'/3 + s + 3 < 2(n — 2s — 5)/3 + s + 3 < 2n/3 vertices red. Hence we may assume 

that both v! and v' are colored blue under C. 

If r > 2, then n' <n — 2s — 6 and we extend C to an ^"-coloring of G as follows: 

Color u red, color every neighbor of u in S red, color one neighbor of u in R red, 

color the vertex on Pv red, and color all remaining uncolored vertices blue. In this 

way we color an additional s + 3 vertices red and produce an ^"-coloring of G that 

colors at most 2n'/3 + s + 3 < 2n/3 vertices red. Hence we may assume that r = 1, 

and s o n ' = n — 2s — 5 < n — 7. We now extend C to an ^"-coloring of G as 

follows: Color u and v red, color the neighbor of u in R red, and color all remaining 

uncolored vertices blue. In this way we color an additional three vertices red and 

produce an ^"-coloring of G that colors at most 2n'/3 + 3 < 2(n — 7)/3 + 3 < 2n/3 

vertices red. • 

By Observation 5.22, s = 0, and so r > 2. 

Suppose 6 = 2 (and 1 < a < 2). Then, n' = n — r — a — 4 < n — a — 6. Suppose v! 

is colored blue under C. We now extend C to an ^"-coloring of G as follows: Color 

u red, color a neighbor of u in R red, color the neighbor of u on Pu red, color the 

vertices on Pv red, and color all remaining uncolored vertices blue. In this way we 

color an additional a + 3 vertices red and produce an ^"-coloring of G that colors at 

most 2n'/3 + a + 3 < 2(n — a — 6)/3 + a + 3 < 2n/3 vertices red. Hence we may 

assume that u' is colored red under C. We now extend C to an ^"-coloring of G as 

follows: Color the neighbor of u' on Pu red, color v red, color the vertices on Pv red, 

color a neighbor of v in R red, and color all remaining uncolored vertices blue. In 
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this way we color an additional 3 + a vertices red and produce an .F-coloring of G 

that colors at most 2n'/3 + a + 3 < 2(n — a — 6)/3 + a + 3 < 2n/3 vertices red. 

Hence we may assume that a = b = 1, and so n' = n - r — A < n — 6. We now 

extend C to an ^"-coloring of G as follows: If v! is colored blue under C, then color 

u and a neighbor of u in i? red, color the vertex on Pv red, and color all remaining 

uncolored vertices blue. If v! is colored red under C, then color v and the vertices 

on Pu and Pv red, and color all remaining uncolored vertices blue. In this way we 

color an additional three vertices red and produce an ^"-coloring of G that colors at 

most 2n'/3 + 3 < 2(n - 6)/3 + 3 < 2n/3 vertices red. • 

We remark that the bound of Theorem 5.10 is attainable as can be seen, for 

example, with the cycle C§. However we do not know of any infinite family of 

graphs which achieves this upper bound. 



Chapter 6 

TOTAL RESTRAINED 

DOMINATION IN GRAPHS 

6.1 Introduction 

In this chapter, we continue our investigation on total domination and restrained 

domination. 

Recall, if S is simultaneously a TDS and a RDS, then S is a total restrained 

dominating set (TRDS) of G. The minimum cardinality of a TRDS of G is the total 

restrained domination number of G, denoted by 7tr(G). 

A TRDS can be interpreted as a red-blue coloring of the vertices, with the 

red vertices forming the TRDS. We call a red-blue coloring of vertices such that 

every blue vertex has both a red and a blue neighbor and every red vertex has 

a red neighbor a tr-coloring (total restrained coloring) of G. The total restrained 

domination number fu(G) of G is the minimum number of red vertices of G in a tr-

coloring of G. We call a tr-coloring of G that colors 7tr(G) vertices red a 7tr-coloring 

ofG. 

98 
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6.2 Main Results 

Let G be a connected graph of order n and maximum degree A. Our aim in this 

chapter is to investigate a bound on the total restrained domination number in terms 

of the order and maximum degree of the graph. We shall show: 

Theorem 6.1 If G is a connected graph of order n > 4, maximum degree A where 

A < n — 2, and minimum degree at least 2, then 

7 t r ( G ) < n - | - l , 

and this bound is sharp. 

If we restrict our attention to bipartite graphs, then we show that the bound of 

Theorem 6.1 can be improved. 

Theorem 6.2 If G is a connected bipartite graph of order n > 5, maximum degree 

A where 3 < A < n — 2, and minimum degree at least 2, then 

7tr(G)<n-|A-|V3A~=l-^, 

and this bound is sharp. 

6.3 Notation 

For notational convenience, we let 

(p(n, A) = n — — — 1, and 
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6.4 Proof of Theorem 6.1 

We proceed by induction on i — n + m, where m denotes the size of G. We wish to 

show that 7tr(G!) < (p(n, A). Note that n > 4 and m > 4, and so I > 8. When H — 8, 

the graph G is a 4-cycle, and so 7tr(G) = 2 = y>(4,2) = < (̂n, A). This establishes the 

base case. For the inductive hypothesis, let I > 9 and assume that for all connected 

graphs G' of order n' and size m' with n' + m! < I that have maximum degree A' 

where A' < n' — 2 and minimum degree at least 2, that 7tr(G') < ip(n',A'). Let 

G = (V, E) be a connected graph of order n and size m with £ = n + m, maximum 

degree A where A < n — 2 and minimum degree at least 2. 

We begin with the following observation. 

Observation 6.3 // a connected proper subgraph G' of G of order n' has maximum 

degree A where A < n' — 2 and minimum degree at least 2, and if the subgraph 

G — V(G') contains no isolated vertices, then 7tr(G) < ip(n, A). 

Proof. Let G' have size m'. Then, n' + m' < t, and so G' satisfies the inductive 

hypothesis. Let n' — n — k where k > 0. Then by the inductive hypothesis, 

7tr(G') < <p(n', A) = (p(n — k, A) = <p(n, A) — k. Any 7tr-coloring of G' can be 

extended to a tr-coloring of G by coloring every vertex in V{G) \ V(G') with the 

color red. Hence, 7tr(G) < 7tr(G') + k < y(n, A), as desired. • 

Let u be a vertex of maximum degree A in G, and let C be the set of all large 

vertices of G. 

Observation 6.4 We may assume that the set C \ {v} is an independent set in G. 

Proof. Suppose e = uw is an edge of G joining two vertices u and w of C \ {v}. 

If e is a cycle edge, then G — e is a connected subgraph of G that satisfies the 
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statement of Observation 6.3, and so jti(G) < <p(n,A). Hence we may assume 

that e is a bridge of G. Let Gu be the component of G — e containing u, and 

Gw the component containing w. We may assume that v G V(GU). Then, Gu 

is a connected subgraph of G of order n' with maximum degree A and minimum 

degree at least 2. If A < n' — 2, then Gu satisfies the statement of Observation 6.3, 

and so 7tr(G) < </?(n, A). Hence we may assume that v dominates V(GU). Let 

x € N(u) \ {v, w}. Then, x G V(GU) and, since G[C] contains no cycles, x is a 

small vertex. Coloring the vertices in (V(GW) \ {w}) U {v,x} red and coloring all 

other vertices blue produces a tr-coloring of G, and so 7tr(G) < n — A < ip(n, A), 

as desired. • 

By Observation 6.4, the only edges in G[C], if any, are incident with v. 

Observation 6.5 We may assume that G contains no ray. 

Proof. Suppose that G contains a ray P: u, ui,U2, w. Thus both «i and U2 are small 

vertices of G. If A = n — 2, then u or w, say u, is a vertex of maximum degree A in 

G. Coloring u and U\ red and every other vertex blue produces a tr-coloring of G, 

and so 7tr(Gf) = 2 = n —A < </?(n, A). Hence we may assume that A < n —3. Let G' 

be the graph obtained from G by removing the vertex u\ and adding the edge uu^. 

Then, G' is a connected graph of order n! = n—1 and size m' = TO—1, with maximum 

degree A where A < n' — 2, and minimum degree at least 2. Applying the inductive 

hypothesis to G', we have that 7tr(G') < (p(n', A) = <p(n— 1, A) = (p(n, A) — 1. Any 

7tr-coloring of G' can be extended to a tr-coloring of G by coloring the vertex u\ 

red, unless u and u^ are both colored blue, in which case we recolor u-i red and color 

u\ blue. Hence, 7tr(G) < 7tr(G') + 1 < ip(n, A), as desired. • 

By Observation 6.5, every 2-path in G has order 1, while every 2-handle of G has 



CHAPTER 6. TOTAL RESTRAINED DOMINATION IN GRAPHS 102 

order 2. Thus every large vertex in G is either adjacent to v or at distance 2 from 

some large vertex. 

Observation 6.6 We may assume that every two vertices in C\ {v} have at most 

one common small neighbor. 

Proof. Suppose C \ {v} contains two vertices u and w that have at least two 

common small neighbors. Let x be a small vertex that is a common neighbor of 

u and w. Then, G' = G — x has order n' = n — 1, size mf = m — 2, maximum 

degree A < n' — 2 and minimum degree at least 2. By the inductive hypothesis, 

7tr(G') < < (̂n', A) = ip(n — 1, A) = (p(n, A) — 1. Any 7tr-coloring of G' colors u or tu 

red, and can therefore be extended to a tr-coloring of G by coloring x red. Hence, 

7tr(G) < 7tr(C?') + 1 = (p(n, A), as desired. • 

Before proceeding further, we recall some additional notation. For each u € £, let 

H„ denote the graph obtained from G by deleting « and all 2-paths and 2-handles 

that have an end adjacent with it, and let nu = \V(HU)\. 

Observation 6.7 //7tr(#u) < <p{nu,A) + 1 for some u E C\ {v}, then 7tr(G) < 

p(n,A). 

Proof. Let u € £\{f} and suppose that 7tr(Hu) < <̂ ("»u, A)+l. By Observation 6.4, 

every neighbor of u is either a small vertex or the vertex v. By Observations 6.5 

and 6.6, every small neighbor of u is either on a 2-path of order 1 or on a 2-handle 

of order 2 (with both ends adjacent to u). 

Suppose first that u is adjacent to the ends of a 2-handle x,y. If degu = 3, 

let w be a neighbor of u different from x and y (possibly, w = v). Let G' 

be the graph obtained from G by deleting u and joining x and y to w. Then, 

G' has order n' = n — 1, size mf = m — 1, maximum degree A' > A and 
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minimum degree at least 2. If A' = n' — 1, then coloring u and w red and 

all remaining uncolored vertices of G blue produces a tr-coloring of G. Hence, 

7tr(G) = 2 < n — A < ip(n, A). Thus we may assume A' < n' — 2. By the 

inductive hypothesis, 7tr(G') < </?(n', A') < (p(n — 1, A) = ip(n, A) — 1. Any 7tr-

coloring of G' can be extended to a tr-coloring of G by coloring u red, and so 

7tr(G) < Ttr(G') + 1 < y>(n, A). Hence we may assume that degu > 4. Then, 

G — {x,y} satisfies the statement of Observation 6.3, and so 7tr(G) < ip(n, A). 

