24 research outputs found

    Energy Efficient Manufacturing Scheduling: A Systematic Literature Review

    Full text link
    The social context in relation to energy policies, energy supply, and sustainability concerns as well as advances in more energy-efficient technologies is driving a need for a change in the manufacturing sector. The main purpose of this work is to provide a research framework for energy-efficient scheduling (EES) which is a very active research area with more than 500 papers published in the last 10 years. The reason for this interest is mostly due to the economic and environmental impact of considering energy in production scheduling. In this paper, we present a systematic literature review of recent papers in this area, provide a classification of the problems studied, and present an overview of the main aspects and methodologies considered as well as open research challenges

    Maintenance models applied to wind turbines. A comprehensive overview

    Get PDF
    ProducciĂłn CientĂ­ficaWind power generation has been the fastest-growing energy alternative in recent years, however, it still has to compete with cheaper fossil energy sources. This is one of the motivations to constantly improve the efficiency of wind turbines and develop new Operation and Maintenance (O&M) methodologies. The decisions regarding O&M are based on different types of models, which cover a wide range of scenarios and variables and share the same goal, which is to minimize the Cost of Energy (COE) and maximize the profitability of a wind farm (WF). In this context, this review aims to identify and classify, from a comprehensive perspective, the different types of models used at the strategic, tactical, and operational decision levels of wind turbine maintenance, emphasizing mathematical models (MatMs). The investigation allows the conclusion that even though the evolution of the models and methodologies is ongoing, decision making in all the areas of the wind industry is currently based on artificial intelligence and machine learning models

    Smart Sustainable Manufacturing Systems

    Get PDF
    With the advent of disruptive digital technologies, companies are facing unprecedented challenges and opportunities. Advanced manufacturing systems are of paramount importance in making key enabling technologies and new products more competitive, affordable, and accessible, as well as for fostering their economic and social impact. The manufacturing industry also serves as an innovator for sustainability since automation coupled with advanced manufacturing technologies have helped manufacturing practices transition into the circular economy. To that end, this Special Issue of the journal Applied Sciences, devoted to the broad field of Smart Sustainable Manufacturing Systems, explores recent research into the concepts, methods, tools, and applications for smart sustainable manufacturing, in order to advance and promote the development of modern and intelligent manufacturing systems. In light of the above, this Special Issue is a collection of the latest research on relevant topics and addresses the current challenging issues associated with the introduction of smart sustainable manufacturing systems. Various topics have been addressed in this Special Issue, which focuses on the design of sustainable production systems and factories; industrial big data analytics and cyberphysical systems; intelligent maintenance approaches and technologies for increased operating life of production systems; zero-defect manufacturing strategies, tools and methods towards online production management; and connected smart factories

    Distributed Power Generation Scheduling, Modelling and Expansion Planning

    Get PDF
    Distributed generation is becoming more important in electrical power systems due to the decentralization of energy production. Within this new paradigm, new approaches for the operation and planning of distributed power generation are yet to be explored. This book deals with distributed energy resources, such as renewable-based distributed generators and energy storage units, among others, considering their operation, scheduling, and planning. Moreover, other interesting aspects such as demand response, electric vehicles, aggregators, and microgrid are also analyzed. All these aspects constitute a new paradigm that is explored in this Special Issue

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Modelling methodologies for railway asset management

    Get PDF
    Management of railway assets incurs significant expenditure. Railway asset management modelling can predict the cost and efficacy of an asset management plan, and thus support the asset management planning process. Modelling frameworks can be used to facilitate the development of large, multi-asset, whole life cycle models which can be used to represent large sections of rail track and associated assets. This is achieved with libraries of models and tools with a high level of inter-compatibility. This research set out to support the development of modelling frameworks for railway asset management. It sought to determine the state of the art of railway asset management modelling in order to find which assets require further modelling development before they can be suitably represented in a framework’s model library. It also sought to determine the most accurate and suitable modelling methodology to base the framework upon. These aims were met by first carrying out a literature review to determine the state of the art of asset management modelling for major railway asset types. This review found Petri net models solved via Monte Carlo methods to be the most suitable modelling methodology for asset management. The level crossing asset class was chosen for the development of several models to explore the different types of Petri net model, concentrating on the computational resources required. This asset class was chosen as no asset management model was found in literature, and the diversity of the asset interactions. Literature review found several asset classes in need of further development, and some where asset management modelling may not be possible without other advances. The level crossing Petri net models developed demonstrated that computational requirements differ between the various types of Petri net. Stochastic Petri nets were found to simulate quickly, but had a high memory requirement. Coloured Petri nets were found to have the opposite requirements. A novel Petri net type, the Simple Coloured Petri net was developed to create a balance in computational cost. It was further found that complex processes such as scheduling and resource allocation can only be carried out using Coloured Petri nets due to their enhanced feature set. This work has found that further research on modelling specific asset classes is required to enable the development of a complete asset modelling library for use in a framework. If large models are to be developed, it is recommended that the Simple Coloured Petri net be used to balance computational requirements. Any models requiring complex functions should be developed using the Coloured Petri net methodology

    Solar Power System Plaing & Design

    Get PDF
    Photovoltaic (PV) and concentrated solar power (CSP) systems for the conversion of solar energy into electricity are technologically robust, scalable, and geographically dispersed, and they possess enormous potential as sustainable energy sources. Systematic planning and design considering various factors and constraints are necessary for the successful deployment of PV and CSP systems. This book on solar power system planning and design includes 14 publications from esteemed research groups worldwide. The research and review papers in this Special Issue fall within the following broad categories: resource assessments, site evaluations, system design, performance assessments, and feasibility studies

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore