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1 Introduction 

1.1 Background 

1.1.1 Forest in Sudan 

Sudan’s total land area amounts to some 1,861,484 sq km (CIA World Factbook, 
2011). Its vast area includes stretches of tropical forests, marshlands, mountains in 
southern and central parts to savannah, stone sand deserts and mountains in the 
north, east, and west (Mustafa, 2006). As it is shown in figure 1.1, Sudan is bordered 
by Egypt to the north, the Red Sea to the northeast, Eritrea and Ethiopia to the east, 
South Sudan to the south, the Central African Republic to the southwest, Chad to the 
west and Libya to the northwest. Sudan’s population is 45,047,502 includes the 
population of South Sudan (8,260,490), estimated urban population at 40% and the 
rural population at about 60 % (including nomadic groups). The population growth rate 
is 2.4%, the population density per square kilometers is estimated to be 24.2 persons 
(CIA World Factbook, 2011). This figure, however, can be a misleading indicator if the 
population distribution is not considered. In Sudan, a great deal of land is desert, 
desert-like, or simply non-arable. Therefore, when land area is limited to that which has 
some potential arability, population density would increase to 31.4 persons/square km, 
and go as high as 370 persons/ square kilometer when considering land presently 
cultivated (MEPD, 2003). Figure 1.2 shows Sudan 2011 Humanitarian, The secession 
of southern Sudan has led to the displacement of the population on a large scale. In 
Darfur, while there have been several outbreaks of localized fighting since, a growing 
number of refugees and displaced persons to more stable areas has been seen. At the 
same time, a large-scale movement of South Sudanese from Sudan to South Sudan 
continues. 

Forests in Sudan occupy an area of about 69,949,000 hectares, about 29.4% of the 
country’s area (Including forest area in South Sudan). Of this area 20% is classified as 
primary forest, 71% is classified as naturally regenerated forest and only 9% is planted 
forest (FAO, 2010). The forests reserve has a large potential economic value. It can 
provide the basis for a sustainable timber industry, wildlife tourism and other forest 
products. Currently, forest resources are used mainly for gum Arabic production and 
subsistence needs. Although forestry sector contributes as much as 13 percent to the 
gross domestic product of Sudan, this valuable resource is threatened, however, by 
deforestation driven mainly by human activities (UNEP 2007). 

Forests are considered among the most important natural features in the Sudan, they 
form, with other varying intensities of plant cover, the base for the terrestrial 
ecosystems of the country. Forests perform a series of vital environmental functions at 
local, regional and global level. At local level environmental services provided by 
forests include the maintenance of soil, water and climate quality that support 
productive agriculture, also their canopy protects soil from rainfall thereby regulating 
run-off and slowing down erosion. On the global scale, forests have two fundamental 
functions, namely the role of carbon sinks in the global carbon cycle and as pools of 
biodiversity. In terms of social and economic importance and livelihood support, trees 
and forests occupy a central position in providing the greater part of fodder for both 
domestic livestock and wildlife in addition to being the main source of energy and build- 
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Figure 1.1: Sudan location 

Source: Sudan location map.svg, 2011 

 

 

Figure 1.2: Sudan Humanitarian  

Source: Relief Web (2011) 
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ing material for households (FAO, 2006). FAO stated that information on Sudan forest 
cover extends and composition is neither accurate nor reliable. While a recent report of 
FAO revealed that Sudan is one of the ten countries with the largest net loss per year. 
In the period 1990–2000 Sudan had net loss of forest area of 589 million hectares 
(0.8%) and reduced to 54 million hectares (0.08%) (FAO, 2010). 

The Forests National Corporation (FNC) with the cooperation of FAO was able to 
undertake a National Forest Inventory in 1997, which covered the central part of the 
country between latitudes 16ºN and 10ºN. The area covered was 62.3 million ha 
(622.700 km2) or 24.9% of the total area of the Sudan. The area covered is mainly in 
the low rainfall savanna region, where almost all-present activities of irrigated and rain-
fed agriculture, forestry, grazing, human settlements and oil fields are concentrated. A 
large part of forest products come from this inventoried area. This survey resulted in a 
forest cover in the inventoried area of 12% based on the FAO Definition of Forest (10% 
canopy cover) (HCENR, 2009). 

1.1.2 Remote Sensing for Ecosystem Management 

Population, community and physiological ecology provide many of the underlying 
biological mechanisms influencing ecosystems and the processes they maintain. Yet, 
for too long in all countries, development priorities have focused on human needs from 
ecosystems, and without paying much attention on the impact of our actions (White et 
al. 2000). 

Vegetation cover is one of the most important components of the earth’s surface. It 
strongly influences evapotranspiration, infiltration, runoff and soil erosion. Vegetation 
cover is also the principal factor limiting stocking rates in managed grazing lands. It 
has been widely recognized as one of the best indicators for determining land condition 
(Booth and Tueller, 2003; Bastin and Ludwig, 2006; Wallace et al., 2006). Therefore, 
land condition can be assessed and monitored according to vegetation cover and its 
variations in time and space. This component is often used as the key indicator in the 
remote sensing of the land condition.  

Information and data needs have been growing in scope and complexity (de Sherbinin 
2005). For the past couple of decades the application of remote sensing (RS) not only 
revolutionized the way data has been collected but also significantly improved the 
quality and accessibility of important spatial information for natural resources 
management and conservation. The rapid acceptance of the use of remote sensing for 
conservation and nature protection coincides with the frequent reporting of wide spread 
modification of natural systems and destruction of wildlife habitats during the past three 
to four decades. Concerns about the increase in adverse environmental conditions 
prompted the remote sensing experts and users to quickly catch up with the evolving 
technology. The parallel advance in the reliability of Geographic Information System 
(GIS) has allowed the processing of the large quantity of data generated through 
remote sensing (Lunetta et al. 1999).  

Environmental Assessment to evaluate growth and its impact is important for informed 
planning for future growth. This can be done through improved methodologies in line 
with the latest scientific developments to analyze land cover changes over time using 
remote sensing, in an approach called change detection. Change detection is a 
process that measures how the attributes of a particular area have changed between 
two or more time periods. Change detection often involves comparing aerial 
photographs or satellite imagery of the area taken at different times (Wang, 1993). The 
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basic promise in using remote sensing data for change detection is that changes in 
land cover result in changes in radiance values, and changes in radiance due to land 
cover change are large with respect to radiance changes caused by other factors such 
as differences in atmospheric conditions, differences in soil moisture and differences in 
sun angles (Mas, 1999). Some of the most commonly used changed detection 
techniques are image differencing, post-classification comparison, principal component 
analysis, and change vector analysis (Singh 1989, Fung 1990, Lambin and Strahler, 
1994, Kwarteng and Chavez, 1998). These techniques have been used successfully to 
identify areas of change in different urban regions but, most of these techniques 
focused on areas located in semi-arid regions with low vegetation and thus radiance 
values change associated with city growth can be easily captured. Since urban growth 
is not limited to semi-arid regions, it is essential to evaluate the effectiveness of these 
techniques in identifying change in different sites through the world (Pilon, et al., 1988, 
Sohl, 1999). 

This research evaluates the effectiveness of pixel Post-Classification Comparison 
(PCC), image differencing of different vegetation indices (Normalized Difference 
Vegetation Index NDVI, Soil-Adjusted Vegetation Index SAVI and Transformed 
Difference Vegetation Index TDVI), Principal Component Analysis (PCA), Multivariate 
Alteration Detection (MAD), Change Vector Analysis (CVA) and Tasseled Cap Analysis 
(TCA).detection techniques for monitoring urban growth in a semi-arid and temperate 
climatic setting, with additional attention being placed on each technique’s strengths 
and weaknesses 

1.2 Problem definition 

Between 1990 and 2010, Sudan lost an average of 321,600 ha or 0.42% per year. In 
total, between 1990 and 2010, Sudan lost 8.4% of its forest cover or around 6,432,000 
ha (FAO 2010). It is driven principally by energy needs and agricultural clearance. 
Between 1990 and 2005, the country lost 11.6 percent of its forest cover or 
approximately 8,835,000 ha. United Nations Environment Programmers (2007) stated 
that: two-thirds of the forests in north, central and eastern Sudan disappeared between 
1972 and 2001.  

Degradation of deforestation rates indicate that forest cover could reduce by over 10 
percent per decade. In areas under extreme pressure, UNEP estimates that total loss 
could occur within the next 10 years. These negative trends demonstrate that this 
valuable resource upon which the rural population and a large part of the urban 
population depend completely for energy is seriously threatened. 

Within the last six decades, the Gedarif State in eastern Sudan lost its status as one of 
the major sources of food production in the country, due to large-scale degradation of 
its rich soil as well as other natural resources, mainly through unsuccessful land use 
policies and practices (Elsiddig 2003).  

According to available records, planned forest management in the Sudan has since 
1932 been based on a government policy that restricts the access of local communities 
to the forests except with special permits (Elsiddig 2003). Natural forest reserves and 
land proposed for reservation in Sudan sum up to about 14.5 million hectares, but a 
negligible part of that is put under proper management (Elsiddig 1996). Although the 
forest policy called for protection of natural forest reserves against illicit cutting, grazing 
and fire, so far, all the management activities executed within the natural forest 
reserves are concerned mainly with protection and patrolling exercised by forest 
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guards (Elmoula 1985; Elsiddig 2003), a practice that renders the policy more oriented 
towards control and punishment than towards development of the forests and fulfilment 
of people’s needs. 

In the absence of clear management practices and the absence of local people’s 
involvement in the management process, natural forest reserves and forests outside 
the reserves are continuously subjected to heavy pressures from the forest-dependent 
local people. Benefiting from ineffective control and the easy access to the forest that 
is often provided by the official forest harvesting, they engage in random felling (inside 
and outside reserves, where it is also forbidden), removal of vegetation by overgrazing 
(Figure. 1.3), gathering wood (Figure. 1.4) and charcoal burning (Figure. 1.5). 

In Sudan, the major causes of soil degradation have been ranked as intensive grazing 
for extended periods of time, or without sufficient recovery periods, depletion of soil 
nutrients through poor farming practices, forest harvesting by itself tends to have minor 
impacts on soil quality and long-term site productivity, and over-exploitation of the 
vegetation for domestic uses. Studies proved that, the impact of overgrazing leading to 
degradation of approximately 30 million ha, mostly in the arid zone, causing 
widespread wind erosion. Further, erosion in the semi-arid zone, attributed to human 
factors such as deforestation, overgrazing and overexploitation. A high population 
imbalance in some areas further increased soil degradation (Laxen, 2007). Studies 
revealed that goat grazing is the main cause for deterioration of Acacia senegal tree in 
many of its natural habitats. Tree seeds and seedlings are also suppressed by different 
causes namely insects, lack of water and high soil temperatures (Hussein 1991). The 
permanent settlement of semi-nomadic or nomadic ethnic groups and their livestock 
has a negative effect on vegetation. Large herds of livestock have destroyed the 
possibility of the vegetation to regenerate (Laxen, 2007). 

There is a definite need for baseline information on prevailing land-use systems in 
Sudan so as to facilitate the design, implementation and evaluation of forestry 
interventions and to assist the local people in the conservation, management and 
protection of dry land forests. 

1.3 Motivation 

Forest in Sudan was estimated in 2000 as 61.6 million hectares, or 25.9 percent of the 
total area. Between 1990 and 2000, forest area was decreasing at a rate of 1.4 percent 
per year. The decline in forest resources not only due to the expansion of mechanized 
agriculture in central Sudan, but also to an increase in overgrazing and 
overexploitation to meet the demands of growing population and aggressive 
urbanization. 

Devolving control over natural forest resources is a positive step for the government 
and local people in the Sudan (Abdelnour, 1999). In eastern Sudan, however, things 
are not all going according to the plan. Despite ten years of negotiations the real 
question of who has the power over decision-making is still unanswered. Forests are 
under great stress in Sudan. In the mid-fifties, forests constituted about 36% of the 
total area of the Sudan (90,000,000 km

2
). Today, most of this forest land has been 

depleted to meet the demands for fuel wood and timber.  

The motivation for doing this research in forest landscape through remote sensing 
using innovative change detection techniques is that the interest in the field of forest 
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vegetation change detection and its monitoring is growing rapidly because the 
existence of human and natural world depends on forest. Accelerating deforestation in  

 

Figure 1.3: Herd of animals grazing in El Rawashda Forest. 

Photograph by the author, 2006 

 

 

Figure 1.4: Gathering wood in El Rawashda forest 

Photograph by the author, 2006 

 

 

Figure 1.5: Charcoal production in earth-pit kilns in Gedarif  

Photograph by Glover, 2005 
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Sudan threatens has a major global implications for biological diversity, altering the 
composition of the atmosphere and contributing to climate change. Studies revealed 
that deforestation releases about 17% of all annual anthropogenic greenhouse gas 
(GHG) emissions. Tropical deforestation releases large amounts of CO2, because of 
the carbon stored in the vegetation and released when tropical forests are cut down 
(Gorte and Sheikh 2010). There are many causes of deforestation, in Sudan 
deforestation driven principally by energy needs and agricultural clearance (UNEP, 
2007). 

Remotely sensed data, because of the advantages of repetitive data acquisition and its 
digital format suitable for computer processing have become the major data source for 
forest change detection. Moreover, information derived from monitoring forests via 
satellite imagery is useful in identifying appropriate forest management strategies. 
Many methods have been devised to detect changes in forest biomass, with varying 
degrees of effectiveness. Efficient and effective methods of using remote sensing 
imagery to monitor forests are needed because they continue to be a paucity of good, 
practical examples of satellite remote sensing imagery used in detection of silvicultural, 
partial harvest, and natural forest changes (Franklin et al., 2002). 

An analysis of the literature reviewed indicates that there are very few studies 
concerned with comparative evaluation of change detection techniques and the 
majority of these comparative studies have not supported their conclusion by 
quantitative analysis of the results (Mas, 2007), so the study also seeks to compare the 
relative effectiveness of different techniques in detecting land cover changes in an arid 
zone using images captured at different times. 

1.4 Current status of research 

Many researchers have used remotely sensed imagery to monitor land cover changes 
through time, for example (Mas 1999; Franklin et al., 2000, 2002a, 2002b; Fuller, 2001; 
Hansen et al. 2001; Sader, 2001). The use of satellite imagery allows researchers to 
inventory and study the state of vegetation in a large region, while reducing the need to 
be in the field. The results produced by remotely sensed imagery can provide valuable 
information to resource managers by aiding in the management decision making 
process (Franklin et al, 2002a). Forest managers are frequently interested in 
information regarding canopy changes caused by short-term natural phenomena, 
including insects, flood, drought, human activities, and reforestation (Coppin and 
Bauer, 1994).  

Woodcock et al. (2001) produced a map of forest change in the Cascade Range of 
Oregon by applying a new approach to monitor large areas by extending the 
application of a trained image classifier to data beyond its original temporal, spatial, 
and sensor domains. The method showed accuracies comparable to a map produced 
with current state-of-the-art methods and their results highlighted the value of the 
existing Landsat archive and the importance for continuity in the Landsat program. 

Descléeet al. (2006) developed a new method of change detection for identifying forest 
land cover change in temperate forests using three SPOT-HRV images covering a 10-
year period. Combining the advantages of image segmentation, image differencing and 
stochastic analysis of the multispectral signal, this method is called object-based and 
statistically driven. They assessed the performances of this method using two sources 
of reference data, including one independent forest inventory and a pixel-based 
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method using the RGB-NDVI technique. High detection accuracy (>90%) and overall 
Kappa (>0.80) were achieved. 

Kennedy et al. (2007) described and tested a new conceptual approach to change 
detection of forests using a dense temporal stack of Landsat Thematic Mapper (TM) 
imagery. They used Trajectory-based change detection for automated characterization 
of forest disturbance dynamics. The authors proposed that many phenomena 
associated with changes in land cover have distinctive temporal progressions both 
before and after the change event, and these lead to characteristic temporal signatures 
in spectral space, so instead of searching for single change events between two dates 
of imagery, they searched for these idealized signatures in the entire temporal 
trajectory of spectral values. The authors pointed that, this trajectory-based change 
detection is automated and has the advantages of requires no screening of non-forest 
area, and requires no metric-specific threshold development. More advantage is that, 
the method simultaneously provides estimates of discontinuous phenomena 
(disturbance date and intensity) as well as continuous phenomena (post-disturbance 
regeneration). 

Masek et al. (2008), for the first time mapped the disturbance and early recovery of a 
forest across North America for the period 1990–2000 using the Landsat satellite 
archive. The detection was performed using the temporal change in a Tasseled-Cap  
(Disturbance Index) calculated from the two images .The authors used  a sample of 
biennial Landsat time series from 23 locations across the United States for validation. 
Their results indicate disturbance rates of up to 2–3% per year across the US and 
Canada due to harvest and forest fire. 

Mitchard et al. (2009) conducted a long-term (1986–2006) quantification of vegetation 
change in a forest–savanna boundary area in central Cameroon. They performed 
across-calibrated normalized difference vegetation index (NDVI) change detection 
method to compare three high-resolution images from 1986, 2000, and 2006. The 
result indicated that the largest changes were in the lower canopy cover classes 
whereas the higher canopy classes showed significant positive change. The authors 
attributed this due to a reduction in human pressure caused by urbanization, as rainfall 
did not alter significantly over the study period. They stated another possibility that 
increasing atmospheric CO2 concentrations are altering the competitive balance 
between grasses and trees. The study proved that forest encroachment into savanna 
is an important process, occurring in forest–savanna boundary regions across tropical 
Africa. 

Sakthive et al. (2010) precisely analyzed the trend of forest cover changes over the 
time span of 70 years, in the Kalrayan hills in India using satellite data acquired in 
1931, 1971 and 2001. The forest cover, in the study area, during 1931 and 1971 were 
derived from the Survey of India top sheets of 1931 and 1971. The authors focused on 
the role of remote sensing and geographic information system (GIS) in assessment of 
changes in forest cover. Their results clearly proved that forest cover has increased 
between 1931 and 1971 and decreased between 1971 and 2001. 

More recently, Bharti et al. (2011) reported an upward shift of timberline vegetation by 
300 m in Nanda Devi Biosphere Reserve (NDBR). The detection performed by 
Panigrahy et al. in 2010, they detected timberline changes in the subalpine vegetation, 
using post classification comparison method. The authors managed to compare fir 
patches to see the changes in timberline vegetation. Bharti et al recommend use of 
Temporal Trajectory Analysis (TTA) for detecting changes due to different phenol-
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phases and suggest large scale mapping of major vegetation categories using remote 
sensing and ground truth verification so that to detect minor vegetation change more 
accurately. 

Experiences from El Rawashda are quite obvious and consistent with the findings of 
Yacouba (1999), Wily (2003), and FAO (2002 b). These previous studies pointed out 
that weak and insecure property rights over land shortens the time-frame used by 
farmers, making it less likely that to take measures against land degradation and this 
will achieve a return in the planning horizon of the land user. The earlier investigations 
emphasized that where the occupier of land is unsure of the future, extraction will 
occur to ensure that these resources are not lost to the individual. A farmer with clear 
title to the land is more likely to consider investment of money, labour and land in 
conservation, because benefits in production which may only accrue after many years 
will still be retained by the individual who implemented the measures. 

In Sudan, there are long-term processes evident in the loss of forestry in the last three 
decades. The (UNEP)’s Post Conflict Environmental assessment of Sudan (2007), 
stated that northern, eastern and central Sudan have already lost the great majority of 
their forest and estimated that deforestation in Darfur has lost more that 30 percent of 
its forests, the study also confirmed that south Sudan has lost some of its forests 
especially around major towns such as Malakal, Wau and Juba. The effects of these 
processes on the availability of fuel wood are stark, with significant scarcity across 
large parts of Darfur. In addition to the local demands, UNEP estimates that within five 
to ten years the northern states may totally depend on west of Sudan for charcoal 
aggravate local conflict to control natural resources. Monitoring of forestry in the 
country therefore should be made at national level rather than regional level. 

1.5 Objectives 

The general objective of the research is to develop a monitoring scheme for 
operational use to allow assessment, mapping and evaluation of forest cover and its 
changes for sustainable management. 

In addition to the general objective, the research has formulated primary and specific 
objectives. 

The primary objective was to evaluate the potential for monitoring forest change in El 
Rawashda forest, Sudan, using Landsat ETM and Aster data. This was accomplished 
by performing eight change detection algorithms: pixel post-classification comparison 
(PCC), image differencing of Normalized Difference Vegetation Index (NDVI), Soil-
Adjusted Vegetation Index (SAVI), Transformed Difference Vegetation Index (TDVI), 
Principal component analysis (PCA), Multivariate alteration detection (MAD), Change 
Vector Analysis (CVA) and Tasseled Cap Analysis (TCA). Another principal objective 
of this project was to compare the results, qualitatively and quantitatively, of these 
different land use and land cover change detection approaches. 