Thus we may assume that every small neighbor of u is on a 2-path of order 1. 

Let C be a 7tr-coloring of Hu. We extend C to a tr-coloring of G as follows. 

If C colors a vertex in Hu that has a common small neighbor with u blue, 

then we color this common small neighbor blue and color all remaining uncolored 

vertices of G red. Otherwise, we color u and a small neighbor of u blue and 

color all remaining uncolored vertices of G red. In this way we extend C to a 

tr-coloring of G that colors at most n — nu — 1 additional vertices red, and so 

7tr(G) < 7tr(-Hu) + n - n u - l < (<p(nu,A) + l)+n-nu-l = <p(n,A), as desired. • 

Observat ion 6.8 We may assume that G has no 2-handle. 

Proof. Suppose that G has a 2-handle x, y. Let u be the large vertex adjacent to x 

and y. If degu = 3 or if degu > 4 and degu < A, then by using a similar argument 

as in the proof of Observation 6.7, the result follows. Hence we may assume that 

degu = A > 4. Renaming vertices, if necessary, we may assume that u — v. We 

consider two cases. 

Case 1. There is a neighbor w of v that has no common neighbor with v. 

Suppose that w is a small vertex. Let z be the (large) neighbor of w different 

from v. Then, vz is not an edge of G. Suppose v and z have at least two common 

small neighbors. Let G' be the graph obtained from G by deleting w and adding 
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the edge vz. Then, G' has order n' — n — 1, size mf < m, maximum degree 

A and minimum degree at least 2. If A = n' — 1, then coloring v and w red 

and all remaining uncolored vertices of G blue produces a tr-coloring of G, and so 

7tr(C0 = 2 < n — A < ip(n, A). Thus we may assume A < n' — 2. By the inductive 

hypothesis, 7tr(G
!') < (p(n',A!) < </?(n, A) — 1. Any 7tr-coloring of G' colors v 

or z red, and can therefore be extended to a tr-coloring of G by coloring w red. 

Hence, 7tr(G) < 7tr(G
!') + 1 < < (̂n, A). Thus we may assume v and z have exactly 

one common neighbor, namely w. Then, Hz has order nz < n — 4, size m' < m, 

maximum degree A' = A — 1 and minimum degree at least 2. If A' = nz — 1, then 

coloring v, w and z red and all remaining uncolored vertices of G blue produces a 

tr-coloring of G. Hence, 7tr(G) = 3 < n — A < (p(n, A). Thus we may assume 

A' < nz — 2. By the inductive hypothesis, 7tr(#z) < (p(nz,A
f) < ip(nz,A) + ~. 

Hence, Hz satisfies the statement of Observation 6.7, and so 7tr(G
!) < </?(n, A). 

Thus we may assume that w is a large vertex. Then, Hw has order nw < n—3, size 

m' <m, maximum degree A' = A—1 and minimum degree at least 2. If A' = nw — 1, 

then coloring v and w red and all remaining uncolored vertices of G blue produces 

a tr-coloring of G. Hence, 7tr(Hu,) = 2 < n — A < </?(n, A). Thus we may assume 

A' < nw — 2. By the inductive hypothesis, ^tT{Hw) < <p(nw,A') — <p(nw,A) + \. 

Hence, Hw satisfies the statement of Observation 6.7, and so 7tr(G) < <p(n, A). 

Case 2. Every neighbor of v lies in a common triangle with v. Since A < n —2, at 

least one vertex of G is not a neighbor of v. Let S denote the set of all those vertices 

that are isolated in the subgraph induced by V(G) \ N[v\. Let H be the subgraph 

of G induced by N[v] U S. Suppose first that 5 = 0. Then V(H) = N[v}. Hence 

every vertex in V(G) \ N[v] has degree at least 1 in G — V(H). By Observation 6.4, 

there exist a vertex w of degree 1 in G — V(H). But then w is adjacent to a vertex 

vi € N(v) and v\ lies in a common triangle with v and a small vertex v'. We obtain a 

tr-coloring of G that colors n — A +1 vertices red by coloring v, x and y red, coloring 
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every vertex in V(G) \ (N[v] U {w}) red and coloring all remaining uncolored vertices 

of G blue. Thus, since A > 4, 7tr(G) < n — A + 1 < (p(n, A). Hence we may assume 

that S ^ 0, and so H satisfies the statement of Observation 6.3. This implies that 

H = G, and therefore S = V(G) \ N[v}. 

By Observation 6.4, every vertex of S is a small vertex of G and N(S) C £\ {v}. 

Let Cs = C n A^(5). Then, £ s is an independent set and every vertex of C lies in a 

common triangle with v. By Observation 6.6, every two vertices in Cs have at most 

one common neighbor. 

Suppose every vertex in Cs has at least two common neighbors with v. Observe 

that every vertex in S is adjacent to exactly two vertices in Cs and every vertex in Cs 

lies in a common triangle with v. Let v\ and v2 be two vertices in Cs- Then i>i (resp., 

1*2) has at least two common neighbors with v. Let w\ be a common neighbor of Vi 

and v and let tu2 be a common neighbor of v2 and v. Let G' be the graph obtained 

from G by deleting the vertices x, y, w\ and W2. Then, G' has order n' = n — 4, size 

m' < m, maximum degree A' where A' = A—4<n'—2 and minimum degree at least 

2. By the inductive hypothesis, 7tr(G') < v?(n', A') = p(n - 4, A - 4) = <p(n, A) - 2. 

If a 7tr-coloring of G' colors v red, then we color w\ and w% red and color x 

and 2/ blue. Otherwise, we color w\ and 102 blue and color x and y red. Hence, 

7tr(G) < 7tr(G') + 2 < </?(n, A). Thus we may assume there is a vertex in Cs, say z, 

that has exactly one common neighbor with v. 

