12 research outputs found

    Assessing land use and land cover change in tropical dry forest or Northern Chinandega, Nicaragua from 1985 to 2011

    Get PDF
    The objective of this study is to gain a quantitative understanding of land use and land cover change (LULCC) that have occurred in a rural Nicaraguan municipality by analyzing Landsat 5 Thematic Mapper (TM) images. By comparing the potential extent of tropical dry forest (TDF) with Landsat 5 TM images, this study analyzes the loss of this forest type on a local level for the municipality of San Juan de Cinco Pinos (63.5 km2) in the Department of Chinandega. Change detection analysis shows where and how land use has changed from 1985 to the present. From 1985 to 2011, nearly 15% of the TDF in San Juan de Cinco Pinos was converted to other land uses. Of the 1434.2 ha of TDF that was present in 1985, 1223.64 ha remained in 2011. The deforestation is primarily a result of agricultural expansion and fuelwood extraction. If current rates of TDF deforestation continue, the municipality faces the prospect of losing its forest cover within the next few decades

    ARKTOS: An Intelligent System for Satellite Sea Ice Image Analysis

    Get PDF
    We present an intelligent system for satellite sea ice image analysis named ARKTOS (Advanced Reasoning using Knowledge for Typing Of Sea ice). The underlying methodology of ARKTOS is to perform fully automated analysis of sea ice images by mimicking the reasoning process of sea ice experts and photo-interpreters. Hence, our approach is feature-based, rule-based classification supported by multisource data fusion and knowledge bases. A feature can be an ice floe, for example. ARKTOS computes a host of descriptors for that feature and then applies expert rules to classify the floe into one of several ice classes. ARKTOS also incorporates information derived from other sources, fusing different data towards more accurate classification. This modular, flexible, and extensible approach allows ARKTOS be refined and evaluated by expert users. As a software package, ARKTOS comprises components in image processing, rule-based classification, multisource data fusion, and GUI-based knowledge engineering and modification. As a research project over the past 10 years, ARKTOS has undergone phases such as knowledge acquisition, prototyping, refinement, evaluation and deployment, and finally operationalization at the National Ice Center (NIC). In this paper, we will focus on the methodology of ARKTOS

    PREDICTING TROPICAL RAINFOREST DEFORESTATION USING MACHINE LEARNING, REMOTE SENSING & GIS: CASE STUDY OF THE CROSS RIVER NATIONAL PARK, NIGERIA

    Get PDF
    Population growth, urban sprawl, agricultural expansion, and illegal logging has led to losses in forested land in most parts of the world, especially in a highly populated country like Nigeria. The Cross River National Park (CRNP) in southeastern Nigeria with an area just above 4000km2 is designated a biodiverse hotspot and one of the oldest rainforests in Africa. As with all other tropical forests spread across the globe the CRNP is not immune to these factors that threaten its existence. The focus of this study is to analyze the change of forest cover at the Oban division of the Cross River National Park using multi-temporal remotely sensed data to predict and model the future probability of deforestation within the area of interest. This study made use of the Landsat West Africa Land Use/Land Cover Time Series dataset for the years 1975, 2000 and 2013 and Landsat 8 operational land imager (OLI) imagery for the year 2020 in a post classification change detection model to determine the extent of change in forest cover classes. Random forest decision tree machine learning algorithm was used to predict the future risk of forest cover loss using the datasets produced from the post classification change detection. The model related deforestation probabilities with several physical and anthropogenic factors such as elevation, slope angle, solar radiation, aspect, topographic roughness, soil type, distance from roads, distance from towns, distance from rivers, distance from plantations and population density. The results from the change detection analysis showed that from 1975 to 2020 the forest cover declined by 1909km2 a rate of 42km2 per year. The random forest regression analysis predicted areas of the forest with modest to high deforestation probabilities and indicated that socio-economic factors are major drivers of deforestation in the region rather than physical factors