The specific objectives were to: 

1. Develop an appropriate classification system to represent the forest cover 
according to the existing management plan.  

2. Determine the appropriate methods to detect vegetation change.  

3. Perform these types of change-detection methods to map the changes in 
vegetation in El Rawashda forest.  
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4. Perform an accuracy assessment on the change-detection methods and  

5. Compare the change-detection methods in order to select the best one that 
detects changes between two consecutive years. The selected algorithm will 
be used to produce the land cover change maps that will permit the efficient 
thematic updating. 

1.6 Structure of the thesis 

The research has assessed and evaluated the forest cover and its changes in the 
study areas of El Rawashda forest, Sudan using multitemporal Landsat and Aster 
imagery of the years 2000, 2003 and 2006 respectively. 

The present research is elaborated in six chapters.  

The Introduction (Chapter 1) opens the main research topic of this study through a 
short definition of change detection and outlines some of the most commonly used 
changed detection techniques. Chapter 1 further highlights the problem statements by 
introducing the opportunities and constraints of using remote sensing nature 
conservation in ecosystem monitoring in general. The main objectives and sub-
objectives which facilitate the task of achieving the higher goal are also narrated in this 
chapter. The chapter further describes the structure of the study. 

Chapter 2 reviews existing change detection methods developed or applied over forest 
ecosystems. Focused on techniques using high resolution satellite images, these 
techniques were grouped into three different categories of change detection 
approaches including visual interpretation, pixel-based and object-based methods. 
These approaches are divided into steps for assessing their assets and weaknesses 
and screening out appropriate elements for the development of forest change 
detection. 

Chapter 3 introduces the study area (El Rawashda forest, Sudan), its physical 
characteristics (location, area, climate, vegetation, topography and soil), its social and 
land use characteristics. The chapter further illustrates the various data sets used in 
the study. Landsat 7 Enhanced Thematic Mapper (ETM) data acquired on March 22, 
2003, (ETM) data acquired on May 29, 2000 and Aster data acquired on February 26, 
2006 were used for analyzing an area covering approximately 1.101.789 km² as area 
of interest. 

Chapter 4 describes in details the methods employed in achieving the objectives and 
addressing the research motivations. These methods are: supervised change detection 
using pixel post-classification comparison (PCC), image differencing of different 
vegetation indices (Normalized Difference Vegetation Index NDVI, Soil-Adjusted 
Vegetation Index SAVI and Transformed Difference Vegetation Index TDVI), principal 
component analysis (PCA), multivariate alteration detection (MAD), change vector 
analysis (CVA) and tasseled cap analysis (TCA). 

Chapter 5 presents the various outputs and their analysis. This chapter illustrates all 
tested techniques used to map land cover changes over time. Simple differencing 
techniques and change vector analysis and multivariate alteration detection help to 
pinpoint the relevant changes and provide a significant basis for the analysis. 
Supervised change detection post-classification comparison enables to interpret and 
quantify the changes. This chapter further performs an accuracy assessment on the 
change-detection methods to compare these methods in order to select the best one 



11 

 

that detects changes. The selected algorithm was used to produce the land cover 
change maps that will permit the efficient thematic updating. 

Chapter 6 and Chapter 7 the final chapters of the thesis, summarize the work, draws 
conclusion and provides discussion of the results and their relation with other studies. 
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2 Review of forest change detection techniques 

This chapter reviews the literature on the techniques for forest change detection using 
satellite imagery. Given that the methods are becoming more numerous and complex, 
we displayed a categorization to summarize the different approaches from visual 
interpretation to pixel-based and object-based methods. The different techniques are 
described and compared in order to assessing their assets and weaknesses and 
screening out appropriate elements for the development of forest change detection. 

2.1 Introduction 

From the beginning of earth observation systems, different satellite remote sensing 
systems and techniques have been developed for different forest ecosystem and 
resource requirements using high resolution optical remote sensing. These techniques 
are focused on the identification of forest cover change, described by Geist (2006), 
including forest clearing, the spatial extent of forest cover, forest type and disease. 
Different reviews have been proposed in the literature for summarizing and comparing 
these different approaches (Singh, 1989; Coppin and Bauer, 1996; Lu et al., 2004b; 
Coppin et al., 2004). However, new change detection methods are still designed and 
with the recent improvement in image segmentation applications, change detection 
approaches are grouped into three categories: (1) visual interpretation, (2) pixel-based 
and (3) object based methods.  

2.1.1 Image acquisition 

The essential aspect for change detection is selection of the appropriate satellite 
images. Recently with the development of earth observation systems, much variety of 
satellite data is now available. High resolution optical data provide a detailed view of 
forest depletion.  This category includes satellite imagery acquired from sensors such 
as SPOT-HRVIR, Landsat TM or ETM, IRS-LISS and ASTER which have a spatial 
resolution from 5 to 30 m. New sensors, i.e. DMC, can acquire high resolution data (32 
m) over a wide swath (600 km per orbit) which makes it well adapted for large-scale 
change detection (Collins and Woodcock, 1999). 

There have been few global modeling studies dealing with the impact of temporal 
frequency on forest change detection. Wilson and Sader (2002) recently proposed an 
image overlay technique based on band ratios like NDVI and normalized difference 
moisture index (NDMI) rather than spectral bands and applied this technique to 
temperate forests in Maine. They concentrated their discussion on the accuracy using 
both indices and they found that NDMI worked better than NDVI. High accuracies in 
classification were reached especially on the shorter time intervals (two or three years) 
and even in application of the same method to tropical rainforests., Jin and Sader 
(2005a) discriminated clear-cut which can be detected with image acquisition interval 
up to 5 years from small harvest requiring one or two years interval. Comparing 
change detection results using 3, 7 and 10-year intervals for detecting clear-cut, 
Lunetta et al. (2004) found that 3-year interval between image acquisition provides 
more accurate results applied on tasseled cap brightness and greenness. 
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2.1.2 Pre-processing 

All change detection process depends on the quality of satellite images to detect land-
cover change. This quality is ensured by several pre-processing steps which include 
(1) geometric correction, (2) radiometric and atmospheric correction, and (3) masking.  

Satellite sensor imagery; usually suffers from geometric distortions due to many factors 
which include: radial symmetric distortion, earth curvature, atmospheric refraction and 
relief displacement in the sensor’s field of view. Accurate geometric correction is 
essential for a proper spatial correspondence of multi-date images. Misregistration 
error must be <50 % of the pixel size to produce accurate detection. Random 
distortions can be reduced by measuring the shift of ground control points (GCP), 
distinctive geographical features of known location on the image, and resembling or 
reforming the original image to a new one accordingly. Digital Elevation Model (DEM) 
becomes more popular and is required since parallax effect is of the same order of 
magnitude as the pixel size. The higher spatial resolution and the advanced 
capabilities of recent sensors have increased this effect thus rendering more complex 
its correction. New automated image registration procedure is still under investigation 
but until now, such system has not reached the high precision required for performing 
change detection (Descl´ee, 2007).  

Radiometric corrections are of two types, absolute correction and relative correction; 
these two types are mainly used to normalize multi-temporal remotely-sensed images 
for time-series comparison. (Schott et al., 1988). Absolute radiometric correction 
involves extracting and converting the digital number (DN) recorded by the sensor to 
spectral radiance detected by the sensor using sensor-specific calibration parameters. 
This method requires the input of simultaneous atmospheric properties and sensor 
calibration, which are difficult to acquire in many cases, especially in historic data. 
Relative radiometric correction is aimed towards reducing atmospheric and other 
unexpected variation among multiple images by adjusting the radiometric properties of 
target images to match a base image, thus it is also called relative radiometric 
normalization. Relative radiometric normalization is an image-based correction method 
that uses a base image to adjust the radiometric properties of other images with the 
expectation of reducing atmospheric influences and other external variation among 
multiple images. In this method, reflectance of invariant targets with in multiple scenes 
can be used to render the scenes to appear as if they were acquired with the same 
sensor, with the same libration, and under identical atmospheric conditions, without the 
need to be absolutely corrected to surface reflectance. Most relative methods assume 
that radiometric relationships between the target image and the base image are linear 
(Song et al., 2001). The linear normalization function is defined by visual interpretation 
of the density ridge. Canty et al. (2004) developed an automatic normalization method 
instead of selecting Pseudo Invariant Features visually, based on Multivariate 
Alteration Detection (MAD) (Nielsen et al., 1998). For characterizing early succession 
forest patterns, the automatic normalization method of Canty et al. (2004) was found 
efficient for reducing the differences between multitemporal images (Schroeder et al., 
2006). 

2.2 Visual interpretation 

Visual interpretation using single or multi-date images needs human expertise for 
detecting and labeling areas that are considered as changed. With visual interpretation 
one can make full use of an analyst’s experience and knowledge. The criterion for 
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identification of an object with interpretation elements is called an interpretation key. 
The image interpretation depends on these elements. The interpretation key are, 
texture, shape, size and patterns of the images. (Lu et al., 2004b). Although this 
technique is time-consuming and requires skilled analysts, visual interpretation is still 
widely used (Anttila, 2002; Asner et al., 2002; Franklin et al., 2000; Sunar, 1998). So 
far, it is not possible to detect land cover changes made by the combination of several 
factors such as the stage or change in the area size with automatic change detection 
algorithm (Büttner et al., 2002). 

2.3 Pixel-based methods 

Digital pixel-based methods aim to analysis the remote sensing image according to the 
spectral information in the image and offer repeatable procedures for detecting land 
cover change. These approaches are referred as pixel-based methods given that every 
pixel is compared from one date to another independently from their neighbours. Each 
pixel-based method is characterized by a specific combination of three key steps, 
namely single-date indices, multi-date transformation and change detection algorithms 
(Lillesand, 2001). 

2.3.1 Single-date indices 

Single-date indices are derived from each satellite image of the multi-date data set. 
The single-date indices highlight the absence of temporal information at this stage. 
Single-date indices include either the reflectance of the different spectral bands or a 
combination of both, or also the result of single date land-cover classification. In 
change detection, a combination of different spectral bands into indices mostly is 
preferred instead of directly analyzing reflectance values for different reasons. First, it 
reduces data redundancy between spectral bands and processing time for the analysis 
due to data volume reduction. Second, it facilitates the direct interpretation of the 
change types. However, it is important to first assess the expected improvement using 
these indices instead of individual spectral bands. Required for the post-classification 
comparison, land-cover classification can also be considered as a single-date index 
(Sader et al., 2001). Finally, single-date indices can be summarized in six groups: (1) 
Spectral reflectance, (2) Vegetation index, (3) Principal component, (4) Tasseled cap 
component, (5) Spectral Mixture Analysis and (6) Land-cover classification. 

2.3.1.1 Spectral reflectance 

Spectral reflectance is the primary source of data for change detection. Many 
techniques directly use reflectance value from the different spectral bands, but only few 
studies have compared the contribution of each spectral band in change detection 
performances. Lu et al. (2005) found that the Short-Wave Infrared (SWIR, Landsat 
TM5) band provided the best change detection results, followed by the Red band 
(Landsat TM3) for land-cover changes in tropical regions. In the other side it has been 
noted that the utility of pixel classification of spectral reflectance for identifying areas of 
land modification, or land conversion is limited, as a result of various sources of error 
or uncertainty that are present in areas of significant landscape heterogeneity (e.g. 
forest silvicultural thinning). For urban areas, the complex mosaic of reflectance 
creates significant confusion between land-use classes that possess reflectance 
characteristics similar to those of land-cover types (Prenzel and Treitz, 2003).  
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2.3.1.2 Vegetation indices 

Vegetation index reflects the approximation relation between the spectral response 
and vegetation cover. The essential characteristic of desertification is the lower the 
productivity of land. Changes in vegetation index can reflect the changing process of 
land productivity. Therefore vegetation index can be used as desertification monitoring 
indicators to monitor land desertification and dynamic changes (Kumar et al., 2010). 

Vegetation indices are dimensionless calculations of radiometric measures of 
vegetation that function as indicators of relative abundance and activity of green cover, 
depending on the physical ability of vegetation (Jensen 2000). Vegetation indices 
based on reflectance factors of red and near-infrared bands. Vegetation indices heavily 
rely on the contrasting intense of chlorophyll pigment absorption and the high 
reflectance of leaf mesophyll in the red band and the near-infrared respectively 
(Maselli, 2004). The purpose of vegetation indices is to maximize sensitivity to plant 
biophysical parameters, normalize external effects for consistent temporal 
comparisons (e.g., sun angle and viewing angle), normalize internal effects (e.g., 
canopy background, topography, and soil), and be associated with some measurable 
biophysical (Jensen 2000). 

Vegetation indices have been widely applied in change detection. The Normalized 
Difference Vegetation Index (NDVI) has been the most popular and the most 
commonly used index in change detection due to its close relationship with leaf 
biomass and its simplicity of computation and interpretation (Hayes and Sader, 2001; 
Michener and Houhoulis, 1997; Sader and Winne, 1992; Volcani et al., 2005). Heute 
(1988) proposed a vegetation index called soil adjusted vegetation index (SAVI) to 
overcome the limitation of NDVI and so it is intended to minimize the effects of soil 
background. Incorporating a constant soil adjustment factor L into the denominator of 
the NDVI equation minimizes the effect of soil background on the vegetation signal. L 
varies with the reflectance characteristics of the soil, e.g. color and brightness. 
Apparently the problem is more common in semi arid and arid environments where the 
green canopy cover is less than 30% (Schmidt and Karnieli, 2001). Another vegetation 
index, the Normalized Difference Moisture or Water Index (NDMI or NDWI), is more 
sensitive to changes in water content (Hardisky et al., 1983). This last index was found 
less affected to atmospheric effects than NDVI (Gao, 1996). Wilson and Sader (2002) 
found better accuracy using NDMI than NDVI for detecting forest harvest. Other 
studies have combined several vegetation indices in order to improve the detection 
capability (Coppin et al., 2004). Various indices have been developed but no single 
vegetation index can be considered as better than the others in all change detection 
cases (Lyon et al., 1998; McDonald et al., 1998). However, by reducing data 
redundancy, vegetation indices can also be less sensitive for detecting vegetation 
changes than the original reflectance values (Chavez and MacKinnon, 1994; Lu et al., 
2005) 

2.3.1.3 Principal Components 

Principal Components (PCs) are obtained by linear transformation of spectral bands 
into a new coordinate system. Principal Component Analysis (PCA) reduces the 
number of channels and increases the information content on a single RGB image. To 
monitor the degraded areas caused by gold miners, Almeida-Filho and Shimabukuro 
(2002) applied a PCA separately on each of the 6 Landsat TM images. The third PC of 
each image was selected for performing the change analysis due to the enhancement 
of degraded areas relative to surrounding savanna vegetated terrain. According to 
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Cakir et al. (2006), the first Principal Component (PC1) corresponds to sharp contrast 
between vegetation and non-vegetation features.  

Many studies have used principal component analysis to detect change and attained 
satisfied results (Byrne et al., 1980, Duggin et al., 1986, Sunar, 1998, Li and Yeh, 
1998). Sunar (1998) characterized principal component analysis as very useful for 
highlighting differences distinctly attributable to changes. Li and Yeh (1998) compared 
principal component analysis to post classification techniques and concluded that 
principal component analysis was much more accurate than post classification 
techniques and therefore suggested it as an accurate alternative for detecting land use 
change. Fung and LeDrew (1987) found that the eigenvectors used for rotation could 
vary significantly depending upon whether the standardized or non-standardized form 
was chosen, as well as whether the whole data set or a subset was used for 
generating the eigenvectors. They suggested that the eigen structure derived from the 
entire data set is more valid for land cover change detection. On the other hand many 
studies using principal component analysis have produced rather poor results. Toll et 
al. (1980) reported that the use of principal component analysis for urban change 
detection produced poor change detection results compared to simple image 
differencing of Landsat MSS bands 2 and 4. Fung (1990) compared principal 
component analysis to differencing of both the raw images and Tasseled Cap 
transformations and found that both techniques were not able to detect all types of land 
cover change in the tested study area. 

2.3.1.4 Tasseled cap components 

Tasseled cap transformation was developed by Kauth and Thomas in 1976 for Landsat 
MSS data (Kauth& Thomas, 1976) and was improved and extended to Landsat TM 
data in the mid-1980s by Crist and Cicone 1984. Tasseled cap transformation is a kind 
of orthogonal transformation; it rotates the original data plane so that the vast majority 
of data variability is concentrated in the features (Kauth& Thomas, 1976; Lillesand& 
Kiefer, 1994). The first and second features of TM are brightness and greenness, 
respectively. The third feature is termed ‘‘wetness’’ because it is sensitive to soil and 
plant moisture (Crist &Cicone, 1984).The  TCT have been used in several change 
detection studies (Jin and Sader, 2005a; Franklin et al., 2002; Lunetta et al., 2004; 
Healey et al., 2005) and more recently the method had been applied by Zhang and 
Ban, 2010 who conducted detection of impervious surface sprawl using tasseled cap 
transformation within the conceptual framework of Vegetation-Impervious surface-Soil 
(V-I-S) model.  

2.3.1.5 Spectral Mixture Analysis 

In spectral mixture theory, the signal recorded for a pixel is assumed to be a mixture of 
the radiances of the component endmembers contained within that pixel. Knowing or 
deriving spectrally pure endmembers of all the components within a pixel allows one to 
quantify the endmember fractions occurring within the pixel using linear or nonlinear 
mixture approaches (Sabol et al., 2002). 

In recent years, spectral mixture approaches with remote sensing data has rapidly 
progressed. Many Studies derive land cover component fractions via sub pixel 
interpretation (Garcı´a-Haro et al., 1996). IKONOS imagery had derived endmember 
information of urban areas using spectral mixture analyses (Small, 2002) and also it 
has been used to derive component fractions within ETM+ pixels instead of using 
ground truth data (Yang & Huang, 2002). Asner et al., 2003; Greenberg et al., 2005; Lu 
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et al., 2004 detected changes by comparing the endmember proportions between 
multitemporal images and they concluded that, this approach can detect finer changes 
but the critical steps of SMA are the time consuming selection of reference end 
members which can be derived either from the image or from the field. 

2.3.1.6 Classification 

Classification is the most appropriate and logical approach for predicting target class 
for each case in the data (e.g. forest cover classes) of an observation (pixel), based on 
its intrinsic traits (measurement vector of spectral band responses) (Franklin et al., 
2003). Supervised classification requires prior knowledge about the spectral properties 
and/or the statistical nature of the categorical classes to be determined (Mather, 1987) 
or access to ancillary data, which can be used to build spectral statistics. 

Knowledge about the spectral information is sometime derived from fieldwork, aerial 
photo interpretation or from the study of appropriate large scale maps. Supervised 
classification procedure allows the analyst to predict the classification process. A priori 
selection of categorical classes, analyses of training site statistics, specification of 
sampling approaches and of training site geometry are possible with the supervised 
classification (Franklin et al., 2003). 

Classification can be carried independently on each image to convert it into thematic 
map for advance comparison. The process can be performed by different ways 
(unsupervised or supervised) from simple algorithm (e.g. maximum likelihood) (Currit, 
2005; Petit et al., 2001) to more advanced classifiers such as Artificial Neural Networks 
(ANN) (Gopal and Woodcock, 1996) or fuzzy classification (Deer, 1998). This process 
provides detailed land-cover information, however its application on each image is 
region-specific. 

2.3.2 Multi-date transformation 

The multi-date transformation is an intermediate step in the change detection process 
for combining the spectral and temporal information from all satellite images. Different 
techniques can compare images acquired at different dates for producing multi-date 
change index analyzed by the change detection algorithm. These transformations 
include (1) Image differencing, (2) Change vector analysis, (3) Multitemporal principal 
component analysis, (4) Multitemporal Kauth-Thomas transformation, (5) Multivariate 
alteration detection, (6) Chi square transformation. 

2.3.2.1 Image differencing 

Due to its simplicity image differencing is a popular method for change detection. 
When appropriate radiometric and atmospheric corrections have been applied, the 
distribution mean tends to zero. Image differencing is a point-to-point operation where 
the indices (instead of raw pixel values) are subtracted from one another. Index 
differencing negates the effect of multiplicative factors acting equally in all bands such 
as topographic effects and temperature differences (Lillesand and Kieffer, 1987) and 
has the advantage of emphasizing differences in spectral response curves. The main 
disadvantage with index differencing is that it can enhance random or coherent noise 
not correlated in different bands (Singh, 1989). 