Then, Hz has order nz < n — 3, size m' < m, maximum degree A' = A — 2 and 

minimum degree at least 2. If A' = ns — 1, then coloring u red, coloring z and its 

common neighbor with v red and coloring the remaining uncolored vertices of G 

blue, produces a tr-coloring of G. Therefore, since A > 4, 7tr(G) = 3 < ip(n, A). 

Thus we may assume that A' < nz — 2. Then, Hz satisfies the inductive hypothesis, 

and so 7tr(#z) < f(nx, A') = y(nz, A) + 1. Hence, Hz satisfies the statement of 

Observation 6.7, and so 7tr(G) < <p(n, A), as desired. D. 
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Observation 6.9 We may assume that every vertex in C\ {v} has a neighbor that 

is not a neighbor of v. 

Proof. Suppose C \ {v} contains a vertex w such that every neighbor of w is 

a neighbor of v. Then v and w contain at least two common neighbors. Let 

x be a common neighbor of v and w and let G' = G — x. Then G' has order 

n! — n — 1, size m' = m — 2, maximum degree A' = A — 1 < n' — 2 and 

minimum degree at least 2. Hence, G' satisfies the inductive hypothesis, and so 

7tr(G') < <p(n',A') = <fi{n - 1,A - 1) = <p(n,A) - \. Every 7tr-coloring C of G 

colors v or w red. If C color both v and tu red, then we recolor w blue and color x 

blue; otherwise, we color x blue. Hence, 7tr(G) < 7tr(G!') < y>(n, A), as desired. • 

Observation 6.10 We may assume that every vertex in C\ {i>} is adjacent to v. 

Proof. Suppose C \ {v} contains a vertex w that is not adjacent to v. Suppose 

first that v and w have no common neighbors. Then, Hw satisfies the statement of 

Observation 6.7, and so 7tr(G) < y(n, A). Hence we may assume that v and w have 

at least one common neighbor. By Observation 6.4, every common neighbor of v 

and to is a small vertex. Let a: be a common neighbor of v and w. 

Suppose v and w have at least two common neighbors. Let G' be the graph 

obtained from G by deleting x and adding the edge vw. Then, G' has order n' = n—1, 

size m' < m, maximum degree A and minimum degree at least 2. If A = n! — 1, 

then coloring u and x red and all remaining uncolored vertices of G blue produces 

a tr-coloring of G. Hence 7tr(G) = 2 < n — A < <p(n, A). Thus we may assume 

A < n' — 2. By the inductive hypothesis, 7tr(G!') < <p(n',A') < (p(n,A) — 1. Any 

7tr-coloring of G' colors v or w red, and can therefore be extended to a tr-coloring 

of G by coloring x red. Hence, 7tr(G) < jti(G') + 1 < <p(n, A). Thus we may 

assume that v and w have at most one common neighbor. But then Hw satisfies the 

statement of Observation 6.7, and so 7tr(G) < <p(n,A), as desired. D 
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Observation 6.11 We may assume that every vertex in C\ {v} has a common 

neighbor with v. 

Proof. Suppose C \ {«} contains a vertex w that has no common neighbor with v. 

By Observation 6.10, v and w are adjacent in G. Then, Hw satisfies the statement 

of Observation 6.7, and so 7tr(C?) < <p(n, A), as desired. • 

With our earlier assumptions, we have that £ \ {v} is an independent set and 

that any two vertices in C \ {v} have at most one common neighbor. Furthermore, 

each vertex in C \ {v} is adjacent to v, has at least one common neighbor with 

v and has at least one neighbor that is a small vertex not adjacent to v. Let 

|£ \ {^}l = k' Then k < A/2. We now color v and every neighbor of v that 

is small vertex blue and color the remaining uncolored vertices of G red. Hence, 

7tr(G) < n - ( A - A ; + l ) = n - A + fc-l<n-A + A / 2 - l = tp(n,A). This 

establishes the upper bound of the theorem. 

It remains for us to show that this upper bound is sharp. Let G be the graph 

obtained from a complete graph on t vertices in which every edge is subdivided 

exactly once and identifying one vertex v that is a large vertex and joining v to every 

other large vertex of the resulting graph. Then, n = t + (*) = 1 + 2(i — 1) + C^1) and 

A = 2(t — 1). Every tr-coloring of G colors at least t — 1 large vertices red (in order 

to totally dominate all the small vertices) and therefore colors at least (*~1) small 

vertices red. Thus, jtI(G) > ( t - l ) + (*~1) = n - ( t - l ) - l = n - A / 2 - l = <p(n, A). 

Since the graph G satisfies the conditions of the theorem, we have already established 

that 7tr(<?) < <p(n, A). Consequently, 7tr(G) = ip(n, A). This concludes the proof 

of Theorem 6.1. • 
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6.5 Proof of Theorem 6.2 

Before presenting a proof of Theorem 6.2, we first prove a key lemma that will be 

very useful in proving our main result. 

Lemma 6.12 Let G be a connected bipartite graph of order n> 5, m,aximum degree 

A > 3 and minimum degree at least 2. If G has a vertex of maximum degree A that 

is adjacent only to degree-2 vertices, then 7tr(G) < ip(n, A), and this bound is sharp. 