    Validation of global forest change detection databases

    Get PDF
    Validation of global forest change detection databases Abstract The main aim of the thesis is to validate selected databases of changes in forest areas based on the analysis of satellite imagery time series in the Czech Republic. For this purpose we are using databases of M. C. Hansen and P. V. Potapov which are mapping the evolution of forest areas internationally. For the purposes of validation, we have proposed a methodology primarily based on historical ortophotographs from 2000-2012, the same time period which is documented in the validated databases. The results obtained were statistically processed, allowing to assess the accuracy of validated databases. At the end of the thesis, we are discussing the causes of identified inaccuracies and presented with recommendations for future improvements of detection of changes in forest areas. Keywords: validation, forest, land cover, change detection, Hansen, PotapovValidace globálních databází změn lesních ploch Abstrakt Hlavním cílem práce je validace vybraných databází změn lesních ploch založených na analýze časových řad družicových snímků na území České republiky. K tomu byly využity databáze M. C. Hansena a P. V. Potapova, které mapují vývoj lesních ploch v nadnárodním měřítku. Za účelem validace byla navržena metodika, jejíž stěžejní součástí je využití historických ortofotosnímků z období let 2000-2012, které rovněž zachycují ověřované databáze. Získané výsledky byly statisticky zpracovány, což umožnilo zhodnocení přesnosti validovaných databází. V závěru práce jsou diskutovány příčiny zjištěných nepřesností a předkládána doporučení k budoucímu zdokonalení detekce změn lesních ploch. Klíčová slova: validace, les, land cover, change detection, Hansen, PotapovKatedra aplikované geoinformatiky a kartografieDepartment of Applied Geoinformatics and CartographyPřírodovědecká fakultaFaculty of Scienc

    Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison: Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison

    Get PDF
    The primary objective of this research was to evaluate the potential for monitoring forest change using Landsat ETM and Aster data. This was accomplished by performing eight change detection algorithms: pixel post-classification comparison (PCC), image differencing Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Transformed Difference Vegetation Index (TDVI), principal component analysis (PCA), multivariate alteration detection (MAD), change vector analysis (CVA) and tasseled cap analysis (TCA). Methods, Post-Classification Comparison and vegetation indices are straightforward techniques and easy to apply. In this study the simplified classification with only 4 forest classes namely close forest, open forest, bare land and grass land was used The overall classification accuracy obtained were 88.4%, 91.9% and 92.1% for the years 2000, 2003 and 2006 respectively. The Tasseled Cap green layer (GTC) composite of the three images was proposed to detect the change in vegetation of the study area. We found that the RBG-TCG worked better than RGBNDVI. For instance, the RBG-TCG detected some areas of changes that RGB-NDVI failed to detect them, moreover RBG-TCG displayed different changed areas with more strong colours. Change vector analysis (CVA) based on Tasseled Cap transformation (TCT) was also applied for detecting and characterizing land cover change. The results support the CVA approach to change detection. The calculated date to date change vectors contained useful information, both in their magnitude and their direction. A powerful tool for time series analysis is the principal components analysis (PCA). This method was tested for change detection in the study area by two ways: Multitemporal PCA and Selective PCA. Both methods found to offer the potential for monitoring forest change detection. A recently proposed approach, the multivariate alteration detection (MAD), in combination with a posterior maximum autocorrelation factor transformation (MAF) was used to demonstrate visualization of vegetation changes in the study area. The MAD transformation provides a way of combining different data types that found to be useful in change detection. Accuracy assessment is an important final step addressed in the study to evaluate the different change detection techniques. A quantitative accuracy assessment at level of change/no change pixels was performed to determine the threshold value with the highest accuracy. Among the various accuracy assessment methods presented the highest accuracy was obtained using the post-classification comparison based on supervised classification of each two time periods (2000 -2003 and 2003-2006), which were 90.6% and 87% consequently

    Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison: Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison

    Get PDF
    The primary objective of this research was to evaluate the potential for monitoring forest change using Landsat ETM and Aster data. This was accomplished by performing eight change detection algorithms: pixel post-classification comparison (PCC), image differencing Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Transformed Difference Vegetation Index (TDVI), principal component analysis (PCA), multivariate alteration detection (MAD), change vector analysis (CVA) and tasseled cap analysis (TCA). Methods, Post-Classification Comparison and vegetation indices are straightforward techniques and easy to apply. In this study the simplified classification with only 4 forest classes namely close forest, open forest, bare land and grass land was used The overall classification accuracy obtained were 88.4%, 91.9% and 92.1% for the years 2000, 2003 and 2006 respectively. The Tasseled Cap green layer (GTC) composite of the three images was proposed to detect the change in vegetation of the study area. We found that the RBG-TCG worked better than RGBNDVI. For instance, the RBG-TCG detected some areas of changes that RGB-NDVI failed to detect them, moreover RBG-TCG displayed different changed areas with more strong colours. Change vector analysis (CVA) based on Tasseled Cap transformation (TCT) was also applied for detecting and characterizing land cover change. The results support the CVA approach to change detection. The calculated date to date change vectors contained useful information, both in their magnitude and their direction. A powerful tool for time series analysis is the principal components analysis (PCA). This method was tested for change detection in the study area by two ways: Multitemporal PCA and Selective PCA. Both methods found to offer the potential for monitoring forest change detection. A recently proposed approach, the multivariate alteration detection (MAD), in combination with a posterior maximum autocorrelation factor transformation (MAF) was used to demonstrate visualization of vegetation changes in the study area. The MAD transformation provides a way of combining different data types that found to be useful in change detection. Accuracy assessment is an important final step addressed in the study to evaluate the different change detection techniques. A quantitative accuracy assessment at level of change/no change pixels was performed to determine the threshold value with the highest accuracy. Among the various accuracy assessment methods presented the highest accuracy was obtained using the post-classification comparison based on supervised classification of each two time periods (2000 -2003 and 2003-2006), which were 90.6% and 87% consequently

    Detecção de alterações em área urbana litorânea a partir de imagens Ikonos-ll de duas épocas utilizando uma abordagem híbrida

    Get PDF
    Orientadores : Prof. Dr. Jorge Antonio Silva CentenoDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências da Terra, Programa de Pós-Graduação em Ciências Geodésicas. Defesa: Curitiba, 23/02/2015Inclui referências : f. 71-78Resumo: As mudanças na paisagem podem ocorrer a partir de ações antrópicas ou naturais, imagens adquiridas a partir de plataformas orbitais, ou a partir de câmaras embarcadas em aviões, como também por Drones e VANT's (Veículos Aéreos Não Tripulados) mais atualmente, vêm sendo amplamente utilizadas a fim de que essas alterações possam ser compreendidas e representadas espacialmente na tomada de decisões, em relação a determinado fenômeno em estudo. Esta dissertação trata de desenvolver uma metodologia híbrida na detecção de alterações, ou seja, utilizando as abordagens: orientada a objeto na classificação de duas imagens com cobertura do solo urbana, e a abordagem orientada a pixel na comparação das alterações, no sentido de melhoria no processamento. Palavras-chave: Imagens de Alta Resolução Espacial, Detecção de Alterações, Abordagem Híbrida, Análise de Imagens Orientada a Objeto.Abstract: The changes occurred on the landscape could be derived by anthropological or natural processes, images acquired from imagery satellites, either from airborne cameras, or drones are largely used in order to understand and represent those changes spatially also for decision making based on spatial information depending on the study case. This master thesis is intended on developing a hybrid change detection methodology, which is developed using the two image processing approaches, object-based analysis for classifying the two images where the scene is basically formed by urban land cover and pixel approach in order to compare and identify the changes between the pair of images. Keywords: HRS Images, Change Detection, Hybrid Approach, Object-Based Image Analysis

    A methodology to produce geographical information for land planning using very-high resolution images