The differencing is generally performed on vegetation indices (Coppin et al., 2004; Jin 
and Sader, 2005a; Lyon et al., 1998) or tasseled cap components (Coppin et al., 2001; 
Jin and Sader, 2005a). Other studies have subtracted the PC1 from the two images 
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(Cakir et al., 2006; Lu et al., 2005). Image differencing can be also applied on 
endmember fraction images derived from SMA (Lu et al., 2004a; Rogan et al., 2002). 
Image differencing usually it is not applied on all spectral bands due to the difficulty of 
combining the change detection results from each difference band. Lu et al. (2005) 
compared the performance of each spectral band using image differencing as well as 
the combination of them by a majority rule. They concluded that change detection 
using the combination of all spectral bands provided the best accuracy, even better 
than based on NDVI.  

2.3.2.2 Change vector analysis 

Change vector analysis (CVA) is one of the most useful radiometric techniques for 
change detection. However, the method is a promising tool for determining changed 
category when deciding how to reasonably determine thresholds of change magnitude 
and direction (Zhu et al., 2010). 

The CVA method was first developed by Malila (1980) using Brightness and 
Greenness layers for detecting changes in northern Idaho forests. The technique is 
flexible enough to be effective when using different types of sensor data and 
radiometric change approaches (Johnson and Kasischke, 1998). The process 
measures the displacement of a pixel from date-1 to date-2 in the multidimensional 
space defined by the different spectral bands. Two outputs are derived from each 
change vector: the magnitude and the direction of the vector. The magnitude, 
calculated by the Euclidean distance between the two positions, measures the intensity 
of the change in surface reflectance. The direction, depending on the relative values of 
the axis coordinates, gives information about the type of change (Michalek and 
Wagner, 1993).  

Change direction is measured as the angle of the change vector from a pixel 
measurement at time 1 to the corresponding pixel measurement at time 2 (Figure 
2.1a). The decrease in brightness is indicated by angles measured between 90° and 
180°. Lorena et al. (2002) stated that, this change direction represent regeneration of 
vegetation. The increase in brightness is indicated by angles measured between 270° 
and 360°. They designated this change direction to represent loss of vegetation. 
Angles measured between 0° and 90° and 180° and 270° indicate either increases or 
decreases in both bands of greenness and brightness. They designated this as 
indication of no change, which is representative of neither an increase nor decrease in 
vegetation (Figure 2.1 b). 

The extension of CVA to three input bands required an appropriate definition of change 
direction angles. Extended CVA techniques measured absolute angular changes and 
total magnitude of tasseled cap components (Brightness, Greenness, and Wetness) 
(Allen and Kupfer, 2000 and Nackaerts et al., 2005). Finally, CVA technique was also 
applied over all spectral bands only for deriving the change magnitude (Häme et al., 
1998). 
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Figure 2.1: The process for detecting the direction of change (a) and the magnitude of change 
(b) within change vector analysis  

Source: Kuzera et al., 2005 

 

2.3.2.3 Multitemporal principal component analysis 

Principal component analysis (PCA) is a linear transformation technique related to 
Factor Analysis. It produces a new set of images from a given set of original image 
bands, the new set of images, known as components that are uncorrelated and are 
ordered in terms of the amount of variance explained in the original data. Most 
commonly, principle component transformations are designed to remove or reduce 
redundancy in multispectral data by compressing all the information contained in the 
original n-channel data into fewer than n –new channels or components (Fung and 
LaDrew, 1987). The new components are then used instead of the original data 
because the new component images are more interpretable than the original images. 
Geometric interpretation of PCA is shown in figure 2.2. 

 

Figure 2.2: Geometric interpretation of principal component analysis 

Source:www.dgp.toronto.edu/~aranjan/tuts/pca.pdf 
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The Multitemporal Principal Component Analysis (MPCA) is based on the same 
principle as the PCA described in Section 2.3.1.3 except that it is applied on the 
complete multi-date data set. It is expected that one or more multitemporal principal 
components to be directly related to land cover changes (Byrne et al., 1980). The main 
difficulty of this approach is the selection of the components of interest which is mainly 
done by visual interpretation (Michener and Houhoulis, 1997).  

The Selective principal component analysis is based on the concept that using only 
two bands as inputs, so the information that is common to both bands will be mapped 
to the first component, and information that is unique to either band will show up in the 
second component. This is also makes the imagery much easier to interpret, since the 
relevant output of the procedure is a single grey tone image (Kwarteng and Chavez, 
1998)  

2.3.2.4 Multitemporal Kauth-Thomas transformation 

Multitemporal Kauth-Thomas (MKT) transformation is the generalization of the Kauth-
Thomas transformation for multi-date data (Collins and Woodcock, 1996). The MKT 
approach produces six main components from a multi-date dataset including the mean 
(the stable components) and the difference (the change components) of the three 
tasseled cap components between the two images. Combined with image differencing, 
the MKT approach was found superior to MPCA due to the physically-based variables 
produced by MKT compared to the image-dependent components derived by PCA 
(Rogan et al., 2002).  

2.3.2.5 The Multivariate Alteration Detection 

Multivariate alteration detection (MAD) method is based on canonical components 
analysis (CCA). According to MAD method, two images acquired at different times and 
covering the same geographic area are taken as two sets of random variables, then by 
applying MAD transformation a new set of variates, called MAD variates which are 
uncorrelated with each other. In this way, actual changes in all channels can be 
detected by removing as much as possible correlations between channels (Zhang Lu, 
2004). 

The MAD was applied by Canty et al. (2004); Nielsen et al. (1998), using traditional 
canonical correlation analysis (CCA) which proposed by Hotelling, 1936 to find linear 
combinations between two groups of variables ordered by correlation, or similarity 
between pairs. One of the main advantages obtained by using MAD is the automatic 
identification of “no change pixels”. Moreover, basic data come from the same image, 
uncorrelated with changes in the overall atmospheric conditions or statistic image 
noise. In MAD process, the no-change thresholds can be set easily, because the 
standardized MAD components are approximately chi squire distributed (Schroeder et 
al., 2006). The MAD components have maximum variance in its pixel intensities, so 
that the pixels are statistically uncorrelated with each other. The last MAD component 
has maximum spread in its pixel intensities and, ideally, maximum change information. 
The second-to-last component has maximum spread subject to the condition that the 
pixel intensities are statistically uncorrelated with those in the first MAD component, 
and so on (Canty et al., 2003).  

Figure.2.3 summarizes the procedure of the MAD transformation of medium resolution 
images for change detection. Two sets of registered data with N spectral channels are 
thresholds. 



21 

 

 

Figure 2.3: MAD procedure  

Source: Niemeyer and Canty, 2002 

 

This method has been successfully applied to multispectral images by Niemeyer et al., 
1999, Canty and Niemeyer, 2002 and more recently by Crocetto and Tarantino (2009) 
who applied the method because of its high level of automation and reliability in the 
enhancement of change information among different images. 

2.3.2.6 Chi square transformation 

The strong point of the chi-squared is that it can be used to test if a data sample 
belongs to a process with a determined distribution (Tarongi and Camps, 2010). The 
Chi square transformation is a test for combining all spectral bands of image difference 
into one single change image. The change index is obtained by computing the distance 
between the difference value of each pixel and the difference mean for all pixels in the 
multidimensional space defined by the number of spectral bands. This method is 
based on the assumption that only a small proportion of the image is changed. A 
disadvantage of this technique is that change observed in a specific spectral band 
might not be readily identified in the change image but its flexibility allows its 
application over various environments (Ridd and Liu, 1998). 

2.3.3 Change detection algorithms 

A basic change detection algorithm takes the image sequence as input and generates 
a binary image called a change mask that identifies changed regions (Pacifici, 2007). 
The goal of a change detection algorithm is to detect significant changes while 
rejecting unimportant ones. Sophisticated methods for making this distinction require 
detailed modeling of all the expected types of changes (important and unimportant) for 
a given application, and integration of these models into an effective algorithm These 
algorithms which include post-classification comparison, thresholding and classification 
make the final decision for distinguishing change and no-change features. Preliminary 
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steps were only required for optimizing the input data for the algorithm in order to 
better discriminate change classes. Whereas thresholding only gives a binary 
change/no-change response, post-classification comparison and classification provide 
information about the change types (Radke et al., 2004). 

2.3.3.1 Post-classification comparison (PCC) 

The most widely used change detection algorithm is the post classification comparison 
which detects changes between hand-labeled region classes (Currit, 2005; Deer, 1998; 
Gopal and Woodcock, 1996; Miller et al., 1998; Petit et al., 2001). This technique 
provides detailed change trajectories between the two images. Moreover, the 
independent classification processes reduce the impact of multitemporal effects due to 
atmosphere or sensor differences (Lu et al., 2004b).  

Post classification comparison performs change detection by comparing the 
classification maps obtained by classifying independently two remote sensing images 
of the same area acquired at different times. In this way, it is possible to detect 
changes and to understand the kinds of changes that have taken place. Moreover, the 
classification of multitemporal images does not need to normalize for atmospheric 
conditions, sensor differences, between the acquisitions. However, the performances 
of the PCC technique essentially depend on the accuracies of the classification maps. 
In particular, the final change detection map shows an accuracy close to the product of 
the accuracies yielded at the two times (Yuan, 1998). This is due to the fact that PCC 
does not take into account the dependence existing between two images of the same 
area acquired at two different times (Pacifici, 2007). 

2.3.3.2 Thresholding 

For many approaches relying on direct multi-date analysis, a critical step is the 
selection of appropriate threshold boundaries between change and no-change pixels 
(Franklin et al., 2002; Greenberg et al., 2005; Häme et al., 1998; Jin and Sader, 2005a; 
Skakun et al., 2003). Given that threshold values are scene-dependent, they should be 
calculated dynamically based on the image content. However, the thresholds can be 
determined by three approaches: (1) interactive, (2) statistical and (3) supervised. In 
the first approach, thresholds are interactively determined visually or by trial and error 
tests. The second approach is based on statistical measures from the histogram of 
multi-date change indices. Using image differencing, the threshold selection is 
commonly based on a normal distribution characterized by its mean m and its standard 
deviation ¾. Values outside the level of confidence determined by [m − x¾, m + x¾] 
are considered as changes, where x is the number of standard deviations from the 
mean determined a priori. Third, the supervised approach derives thresholds based on 
a training set of change and no-change pixels. Techniques for selecting appropriate 
thresholds are based on the modelling of the signal and noise (Radke et al., 2005; 
Rogerson, 2002; Rosin, 2002). Whereas thresholds are usually set at equal distance 
from the change index mean, Cakir et al. (2006) proposed to find different and optimal 
values for low-end and high-end thresholds. 

Bruzzone and Pireto (2000) proposed two automatic techniques based on the Bayes 
theory for the analysis of the difference image. The first technique allows an automatic 
selection of the decision threshold that minimizes the overall change detection error 
probability under the assumption that pixels in the difference image are spatially 
independent. In the hypothesis of Gaussian distribution for changed and unchanged 
classes, the estimation of the parameters of the Gaussian model is carried out using 
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the Expectation Maximization (EM) algorithm. The other technique analyzes the 
difference image using a Markov Random Field (MRF) approach that exploits the inter-
pixel class dependency in the spatial domain by considering the spatial contextual 
information included in the neighborhood of each pixel to improve the accuracy of the 
final change detection map according to the use of a regularization term (Pacifici, 
2007). 

2.3.3.3 Classification 

Classification is the direct analysis of the multi-date dataset for detecting and 
characterizing areas of change. The multi-date dataset can be either the different 
single-date indices stacked together (Jolly et al., 1996; Sader et al., 2001; Woodcock 
et al., 2001) or the change indices derived from the multi-date transformation (Cohen 
and Fiorella, 1998; Lunetta et al., 2004; Rogan et al., 2002). Change is expected to 
show statistics significantly different from no change, so that they can be grouped in 
specific classes. Like for single-date classification, different methods have been used 
for multi-date classification going from common algorithm (Cohen and Fiorella, 1998) 
to more advanced classifiers such as decision trees (Rogan et al., 2003) and ANN 
(Woodcock et al., 2001). Sader et al. (2001) have stacked the NDVI of 3 dates in a red, 
green and blue composite to perform an unsupervised classification. This specific 
multi-date classification denoted as RGB-NDVI avoids the need of setting a predefined 
histogram threshold, but it requires training sample data to label classes.  

2.4 Object-based methods 

Recently, object based approach have been performed to detect forest change 
Combining analysis of visual interpretation with the quantitative aspect of the approach 
based on the pixels. Instead of analyzing pixels independently of their location, the 
object approach combines the similar adjacent pixels into one object. At the outset, 
object border specified by forest stand striation vectors were derived from a 
Geographic Information System (GIS) (Rosin, 2002). The interest for object-based 
methods has increased with the improvements in image segmentation techniques. 
Objects are first extracted from each image to be analyzed and a site model is 
constructed containing image segmentation maps and extracted object features, then, 
Object-level Change Detection (OLCD) is accomplished by comparing objects 
extracted from a new image to objects recorded in the site model and the differences 
are highlighted. Image segmentation is the division of the satellite image into spatially 
continuous and homogeneous regions, hereafter named as objects. The most 
important advantage of object-based approaches is the integration of contextual 
information in the change analysis (Desclée, et al., 2006). Furthermore, the 
segmentation reduces the local spectral variation inducing better differentiation 
between the types of land cover. However, despite the fact that the demarcation of the 
object remains conclusive; a limitation is the definition of a Minimum Mapping Unit 
(MMU). Defined initially to control the visual interpretation process (Saura, 2002), this 
parameter determines the minimum size of the object as calculated by the number of 
pixels included. Thus, change areas smaller than this constraint cannot be detected by 
analyzing the change (Radke et al., 2004). 

The technique performed by the software eCognition shows some fundamental 
differences compared with other techniques (pixel-based) that perform traditional 
image analysis. An essential part of the system rules is the invention of new 
technology to extract knowledge from image object primitives in various resolutions, 
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the so-called multi-resolution. The segmentation functions as a measure of 
improvement heuristic, which reduces the heterogeneity of the average image of the 
objects for a particular resolution on the whole scene.  The goal is to build a 
hierarchical network of image objects in which fine objects are sub-objects of coarser 
structures. Because of the hierarchical structure, data is represented at one time in the 
form of various resolutions. Each object knows its context, its neighborhood and its 
sub-objects. Subsequently, it is possible to identify the relationships between objects. 
The defined local object-oriented context information can then be used together with 
other (spectral, form, texture) image features to classify objects (Niemeyer and Canty, 
2001). Fig. 2.5 summarizes the different steps in the object-oriented, knowledge-based 
analysis: multi-resolution segmentation, knowledge-based feature extraction, semantic 
modeling and classification. 

2.4.1 GIS-data 

Geographic information systems and remote sensing, updating represent an important 
tool to measure and display presentation of the various spatial and temporal 
information, allowing better knowledge of past, present, and long-term as result of 
human activities in ecosystems (Desclée, et al., 2006). 

 

Figure 2.4: Object-oriented, knowledge-based analysis with eCognition 

Source: Niemeyer and Canty, 2001 

 

Map covered by forest geographical information system and database are important 
data in forest management planning field operations. The outcome of these geographic 
information and remote sensing data had been useful to minimize the spectral noise of 
pixel analysis and integrate shape and context aspects into parcel-based analysis. 
While forest stands delineation had been accompanied by satellite images, to map 
forest precisely. (Kayitakir´e et al., 2002), it has also been applied for detecting forest 
disturbances and updating forest information using multi-temporal image data set. 
Spectral information within each object defined by stand boundaries is summarized 



25 

 

and analyzed the change from different algorithms. The performance of this approach 
depends greatly on geometric accuracy of both data, in spite of its multisource 
information (Walter, 2004). 

2.4.2 Image segmentation 

Segments can be defined as areas that produced by one or more criteria of 
homogeneity in one or more dimensions and so they have additional and spatial 
information compared to single pixels (Hay and Castilla, 2008). It has been well known 
that the spatial dimension is crucial to object based image analysis methods, and that 
this is the main reason behind the rapid rise in the use of segmentation-based methods 
in recent years, compared to the use of image segmentation in remote sensing during 
the 1980s and 1990s (Gamanya et al., 2009). 

In general terms, segmentation method could be interpreted as a collection of 
methods, which identifies groups of entities or statistical samples that share certain 
common characteristics. The sample characteristics are used to group the samples. 
Grouping can be arrived at, either hierarchically partitioning the sample or non-
hierarchically partitioning the samples. Thus, segmentation methods include 
probability-based grouping of observations and cluster (grouping) based observations. 
It includes hierarchical (tree based method – divisive) and non-hierarchical 
(agglomerative) methods. Segmentation methods are thus very general category of 
methodology, which includes clustering methods also (Saksa et al., 2003). 

The objects can also be directly delineated from satellite image thanks to image 
segmentation algorithms. Image segmentation is the division of satellite image into 
spatially continuous and spectrally homogeneous regions or objects. While many 
image segmentation algorithms have been developed in pattern recognition science for 
several decades (Pal and Pal, 1993), they were only rarely applied in remote sensing 
applications due to their complexity and difficulty to process large satellite images. 
Recently, such algorithms have been considerably improved and integrated in remote 
sensing (Soille and Pesaresi, 2002). Indeed, the analysis of very high resolution 
satellite images has required finding alternatives from traditional pixel based 
classification. These new tools now becomes adequate for many different operational 
applications in remote sensing but still rarely applied in change detection. Different 
segmentation algorithms exist and can be regrouped into two main categories, namely 
edge-based and region-based. Edge-based segmentation methods detect edges 
between different regions which sharply contrast and thus define objects delineated by 
these edges. These approaches are very numerous (Davis, 1975) and this provides 
the first step of detection. They generally rely on the computation of an intensity 
gradient and use edge detecting operators. Active contour models are a specific edge-
based technique which adjusts arbitrary boundaries until it matches an object of 
interest (Kass et al., 1988). The segmentation process is repetitive by determining new 
groups at each iteration until all pixels are included into objects (Blaschke et al., 2004). 
Watershed algorithms are also region-based methods and effect the growth by 
simulating a flooding process, which progressively covers the region (Vincent and 
Soille, 1991). Some studies have combined region-based and edge-based techniques 
in order to improve their efficiency (Munoz et al., 2003).  

Meinel and Neubert (2004) have qualitatively compared different existing segmentation 
tools provided in accessible software for remote sensing applications. They stated that 
much of the work referred to as object based image analysis originated around the 
software known as eCognition. eCognition was presented at various conferences in 
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1999 and 2000 and became available in 2000 as the first commercially available, 
object based, image analysis software (Benz et al., 2004). The eCognition software 
built on to the approach originally known as Fractal Net Evolution (Baatz and Schäpe, 
2000) and developed into completely programmable workflows (Baatz et al., 2008). It 
is today known as Definiens produced high quality segmentation results which were 
also reproducible even if image size is modified (Lang and Tiede, 2007).  

Change detection has still achieved very little applications using object-based 
approach while these segmentation tools have known a growing development in many 
other remote sensing applications. It becomes clear that the first years of the object 
based, image analysis developments were characterized by very little literature, but 
that the number of peer-reviewed journal articles has increased rapidly over the last 
four to five years. The pixel based analysis is beginning to show cracks and the object 
based image analysis methods are making considerable progress towards a spatially 
explicit information extraction workflow, such as is required for spatial planning as well 
as for many monitoring programmers (Blaschke, 2010). 

2.5 Change mapping 

Results from change detection include the change map and the derived area 
estimates. The change map is composed of categorical values which correspond to 
change classes. The number of classes can be limited to 2 classes (change and no-
change) or extended to several change trajectories (the different “from to” classes). A 
transition matrix is produced by pixel-to-pixel matching of two land cover classifications 
and provides detailed change trajectories and their corresponding affected areas. The 
change representation is difficult given that change is generally rare and includes many 
change trajectories. Many change classes may thus cover a small portion of the study 
area. Moreover, many studies have pointed out the problem of noise in remote sensing 
data which induces strong “salt and pepper” effects in the change map. Indeed, each 
pixel is analyzed independently of its neighbours. Whereas recent studies propose to 
integrate spatial inter-pixel dependency in a post-processing step (Bruzzone and 
Prieto, 2000a; Nielsen et al., 1998), many change detection methods are still using 
filter to smooth out isolated change pixel. 