Proof. Let v be a vertex of maximum degree A in G. By assumption, every vertex 

adjacent to v has degree 2. Let A and B be the set of vertices u at distance 2 from 

v such that N(u) C N(v) and N(u) % N(v), respectively. Hence every vertex in B 

has at least one neighbor that is not a neighbor of v. Let \A\ = a and \B\ = b. If 

a > 1, let A — {vi,...,va} and if 6 > 1, let B = {wi,...,wt}. If a > 1, then for 

i = 1 , . . . ,a , let degVi — \N(vi)\ = £i and let 

By assumption 5(G) > 2, and so 4 > 2 for i = 1 , . . . , a. Thus, I > 2a. If b > 1, 

then for i = 1 , . . . , b, let iV* = iV('y) n N(wi), let |iVj| = r̂  and let 

b 

i=l 

Then, A = t + r. Let 

a = n - ? ( £ + r)_?v/3(^ + r ) - 8 - ^ . 

Hence we wish to show that 

7tr(G) < a. 
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For this purpose, we consider two tr-colorings of G, one in which v is colored red 

and the other in which v is colored blue. 

We begin with the following observation. 

Observation 6.13 There exists a tv-coloring of G that colors the vertex v red and 

colors at least £ + 2^/r — 1 vertices blue. 

Proof. We begin by coloring v red. Then for each i = 1 , . . . , a, color one vertex 

in N(vi) red. Amongst all the sets, Ni, 1 < i < b, we choose one of maximum 

cardinality, say N\. By the Pigeonhole Principle, \Nx\ = r\ > r/b. 

Let F = G — N[v] — A. Since G is a bipartite graph, the set B is an independent 

set in G. Let S be a packing in F that contains the vertex w\ and as many other 

vertices from the set B. Hence the vertices of S are pairwise at distance greater 

than 2 apart in F (and therefore in G). Each vertex in B \ S is at distance 2 from 

some vertex of S (by the maximality of S). 

We now color each vertex in the set S blue. For each vertex of S, we color all 

but one of its common neighbors with v blue. For each vertex in B\S, we select 

one of its neighbors that is also a neighbor of some vertex of S and we color this 

common neighbor with the color blue. We color all remaining uncolored vertices 

with the color red. In the resulting red-blue coloring of the vertices of G, if some 

vertex of S has no blue neighbor (such a vertex would have exactly one common 

neighbor with v), then we recolor one of its neighbors that is not common with v 

with the color blue. In this way we produces a tr-coloring of G in which (i) at least 

b vertices, including the vertex W\, of F are colored blue, (ii) each vertex in A and 

all but one neighbor of each vertex of A is colored blue, and (iii) for each vertex of 

S C B, all but one of its common neighbors with v are colored blue. Hence in this 

tr-coloring of G we have colored at least £ + (ri — 1) + b > t + r/b + b — 1 vertices 

blue. Since the function r/b + b (for r fixed) is minimized when b — y/r, it follows 
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that our tr-coloring of G colors at least £ + 2- /̂r — 1 vertices blue, as desired. • 

Observation 6.14 There exists a tr-coloring of G that colors v blue and colors at 

least 1/2 + r + 1 vertices blue. 

Proof. We begin by coloring v blue. For each i — 1 , . . . , a, we color Vi and one 

neighbor of vt red. We then color all remaining uncolored vertices in N(v) blue. 

Thereafter, we color all remaining uncolored vertices in G red. In this way we 

produce a tr-coloring of G that colors v blue and colors all but a neighbors of v 

blue. Since £ > 2a, this tr-coloring of G colors £ + r — a + 1 > £/2 + r + 1 vertices 

blue, as desired. • 

Let C be a 7tr-coloring of G. Hence among all tr-colorings of G, the coloring C 

maximizes the number of vertices that can be colored blue. If C colors v red, then, 

by Observation 6.13, C colors at least £ + 2^/r — 1 vertices blue. On the other hand, 

if C colors v blue, then, by Observation 6.14, C colors at least £/2 + r + 1 vertices 

blue. Hence letting 

CKI = n — 4 — r — 1, and 

a2 = n-£-2y/r + l, 

we have that 

7tr(G) <min{a1,ci!2}. 

We consider two possibilities. 
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Case 1. £< 2 ( r - 2 V r + 2). Then, <X\ < a2, and so ^(G) < ax. Hence it 

suffices for us to show that a\<a. Now, 

ai < a 

<* n - f - r - 1 < n - | ( / + r ) - | V 3 ( ^ + r ) - 8 - ^ 

^ 4^/3(£ + r) - 8 < -3£ + 6r + 4 

4* 0 < 9^2 - 36(r + 2)£ + (36r2 + 144) 

<^ t < 2 ( r - 2 V r + 2) or ^ > 2 ( r + 2v/r + 2). 

By assumption, £ < 2(r — 2y/r + 2), implying that a.\ < a, whence 7tr(G) < a, as 

desired. 

Case 2. £> 2 ( r - 2 v / r + 2). Then, a2 < «i, and so 7tr(G9 < a2. Hence it 

suffices for us to show that a2 < a. Now, 

a2 < a 

4* n-£-2y/f + l < n -^(£ + r) -^3(£ + r) - 8 - -

<S> 2^/3{l + r)-8 < 3£-6r + 18^/r-6 

& 0 < 9£2 - (36r - 108Vr + 108)£ + (36r2 - 216r^ + 504r - 5 7 6 ^ + 288) 

^ £ < 2^-4^ + 2) or £>2(r-2y/r +2). 

By assumption, £ > 2(r — 2y/r + 2), implying that a2 < a, whence 7tr(G) < a, as 

desired. 
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In both cases, the desired upper bound follows. It remains for us to establish 

that the upper bound is sharp. Let t > 2 be an integer, and let a = t2 — It + 2, 

b = t, e = 2(t2 - 2t + 2) and r = t2. Let H = aP3 U bKlft. Let A be the set of 

a central vertices of the paths P3, and let B be the set of b central vertices of the 

stars Kitt- Let G be the graph obtained from H by forming a clique on the set B, 

subdividing each edge of the resulting complete graph on these b vertices exactly 

once, and adding a new vertex v and joining it to every vertex of degree 1 in H. 

Then, v has maximum degree in G, namely la + bt = I + r. By construction, G is a 

connected bipartite graph of order n, maximum degree A and minimum degree at 

least 2, where A = i + r and n = 1 + a + b + (£) + £ + r. Thus, 

A = 3 t 2 - 4 t + 4, and 

- - '?-%»• 
Further, the vertex v is a vertex of maximum degree A in G that is only adjacent 

to degree-2 vertices. Thus the conditions of the lemma are satisfied. We show that 

the graph G achieves the upper bound of the lemma. Let C be a 7tr-coloring of G. 

We consider two possibilities. 

Suppose C colors the vertex v blue. Then every vertex of B is red (since each 

common neighbor of v and a vertex of B must have a red neighbor), whence every 

degree-2 vertex joining two vertices of B is red. Further, each vertex of A is colored 

red (since each common neighbor of v and a vertex of A must have a red neighbor). 

Since each vertex of A must have a red neighbor, one neighbor of each vertex of A 

is colored red. Thus at least n — (r + £/2 + 1) = n — 2t2 + It — 3 vertices are colored 

red. 

On the other hand, suppose C colors the vertex v red. If two vertices of B are 

colored blue, then the common neighbor of these two vertices has no red neighbor, 

a contradiction. Hence at least 6—1 vertices of B are colored red. Let B' be a 
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subset of b — 1 vertices of B that are colored red. Every degree-2 vertex joining two 

vertices of B' is red. Every degree-2 vertex joining v and a vertex of B' is red. At 

least one neighbor of the vertex in B \ B' is colored red. Since each vertex of A must 

have a red neighbor, one neighbor of each vertex of A is colored red. Thus at least 

n — {£ + 2i — 1) = n — 2t2 + 2t — 3 vertices are colored red. 

In both cases, the 7tr-coloring C of G colors at least n — 2t2 + It — 3 vertices red. 

Hence, 7tr(G) > n — 2t2 + 2t — 3 = ip(n, A). Since the upper bound of the lemma has 

been established, we know that 7tr(G
!) < i()(n,A). Consequently, 7tr(G) = i/j(n, A). 

This completes the proof of the lemma. • 

We are now ready to prove the main result of this section. Recall Theorem 6.2. 

Theorem 6.2. If G is a connected bipartite graph of order n > 5, maximum degree 

A where 3 < A < n — 2, and minimum degree at least 2, then 7tr(G) < ip(n,A), 

and this bound is sharp. 

Proof. We proceed by induction on £ — n + m, where m denotes the size of 

G. Note that n > 5 and m > 6, and so £ > 11. When £ = 11, G — K^fi and 

7tr((?) = 2 = "0(5,3) = ip(n,A). This establishes the base case. For the inductive 

hypothesis, let £ > 12 and assume that for all connected bipartite graphs G' of 

order n' > 5 and size ml with n' + ml < £ that have maximum degree A' where 

3 < A' < n' — 2 and minimum degree at least 2 that 7tr(G') < V>(n'> A')- Let G be 

a connected bipartite graph of order n > 5 and size m with £ = n + m, maximum 

degree A where 3 < A < n — 2 and minimum degree at least 2. 

The proof of the following observation is almost identical to the proof of 

Observation 6.3, and is therefore omitted. 

Observation 6.15 If a connected proper subgraph G' ofG of order n' has maximum 

degree A where 3 < A < n' — 2 and minimum degree at least 2, and if the subgraph 



CHAPTER 6. TOTAL RESTRAINED DOMINATION IN GRAPHS 114 

G — V(G') contains no isolated vertices, then ~/tr(G) < ^(n, A). 

Let v be a vertex of maximum degree A in G. Recall that £ is the set of all large 

vertices of G. 

Observation 6.16 We may assume that the set C\{v} is an independent set in G. 

Proof. Suppose e = uw is an edge of G joining two vertices u and w of C \ {v}. 

If e is a cycle edge, then G — e is a connected proper subgraph of G that satisfies 

the statement of Observation 6.15, and so 7tr(G) < tp(n, A). Hence we may assume 

that e is a bridge of G. Let Gu be the component of G — e containing u, and Gw 

the component containing w. We may assume that v € V(GU). Hence, Gu is a 

connected proper subgraph of G of order n! with maximum degree A where A > 3 

and minimum degree at least 2. If v dominates Gu, then u and v have a common 

neighbor. But this contradicts our assumption that G is bipartite. Hence, A < n'—2. 

Thus, Gu satisfies the statement of Observation 6.15, and so 7tr(G) < 4>(n,A), as 

desired. • 

By Observation 6.16, the only edges in G[C], if any, are incident with v. 

Observation 6.17 We may assume that every two vertices in C\{v} have at most 

one common neighbor different from v. 

Proof. Suppose C\{v} contains two vertices u and w that have at least two common 

neighbors different from v. Then both these common neighbors are small. Let x 

be a small vertex that is a common neighbor of u and w. Then, G' = G — x is a 

connected bipartite graph of order n' = n — 1, size m! — m — 2, maximum degree A 
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where 3 < A < n' — 2 and minimum degree at least 2. By the inductive hypothesis, 

7tr(G') < 4>(n', A) = 4>(n — 1, A) = ip(n, A) — 1. Any 7tr-coloring of G' colors u or 

w red, and can therefore be extended to a tr-coloring of G by coloring x red. Hence, 

7tr(G) < 7tr(G') + 1 = i)(n, A), as desired. • 

Observation 6.18 We may assume that there is no 2-handle whose ends are 

adjacent with a vertex in C\ {v} that is adjacent with v. 

Proof. Suppose that there is a 2-handle C whose ends are adjacent with a 

vertex u £ C\ {v} that is adjacent with v. Since G is bipartite, the V(C) consists 

of an odd number of vertices. Let C be the 2-handle U\, i ta , . . . , Uk, for some k > 3. 

Suppose that k > 5. Let G' be the graph obtained from G by deleting the vertices 

Ui and U2 and adding the edge uuz- Then, G' is a connected bipartite graph of order 

n' = n — 2, size m' < m, maximum degree A where 3 < A < n' — 2, and minimum 

degree at least 2. By the inductive hypothesis, 7tr(G') < i>(n', A) = ij)(n, A) — 2. If 

a 7tr-coloring of G' colors u or 1*3 red, then we color U\ and u<i red. Otherwise, we 

recolor 113 red, color u2 red and color u\ blue. Hence, 7tr(G) < 7tr(G') + 2 < ij)(n, A). 

Thus we may assume that k — 3. 

If degti > 4, then G — V(C) satisfies the statement of Observation 6.15, and 

so 7tr(G) < 4>(n, A). Hence we may assume degti = 3. Let G' be the graph 

obtained from G by deleting u and adding the edges u\V and uzv. Then, G' is a 

connected bipartite graph of order n' = n — 1, size m' = m — 1, maximum degree 

A' = A + 1 where 3 < A' < n' — 2, and minimum degree at least 2. By the 

inductive hypothesis, 7tr(G') < ip(n', A') = -0(n - 1, A + 1) = ijj(n,A + 1) - 1. 

For A > 3, ^ (n ,A) - V(n, A + 1) = 2/3 + 2(V3A - 5 - V 3 A - 8 ) / 9 , and so 

2/3 < ^(n, A)—0(n, A + l) < 8/9. Thus, 7tr(G') < V(n, A + l ) - l < V(n, A ) - 5 / 3 . 

If a 7tr-coloring of G' colors v red, then we color u red. If a 7tr-coloring of G' 

colors v blue and colors a neighbor of v different from u\ and uz red, then we color 



CHAPTER 6. TOTAL RESTRAINED DOMINATION IN GRAPHS 116 

u blue. If a 7tr-coloring of G' colors v blue and colors every neighbor of v different 

from ui and uz blue, then exactly one of u\ and uz, say ui, is colored red, and 

we recolor «2 blue and color u red. In this way, we produce a tr-coloring of G 

from a 7tr-coloring of G' that colors at most 7tr(G') + 1 vertices in G red. Hence, 

7tr(G) < 7tr(G') + 1 < V(n, A) - 2/3 < ^(n, A), as desired. • 

Observation 6.19 / / v has a large neighbor u, then we may assume that every 

vertex at distance 2 from u in G — v is a large vertex in G. 

Proof. Suppose there is a vertex at distance 2 from u in G — v that is a small vertex 

in G. We consider two cases. 

Case 1. There is a small vertex at distance 2 from u inG — v that is not adjacent 

to v inG. Let y be a small vertex at distance 2 from u inG — v that is not adjacent 

to v in G, and let x be the common (small) neighbor of u and y. Let w be the 

neighbor of y different from x. Since G is bipartite, v and w are not adjacent. If 

w is large, then G' = G — {x,y} satisfies the statement of Observation 6.15, and so 

7tr(G) < ^(n, A). Hence we may assume w is a small vertex. By Observation 6.18, 

u and w are not adjacent vertices. Let N(w) = {y, z}. 

Let G' be the graph obtained from G by deleting x and y and adding the edge uw. 

Then, G' is a connected bipartite graph of order n' — n — 2, size mf < m, maximum 

degree A where 3 < A < n' — 2, and minimum degree at least 2. By the inductive 

hypothesis, 7tr(G') < ^(n', A) < ?/>(n, A) — 2. If a 7tr-coloring of G' colors u o r i o 

red, then we color x and y red. Otherwise, if a 7tr-coloring of G' colors both u and 

w blue, then it colors z red and we can therefore recolor w red, color y red and color 

x blue. Hence, <ytT(G) < 7tr(G') + 2 < ip{n, A). 
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Case 2. Every small vertex at distance 2 from u in G — v is adjacent to v in G. 

Let y be a small vertex at distance 2 from u in G — v and let x be the common 

(small) neighbor of u and y. Then, v and y are adjacent vertices in G. Let S be 

the set of vertices that belong to a 2-path where one end is adjacent to u and the 

other end is adjacent to a large vertex different from v (possibly, 5 = 0). Then, 

every vertex of S is the common small neighbor of u and a large vertex different 

from v. Further, by Observation 6.17, every two vertices in S have only the vertex 

u as a common neighbor. Let T denote the set of vertices that lie on a 2-path with 

one end adjacent to u and the other end adjacent to v, and let Tu and Tv be the 

vertices in T adjacent with u and v, respectively. Then, x G Tu and y E Tv, and 

N(u) = SuTuD{v}. 

Case 2 .1 . S ^ 0. Let G' be the component of G — S that contains v (possibly, 

G' — G — S). Then, G' is a connected bipartite graph of order n' = n — k where 

k > \S\, size mf < m, maximum degree A where 3 < A < n' — 2, and minimum 

degree at least 2. By the inductive hypothesis, 7tr(G') < 4>{n',A) = ip(n, A) — k. 

Note that in G', N(u) = TUU {v}. 

Consider a 7tr-coloring C of G'. If C colors both u and v blue, then it colors every 

vertex in T red, and so we recolor u red and every vertex of Tv blue. If C colors 

u blue and v red, then it colors every vertex in Tv red and every vertex in Tu blue, 

and so we recolor u red and recolor every vertex in Ty blue. In both cases, we must 

have that T = {x,y}, for otherwise, we produce a new tr-coloring of G' that colors 

fewer vertices red than does C, which is impossible. Hence in both cases we produce 

a new 7tr-coloring of G' that colors u red. Therefore we may assume that C colors 

u red. But then we can extend C to a tr-coloring of G by coloring all remaining k 

uncolored vertices red. Hence, 7tr(G) < 7tr(G') -f k < rp(n, A). 
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Case 2.2. S = 0. Then, N(u) = Tu U {v}. Since degu > 3, \TU\ > 2. Let 

G' = G — {a;, j/}. Then, G' is a connected bipartite graph of order n' = n — 2, size 

m' < m, maximum degree A' where A — 1 < A' < A and A' < n' — 2, and minimum 

degree at least 2. If A' = A, then G' satisfies the statement of Observation 6.15, 

and the desired result follows. Hence we may assume that A' = A — 1. 

If A' = 2, then G' = C4 and G is obtained from a 6-cycle by adding an edge 

between two vertices at distance 3 apart on the cycle. Coloring u and v red and 

coloring every other vertex of G blue produces a tr-coloring of G, and so 7tr(C7) = 2 < 

3 = ip(Q, 3) = i])(n, A). Hence we may assume A' > 3 (and so, A > 4). Applying the 

inductive hypothesis to G', 7tr(<7) < ip(n', A') = ip(n - 2, A - 1) = i/;(n, A - 1) - 2. 

For A > 4, 4>(n, A - 1) - ip(n, A) < 8/9, and so jtT(G') < tp(n, A) - 10/9. 

Consider a 7tr-coloring C of G'. If C colors both u and v blue, then it colors 

every vertex in T \ {x, y) red, and so we recolor u red and recolor every vertex in Tv 

blue to produce a new 7tI-coloring of G'. Such a 7tr-coloring of G' can be extended 

to a tr-coloring of G by coloring x red and y blue. If C colors both u and v red, 

then it can be extended to a tr-coloring of G by coloring both x and y blue. If 

C colors u red and v blue (resp., u blue and v red), then it can be extended to 

a tr-coloring of G by coloring x red and y blue (resp., x blue and y red). Hence, 

7tr(G) < 7tr(G') + 1 < 7tr(G') - 1/9 < -0(n, A), as desired. • 

Observation 6.20 We may assume that v has no large neighbor. 

Proof. Suppose that v has a large neighbor u. Since G is bipartite, u and v have 

no common neighbors. By Observation 6.16, every neighbor of u different from v is 

small. By Observation 6.17, every two small neighbors of u have only the vertex u 

as a common neighbor. By Observation 6.19, every vertex at distance 2 from u in 

G — v is large in G. Let U = N[u] \ {v} and let \U\ = k. We now consider the graph 

G' = G-U. Then, 5(G') > 2. 
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Suppose G' is disconnected. Let F be a component of G' that does not contain 

the vertex v. Then the component of G — V(F) that contains v contains the vertices 

in U and satisfies the statement of Observation 6.15, and the desired result follows. 

Hence we may assume that G' is connected. Let G' have maximum degree A'. 

Suppose A' = 2. Then G can be obtained from a 4-cycle v = Vi,V2,V3,V4,,v by 

adding a new vertex u, joining it to each of v, v2 and v^, and then subdividing the 

edges uv<i and uv^ exactly once. Thus, 7tr(<j) < 4 = ip(7,3) = ip(n,A). Hence we 

may assume that A' > 3 (and so, A > 4). 

Thus, G' is a connected graph of order n' = n — k, size m! < m, maximum 

degree A' where A — 1 < A' < A and A' < n' — 2, and minimum degree at 

least 2. If A' = A, then the desired result follows readily from Observation 6.15. 

Hence we may assume that A' = A — 1. Applying the inductive hypothesis to 

G\ 7tr(G') < V M A') = 0(n - fc.A - 1) = ip(n,A - 1) - fc. For A > 4, 

V>(n, A - 1) - ip(n, A) < 8/9, and so 7tr(G') < V(n, A) - k + 8/9. 

Let C be a 7tr-coloring of G'. If C colors a vertex in G' that has a common 

small neighbor with u blue, then we extend C to a tr-coloring of G by coloring 

this common small neighbor blue and coloring all remaining uncolored vertices of 

G red. Otherwise, we extend C by coloring u and a small neighbor of u blue 

and coloring all remaining uncolored vertices of G red. In this way, we extend 

C to a tr-coloring of G by coloring at most k — 1 additional vertices red, and so 

7tr(G) < 7 t r(G') + k - 1 < V(n, A) - 1/9 < V(n, A). • 

By Observation 6.20, the vertex v of maximum degree in G is adjacent only to 

degree-2 vertices. Hence by Lemma 6.12, 7tr(G) < ip(n, A) and this bound is sharp. 

This completes the proof of the Theorem 6.2. • 
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