    Get PDF
    Actualmente, os municípios são obrigados a produzir, no âmbito da elaboração dos instrumentos de gestão territorial, cartografia homologada pela autoridade nacional. O Plano Director Municipal (PDM) tem um período de vigência de 10 anos. Porém, no que diz respeito à cartografia para estes planos, principalmente em municípios onde a pressão urbanística é elevada, esta periodicidade não é compatível com a dinâmica de alteração de uso do solo. Emerge assim, a necessidade de um processo de produção mais eficaz, que permita a obtenção de uma nova cartografia de base e temática mais frequentemente. Em Portugal recorre-se à fotografia aérea como informação de base para a produção de cartografia de grande escala. Por um lado, embora este suporte de informação resulte em mapas bastante rigorosos e detalhados, a sua produção têm custos muito elevados e consomem muito tempo. As imagens de satélite de muito alta-resolução espacial podem constituir uma alternativa, mas sem substituir as fotografias aéreas na produção de cartografia temática, a grande escala. O tema da tese trata assim da satisfação das necessidades municipais em informação geográfica actualizada. Para melhor conhecer o valor e utilidade desta informação, realizou-se um inquérito aos municípios Portugueses. Este passo foi essencial para avaliar a pertinência e a utilidade da introdução de imagens de satélite de muito alta-resolução espacial na cadeia de procedimentos de actualização de alguns temas, quer na cartografia de base quer na cartografia temática. A abordagem proposta para solução do problema identificado baseia-se no uso de imagens de satélite e outros dados digitais em ambiente de Sistemas de Informação Geográfica. A experimentação teve como objectivo a extracção automática de elementos de interesse municipal a partir de imagens de muito alta-resolução espacial (fotografias aéreas ortorectificadas, imagem QuickBird, e imagem IKONOS), bem como de dados altimétricos (dados LiDAR). Avaliaram-se as potencialidades da informação geográfica extraídas das imagens para fins cartográficos e analíticos. Desenvolveram-se quatro casos de estudo que reflectem diferentes usos para os dados geográficos a nível municipal, e que traduzem aplicações com exigências diferentes. No primeiro caso de estudo, propõe-se uma metodologia para actualização periódica de cartografia a grande escala, que faz uso de fotografias aéreas vi ortorectificadas na área da Alta de Lisboa. Esta é uma aplicação quantitativa onde as qualidades posicionais e geométricas dos elementos extraídos são mais exigentes. No segundo caso de estudo, criou-se um sistema de alarme para áreas potencialmente alteradas, com recurso a uma imagem QuickBird e dados LiDAR, no Bairro da Madre de Deus, com objectivo de auxiliar a actualização de cartografia de grande escala. No terceiro caso de estudo avaliou-se o potencial solar de topos de edifícios nas Avenidas Novas, com recurso a dados LiDAR. No quarto caso de estudo, propõe-se uma série de indicadores municipais de monitorização territorial, obtidos pelo processamento de uma imagem IKONOS que cobre toda a área do concelho de Lisboa. Esta é uma aplicação com fins analíticos onde a qualidade temática da extracção é mais relevante.Currently, the Portuguese municipalities are required to produce homologated cartography, under the Territorial Management Instruments framework. The Municipal Master Plan (PDM) has to be revised every 10 years, as well as the topographic and thematic maps that describe the municipal territory. However, this period is inadequate for representing counties where urban pressure is high, and where the changes in the land use are very dynamic. Consequently, emerges the need for a more efficient mapping process, allowing obtaining recent geographic information more often. Several countries, including Portugal, continue to use aerial photography for large-scale mapping. Although this data enables highly accurate maps, its acquisition and visual interpretation are very costly and time consuming. Very-High Resolution (VHR) satellite imagery can be an alternative data source, without replacing the aerial images, for producing large-scale thematic cartography. The focus of the thesis is the demand for updated geographic information in the land planning process. To better understand the value and usefulness of this information, a survey of all Portuguese municipalities was carried out. This step was essential for assessing the relevance and usefulness of the introduction of VHR satellite imagery in the chain of procedures for updating land information. The proposed methodology is based on the use of VHR satellite imagery, and other digital data, in a Geographic Information Systems (GIS) environment. Different algorithms for feature extraction that take into account the variation in texture, color and shape of objects in the image, were tested. The trials aimed for automatic extraction of features of municipal interest, based on aerial and satellite high-resolution (orthophotos, QuickBird and IKONOS imagery) as well as elevation data (altimetric information and LiDAR data). To evaluate the potential of geographic information extracted from VHR images, two areas of application were identified: mapping and analytical purposes. Four case studies that reflect different uses of geographic data at the municipal level, with different accuracy requirements, were considered. The first case study presents a methodology for periodic updating of large-scale maps based on orthophotos, in the area of Alta de Lisboa. This is a situation where the positional and geometric accuracy of the extracted information are more demanding, since technical mapping standards must be complied. In the second case study, an alarm system that indicates the location of potential changes in building areas, using a QuickBird image and LiDAR data, was developed for the area of Bairro da Madre de Deus. The goal of the system is to assist the updating of large scale mapping, providing a layer that can be used by the municipal technicians as the basis for manual editing. In the third case study, the analysis of the most suitable roof-tops for installing solar systems, using LiDAR data, was performed in the area of Avenidas Novas. A set of urban environment indicators obtained from VHR imagery is presented. The concept is demonstrated for the entire city of Lisbon, through IKONOS imagery processing. In this analytical application, the positional quality issue of extraction is less relevant.GEOSAT – Methodologies to extract large scale GEOgraphical information from very high resolution SATellite images (PTDC/GEO/64826/2006), e-GEO – Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas, no quadro do Grupo de Investigação Modelação Geográfica, Cidades e Ordenamento do Territóri
    corecore