The accuracy assessment of change map is crucial for evaluating the quality of change 
detection results. More complex than for classical thematic map, this procedure has to 
rely on specific statistical sampling designs and analysis technique (Biging et al., 
1998). Except for the kappa coefficient, most accuracy indices are affected by the 
disproportion of reference data points for the change and the no-change category 
(Nelson, 1983). Fung and LeDrew (1988) also recommended kappa coefficient for 
determining optimal thresholds for change detection image. However, reliable change 
detection accuracy assessments are rather rare due to the difficulty of finding historical 
reference data and independent from the process of analysis. Finally, very few 
techniques have been designed for evaluating object-based change detection 
approach. 
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2.6 Method comparison 

The comparison of change detection methods is rather complex for several reasons. 
First, each method focuses on specific changes of interest which are different from one 
study to another. Second, these approaches are based on different sets of satellite 
images having their own properties such as time interval and study region. Third, given 
that change indices are generally different from one study to another, change detection 
methods cannot be directly compared. Only few studies have quantitatively compared 
change detection methods. For detecting tropical forest clearing and re-growth on a 3-
image dataset, highest performances were achieved using the multi-date NDVI 
classification, also called RGB-NDVI, compared to NDVI differencing and PCA (Hayes 
and Sader, 2001). With the recent complex techniques, change detection methods 
become more difficult to be indictor and results appear to be site and data-specific. The 
comparison is thus done by modifying only one step: the single-date index, the multi-
date transformation, or the change detection algorithm. Comparing several change 
detection approaches for detecting forest changes, both Lu et al. (2005) and Nackaerts 
et al. (2005) clearly recommended to combine image differencing from all spectral 
bands for achieving the best results. Guild et al. (2004) have compared hybrid methods 
by changing only the multi-date transformation. Using tasseled cap components, the 
simple multi-date unsupervised classification was found better than the two other 
methods using multi-date unsupervised classification based either on multi-date PCA 
or on image differencing. 
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3 Study area and research data acquisition 

3.1 Study area 

3.1.1 Location of the study area 

El Rawashda forest reserve, Gedarif State is situated at approximately latitude 14
0 

15
\ 

N and longitude 35
0
 45

\
 E (figure 3.1). The official gazetted area is 27290 hectares. 

The State boarded by Kassala state to the north, Kahrtoum state to the northwest, 
Sinnar state to the south, Gezira state to the west and Eriteria to the east. Its average 
altitude is 600 meters above the sea level. The region under consideration is about 490 
km from the capital Khartoum and 770 km from Port Sudan city, the main sea port of 
Sudan. Thus the region’s geographical position is favorable to domestic and foreign 
trade (Omer, 1989). El Rawashda forest reserve lies in the semi–arid zone in the part 
of south central clay plains near to the transition between Acacia mellifra and Acacia 
seyal-balanites savannah woodland. 

3.1.1.1 Topography 

El Rawashda reserve forest is located in the part of the south central clay plains that 
slopes gently down from the basaltic Gedarif – Gallabat ridge at 650 m a.s.l. to the 
Atbara River. The elevation of El Rawashda forest is about 500 m a.s.l. The relief is 
very gently undulating, with slopes of 0.1- 0.5 percent (Eltayeb 1985; Vink 1987). 

3.1.1.2 Geology 

Underlying El Rawashda are non-out cropping tertiary basic volcanics, mainly basalts. 
Stoniness. Bedrock close to the surface is evident in just a few spots (Tohill, 1948). 
According to Laing (1953), the Characteristics for the reserve are the dark cracking 
clay vertisols formed on colluvio-alluvium derived mainly from basic rock. 

3.1.1.3 Soil 

The area is characterized by a semi-arid climate which is related to soils having dark 
colors, a high clay content and strong vitriolic properties. The area includes a large, 
rather uniform, clay plain intersected by small valleys. The clay content is very high 
and generally 75% to 80%. The color of the soils is very dark grayish brown. The 
organic matter and nitrogen content of the soil are low but as there is no deficiency of 
other plant nutrients, the soils are moderately fertile. The water holding capacity of the 
soil material is very high. This, in combination with the deep penetration of water in the 
soil through the vertisolic cracks, causes the available water holding capacity of the soil 
to be very high. This high water holding capacity allows crops to grow on stored water 
during dry spells and long after the rainy season. The soils also have undesirable 
physical characteristics, such as a low permeability when wet, causing soils in water 
receiving sites to be waterlogged for certain periods during the rainy season. Also, the 
soils are difficult to cultivate as they are very hard when dry and very sticky and plastic 
when wet, causing the moisture range at which the soils can be cultivated to be very 
narrow. Thus, mechanization of the land preparation operation is critical to work in this 
narrow time frame. In fact, without mechanization, it would be impossible to develop 
these vast areas of vertisols (Vink, 1987). 
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Figure 3.1: Location of the study area 
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3.1.2 Physical Characteristics of El Rawashda Reserved Forest 

 

Figure 3.2: El Rawashda Reserved Forest, Sudan, showing excavation running along the forest 

Photograph by the author. July 2005 

 

3.1.2.1 Climate 

Climatologically El Rawashda lies in the semi-arid zone, with summer rains and warm 
winters, characterized by a unimodal rainfall pattern. The length of rainy season 
fluctuates around seven months i.e. from April to October and the peak of rainfall is in 
August. The amount and distribution of rainfall in the study region varied during the 
period 2002-2009 (figure 3.3). Rainfall varied from 200 mm to over 500 mm with an 
annual average of 424 mm during this period. According to the figure, 2008 received 
the highest amount of precipitation (555.7 mm) followed by the year 2003 (524.8 mm); 
and the lowest amount of rainfall was recorded in 2004 and 2009 (293.8 and 344.7 
respectively). Indeed, these variations affect the level of crop yields and hence 
comprise a major source of risk in the study area. Moreover, hazards of delays in 
rainfall commencement and subsequent poor rainfall distribution often necessitate re-
planting and hence create additional cost of production. Rainfall is also considered as 
an important factor in determining the type and the variety of crops to be grown and the 
agricultural techniques to be used for optimum production. 

The south- west monsoon maritime wind, responsible for bringing the rains of Sudan, 
blows across Gedarif area from May to October. From November to April, the area 
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experiences the prevailing northerly wind or what is the same as the dry North East 
Trade winds (Sudan Meteorological Department, 1970).  

Temperatures are very high in summer and mild in winter. The average daily maximum 
temperature ranges from 25° to 40° C, while the average daily minimum temperature 
ranges between 13° and 20° C. Relative humidity rises from its normal level of around 
20-30% through most of the year to 60- 70% in the wet season. 

 

Figure 3.3: Average Annual Rainfall, El Rawashda Region, 2002-2009 

Source: Meteorological Station, Gedarif, 2010 

 

3.1.2.2 Vegetation 

Gedarif State lies in the zone of low rainfall woodland savanna (Harison and Jackson 
1958). El Rawashda forest is located near the transition between two main vegetation 
types of low-rainfall woodland savanna on clay: Acacia mellifera at horn land and 
Acacia seyal-Balanites aegyptiaca woodland (Harrison and Jackson, 1958). 

Acacia mellifera thorn land alternates with semi-desert grassland and occurs northward 
from the 400-500 mm isohyets (Vink, 1987); Acacia mellifera thickets dominate the 
vegetation. Acacia seyal – Balanites aegyptiaca wood land emerges with a sharp clear 
ecotone south of Acacia mellifera thorn land and with an increase in the annual rainfall 
to more than 500 mm (Harrison and Jackson 1958, Vink, 1987). The most dominant 
grass of the forest is Cymbopo gonnervatus. 
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3.1.3 Social and land-use characteristics 

3.1.3.1 Population in Gedarif State with special reference to El Rawashda 

El Rawashda area with its forest reserves is situated between two sizeable 
consumption centres of forest products, i.e. Showak and Gedarif (Figure 3.4). In 1982, 
the Gedarif State was estimated to have a population of 195,000 of which 27% were 
urban and 73% represented rural farmers (Elmoula, 1985). The total population in 
1995 was estimated at about 1,230,000 persons (Elmubarak, 2002). The major ethnic 
groups are groups of Arabs comprising semi-nomadic, settled, rural and urban people. 
It includes mainly the Lahaween and the Shukriya and others. West Sudanese and 
West Africans, representing a large population of the labour force in the state, and a 
significant number of Ethiopian and Eriterian refugees have settled in the state. The 
estimated number of refugees according to the 1993 census was 360,000, 
representing 30% of the population (Elmoula, 1985; Eltayeb, 1985). According to the 
1983 census and on a 1987 estimate, the population in El Rawashda area having 
close relation with El Rawashda forest reserves was registered as comprising 15,000 
villagers and 4,500 refugees (Vink, 1987). 

 

Figure 3.4: Map of Gedarif showing the situation of El Rawashda forest 

Source: http://en.wikipedia.org/wiki/Districts_of_Sudan#Al_Qadarif 
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3.1.3.2 Land-use, land use changes and their influence on the forests 

Agriculture is the main economic activity, followed by livestock raising in the traditional 
seasonal transhumance pattern (Figure 3.5), village livestock raising and, as a recent 
element, livestock raising by large-scale mechanized merchant-farmers investing 
surplus wealth in cattle. Gum tapping, collecting and trading forest products and 
charcoal burning are other traditional forms of economic activity. Thus, the people 
derive their income from various combinations of the three main forms of land-use: 
agriculture, grazing, and forest exploitation. Mechanized rain-fed crop production, has 
considerably reduced the land available for small-holder farming and for grazing 
(Glover, 2005). Elmoula (1985) stated that the traditional pattern of land-use has been 
profoundly changed by population growth, the influx of refugees from Ethiopia, a 
succession of drought years and more than anything else, the unbridled expansion of 
large-scale mechanized farming since the 1940s. 

 

Figure 3.5: Livestock raising in the traditional seasonal transhumance in El Rawashda forest 

Photograph by the author. 2006 

 

By blocking the extension of traditional shifting cultivation as the population grows, the 
expansion of large-scale mechanized farming has gradually reduced the soil-restoring 
fallow period to zero, while creating landless peasants in the process. Continued 
mono-cropping on traditional and large scale mechanized agriculture has caused a 
decline in crop yields and an increase in infestation of cropland by the hemi-parasitic 
plant Strigaher montheca. Mechanized farming has taken over nomads’ traditional 
grazing lands and blocked traditional migration routes (Glover, 2005). 
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3.1.3.3 Socio-economic background of the nomad 

The nomads mainly belonged to the various branches of the Rashaida, who originally 
had emigrated from Saudi Arabia some 150 years ago. These people were of Middle 
Eastern or even Indian origin with colorful clothing (See figure 3.6).  

The Rashaida stayed each year from late November until late June inside the New 
Halfa Scheme, after which they returned to Gedarif and Kassala plains when the rainy 
season started, for preparing their rainfed sorghum fields. The Rashaida moved 
around and lived in groups of five to ten families which could change in composition 
each year. The Rashaida could still have large herds of sheep and goats and a few 
camels. In 2002-2003 some households also had cattle that provided milk income. 
(Helsinki, 2007). 

3.1.4 Management Units 

Two kinds of management systems have been dominated the land use activities inside 
the natural forest reserves in the El Rawashda area. They are known as the El 
Rawashda Model I and El Rawashda Model II, respectively. Both models have one 
thing in common, i.e. the partnership between FNC and the local people in planting, 
protecting and deriving befits from forest reserves. 

 

Figure 3.6: Movement of nomad groups in El Rawashda forest 

Photograph by the author, 2006 
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3.1.4.1 El Rawashda model I 

The FAO Fuel wood Development for Energy Project in Sudan (1983-1989) designed a 
management plan for the El Rawashda forest (Vink, 1987; FNC, 2000; Ibrahim, 2000). 
The general theme of the plan was the participation of local inhabitants in the 
development of the reserved forest by their responsibilities to the forestry rehabilitation 
program (replanting trees in taungya system). The forest committee, which was 
formulated by the local inhabitants, was also responsible for the protection of the 
reserved forest against illicit felling, illegal grazing, etc. In return, the community of 
local inhabitants was eligible to forest products as determined by the forestry service in 
those compartments prescribed by the plan. 

The centralized forest management system involved management control under the 
forestry authorities where tree establishment was carried out by different methods 
including local people, but protection was executed by the forest guards and officers 
(Glover, 2005). 

3.1.4.2 El Rawashda Model II 

In El Rawashda model II, selected blocks of degraded parts of El Rawashda forest 
reserve were allocated for integrated land use involving a rehabilitation process and a 
participatory approach. The model includes partnership between FNC and the local 
people in planting, protecting and getting benefits from forest reserves. 

The model, designed by the forestry component of the Agricultural Development 
Project for the Eastern Sudan (ADES) is very similar to the FAO model, with the 
exception that the local inhabitants have nothing to do with the final felling. They are 
not allowed to collect firewood or other forest products other than those prescribed as 
rights and privileges in the Forest Act of 1989. The collaboration has been developed 
since 1994 on the basis of a contract between the two partners granting the farmers 
security of land tenure for crop (e.g. sorghum, millet and sesame) cultivation inside the 
reserve. The system grants each farmer land for cultivation each year, in a way that 
75% of the land is used for crops and 25% for forest stand establishment. This is 
continued annually for four years until the whole piece of land is reforested. Then 
another piece of arable land within the forest reserve is targeted. The forest authorities 
provide the tree seeds and supervise the guarding and patrolling exercised by the 
farmers and forest guards as a joint activity. Farmers also accept to pay 10 to 20% of 
the grain products to the forest authorities, who issue licenses to the people and local 
bakeries, at low royalties, for gathering dead wood and fallen trees under the control of 
the forest guards.  

The contract outlines the responsibilities and obligations of each farmer for cultivation 
inside the forest reserve. It implies that the government secures the land and the seeds 
to farmers. The contract also provides for efficient protection exercised by the farmers 
and the forest guards (Glover, 2005). 

3.2 Research data acquisition 

3.2.1 Field sampling 

The Aster image was taken on 26 of February, 2006, while the first field work was 
undertaken about seven months later during the month of September, 2006. This is not 
an ideal situation and may give some inconsistencies between these two data types. 
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Ideally, field work and the images should be from about the same period of time so that 
the data correspond as much as possible. For that reason another field work was 
undertaken in March of 2007. 

Fieldwork was carried out to collect data for training and validating land cover 
interpretation from satellite image of 2006, and for qualitative description of the 
characteristics of each land cover class. Also, it is necessary to collect other ancillary 
data and historical data required for classification of 2000 and 2003 images. In order to 
create a testing sample set, first of all a set of testing points was selected randomly. 
However, reaching all those random points in practice was found infeasible because El 
Rawashda forest is a very difficult to access, especially areas which are very far from 
the road/path. This resulted in the field check of 285 points (figure 3.7). For 
classification of images of 2000 and 2003, simple random sampling was applied.  

 

Figure 3.7: Field observation points 

 

3.2.2 Data collection for study area 

3.2.2.1 Landsat Imagery 

Landsat ETM imagery of 29th March of the year 2000 and of 22th March of the year 
2003 was acquired from the web based data archives of the Global Land Cover Facility 
(GLCF). This data is offered by the USGS for natural resources research. Data 
specifications are described in table 3.1 and 3.2.  
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Table 3.1: Satellite imagery and its specifications used for bi-temporal change detection 

Sensor Platform Date Path/row Band 
Spatial 
resolution 

ETM+ Landsat 7 29-03-2000 171/50 1-5, 7 28.5m 

ETM+ Landsat 7 22-03-2003 171/50 1-5, 7 28.5m 

Aster Terra 26-02-2006  
3B(VNIR) 

SWIR 

15m 

30m 

 

Table 3.2: Landsat specification 

Band Spectral Resolution 

2 (Green) 0.53-0.61 µm 

3 (Red) 0.63-0.69 µm 

4 (Near IR) 0.78-0.90 µm 

5 (Middle IR) 1.55-1.75µm 

7 (Middle IR) 2.09-2.35 µm 

 

3.2.2.2 Aster Imagery 

Aster of 26th February of the year 2006 was ordered from the web based data archives 
of the National Aeronautics and Space Administration (NASA). Data specifications are 
described in table 3.3. 

 

Table 3.3: Aster specification 

Band Label Wavelength Resolution 

B2 VNIR_Band2 0.63-0.69 15m 

B3 VNIR_Band3N 0.76-0.86 15m 

B4 VNIR_Band3B 0.76-0.86 15m 

B5 SWIR_Band4 1.60-1.70 30m 

3.2.3 Image pre-processing 

3.2.3.1 Atmospheric correction 

Several factors independent of ground cover can significantly affect spectral 
reflectance as measured by the sensor. Electro Magnetic Radiation (EMR) used for 
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remote sensing passes through atmosphere of the earth. The effects of the 
atmosphere on the signal are mainly caused by scattering and absorption. They vary 
with the path length, the atmospheric conditions and the wavelength. Atmospheric 
absorption results in the loss of energy to atmospheric constituents. (Lillesand and 
Kiefer, 2008). Scattering, the redirection of electromagnetic energy by particles 
suspended in the atmosphere, is the reason why the radiation arriving at the sensor 
consists of the following components:  

− Radiance reflected from the earth’s surface 

− Radiation scattered directly to the sensor without reaching the earth’s surface 

− Radiation scattered to the ground (diffuse radiation, skylight) being reflected to 
the sensor 

− Surface-reflected radiation partly scattered both directly to the sensor and to the 
ground. 

Thus a sensor will receive not only the directly reflected or emitted radiation from a 
target, but also the scattered radiation from a target and the scattered radiation from 
the atmosphere, which is called path radiance (Lillesand and Kiefer, 2000). 

Many correction methods have been proposed in several studies to remove the 
atmospheric effects. Song et al. (2001) made evaluation of several correction methods 
based on land cover classification and change detection accuracies applied on a 
multitemporal dataset of seven Landsat TM images.  

In this research the algorithms available from PCI Geomatica Enterprises Inc. for 
ATCOR were used because the only ancillary data required are the solar zenith angle 
of each image and the location of stands. 

The atmospheric models require the selection of atmospheric properties. These are 
predefined and are tropical, mid-latitude, or the US standard atmosphere and are also 
rural, urban, desert, or maritime. For this area the dry, arid and rural atmosphere best 
described the study area. The atmospheric model also uses sensor calibration defaults 
and solar zenith angles to calculate reflectance values. A variable, optical visibility has 
to be calculated for each image to perform the final algorithms in the atmospheric 
correction package. This requires the selection of a target with known reflectance 
values, which are compared with the reflectance values calculated within each image. 

3.2.3.2 Image to image registration 

Image registration is the process of making an image conform to another image and 
involves geo-referencing if the reference image is already rectified to a particular map 
projection. Thus image to image registration is usually used for time series data like 
multi-temporal images over the same region in order to place the same coordinate 
system to disparate images (Lee et al., 2007).  

Therefore, the two Landsat images acquired in 2000 and 2003 were already rectified to 
Transverse Mercator projection and the third Aster image acquired 2006 was co-
registered with image to image registration method. The total root mean square error 
(RMSE) of the registered images was 0.15 pixel, which was quite low to accept the 
RMSE limit required for the change detection. In general, RMSE limit for the change 
detection is preferred less than 0.5 pixel when registering the images. 
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4 Methods of Change Detection 

4.1 Descriptions of land cover classes 

This section describes the land classes used for land cover mapping from satellite 
images (Figure 4.1). 

1. The closed forest class represents the evergreen forest; the crown coverage is 
over 60%. 

2. The open forest class corresponds to forest which has been disturbed by 
human activities. It is composed predominantly of regeneration forest from the 
past disturbance such as slash and burn, or logging. The crown coverage is 
generally below 60 %. 

3. Grassland represents small scrub species, Agricultural fields and early stage 
colonizing species. Some of the grassland is also included in this class since 
the area of grassland is negligible and often distributed near or mixed with 
shrub. 

4. Bare land consists of crop fields, built-up areas, water bodies and bare soil. 
This is because it is very difficult to differentiate crop fields, especially the 
annual crops and bare soil. Also, the settlement area is often a mixture of 
scatter small gardens and built up objects, which makes it difficult to separate 
them in the image. 

4.2 Classification of images using Maximum likelihood 
Classifier 

The classification algorithm, which is based on the training sample information, is 
needed to classify the image. Algorithms like the parametric classifier require statistical 
information and are categorized as parallelepiped, minimum distance, and maximum 
likelihood approach. In this study the maximum likelihood algorithm has been applied. 
It is the most common approach and is frequently used in research and application 
(Heikkonen and Varjo, 2004).  

The classification of the Landsat ETM 2000, 2003 and Aster 2006 imagery into land 
cover classes was carried out through a number of steps of supervised classification 
including: selection and use of training sets (sample points), classification using the 
maximum likelihood classifier, generation of output and accuracy assessment. 



 

Figure 4.1: Land cover classes in El Rawashda forest

Photograph by the author, 2006 

 

The classification was implemented using the maximum likelihood classifier methods of 
PCI Geomatica. At the outset, several classification trials and evaluation of the 
correspondent accuracy results in an iterative manner, aiming at refining the initial 
training set. The signature for each of the land cover types found in the study area was 
determined with the help of a training set of GPS coordinates corresponding to the 
cover types for Landsat image 2006. A number of pixels representing each cover type 
spectra were collected and assigned to the specific land cover classes for which the 
likelihood of being a number was maximum. The remaining set of points collected from 
the field representing each cover type was used as the validation set. The classes of 
forest cover degradation defined comprehended: close forest, open forest, grass land 
and bare land. Bare land and water bodies were grouped together during the data 
processing, since the occurrence of water represent non vegetated area. Agricultural 
schemes and grasses formed another combined group, considering the fact that the 
same indicators were useful for both. The direction of the influence of these indicators 
in forest cover was defined through the use of multivariate analysis (Principal 
Component Analysis); the scores generated in the PCA gave the clear expression of 
the vegetation cover. The classes were intended to provide a basis for the investigation 
of spatial distribution of vegetation c
establishment of classes expressing the levels of vegetation cover can bring about 
some subjectivity, due to the need of use of qualitative endpoints.
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4.3 Accuracy assessment of classified images 

The overall classification accuracy is the percentage of correctly classified samples of 
an error matrix. It is computed by dividing the total number of correctly classified 
samples by the total number of reference samples. 

To determine the accuracy of the image classification for the Landsat 2000 and 
Landsat 2003 images for which no ground validation data or aerial photography was 
available, the stratified random sampling method (Jensen, 1996) was used to generate 
155 reference points for the whole study area. These points were collected according 
to the different strata and overlaid on the unclassified image to check if the class given 
falls into the same spectra as was used to collect the training samples. A comparison 
of the Landsat classified images was made with the classified Aster image for which 
ground validation points were available. The results of the overall classification 
accuracy, producer’s and user’s accuracies, and Kappa values for each land cover 
derived from the error matrix were used to determine how well the classification was 
done.  

 

Figure 4.2: Samples representing the land cover classes according to the spectral radiance of 
Aster (pc1, pc2, pc3) in the study area 

 

4.4 Calculation of Vegetation Indices as independent 
variables 

Normalized Difference Vegetative Index (NDVI), Soil Adjusted Vegetative Index 
(SAVI), and Transformed Difference Vegetative Index (TDVI) were created for each 
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image collection date at each spatial scale, and were analyzed individually. The NDVI 
index was used because it is the most widely used in global vegetation studies today 
(Lunetta and Elvidge, 1999). The SAVI index was used because it was developed to 
minimize the influence of the soil background on the vegetative reflectance (Huete 
1988). The TDVI index was used because it does not contain the saturation concerns 
that NDVI has and also minimizes the influence of the soil background, similar to the 
SAVI index (Bannari et al., 2002). 

4.4.1 NDVI 

The NDVI was derived from the difference between the maximum absorption of 
radiation in the red spectral wavelength and the maximum reflection of radiation in the 
near infrared spectral wavelength for each image where: 

���� = ��� − ��	
��� + ��	 

 

4.4.2 NDVI-RGB 

Three NDVI composites for the years 2000, 2003 and 2006 were projected on a RGB 
axis following the RGB-NDVI change detection strategy of Sader and Winne (1992). By 
simultaneously projecting each date of NDVI through the red, green, and blue (RGB) 
computer display write functions, major changes in NDVI (and hence vegetation cover) 
between dates appeared in combinations of the primary (RGB) or complimentary 
(yellow, magenta, cyan) colors. Knowing which date of NDVI is coupled with each 
display color, we visually interpreted the magnitude and direction of vegetation 
changes in the study area over the three dates to detect the major decreases or 
increases in green biomass associated with forest harvest or regeneration.  

4.4.3 SAVI 

Vegetation indices largely depend on the canopy of the forest, surface area of the 
green vegetation and their reflective value can be considerably affected by the 
reflection from the soil surface. Since the forest in the study area has a lot exposed 
bare ground and open forest and a sparse canopy in most areas, the SAVI index that 
includes a soil correction factor was used. This compensates for the relative soil effect 
while at the same time accounting for the amount of vegetation present. Being an open 
dry Acacia forest also, the effect of the soil background noise on the remotely sensed 
reflectance could cause giving biased strong relationship with biomass which would not 
be accurate. This index includes a soil adjustment factor that ranges from 0 for very 
high vegetation cover to 1 for very low vegetation cover. A value of L= 0.5 was used in 
this study and is recommended since it permits the best adjustment, by minimizing the 
secondary back scattering effect of the canopy transmitted soil background reflected 
radiation (Huete, 1988). 

���� = 
1 + �� ∙ 
��� − ��	�
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43 

 

4.4.4 TDVI 

The Transformed Difference Vegetation Index (TDVI) developed by Bannari et al. 
(2002), was tested in this study. TDVI does not saturate like NDVI or SAVI, it shows an 
excellent linearity as a function of the rate of vegetation cover. 

���� = 1.5 ∙ �
��� − ��/����� + � + 0.5� 

4.5 Index Differencing 

Image differencing was applied to vegetation images that were derived using three 
vegetation indices: NDVI, SAVI, and TDVI. In all cases, the 2000 transformed data 
were subtracted from 2003 transformed data and the 2003 transformed data were 
subtracted from 2006 transformed data, resulting in new images. A series of threshold 
values based on standard deviations from the mean were used on the new images to 
determine the changed from unchanged pixels. A visual assessment on the no-
change/change pixels was performed to determine the threshold value with the highest 
accuracy. A process of labeling needs to occur to assign the appropriate "from" and 
"to" identifiers. 

4.6 Tasseled Cap Transformation 

The TCT was applied to each of the three images. The TCT coefficients in PCI 
Geomatica were used for this study. The results of the TCT produce an image file that 
consists of three bands which have been attributed to soil brightness, vegetation 
greenness, and soil or vegetation wetness. 

The composite of the three TC components for all images was used to provide the 
change information over the entire temporal periods from 2000 to 2003 and from 2003 
to 2006. The hypothesis was that the TC composite would detect more change than 
the vegetation Indices because it takes into account all three of the spectral regions 
frequently used for vegetation studies (red band , near-infra red band and mid-infra-red 
band ), whereas the vegetation indices only consider two of the three.  

For change detection purposes, the Tasseled Cap transformation results of Landsat 
and Aster data sets were utilized using the image differencing technique, only the 
greenness layer was used in pairs in order to delineate the variance in vegetation 
between the pairs of the two periods. 

4.6.1 RGB-TCG 

Three TCG (Tasseled Cap Green) layers composites for the years 2000, 2003 and 

2006 were projected on a RGB axis following the RGB-NDVI change detection strategy 
of Sader and Winne (1992). This method was proposed because we found similar 
patterns of temporal change for the NDVI and TCG layer. 

When determining change, RGB-TCG incorporated three dates at one time as 
opposed to two-date sequences used with other methods, moreover the method 
straightforward and time efficient. Finally, the analysis of cluster statistics and visual 
interpretation of RGB-TCG layers composites aided by additive color theory logic 
(Sader & Winne, 1992), facilitated identification of change representing forest clearing, 
no change and re-growth in a time. 
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4.7 Change Vector Analysis 

For this study the change vector analysis technique was performed using a designed 
tool imported to IDL ENVI. Johnson and Kasischke (1998) suggest that CVA is most 
likely to be interpretable when multiple, phenomenological relevant spectral features 
are used as the input data rather than the raw data. This tends to be the case in the 
majority of CVA change detection studies and very seldom is the raw data used as an 
input. However, because some types of change are biophysical variables, this study 
relies on two different spectral data sets: original ETM and ASTER bands and the 
components of the Tasseled Cap transformation, brightness (B), greenness (G) and 
wetness (W). With this method, two images are computed: one image for the vector 
intensity and another for the vector direction. The first image contains the information 
of change, while the second contains information on the type of change. 

4.8 Mapping with Conventional and Selective Principal 
Component Analysis 

For the present study, PCA for change detection was applied by two ways: First, 
Multitemporal PCA. Second, Selective PCA for the three dates of Landsat and Aster 
images.  

4.8.1 Multitemporal PCA: the conventional approach 

Multitemporal PCA was performed using the 10 reflective bands of the two dates 2000 
and 2003 and the two dates 2003 and 2006 images. More specifically a bi-temporal 
feature space was constructed by placing the two image vectors in the same space. By 
constructing a bi-temporal feature space, it is possible to use the general concept of 
principal components applied to change detection, which interprets that the pixels that 
have not suffered change will tend to lie around the first principal component and the 
changed pixels will tend to lie around the second principal component, which is 
orthogonal to the first. In this study all the bands are used to construct the bi-temporal 
feature space. By doing so, it is possible to project in two dimensions all the 
transformed data obtained from the images. This will lead to an easier interpretation of 
the results because all the change information will be expected to be in the second 
principal component. It also permits to take advantage of all the information in the 
images. This means that for every band there is going to be a second image 
component that will offer unique information of change.  

4.8.2 Selective PCA 

Selective PCA for change detection was applied by band wise for the two periods 
(2000-2003 and 2003-2006). PCA was performed for band1 time 1 and band1 time 2, 
band2 time 1 and band2 time 2…etc. This was applied to the original Landsat ETM 
and Aster dataset (bands 1-5). By using only two bands, the information that is 
common to both images is mapped to the first component and information that is 
unique to either one of the two bands (the changes) is mapped to the second 
component, so PCs2 were examined as a measure for change.  

In both Multitemporal PCA and Selective PCA methods, the PCs were obtained with 
the correlation matrix, i.e., the PCs are standardized. 
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4.9 Change Detection by Multivariate Alteration Detection 

In this study the applicability of the multivariate alteration detection (MAD) 
transformation with the maximum autocorrelation factor (MAF) post-processing to 
multivariate and bi-temporal change detection studies was demonstrated by cross-
matrix between two images for the two periods (2000-2003 and 2003-2006).The 
statistical properties of the MAD variates are accurate which make them very useful for 
analyzing change information and for imagine. The MAF transformation serves to 
reduce dimensionality and to enhance spatial coherence of the difference components. 
In the present instance, we have used the MAF transformation to improve 
effectiveness of the MAD result and to find maximum change areas with high spatial 
autocorrelation. In this way, change information can be separated from noise to the 
greatest extent, so that we can solve the technical problem of effectively concentrating 
change information and we can produce difference image more clearly. 

Interpretation of the resulting change images was based on correlations between the 
transformed variates and the original data. 

Change-no change decision thresholds was applied to the MAF/MAD variates 
separately in order to generate color coded change images. The sum of squares of the 
standardized MAD components (the MAD components divided by their standard 
deviations) is approximately chi- square distributed, enabling no-change thresholds to 
be set easily. 

4.10 Accuracy assessments for change detection 
techniques 

From the outset of this research, it was known that accurate field or remote sensing 
based validation data for the images would be unavailable. As an alternative, validation 
was conducted by visually identifying areas of change or no-change in magnified 
displays of the RGB composites. This analysis was conducted for the original images 
to determine the best data transform. To accomplish this, a manual supervised 
classification was conducted to a subset of each image (64728 pixels) and then 
change detection was conducted by computing image difference. Hereafter the result 
map was used as a reference. The change detection was conducted with the 
transformed images to assess its completeness in spatially detecting vegetation 
change. 

The accuracy assessment for change detection is particularly difficult due to problems 
in collecting reliable temporal field-based datasets. Therefore, much previous research 
on change detection cannot provide quantitative analysis of the research results. 
Although standard accuracy assessment techniques were mainly developed for single-
date remotely sensed data, the error matrix-based accuracy assessment method is still 
valuable for evaluation of change detection results. Some other methods have also 
been developed to analyze the accuracy of change detection (Morisette and Khorram, 
2000, Lowell, 2001). 

In this study the accuracy assessment based on change/no-change pixels was 
performed. The result of the reference map for change/no change was subtracted from 
the result of change/no change map of each change detection technique, then the 
Pseudo Colour table of the software PCI Geomatica was adapted (figure 4.3).  
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Figure 4.3: Change and no change error matrix. 

 

4.11 Object-Oriented Classification of references data by 
eCognition 

The classification of the reference imagery was done by the software eCognition 
(figure 4.4). Object-oriented classification is based on image segmentation and results 
in a more accurate mapping product with higher detail in class definition. The first step 
in object-oriented analysis with eCognition is a segmentation of the image. This 
process extracts meaningful image objects (e.g. roads, buildings, vegetation) based on 
their spectral (figure 4.5) and spatial characteristics (figure 4.6). In eCognition the 
segmentation is a semi-automated process where the user can determine specific 
criteria that affect size and shape of segments of the resulting image. The resulting 
objects are attributed not only with spectral statistics but also with shape and context 
information, relation to neighboring objects and texture parameters. The segmentation 
was performed by equally weighting of all bands, using the following parameters: Scale 
10, Shape 0.1; Smoothness 0.5. The image classification in eCognition is based on 
user-defined fuzzy class descriptions based on spectral and spatial features. In 
general, the program uses a nearest neighbor algorithm, which performs class 
assignment based on minimum distance measures. The classification process includes 
a variety of different information, ranging from spectral mean values for each object, to 
measures of texture, context and shape. The aim of classification is to provide an 
accurate land cover classes that forms a reference of change map and further analysis 
to test the accuracy of other change detection methods. Accordingly, the definition of 
the land cover classes has to be based upon the major land cover classes: grass land, 
close forest, open forest and bare land.  

No change

No change

Change

Change
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Figure 4.4: Classification of the reference imagery by eCognition 

 

  

Figure 4.5: Segmentation based on pixel-       Figure 4.6: Segmentation based on object- 
based                                                               based 
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5 Results 

5.1 Classification and Change Detection Accuracy 

The classification of change detection for El Rawashda forest was based on Maximum 
Likelihood supervised classification using 4 classes: Bare land, Grass land, Open 
forest and Close forest. At the outset of this research, it was known that accurate field 
or remote sensing based validation data for the years 2000 and 2003 would not be 
available. As an alternative, validation was conducted by visual interpretation, field 
data and with the help of unsupervised classification. The resulting 2000 and 2003 
classifications and 2003 and 2006 classifications were used as inputs to produce 
change maps. This yielded change images in which 16 types of change between the 
two periods are potentially possible. 

Overall classification accuracy and Kappa Coefficient were computed to provide 
measures of the accuracy of the classification. The user’s and producer’s accuracy as 
well as elements of the error matrix was calculated to assess error patterns of the 
respective classification. For this study a total number of 155 reference samples were 
used. 

Landsat ETM 2000 

Figure 5.1 shows the result of supervised classification and table 5.1 represents error 
matrix of Landsat ETM data of the year 2000. The Kappa coefficient was 0.79 and the 
overall accuracy was 88.4%. Areas highlighting grass class appeared with a user’s 
accuracy of 84.6% and producer’s accuracy of 100%, closed forest revealed user’s 
accuracy of 92.2% and producer’s accuracy of 80.5%. The lowest user’s accuracy and 
producer’s accuracy were obtained in open forest classes which were 80% and 70% 
consequently. Bare land showed a user’s accuracy of 100% and producer’s accuracy 
of 88.8% (table 5.2)  

Landsat ETM 2003 

Figure 5.2 shows the result of supervised classification and table 5.3 represents error 
matrix of Landsat ETM data of the year 2003. The Kappa coefficient came up to 0.89 
and the overall accuracy was 91.9%. The sample pixels for most classes showed more 
or less high spectral variability which facilitated difficulties in separating each class 
from other. Areas highlighting grass class appeared with a user’s accuracy of 92.6% 
and producer’s accuracy of 97.4%, closed forest displayed high user’s accuracy of 
97.4% and producer’s accuracy of 90.4%. The lowest user’s accuracy and producer’s 
accuracy were obtained in open forest classes which were both 76.9%; the spectral 
reflectance of the open forest training data was heterogeneous. Thus the problem in 
separating these classes was the major source of misclassification. Bare land showed 
a user’s accuracy and producer’s accuracy of 93.3% (table 5.4).  

 

 

 

 



 

Table 5.1: Error matrix of ETM 2000 

 

Table 5.2: Producer’s and user’s accuracy of ETM 

 

Table 5.3: Error matrix of ETM 2003 

 

Table 5.4: Producer’s and user’s accuracy of ETM 

 

 

 

 

Classified 

Data

Class1

Class 1 33

Class 2 7

Class 3 2

Class 4 0

Totals 42

Classes
Producer’s

accuracy

Class 1 100%

Class 2 80.5%

Class 3 70.0%

Class 4 88.8%

Classified 

Data
Class1

Class 1 35

Class 2 0

Class 3 2

Class 4 4

Totals 41

 

: Producer’s and user’s accuracy of ETM 2000 classification 

 

Producer’s and user’s accuracy of ETM 2003 classification 

Reference Data

Class 2 Class 3 Class 4 Totals

0 3 0 36

35 0 2 44

0 37 0 39

3 0 33 36

38 40 35 155

User’s

accuracy

84.6%

92.2%

80.0%

100%

Class No. Land cover classes

1 Grass land

2 Close forest

3 Open forest

4 Bare land

Reference Data

Class 2 Class 3 Class 4 Totals

2 0 1 38

35 3 2 40

0 37 0 39

0 1 33 38

37 41 36 155
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Aster 2006 

Figure 5.5 shows the result of supervised classification and table 5.5 represents error 
matrix of Aster data of the year 2006. The Kappa Coefficient took a value of 0.89 and 
overall accuracy of 92.1%. In this classification, grassland, close forest and open forest 
showed a balanced producer’s and user’s accuracy and also the producer’s accuracy 
was relatively low for open forest (88.8%) and confusion may be result from the 
presence of low height open forest stands in the forest as well as in the class 
boundaries. Bare land sample data appeared to be well defined with producer’s 
accuracy of 96.8% and also with a user’s accuracy of 93.9% (table 5.6). 

 

Table 5.5: Error matrix of Aster 2006 

 

 

Table 5.6 Producer’s and user’s accuracy of Aster 2006 classification 

 

 

5.2 Post Classification Change Detection 

Maps of the major land cover types and the changes from 2000 to 2003 and from 2003 
to 2006 are shown in Figure 5.3 and Figure 5. 6. There are several ways to quantify 
the land cover change results. One basic method is to tabulate the totals for each land 
use cover type and examine the trends between the years. 

Reference Data

Classified Data Class1 Class 2 Class 3 Class 4 Totals

Class 1 43 2 0 0 45

Class 2 1 40 3 1 45

Class 3 0 3 32 0 35

Class 4 1 0 0 29 30

Totals 45 45 35 30 155

Classes Producer’s

accuracy

User’s

Accuracy

Class 1 93.4% 95.5%

Class 2 90.1% 90.1%

Class 3 88.8% 91.4%

Class 4 96.8% 93.9%

Class No. Land cover classes

1 Grass land

2 Close forest

3 Open forest

4 Bare land
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Figure 5.1: Supervised classification of             Figure 5.2: Supervised classification of  
ETM 2000                                                          ETM 2003 

 

 

Figure 5.3: Change map 
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Figure 5.4: Supervised classification of ETM 
2003                                                                    

 

Figure 5.6: Change map 
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Supervised classification of ETM      Figure 5.5: Supervised classification of Aster  
                                                          2006 
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The tables below demonstrate the kind of land cover changes, namely “from-to” 
information, that occurred during the period from 2000 to 2003. Note that the pixels 
without change are located along the major diagonal of this matrix.  

 

Table 5.7: Comparison of classifications, absolute  number of pixels (GL = grassland, CF = close 
forest, OF = open forest, BL = bare land) 

  Classification 2003  

  GL CF OF BL ∑ 

C
la

s
s
if
ic

a
ti
o
n
 2

0
0
0
 

GL 223,023 47,160 23,087 12,598 305,868 

CF 176,265 179,793 84,826 16,951 457,835 

OF 64,648 108,040 142,052 38,700 353,440 

BL 25,872 23,824 33,775 23,596 107,067 

 ∑ 489,808 358,817 283,740 91,845  

 

Table 5.8: Comparison of classifications, relative number of pixels in percent (basis: all image 
pixels) 

  Classification 2003  

  GL CF OF BL ∑ 

 C
la

s
s
if
ic

a
ti
o
n
 

2
0
0
0
 

GL 18.2 3.80 1.80 1.02 24.02 

CF 14.3 14.60 6.90 1.40 37.20 

OF 5.3 8.80 11.60 3.16 28.86 

BL 2.1 1.90 2.80 1.90 8.70 

 ∑ 40 29.1 23.1 7.5 100 
 

Table 5.7 and 5.8 show the comparison of classification from Landsat (2000) 
classification and Landsat (2003) classification, i.e. absolute number of pixels and 
relative number of pixels (in percent of all image pixels). Grassland, close forest, open 
forest and bare land are the four major land cover classes. In 2000, 24.02% of all 
image pixels were classified as grassland, 37.2% as close forest, 28.86% as open 
forest and 8.7% as bare land. The total number of unchanged pixels in the two 
classification maps was 568.464 (46.4%). If the classes defined for 2000 are taken as 
basis (Table 5.9), the changes for each class turned up as follows: More than one third 
of closed forest (38.4%) was converted to grassland, one third of the open forest 
(30.5%) to close forest areas and also one third of bare land (31.5%) was turned to 
open forest. Only 22% of the pixels classified as bare land in 2000 do have the same 
class membership in 2003. The class grass land revealed fewer changes (27.1%). 
Less than half of the pixels in closed forest and open forest classes were assigned to 
the same class in 2003 (39.2% and 40.1% respectively). 
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Table 5.9: Comparison of classifications, relative number of pixels in percent (basis: image pixels 
of each class in 2000) 

  Classification 2003  

  GL CF OF BL ∑ 

 C
la

s
s
if
ic

a
ti
o
n
 

2
0
0
0
 

GL 72.9 15.4 7.5 4.1 100 

CF 38.4 39.2 18.5 3.7 100 

OF 18.2 30.5 40.1 10.9 100 

BL 24.1 22.2 31.5 22.03 100 

 

The tables below demonstrate the kind of land cover changes, namely “from-to” 
information, that occurred during the period from 2003 to 2006, note that the pixels 
without change are located along the major diagonal of this matrix. 

 

Table 5.10: Comparison of classifications, absolute number of pixels (GL = grassland, CF = 
close forest, OF = open forest, BL = bare land) 

  Classification 2006  

  GL CF OF BL ∑ 

C
la

s
s
if
ic

a
ti
o
n
 2

0
0
3
 

GL 168,68 170,22 111,15 16,59 466.66 

CF 44,17 173,48 120,87 28,56 367.09 

OF 14,83 100,84 129,62 43,71 289.01 

BL 4,52 32,50 39,84 24,56 101.43 

 ∑ 232,21 477,06 401,49 113,43  

 

Table 5.11: Comparison of classifications, relative number of pixels in percent (basis: all image 
pixels) 

  Classification 2006  

  GL CF OF BL ∑ 

 C
la

s
s
if
ic

a
ti
o
n
 2

0
0
3
 

GL 13.78 13.91 9.08 1.36 38.12 

CF 3.61 14.17 9.87 2.33 29.99 

OF 1.20 8.24 10.59 3.57 23.60 

BL 0.37 2.65 3.25 2.01 8.29 

 ∑ 18.97 38.97 32.80 9.27 100 
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Table 5.12: Comparison of classifications, relative number of pixels in percent (basis: image 
pixels of each class in 2003) 

  Classification 2006  

  GL CF OF BL ∑ 
 C

la
s
s
if
ic

a
ti
o
n
 

2
0
0
3
 

GL 36.1 3.4 23.8 3.5 100 

CF 12.0 47.2 32.9 7.7 100 

OF 5.1 34.8 44.8 15.1 100 

BL 4.4 32.0 39.2 24.2 100 

 

Table 5.10 and 5.11 show the comparison of classification from Landsat (2003) 
classification and Aster (2006) classification, i.e. absolute number of pixels and relative 
number of pixels (in percent of all image pixels). Grassland, close forest, open forest 
and bare land are the four major land cover classes. In 2003, 38.12% of all image 
pixels were classified as grassland, 29.99% as close forest, 23.6% as open forest and 
8.29% as bare land. Three years later, the distribution of land cover classes changed 
in the following way: 18.97% grassland, 38.97% close forest, 32.8% open forest, 
9.27% bare land. The percentage of unchanged pixels in the two classification maps 
was 496.361 (40.55%). If the classes defined for 2003 are taken as basis (Table 5.12), 
the changes for each class turned up as follows: Only 12% of closed forest was 
converted to grassland, more than one third of the open forest (34.8%) shifted to the 
class close forest areas. Only one third (36.1%) of the pixels classified as grassland in 
2003 do have the same class membership in 2006. The class close forest implied 
fewer changes. About half of the class pixels (47.2%) remained close forest. For open 
forest, almost half of the class pixels (44.8%) were assigned to the same class in 2006. 
The class bare land includes the largest changes: One third (32%) of the class pixels 
were transformed to close forest, more than one third (39.2%) was turned to open 
forest. Only one fourth of the class pixels (24.2%) did not change.  

5.3 Change detection based on Vegetation Indices 

Vegetation index and difference images were constructed for all three vegetation 
indices (NDVI, SAVI and TDVI) and from all three scenes. Results showed that the 
vegetation index maps obtained by NDVI and SAVI transformations within each 
computational group were similar in terms of spatial distribution pattern and statistical 
characteristics. As far as the degree of greenness of vegetation was concerned, the 
TDVI appeared to be the most sensitive. 

Change detection was performed in two ways: (I) VI differences and (ii) RGB- NDVI. 
The VI differences were computed from the two VI paired images, i.e., VI 2000 –VI 
2003 and VI 2003 –VI 2006 and RGB-NDVI was performed using the three dates of 
NDVI imagery as RGB composite (Sader and Winne, 1992). 

5.3.1 Vegetation Indices differences 

Figure 5.7 shows vegetation index values across the study area in 2000, 2003 and 
2006. As can be seen from the figure, very low index values relate to bare soil, mostly 
black colour that dominate in the north and in the north west of the study area, 
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especially in the agricultural land surrounded the forest. Relatively high vegetation 
index values in the center of the image represent high vegetation cover, mostly tree 
covers. Visual image inspection and also field checks showed that vegetation indices 
appear to overestimate the amount of vegetation cover in El Rawashda forest. 

Changes in vegetation cover have been highlighted by subtracting 2000 vegetation 
index values from 2003 values and 2003 values from 2006 values (figure 5.7). 
Changes from 2000 to 2003 showed increased vegetation cover in the south and east 
south in the difference image, while changes from 2003 to 2006, showed increased 
vegetation cover in the center and in the west of the differencing image. These areas 
provide clear evidence for management related differences in vegetation cover.  

To illustrate vegetation changes within El Rawashda forest, threshold have been 
applied to the change maps to calculate the increase, decrease and no change in 
vegetation cover ( table 5.13). 

5.3.2 5.3.2 RGB-NDVI 

The RGB composite based on NDVI permits to display and understand the principal 
environmental dynamics, distinguishing different change classes on vegetation by 
different colour tones (Figure 5.8). Moreover it represents an important way to move 
across the dense forest areas allowing new clearing processes along their perimeter. 

The visual comparisons of RGB-NDVI (2000-03-06) images are provided in Figure 5.8. 
Areas in red in the visual RGB-NDVI color composites indicate forest biomass 
decrease between 2000 and 2006. Areas in yellow are forest biomass loss between 
2003 and 2006. The cyan colour indicates the regeneration between 2000 and 2006. 
The magenta colour displays the reduction between 2000 and 2003 and the 
regeneration between 2003 and 2006. The green colour displays the reduction before 
2000 and after 2006. The blue colour indicates the regeneration between 2000 and 
2006. Areas in black and white indicate no change. 



57 

 

 

Figure 5.7: Resultant images of the NDVI, SAVI and TDVI transformation and image 
differencing. 

 

Table 5.13: The percentage of increase, decrease and no change in vegetation cover 

VI + Change % - Change % No Change % 

NDVI2000-2003 48.7 5.0 46.3 

NDVI2003-2006 26.6 26.8 46.5 

SAVI2000-2003 48.8 5.0 46.2 

SAVI2003-2006 25.2 28.0 46.6 

TDVI2000-2003 40.0 12.9 50.1 

TDVI2003-2006 32.5 26.7 51.6 

 



 

Figure 5.8: Simplified interpretation of three
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of three-date RGB-NDVI color composite imagery 
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5.4 Application of Tasseled Cap for change detection 

The application of Tasseled Cap was performed in two ways: 1. RGB combination was 
derived from TC components of the three acquisitions separately. 2. RGB-TCG was 
performed using the green component of three dates of TCT imageries as RGB 
composite.  

5.4.1 Derivation of Tasseled Cap Transformation 

Figure 5.9 gives the resultant images for the derived tasseled cap transformation of the 
three acquisitions separately.  

The RGB 123 combination resulted following the operation of a tasseled cap 
transformation using the first three bands proved to be particularly useful (figure 5.9). 
With this combination the grass land, shown in blue, can be best separated from 
closed forest, which shown in green in both ETM 2000 and Aster 2006 but in Cyan 
colour in ETM 2003. It is also possible to clearly identify the open forest and bare land 
which appears as red colour in all images.  

The differentiation on average spatial resolution satellite images between forests and 
agricultural crops may be performed in the third tasseled cap dimension (wetness 
layer). In the greenness/ brightness projection there may appear some separation 
between close forest, open forest and grass land, with a specific localization of the 
data of the forest, whereas in the greenness/wetness projection the separation is clear, 
being well highlighted in the composite color images. 

The differentiation based on the wetness index between forests and other crops 
consists in the fact that the shading phenomenon is significantly stronger in coppice as 
compared with agricultural crops or grassy land. Kimes et al. (1981) have shown that, 
relatively thick coppice tend to behave similarly to agricultural crops or grassy land with 
relation to the incidental radiation spread phenomenon, in the case of less thick 
coppice, characterized by the existence of several empty spaces, the low-frequency 
transmission occurrence is increased, this resulting in the amplification of the 
shadowing phenomenon and in the increase of the shadow percentage in the field of 
vision of the sensor. Moreover, any thinned out coppice containing a considerable 
percentage of visible trunks, as compared to agricultural crops leads to an increase in 
the occurrence of projected shadows both in the sublevels of the coppice and on the 
leaves or pins from the crown canopy of the trees. 

The consideration of the shadowing phenomenon as the main cause of the different 
spectral behavior in the wetness component is supported both theoretically and 
practically. The inverse relation between radiation spread and wavelength suggests 
that surfaces lighted up only by the diffuse radiation may receive relatively more light in 
the visible and close infrared specter rather than in medium infrared (SWIR), which 
leads to value of the wetness component higher than could be noted in directly 
illuminated identical surfaces. As for the practical aspect, the simulation of the sensor 
signals using reflectance panels set within the range 0, 4-2, 5 µm, determines the 
tasseled cap values originating from shadow-like panels to be placed at the end of the 
raw of data simulated the same way as in the case of agricultural crops and soil 
reflectance. 
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5.4.2 Derivation of Greenness component for change detection 

For change as far as the vegetation is concerned, the green layer was only used. The 
reflectance based greenness image, however, nearly similar to the NDVI image, and 
they both reveal the spatial pattern of green vegetation. For this reason the TCG 
composite was tried in same way as RGB-NDVI (Sader and Winne, 1992). 

Figure 5.10 portrays a comparison of the Greenness component of TCT with the 
Normalized Difference Vegetation Index (NDVI), using ETM 2000 as an example.  

The visual comparison of RGB-TCG (2000-03-06) images is provided in Figure 5.11. 
To some extend it resembles RGB-NDVI, but it detects changes more precisely. Note 
that it displays the re-growth from 2003 to 2006 in blue colour in the south east of the 
study area better than RGB-NDVI. Moreover it detects the re-growth from 2000 to 2003 
in the north west side of the study area more clearly. 

 

Figure 5.9: RGB composite of Tasseled Cap Transformation of ETM 2000 (left), ETM 2003 
(middle) and Aster 2006 (right). 

 

 

Figure 5.10: A comparison of the Greenness component of TCT (right) with the Normalized 
Difference Vegetation Index NDVI (left) for ETM 2000 



 

Figure 5.11: Simplified interpretationinterpretation of three-date RGB-TCG color composite imagery 
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5.5 Change Vector Analysis: An Approach for Detecting 
Forest Changes 

For the whole study area, the CVA based on TCT is used to detect the deforestation 
for the two change pairs, and in this case a change image was prepared for each of 
the two intervals covered by the triplicate. 

5.5.1 Analysis of the change image 2000/2003 

The change image referring to the years 2000 and 2003 (Figure 5.12) shows an 
intensive dynamics related to the clear cut of primary vegetation, in a period 
characterized by the advancement of land occupation activities (agriculture and cattle 
raising) mainly in the south east, north east and west of the forest. In the other hand, 
the figure displays an increase of grass land or agricultural crops in the areas 
surrounding the forest. Two classes show this type of change specifically, with the 
decrease in brightness values indicating biomass loss (i.e. deforestation). A more 
detailed analysis of the associated colour code suggests that each of these classes 
represents information related to more specific changes: red colour indicates change 
from grass land to bare land or open forest, while green colour shows change from 
bare land to grass land or close forest. The magenta sector code represents change 
from grass land to close or open forest and the blue sector code is an indication of no 
change.   

 

 

Figure 5.12: Change vector based on Tasseled Cap images from the year 2000 to 2003, 
magnitude (left) and direction (right) 
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5.5.2 Analysis of the change image 2003/2006 

The Change Image referring to the period 2003/2006 (Figure 5.13), presents those 
elements which indicate an evolution on the land use/land cover processes. The 
Classes, referring to the loss of biomass, appear now with less intensity. They are 
more probably related to the opening of small clearances in already occupied lots for 
subsistence agriculture of colonists. 

 

 

Figure 5.13: Change vector based on Tasseled Cap images from the year 2003 to 2006, 
magnitude (left) and direction (right) 

 

During this second period, the area presents landscapes with higher complexity, 
because of the consolidation phase of rural properties and settlements, such as: 
different cultures in several stages of growth, diversified pastures, and re-growth 
sections at variable ages (shown by interference of different colours). Within this 
thematic diversification, the areas which were clear cut during the first period and re-
growth in the second period can be better discriminated on the north east and south 
west inside the forest region. One can also perceive that, due to government incentives 
some lots get three to four cultivation cycles. 

5.6 Mapping with Conventional and Selective Principal 
Component Analysis 

5.6.1 Generation of PCA Components 

The resultant images of the Principal Component Analysis generated from the three 
dates images are displayed in figure 5.14 while the statistics of the components are 
summarized in tables 5.14, 5.15 and 5.16. 



64 

 

Based on the eigenvalues, eigenvectors and correlation matrixes of the ETM_2000, 
ETM_2003 and Aster_2006 data, the first components (pc1s) contain 93.3%, 92.2% 
and 90.7% of the original information of the images data respectively. The lower 
components (i.e. pc3, pc4 etc.) are not useful and almost highlighted the redundant 
information. In the factor loading tables, the pc1 for the image ETM_2000 is best 
loaded by band 1, but negatively correlated with the other bands and pc 2 is also best 
loaded by band 1. In ETM_2003 pc1 is best loaded by band 3 while the pc2 is best 
loaded by band 5. In case of Aster_2006, the pc1 is best loaded by band 3 and pc2 is 
best loaded by band 2. This information was used to understand the relationship 
between bands and components. 

 

 

Figure 5.14: Images of the first three Principal components generated from ETM 2000 (left), 
ETM 2003 ETM 2003 (middle) and Aster 2006 (right) 

 

Table 5.14: PCA Statistics of ETM_2000 

 

 

 

Corre lation

Matrix
Band 1 Band  2 Band 3 Band 4 Band 5

Band1 1 -0.0069 0.0015 -0.0066 -0.0246

Band2 -0.0069 1 -0.0132 -0.0164 -0.0184

Band3 0.0015 -0.0132 1 0.0062 -0.0184

Band4 -0.0066 -0.0164 0.0062 1 0.0039

Band5 -0.0246 -0.0184 0.0024 0.0039 1

Eigen-

vectors
pc1 pc2 pc3 pc4 pc5

Band 1 0.9987 -0.0014 0.0001 -0.0003 -0.0008

Band 2 0.0016 0.9998 -0.0112 -0.0040 -0.0035

Band 3 -0.0010 -0.0110 -0.9994 -0.0029 -0.0005

Band 4 0.0005 0.0039 -0.0034 0.9998 0.0055

Band 5 -0.0019 0.0041 0.0018 -0.0045 0.9969

Factor

Loadings
pc1 pc2 pc3 pc4 pc5

Band1 0.9599 0.9730 0.9733 0.9786 0.9127

Band2 -0.1884 -0.2143 -0.1211 0.1805 0.3509

Band3 -0.1677 -0.0587 0.1596 0.0903 -0.2000

Band4 -0.0016 0.0458 -0.0023 0.0247 -0.0371

Band5 -1221 0.0400 0.0017 -0.0156 0.0332

Eigen-

value
%Variance

pc1 757.2907 93.39%

pc2 36.4522 4.5%

pc3 11.2493 1.39%

pc4 2.7714 0.34%

pc5 1.5788 0.19%
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5.6.2 Change detection with Multitemporal PCA: the conventional approach 

Table 5.17 summarizes the results of the PCA for the period 2000 to 2003. Table 
5.11A shows the eigenvalues of each PC, and their associated percentages of 
explained variance. It can be seen that the first 3 PCs of the PCA performed on the 10 
reflective bands of images explain 96.93% of the observed variance. These 3 PCs are 
shown in figure 5.15. The first variable or component (PC1) contains the higher 
variance present in the data while the subsequent variables contain decreasing 
proportions of scatter data. Experiments have shown that the first components contain 
the unchanged spectral information, while the changed information is contained in the 
latter components (Byrne et al, 1980). Table 5.17 B displays the loadings of the 10 
Landsat bands. The loading factors for all bands of the two images exhibit a high 
magnitude in PC1, where all bands are positive (Table 17B), indicating that PC1 is 
related to general brightness. It is noteworthy that the PC1 loading factors are negative 
in all ETM_2000 bands except band 1 and positive in all ETM_2003 bands except 
band 5, which means that band 1 in ETM_2000 is positively correlated with PC1 
whereas band 5 is negatively correlated with PCI. 

Table 5.18 summarizes the results of the PCA for the period 2003 to 2006. Table 
5.18A shows the eigenvalues of each PC, and their associated percentages of 
explained variance. It can be seen that the first 3 PCs of the PCA performed on the 10 
reflective bands of images explain 97.46% of the observed variance. These 3 PCs are 
shown in figure 5.16. Similarly as in the first period, the first variable or component 
(PC1) contains the higher variance present in the data while the subsequent variables 
contain decreasing proportions of data scatter. Table 12B displays the loadings of the 
10 Landsat and Aster bands. The loading factors for all bands of the two images 
exhibit a high magnitude in PC1, where all bands are positive (Table 5.18B), indicating 
that PC1 represented overall scene brightness. It is noteworthy that the PC2 loading 
factors are negative in all ETM_2000 bands and positive in all ETM_2003 bands 
except band 4 and band 5. 

Visual analysis of the three PC layers for the two periods (figure 5.15 and figure 5.16) 
clearly shows that the change in vegetation is best detected using the second principle 
component (PC2). It is evident that high values (black) in PC2 represent increase in 
vegetated areas. These changes are more obvious in the RGB images of the three 
layers in green colour. 
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Table 5.15: PCA Statistics of ETM_2003 

 

Table 5.16: PCA Statistics of Aster_2006 

 

 

Corre lation

Matrix
Band 1 Band  2 Band 3 Band 4 Band 5

Band1 1 0.9722 0.9299 0.8986 -0.4671

Band2 0.9722 1 0.9613 0.9254 -0.5038

Band3 0.9299 0.9613 1 0.9477 -0.5218

Band4 0.8986 0.9254 0.9477 1 -0.4738

Band5 -0.4671 -0.5038 -0.5218 -0.4738 1

Eigen-

vectors
pc1 pc2 pc3 pc4 pc5

Band 1 -0.9620 -0.1623 0.1863 -0.1130 0.0213

Band 2 0.1750 -0.9728 0.1146 0.0998 0.0093

Band 3 -0.1117 -0.1603 -0.9217 -0.3171 0.1075

Band 4 -0.1566 0.0363 -0.2633 0.9036 0.2978

Band 5 0.0822 0.0201 0.1818 -0.2461 0.9482

Factor

Loadings
pc1 pc2 pc3 pc4 pc5

Band1 0.9559 0.0356 0.2196 0.1624 -0.1109

Band2 0.9800 0.0044 0.1672 0.0879 0.0772

Band3 0.9883 -0.0139 0.0264 -0.1205 -0.0092

Band4 0.9731 0.0715 -0.1974 0.0901 0.0021

Band5 -0.5304 0.8361 0.0778 -0.0495 0.0017

Eigen-

value
%Variance

pc1 291.7998 92.24%

pc2 12.1675 3.85%

pc3 7.4982 2.37%

pc4 3.8332 1.21%

pc5 1.0355 0.33%

Corre lation

Matrix
Band 1 Band  2 Band 3 Band 4 Band 5

Band1 1 0.9792 0.9505 0.8242 0.7598

Band2 0.9791 1 0.9700 0.8349 0.7563

Band3 0.9506 0.9700 1 0.8648 0.7804

Band4 0.8242 0.8349 0.8642 1 0.9371

Band5 0.7597 0.7565 0.7805 0.9371 1

Eigen-

vector
pc1 pc2 pc3 pc4 pc5

Band 1 0.9826 0.0675 -0.1669 0.0223 0.0385

Band 2 0.0335 -0.9591 -0.1765 0.2097 -0.0611

Band 3 0.1506 -0.1021 0.9195 0.3217 0.1334

Band 4 -0.0941 0.2389 -0.2983 0.9044 0.1643

Band 5 -0.0414 -0.0891 -0.0801 -0.1842 0.9746

Factor

Loadings
pc1 pc2 pc3 pc4 pc5

Band1 0.9591 0.2215 -0.1440 0.0431 -0.0977

Band2 0.9691 0.2266 -0.0517 0.0366 0.0779

Band3 0.9761 0.1583 0.1255 -0.0734 -0.0220

Band4 0.9383 -0.3295 0.0457 0.0876 -0.0071

Band5 0.8734 -0.4156 -0.1642 -0.1689 0.0168

Eigen-

value
%Variance

pc1 988.60 90.76%

pc2 77.87 7.15%

pc3 11.90 1.09%

pc4 7.47 0.69%

pc5 3.44 0.32%
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Figure 5.15: PCA generated from 10 bands combination of ETM_2000 and ETM-2003 

Table 5.17: PCA Statistics of 10 bands combination of ETM_2000 and ETM_ 2003 data 
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Figure 5.16: PCA generated from 10 bands combination of ETM 2003 and Aster 2006 

Table 5.18: PCA Statistics of 10 bands combination of ETM_2003 and Aster_ 2006 data 
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5.6.3 Change detection with Selective PCA 

Table 5.19 and table 5.20 summarize the results of the selective PCA for the period 
2000 to 2003 and for the period 2003 to 2006 respectively. The second component 
(PC2) of the NIR band exhibited the strongest vegetation gradient, having high positive 
factor loadings for the NIR band for both dates (0.96 and 0.85, respectively) for the first 
period. For the second period, PC2 have a negative factor loading (-0.88) for the NIR 
bands for time 1 but positive loading (0.46) for time 2. Based on these results, PC2 of 
the NIR was selected for use in analysis of vegetation change (figure 5.17). 

 

Table 5.19: PCA Statistics from 10 bands of ETM_2000 and ETM_2003 data by band wise 

 

 

Table 5.20: PCA Statistics from 10 bands of ETM_2003 and Aster_2006 data by band wise 
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Figure 5.17: PC2 generated from NIR of ETM_2000 and NIR of ETM_2003 (left), and PC2 
generated from NIR of ETM_2003 and NIR of Aster-2006 

 

5.7 Change Detection based on Multivariate Alteration 
Detection (MAD) 

MAD process was applied to every pair of images of the two periods. As a result we 
obtain as many MAD bands as input channels. The MAD components have maximum 
variance subject to the condition that the pixel intensities are statistically uncorrelated 
with each other. Figure 5.18 shows a scatter plot of MAD1 vs. MAD2 for ETM_2000 
and ETM_2003. It is clear that the components are uncorrelated. Assuming that 
different kinds of changes will generally be uncorrelated with one another, these 
changes will be distributed among different MAD components. Noise will be 
concentrated in lower order components (Canty et al., 2001). 

 



 

Figure 5.18: Scatter plot MAD1 vs. MAD2

 

5.7.1 MAD Interpretation 

The interpretation of the resulting change images was based on correlations between 
the transformed variates and the ori
correlations between the MAD and the original bands of the first period (2000 to 2003) 
and the second period (2003 to 2006) respectively. 

For the first period, MAD 3 correlation shows a weighted mean of 
correlation in ETM_2000 image (0.42) and negative correlation in 
0.49). Therefore MAD 3 is probably an indicator of vegetation changes
consider MAD 3 (Figure 5.19) we can identify slight positive and negative 
different parts of the forest, which are effected by intense shadowing of Acacias trees. 
The correlation of MAD 4 shows a weighted mean of all channels with positive 
correlation in ETM_2000 image and negative correlation in all 
band 1. Therefore MAD 4 is probably an indicator of shadow
Actually, if we consider MAD 4 in figure 5.19 we can identify clearly positive change in 
white colour located in the south region inside the forest in different pars outside th
forest and negative changes located in the north region of the forest. In MAD2 and 
MAD 5 there are smaller changes that are uncorrelated to each other. MAD 6 is weakly 
correlated to all bands in both years and shows scanner noise.

For the second period, the correlation of MAD 3 and MAD 5 have highest correlation in 
all channels, with negative correlation in 
image. Therefore MAD 3 and MAD 5 are probably indicators of vegetation changes. 
Actually, if we consider MAD 3 and MAD 5 (Figure 5.20) we can identify positive and 
negative changes more clearly than in other MAD components. MAD 2 shows small 
areas of changes in vegetation and has slightly low correlation with the original bands. 
MAD 1 and MAD 4 are uncorrelate
noise. 

 

: Scatter plot MAD1 vs. MAD2 

The interpretation of the resulting change images was based on correlations between 
the transformed variates and the original data. Table 5.21 and Table 5.22 show the 
correlations between the MAD and the original bands of the first period (2000 to 2003) 
and the second period (2003 to 2006) respectively.  

For the first period, MAD 3 correlation shows a weighted mean of NIR with positive 
_2000 image (0.42) and negative correlation in ETM_2003 image (

0.49). Therefore MAD 3 is probably an indicator of vegetation changes. Actually, if we 
consider MAD 3 (Figure 5.19) we can identify slight positive and negative changes in 
different parts of the forest, which are effected by intense shadowing of Acacias trees. 
The correlation of MAD 4 shows a weighted mean of all channels with positive 

_2000 image and negative correlation in all ETM_2003 band exc
band 1. Therefore MAD 4 is probably an indicator of shadow-induced changes. 
Actually, if we consider MAD 4 in figure 5.19 we can identify clearly positive change in 
white colour located in the south region inside the forest in different pars outside th
forest and negative changes located in the north region of the forest. In MAD2 and 
MAD 5 there are smaller changes that are uncorrelated to each other. MAD 6 is weakly 
correlated to all bands in both years and shows scanner noise. 

the correlation of MAD 3 and MAD 5 have highest correlation in 
all channels, with negative correlation in ETM image and positive correlation in Aster 
image. Therefore MAD 3 and MAD 5 are probably indicators of vegetation changes. 

AD 3 and MAD 5 (Figure 5.20) we can identify positive and 
negative changes more clearly than in other MAD components. MAD 2 shows small 
areas of changes in vegetation and has slightly low correlation with the original bands. 
MAD 1 and MAD 4 are uncorrelated with all bands in both years, MAD 1 shows image 
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Table 5.21: Correlation matrix of the MAD components with the original ETM_2000 and 
ETM_2003 bands 

Original bands MAD 1 MAD 2 MAD 3 MAD 4 MAD 5 

ETM_2000b2 0.10 0.22 0.29 0.25 0.04 

ETM_2000b3 0.03 -0.15 0.37 0.27 0.05 

ETM_2000b4 0.04 0.07 0.42 0.30 -0.06 

ETM_2000b5 0.01 0.04 0.40 0.37 -0.04 

ETM_2000b7 0.02 0.02 0.29 0.35 0.07 

ETM_2003b2 -0.01 -0.02 0.10 0.25 0.20 

ETM_2003b3 -0.16 -0.18 -0.48 -0.34 0.01 

ETM_2003b4 -0.17 -0.18 -0.49 -0.36 -0.02 

ETM_2003b5 -0.16 -0.16 -0.48 -0.38 -0.03 

ETM_2003b7 -0.14 -0.13 -0.44 -0.38 0.01 

 

Table 5.22: Correlation matrix of the MAD components with the original ETM 2003 and Aster 
2006 bands 

Original 
bands 

MAD 1 MAD 2 MAD 3 MAD 4 MAD 5 

ETM_2003b2 0.01 -0.18 -0.35 -0.19 -0.33 

ETM_2003b3 -0.13 -0.19 -0.33 -0.15 -0.36 

ETM_2003b4 -0.09 -0.20 -0.28 -0.05 -0.4 

ETM_2003b5 -0.07 -0.22 -0.14 -0.17 -0.39 

ETM_2003b7 0.06 0.56 0.23 -1.31 0.23 

Aster_2006b1 -0.05 0.04 0.61 0.14 0.23 

Aster_2006b2 0.09 0.06 0.63 0.10 0.24 

Aster_2006b3 0.06 0.04 0.61 0.02 0.30 

Aster_2006b4 0.01 0.31 0.36 0.13 0.39 

Aster_2006b5 0.02 0.16 0.24 0.22 0.38 
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Figure 5.19: MAD components of ETM2000 and ETM2003 and the first three components as 
RGB 

 

Figure 5.20: MAD components of ETM2003 and Ater2006 and the first three components as 
RGB 
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5.7.2 Maximum autocorrelation factor (MAF) analysis 

To find maximum change areas with high spatial autocorrelation a MAF post-
processing of the MAD variates was applied. Figure 5.21 and Figure 5.22 show the 
MAF/MADs of the first period images (2000 to 2003) and of the second period images 
(2003 to 2006) respectively. In both cases areas that are very bright or very dark are 
maximum change areas and with high spatial autocorrelation. It is noted that in 
contrast to MAD components, the change information from all bands is concentrated in 
the first two or three MAF/MADs whereas the low order MADs are quite noisy. If we 
consider MAD/MAF 1 of the first period we realized that positive change areas are 
shown as white colour in the south region inside the forest boundary and in different 
places outside the forest boundary. If we consider MAD/MAF 1 of the second period, 
the positive change areas again shown as white colour in the south, east and small 
patches in north parts inside the forest. MAD/MAF RGB of the first three components 
in both periods detects changes more clearly than MAD RGB components. 

For discriminating change and no-change pixels a procedure suggested by Bruzzone 
and Prieto (2000), was applied to MAD/MAF components to determine automatically 
the decision thresholds for change and no change. These change areas are shown in 
Figures 5.23 for the first and second periods.  

 

 

Figure 5.21: MAD/MAF components of ETM2000 and ETM2003 and the first three components 
as RGB 
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Figure 5.22: MAD/MAF components of ETM_2003 and Aster_2006 and the first three 
components as RGB 

 

Figure 5.23: Changes given by the MAD/MAF of the first three components from ETM_2000 and 
ETM_2003 (left) and from ETM_2003 and Aster_2006 (right) with automatic 
threshold 
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5.8 Accuracy assessments for change detection 
techniques 

Figure 5.24 and table 5.23 show the assessment of overall vegetation change using 
different change detection methods for the first period (2000 - 2003). The software 
eCognition was used for manual generated classification to develop a reference map 
(Figure 5.26). 

Land cover changed map with a higher accuracy produced by Post classification 
comparison (PCC), this method correctly detect vegetation loss and gain. All the tested 
methods detected the presence of change in a given local area equally well, but TDVI 
shows omission in detecting vegetation gain in many areas. PCC and CVA mapped 
vegetation loss in most areas in a more spatially complete and accurate manner.  

Figure 5.25 and table 5.24 show the assessment of overall vegetation change using 
different change detection methods for the first period (2003 - 2006). The software 
eCognition was used for manual generated classification to develop a reference map. 
For this period also land cover changed map with a higher accuracy produced by Post 
classification comparison (PCC), the method detected the presence of reforestation 
and deforestation in most areas in a very accurate manner. Land cover changed maps 
with lowest accuracy were all produced with VI differencing technique.  

Table 5.25 and figure 5.27 illustrate the accuracy assessment for change detection 
techniques from the 2000 and 2003 dates. Accuracy of the change image was 
estimated at change/no change detection level. The highest accuracy was obtained by 
PCC (90.6%) The accuracy assessments for the others change detection methods 
were 60.8% (NDVI), 62.5% (SAVI), 59.5% (TDVI), 53.1% (TCA), 84.4% (PCA), 75% 
(MAD) and 65.3% (CVA) respectively. 

Table 5.26 and figure 5.28 illustrate the accuracy assessment for change detection 
techniques from the 2003 and 2006 dates. The highest accuracy was also obtained by 
PCC (87%)  Accuracy of the change image was estimated at change/no change 
detection level (Fig. 1) the accuracy assessments were 59.2% (NDVI), 59.9% (SAVI), 
60.1% (TDVI), 62.2% (TCA), 68.6% (PCA), 60.09% (MAD) and 71.6% (CVA) 
respectively. 

 



 

Figure 5.24: Change / no change map given by different change detection techniques (2000
2003) 

Figure 5.25: Change / no change map given by different change detection techniques (2003
2006) 

 

nge / no change map given by different change detection techniques (2000

 

: Change / no change map given by different change detection techniques (2003
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: Change / no change map given by different change detection techniques (2003-
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Table 5.23: Percentages of Reforestation, Deforestation and No change (2000-2003) 

Method Reforestation Deforestation No change 

Reference 28.0 7.7 64.3 

NDVI 48.4  12.6  39.0  

SAVI 50.0  9.9 40.1  

TDVI 36.2  25.6  38.2  

TC 51.7  14.2 34.1  

CVA 51.6  6.4 42.0  

PCA 32.4  13.3 54.3  

MAD 27.1 24.7  48.2  

PCC 36.4  5.6 58.2  

 

Table 5.24: Percentages of Reforestation, Deforestation and No change (2003-2006) 

Method Reforestation Deforestation No change 

Reference 20.0 20.0 20.0 

NDVI 32.4  32.4  32.4  

SAVI 32.4  32.4  32.4  

TDVI 26.6  26.6  26.6  

TC 22.3 22.3 22.3 

CVA 29.3  29.3  29.3  

PCA 26.0 26.0 26.0 

MAD 32.1 32.1 32.1 

PCC 26.9  26.9  26.9  
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Figure 5.26: Classification of the references images  



 

Figure 5.27: Accuracy map given by different change d

 

Table 5.25: Comparison between different change detection techniques and its overall accuracy 
[%] (2000-2003) 
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: Accuracy map given by different change detection techniques (2000-2003) 

Comparison between different change detection techniques and its overall accuracy 

 

 

Comparison between different change detection techniques and its overall accuracy 



 

Figure 5.28: Accuracy map given by different change detection techniques 

 

Table 5.26: Comparison between different change detection techniques and its overall accuracy 
[%] (2003-2006) 

Accuracy map given by different change detection techniques (2003-2006) 

: Comparison between different change detection techniques and its overall accuracy 
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: Comparison between different change detection techniques and its overall accuracy 



82 

 

6 Discussion 

One of the difficulties in this research is the unavailability of ground truth and reference 
data for the classification of imagery of 2000 and 2003. There is no source of data 
available for the land cover maps of the corresponding years. These maps were 
manually made based on unsupervised classification using the software eCognition, 
these maps were used as references to evaluate the accuracy of change detection 
methods. 

Also, it was not possible to separate annual crop fields from grass land in the 
classification. The difficulty to separate these two classes can be possibly attributed to 
spectral overlapping resulted from the similarity in regeneration of both land cover 
classes, for that reason they are merged onto one land cover class (grass land). 

The accuracy assessment is a fundamental part of the process of image classification 
because it gives an idea of the validity of the results. In the present research, the 
overall classification accuracy obtained were 88.4%, 91.9% and 92.1% for the years 
2000, 2003 and 2006 respectively, which are reasonable compared to the accuracy 
that proposed by Anderson et al. (1976): 85% to 90% for land use and land cover 
assessment for planning and management purposes. The generalization of classes 
certainly contributed to improvements in the accuracy. Moreover, results of the user 
accuracy for all classes which ranged from 80% to 100% with the three classified 
images can be seen optimistic and susceptible of errors.  

Detection of land-cover changes is one of the most interesting aspects of the analysis 
of multitemporal remote sensing images (Coppin et al., 2004). In this study, we 
performed many approaches to detect land-cover changes in El Rawashda forest. 
Methods, Post-Classification Comparison and vegetation indices are straightforward 
techniques and easy to apply. Some area of changes detected by vegetation indices 
differencing, are not detected by post classification. Also, vegetation indices 
differencing managed to detect some sharp changes in the forest while post-
classification failed. A more detailed classification system may help to detect these 
changes. Positive and negative changes can be well revealed by post classification 
method because of its ability to classify forest class with more accuracy while, for 
instance the method provided detail information about increase and decrease in 
vegetation areas of the all four classes for the periods from 2000 to 2003 and from 
2003 to 2006, whereas vegetation indices differencing demonstrated the weak 
performance in the detection of this category. This is may be attributed to spectral 
overlapping between close forest plantation classes, grass and open forest. This 
confusion was solved by cooperating the expertise knowledge of the study area and 
visual interpretation with the post classification method during the process of image 
classification thus enabling the detection of this change, while with vegetation indices 
differencing this knowledge cannot be incorporated. 

Vegetation indices differencing yielded low accuracies, while Post classification yielded 
high accuracy. These results agree with Virk et al. (2006) who found that Post 
classification provided more accurate representation of significant forest change, 
whether deforestation or reforestation. Mas (1999) also found that Post classification to 
be more accurate than raw image and vegetative index differencing for monitoring land 
cover changes in a coastal region of Mexico.  
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The Post classification results confirmed the finding of Abd El-Kawy et al. (2011) that 
they applied supervised classification to four Landsat images collected over time 
(1984, 1999, 2005, and 2009). The authors provided recent and historical LULC 
conditions for the western Nile delta and they concluded that visual interpretation was 
not only useful in increasing the classification accuracy of the Landsat images, but it 
was also helpful in identifying areas with the effective use of water for irrigation and 
areas of private land reclamation. The result is also agreed with the recent finding of 
Bharti et al. (2011), who reported an upward shift of timberline vegetation by 300 m. 
Their analysis based on multi-temporal remote sensing data to detect timberline 
changes in the subalpine vegetation, using post classification comparison method. The 
authors managed to compare fir patches to see the changes in timberline vegetation. 
However, Foody (2001) applied Post classification to detect land cover change around 
the southern limits of the Sahara desert and found that it underestimated the areas of 
land cover change, and where change was detected; the magnitude of change was 
overestimated. 

Within vegetation indices, NDVI and SAVI behaved similarly at detecting vegetation, 
whereas, TDVI showed better linearity at the function of the rate of vegetation cover, 
this may be attributed to the fact that TDVI does not saturate like NDVI or SAVI. Similar 
results have been reported in Ozbakir and Bannari (2008). 

An RGB-NDVI change detection strategy to detect major decreases or increases in 
forest vegetation was developed as well. This method avoids the need of setting a 
predefined histogram threshold, but it obviates the need for a high degree of a priori 
knowledge and requires substantial a posterior interpretation. In this study the 
accuracy assessment of this method was not counted, it was only visually assessed 
and found to be more effective than NDVI image differencing as it distinguish different 
change classes on vegetation by different colour tones. The result achieved by this 
study corresponds to those from the literature, (Hayes and Sader, 2001).found the 
RGB-NDVI method to be more accurate than NDVI image differencing and principal 
component analysis 

Another effective method was tested for the study area, the Tasseled Cap 
Transformation. This method performed better than the vegetation indices. This may 
be attributed to the fact that the Tasseled Cap transformation successfully preserve 
and highlight information relevant to forest disturbance while simultaneously reducing 
the amount of information that must be processed. The green layer derived structure of 
the Tasseled Cap Transformation revealed spatial pattern of green vegetation nearly 
similar to the NDVI image, however it provided slightly better advantage over the NDVI 
in highlighting pixels that move from grass land to bare land in very dark color. 

The Tasseled Cap green layer (GTC) composite of the three images was proposed to 
detect the change in vegetation of the study area. We found that the RBG-TCG worked 
better than RGB-NDVI. For instance, the RBG-TCG detected some areas of changes 
that RGB-NDVI failed to detect them, moreover RBG-TCG displayed different changed 
areas with more strong colours.  

Change vector analysis (CVA) based on Tasseled Cap transformation (TCT) was 
applied for detecting and characterizing land cover change. Transformation of the 
multispectral data to some indices which represent vegetation and bare soil 
components is widely used in the CVA. The typical one is analyzing change vector 
within the plane of vegetation, defined by the greenness and brightness of the tasseled 
cap transformation (Kauth and Thomas, 1976).  
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The results support the CVA approach to change detection. The calculated date to 
date change vectors contained useful information, both in their magnitude and their 
direction. The finding obtained demonstrated the capacity to detect and stratify 
different types of changes in terms of vegetation gain and loss. The Change Vector 
images of the period 2000-2003, allowed detecting the deforested area of primary 
vegetation in different areas inside the forest. In the other hand, the technique 
illustrated an increase of grass land or more probably agricultural crops in the buffer 
areas surrounding the forest. In the second period (2003-2006), the Change Image 
presented the loss of vegetation with less intensity and regeneration in other areas that 
appeared with open vegetation or bare land in the first period. In the two change maps 
of the CVA and especially in developmental analyses, it was clear that the 
performance of the CVA procedure is sensitive to its parameter settings and that 
additional studies to optimize their selection and to normalize differences in scene 
conditions are desirable. For the short term, additional testing and development; work 
are needed to gain more understanding of the forest spectral signatures. It is believed 
that working level interaction with field personnel in such efforts would be desirable and 
of substantial benefit to both researcher and field manager. These results obtained 
from satellite data analysis could facilitate the understanding of the changes that took 
place in the forest. 

This result obtained by applying CVA based on TCT agreed with the findings of Siwe 
and Koch (2008), the authors implemented Change Vector Analysis (CVA) technique 
on multitemporal multispectral Landsat data from the Thematic Mapper (TM) and 
Enhanced Thematic Mapper (ETM) sensors to monitor the dynamics of forest change 
in the mount Cameroon region. CVA was applied to compare the differences in the 
time-trajectory of the tasseled cap greenness and brightness for two successive time 
periods 1987 and 2002. The authors concluded that the technique demonstrated 
immense potentials in monitoring forest cover change dynamics especially when 
complemented with field studies. 

An attempt to increase the performance of Change Vector Analysis technique was 
reported recently by Chen et al. (2011). The authors proposed a new method named 
CVA in posterior probability space (CVAPS), which analyzes the posterior probability 
by using CVA. The authors proved that the main drawbacks in CVA were alleviated 
effectively by using CVAPS and concluded the new method is potentially useful in land 
use and land cover change detection. 

A powerful tool for time series analysis is the principal components analysis (PCA). 
This method was tested for change detection in the study area by two ways: 
Multitemporal PCA and Selective PCA. The interpretation of both methods mainly 
depended on the statistics from the transformation, including the variance/covariance 
matrix, the correlation matrix, and the component eigenvectors and loadings. Both 
methods found to offer the potential for monitoring forest change detection. The first 
three components are able to explain virtually all of the original variability in reflectance 
values. Later components thus tend to be dominated by noise effects. By rejecting 
these later components, the volume of data is reduced with no appreciable loss of 
information. 

The PCA technique also showed major and minor spectral changes, reduces the 
dimensionality of the data, and provided a much more change information than other 
change detection techniques. However, the results are difficult to interpret. The PCA 
technique had a better performance over vegetation differencing and tasseled Cap in 
viewing areas that are changing, but does not indicate the direction of change like 
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change vector analysis. Despite these deficiencies, PCA is recommended for change 
detection because the technique provides insight into patterns of ecological dynamics 
and can identify areas that are undergoing change so that we can focus on those 
areas with further investigations. 

Based on the statistical results of the loading factors and on visual interpretation, our 
result pointed that the change in vegetation is best detected using the second principle 
component (PC2). This result confirmed the finding of Virk et al. (2006) and Toomey et 
al. (2005) that the second component exhibited the strongest vegetation gradient and 
having high positive factor loadings for the NIR band. However, Cakir et al. (2006) 
reported that the first Principal Component (PC1) corresponds to sharp contrast 
between vegetation and non-vegetation features.  

Combing with supervised classification, PCA was found to improve the classification 
accuracy of all classes. This finding is in accordance with other previous studies, for 
instance, Akhter (2006), who attempts to use the statistical Principal Component 
Analysis method for checking the performance in defining the various land cover 
classes and concluded that PCA imagery improved the classification accuracy for 
specific classes. More recently, Sulieman and Buchroithner (2007) evaluate 
combinations of original bands and groups of indices and feature components 
subjected to Standardized Principal Component Analysis and pointed that 
Standardized Principal Component generated from indices and feature components 
can be recommended to obtain more accurate classifications for areas covered by 
sparse heterogeneous vegetation for other regions in the Sahelian Zone of Africa. 

A recently proposed approach, the multivariate alteration detection (MAD), in 
combination with a posterior maximum autocorrelation factor transformation (MAF) was 
used to demonstrate visualization of vegetation changes in the study area. The MAD 
transformation provides a way of combining different data types that found to be useful 
in change detection. 

Instead of selecting Pseudo Invariant Feature visually, an automatic normalization 
method has been developed by Canty et al. (2004) based on Multivariate Alteration 
Detection. This transformation generates a set of mutually orthogonal difference 
images of decreasing variance having the same dimension as the original multispectral 
images. According to Nielsen et al. (1998), this transformation is invariant to linear 
scaling of the input data and can use different data types. However, this approach has 
not been assessed for vegetation change detection applications.  

The interpretation of the resulting change images was based on correlations between 
the transformed variates and the original data. The study revealed that, Mad3 is 
probably an indicator of vegetation changes as it showed a weighted mean of NIR and 
MAD4 is probably an indicator of shadow-induced changes as it showed a weighted 
mean of all channels. This finding disagreed with the result pointed by Frank and Canty 
(2003) that Mad2 is sensitive to vegetation changes and MAD1 is probably an indicator 
of shadow-induced changes.  

The result also showed that the use of the maximum autocorrelation factor 
transformation improved the result of the MAD components as it removes noise and 
excludes minor change information and on the other hand explained the major 
changed areas with more strong colours which made the results easier to interpret. 
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Change in forest classes for the two periods shown in Figure 6.1. For the two periods 
the greatest change appeared in close forest class. Change in open forest class within 
the first period 2000 to 2003 comprised higher percentage than grass land, whereas in 
the second period 2003 to 2006 the percentage of change greater in grass land. Bare 
land revealed the least percentage of change in both periods. 

 

 

Figure 6.1: Change of forest classes 

Accuracy assessment is an important final step addressed in the study to evaluate the 
different change detection techniques. A quantitative accuracy assessment at level of 
change/no change pixels was performed to determine the threshold value with the 
highest accuracy. Figure 6.2 summarizes the result of the accuracy assessment of 
eight methods tested. Among the various accuracy assessment methods presented 
the highest accuracy was obtained using the post-classification comparison based on 
supervised classification of each pair images. The good performance of this approach 
can be attributed to the high classification accuracy of 2000, 2003 and 2006 classified 
images and to the fact that accuracy has been improved by grouping classes which 
presented the most common spectral confusion. 

Results of accuracy assessments of the two time periods confirmed this output, for 
instance, the accuracy assessment of post classification comparison for the two 
periods were 90.6% and 87% consequently. 

Some authors carried out comparative studies of change detection techniques and 
generally found that post classification comparison was less effective than 
enhancement procedures such as image regression (Singh 1986) or image 
differencing and PCA (Muchoney and Haak 1994). However, the result confirmed the 
finding of Mas (2007) who compared six techniques and pointed that post-classification 
comparison proved to be the best method of 86.8% accuracy. 
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Figure 6.2: Accuracy assessments of change detection techniques 

 

The performance of the PCA was confused as it counted a high accuracy of 84.4% for 
the first period and significant less accuracy of 68.6% for the second period. Hayes 
and Sader (2001) reported 74% accuracy assessment for PCA. Another confusing 
results obtained by multivariate alteration detection which counted accuracy of 75% for 
the first period and 60.1% for the second period. 

Change vector analysis achieved quite good performances of 65.3% and 71.6% for the 
two periods respectively. However a high result of 86% was obtained by Lunetta et al. 
(2004) using change vector analysis. 

In this study vegetation indices and tasseled cap showed the least accuracy 
assessments for the two time periods whereas Hayes and Sader (2001) reported 
accuracy of 82% for NDVI. 

Different change detections methods used in this research are viewed to be 
complementary to each other. The combined use of different change detection 
algorithms (hybrid schemes) such as change vector analysis based on Tasseled Cap 
analysis and supervise classification based on Principal component analysis were 
found to minimize commission errors . Multivariate change detection technique that 
process the full dimensionality (spectral and temporal) of the image data such as 
Multivariate alteration detection and Change vector analysis, have demonstrated 
potential as a means to detect, identify, map and monitor changes, moreover, they are 
excelling at providing rich qualitative detail about the nature of the change and effective 
techniques to capture all kind of changes.  

For all tested methods, precise registration of multi-date imagery is a critical 
prerequisite of accurate change detection. However, residual misregistration at the 

0

10

20

30

40

50

60

70

80

90

100

NDVI SAVI TDVI TC CVA PCA MAD PCC

Accuracy assessment%

2000/2003 2003/2006



88 

 

below-pixel level somewhat degrades area assessment of change events at the 
change/no-change boundaries. It is clear that temporal trajectory analysis offers the 
greatest opportunities to study the dynamic processes and their effect on vegetation 
and meet all challenges in land use land cover change, but its major drawback is the 
limitations on the available time series length. 

During the past six decades, the Gedarif State in eastern Sudan lost its status as one 
of the main sources of food production in the country, due to large-scale degradation of 
its rich soil as well as other natural resources, particularly through unsuccessful land 
use policies and practices (Elsiddig, 2003). In the absence of obvious management 
practices and the absence of participation of local in the management process, natural 
forest reserves and forests outside the reserves are constantly exposed to strong 
pressure from people that depend on local forests. Benefiting from unsuccessful 
control and the easy access to the forest that is provided by the Authorized forest 
harvesting, they provided in random felling , agriculture (by permanent or shifting 
cultivation), gathering wood, charcoal burning and collection of other forest products 
and herding of cattle. 

El Rawashda forest is surrounded by seven villages from the south and east borders, 
and by the two large towns of Gedarif and El-Showak. Rain fed agricultural schemes 
have taken up all the land surrounding these forests. El Rawashda forest is engulfed 
by the vast rain-fed agricultural schemes where extensive land clearances have been 
practiced. To avert conflict between the peasants and the pastoralists, transhumant 
routes have been laid on. Being at the cross roads of animal migration passages, 
transgression over the forest by the nomads and their herds is inevitable. Proximity to 
the transhumant routes and the villages confer a disadvantage and pressure on the 
limited vegetation of the El Rawashda forest. The huge numbers of animals roaming 
are exceeding the carrying capacity of the forest. Such situation, however, has lead to 
the disappearance of superior species and the dominance of inferior species. In 
addition, the transgression of the dwellers within the vicinity of the forest remains the 
prime threat through illegal tree cutting and charcoal production. The excessive cutting 
of the trees and overgrazing have systemically depleted the natural vegetation of El 
Rawashda forest. Nevertheless it has been considered as the main morph dynamic 
aspect of vegetation thinning in El Rawashda forest. Vegetation thinning, loss of 
arboreal cover together with the excessive runoff have rendered the soil prone to 
erosion in the forest. Thus, the need for effective management measures is inevitable 
(Gadalla, 1995).  

Forest degradation is detected more in south and east parts of the forest; this may be 
attributed to the fact that, El Rawashda forest is bordered by seven villages on the 
southern and eastern boundaries. People living in these villages derive their income 
from various combinations of the three main forms of land use: agriculture, grazing, 
and forest exploitation. Farmers did not adopt any measure to combat land 
degradation. Their farms were located on forest land, they benefited from agriculture 
that aimed at maintaining the soil productivity with trees, in addition to other economic 
activities such as gum tapping, collecting and trading on forest products and charcoal 
burning which lead to forest degradation. 

In many areas in Sudan firewood for domestic purposes is still collected rather than 
produced or purchased. Few rural households consider tree planting as a solution to 
the fuel crisis, many social forestry programs have been created in close consultation 
with residents who are designed to serve. Such programs will improve the knowledge 
of the local people and they will be aware of the economic and environmental 
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consequences of deforestation and therefore they will be prepared and willing to 
participate in forestry activities and contribute to the management of the forest 
reserves. 

Forest planting projects should be relevant to the needs and priorities of the people 
living in the area. Success of tree planting projects should not be measured through 
the achievement of numerical targets. Increasing the number of trees in an area may 
have little beneficial effect unless it is closely related to the needs and priorities of the 
people living there. The management and utilization of existing tree resources should 
be a key element in any program of forest social development. Proper scientific 
management of woodlands with local participation not only could supply valuable yields 
of fuel wood and poles to neighboring communities, but could also provide many other 
useful woodland products while fulfilling an equally important conservation function. 

Problems of environmental degradation, fodder production and fuel wood supply 
cannot be solved by reforestation alone. What is required is an integrated land-use 
approach which involves agriculture, livestock, land settlement, forestry and the socio-
economic set-up. The remedy to this problem lies in either the establishment of range 
lands north of El Rawashda forest, the allocation of these lands to the nomads 
whereby they could grow crops and later graze their animals on their residues, or the 
reopening of grazing routes.  
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7 Conclusions and outlook 

7.1 Conclusions 

The objective of this research was to examine the effectiveness of eight algorithms in 
detecting land-cover changes for two periods (2000 - 2003 and 2003 - 2006) including 
1) the ability to differentiate change from no-change and 2) the ability to detect different 
kinds of change. The study also aimed to determine the change detection technique 
that had the highest accuracy in detecting vegetation cover changes and use this 
method to produce land cover change map for the study area. 

Consideration of the study leads to the following conclusions. 

− Post-classification comparison revealed the highest accuracy and furthermore 
presents the advantage of giving information about the nature of the changes. 

− There are other promising techniques for assessing vegetation cover changes 
and produced reasonable accuracy such as multivariate alteration detection and 
change vector analysis. Both methods can use any number of spectral bands 
from multi-date satellite data to produce change images that yield information 
about the direction of differences in pixel values. MAD is seen as an important 
method in future automated change detection applications. 

− The application of the automatic threshold determination procedures of 
MAF/MAD revealed good results. We recommend using the MAF/MAD 
transformed variables because their ability to enhance signal-to-noise is very 
strong and moreover they are straightforward methods for visualization of 
changes. 

− This study presents a new simple and logical technique to display and quantify 
forest change using three dates of satellite imagery. Instead of using RGB- 
NDVI (Sader and Winne, 1992), the tasseled cap transformation’s greenness 
layer (GTC) was used. By simultaneously projecting each date of GTC layer 
through the red, green, and blue (RGB) computer display write functions, major 
changes in GTC (and hence vegetation cover) between dates will appear in 
combinations of the primary (RGB) colours. We recommend using this 
technique because it allows interpretation of forest changes for three dates at a 
time. Analysis of three or more dates allows trends to be examined at more than 
one interval of time. Moreover, the method requires no thresholding for 
change/no change area and additional information can be interpreted from a 
three-date RGB-GTC that cannot be interpreted from the thresholding of two-
date change images. 

− Quantitative analysis of the accuracy assessment of change detection 
techniques is a difficult task because of the different nature of change detection. 
For example, how does one obtain reference data for images that were taken in 
the past? Which change detection technique will work best for a given change 
in the environment?  

− It is also difficult to determine which change detection methods are most 
effective because most studies on change detection have not included 
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quantitative accuracy assessments. So far no standard accuracy assessment 
techniques or procedures for change detection have been developed.  

− Results indicated that the principal land cover changes in the study area (e.g., 
deforestation and forest regeneration) can be monitored accurately by remote 
sensing. 

− Analysis of the literature provides ample evidence to support the conclusion that 
multi-date satellite imagery can be effectively used to detect and monitor 
changes in forests. At the same time we support the observation of Collins & 
Woodcock, (1996) that one of the challenges facing the community of remote 
sensing research is to develop a better knowledge of the change detection 
process so as to realize how to fit applications and change detection 
techniques. 

− El Rawashda forest is the largest forest in east Sudan of 52080 square 
hectares. It is well understood that El Rawashda forest had degraded and the 
degradation had induced a decline in agricultural productivity. However, to date, 
no studies have evaluated this degradation. To our knowledge, ours is the first 
study to classify and assess vegetation change in these classes in the forest. 

− It is important to mention that although the total vegetation of the forest seemed 
to be increased within the two periods, but 8.1% and 1.3% of the total closed 
forest area has been decreased in the first period (2000 – 2003) and the second 
period (2003 – 2006) respectively. So this may lead to misunderstanding 
because the vegetation cover includes grasses, weeds and other inferior 
regeneration, for example degradation of Acacia seyal (superior species) 
replaced by Acacia nubica (inferior species). 
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7.2 Outlook 

The present study supports future application for a detailed study of forest cover 
changes assessment. Clearly, this work needs to be pursued further, to improve the 
quality and the accuracy of our results. In future work a comprehensive change 
detection for Sudan forests should be carried out to assess the rate of deforestation, 
Studies are also needed to make better prediction of forest attributes from remote 
sensing data using different local studies to extract forest biomass. 

The capability of using remote sensing imagery for change detection will be enhanced 
by improvements in satellite data and by the integration of remote sensing, GIS 
techniques, beside field studies, practical expert and ecosystem simulation models. 
Although this study provides evidence that supports certain forest change detection 
methods, there is a need for further work to establish long-term validation programs for 
such monitoring and compare these methods against more recent change detection 
methods such as object classification and fuzzy classification.  

Clearly, as change-detection studies become more popular, the urgency for developing 
procedures to determine the accuracy of the different techniques becomes increasingly 
important. Upcoming work should involve the development of a comprehensive change 
detection and interpretation system. 

For the future, we plan to combine pixel– based and object– based approach to 
improve the accuracy of classification. Pixel classification approaches are based on 
statistical analysis of individual pixels, while object based classification incorporate as 
much information on spatial neighbourhood properties as possible into the 
classification process, so we can integrate spectral analysis with spatial information. 
This can provide a valuable tool for mapping forests, a capability that should be a great 
value to resource managers. 

The study also suggests several other possible studies as an extension to this one to 
complement the understanding of land cover change processes in El Rawashda forest. 
Research should include multitemporal socioeconomic data, which is going to be 
possible after the release of the 2008 Census data. The comparison of socioeconomic 
data will give valuable insights and a clearer picture of the socioeconomic drivers of 
deforestation in El Rawashda forest. Also study to test the hypothesis whether the 
changing socio-economic development in the region leads to changes in the 
relationship between population density and deforestation. 

The study pointed out that RGB-GTC technique detects more changes than RGB-
NDVI. However more research is needed regarding this issue. Also in this research no 
attempt was made to classify forest changes using RGB-GTC output, our research 
from RGB-GTC only provided useful information as a draft of changing. The study 
proposed automated classification on three or more dates of GTC by unsupervised 
cluster analysis (Sader et al., 2003), thus the Change and no change categories can 
be labeled and dated.  The utility of the RGB-GTC technique for supporting forest 
inventories and updating forest resource information systems is needed to presented 
and discussed. 

Future directions of this research could include more field data and statistical analysis 
will definitively verify the results of the study. Ground data indicating the spatially 
known deforestation and reforestation locations would allow for a definitive assertion 
that different methods are or are not able to detect accurate changes. Better ground 
data that could more explicitly identify where forest regeneration occurred would allow 
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better accuracy assessment. Further statistical analysis could be used to explain why 
some methods detected less biomass loss while others detected more biomass gain. 
The reasons of differences in accuracy of each method derive from preliminary findings 
of previous studies. By using spectral statistics and more precise ground-truth data one 
could provide a more definitive explanation of the strengths and weaknesses of each 
method. 

Monitoring of trends and impact of interventions on drought and desertification is a 
central issue to the success of efforts in combating drought and desertification; the 
establishment of well-functioning monitoring institutionally is strongly needed in Sub-
Saharan Africa. This could be work through strengthening the information base on 
drought and desertification and sharing of best practices through programs at regional, 
sub-regional and national level. These programs should entail activities to: strengthen 
collection of information through targeted research; establish comprehensive 
information systems; develop and apply methodologies for monitoring land 
degradation; and promote networking and centers of excellence. These programs 
could be supported by The Global Environment Facility (GEF) through its implementing 
agencies namely UNEP, UNDP and World Bank. Information systems should be 
composed of low-cost raster based image analysis and GIS tools with standard overlay 
and query procedures. Standardized data of specific networks of regions should be 
integrated with national and international environmental plans. A methodology for 
monitoring Sahelian regions must be able to detect, quantify and map the 
spatiotemporal patterns of land cover and land use change. 

More monitoring and accurate data are needed concerning deforestation at different 
regions in our country. Sudan would not be able to fulfill its obligations to implement 
the international agreements to combat desertification and to promote sustainable dry 
land development without accurate identification of deforested regions and the causes 
for desertification and environmental degradation. Proper management of forest is an 
essential task of this research. 
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