1,269 research outputs found

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    On the vehicle routing problem with stochastic demands and duration constraints: formulations and a hybrid metaheuristic

    Get PDF
    International audienceThe vehicle routing problem with stochastic demands (VRPSD) consists in designing transportation routes of minimal expected cost to satisfy a set of customers with random demands of known probability distributions. In this research we present two strategies to deal with route duration constraints in the VRPSD. To solve the resulting problem, we proposed a greedy randomized adaptive search procedure (GRASP) with a post optimization procedure. The GRASP component uses a set of randomized route-first, cluster-second heuristics to generate starting solutions and a variable neighborhood descent (VND) procedure to carry on the local search phase. The post optimizer selects the best possible routes to assemble the final solution from the set of all routes found in the local optima reached by the GRASP. We discuss extensive computational experiments analysing the cost of considering route duration constraints on the VRPSD. In addition, we report state-of-the-art solutions for a established set of benchmarks for the classical VRPSD

    Simheuristics to support efficient and sustainable freight transportation in smart city logistics

    Get PDF
    La logística urbana intel·ligent constitueix un factor crucial en la creació de sistemes de transport urbà eficients i sostenibles. Entre altres factors, aquests sistemes es centren en la incorporació de dades en temps real i en la creació de models de negoci col·laboratius en el transport urbà de mercaderies, considerant l’augment dels habitants en les ciutats, la creixent complexitat de les demandes dels clients i els mercats altament competitius. Això permet als que planifiquen el transport minimitzar els costos monetaris i ambientals del transport de mercaderies a les àrees metropolitanes. Molts problemes de presa de decisions en aquest context es poden formular com a problemes d’optimació combinatòria. Tot i que hi ha diferents enfocaments de resolució exacta per a trobar solucions òptimes a aquests problemes, la seva complexitat i grandària, a més de la necessitat de prendre decisions instantànies pel que fa a l’encaminament de vehicles, la programació o la situació d’instal·lacions, fa que aquestes metodologies no s’apliquin a la pràctica. A causa de la seva capacitat per a trobar solucions pseudoòptimes en gairebé temps real, els algorismes metaheurístics reben una atenció creixent dels investigadors i professionals com a alternatives eficients i fiables per a resoldre nombrosos problemes d’optimació en la creació de la logística de les ciutats intel·ligents. Malgrat el seu èxit, les tècniques metaheurístiques tradicionals no representen plenament la complexitat dels sistemes més realistes. En assumir entrades (inputs) i restriccions de problemes deterministes, la incertesa i el dinamisme experimentats en els escenaris de transport urbà queden sense explicar. Els algorismes simheurístics persegueixen superar aquests inconvenients mitjançant la integració de qualsevol tipus de simulació en processos metaheurístics per a explicar la incertesa inherent a la majoria de les aplicacions de la vida real. Aquesta tesi defineix i investiga l’ús d’algorismes simheurístics com el mètode més adequat per a resoldre problemes d’optimació derivats de la logística de les ciutats. Alguns algorismes simheurístics s’apliquen a una sèrie de problemes complexos, com la recollida de residus urbans, els problemes de disseny de la cadena de subministrament integrada i els models de transport innovadors relacionats amb la col·laboració horitzontal entre els socis de la cadena de subministrament. A més de les discussions metodològiques i la comparació d’algorismes desenvolupats amb els referents de la bibliografia acadèmica, es mostra l’aplicabilitat i l’eficiència dels algorismes simheurístics en diferents casos de gran escala.Las actividades de logística en ciudades inteligentes constituyen un factor crucial en la creación de sistemas de transporte urbano eficientes y sostenibles. Entre otros factores, estos sistemas se centran en la incorporación de datos en tiempo real y la creación de modelos empresariales colaborativos en el transporte urbano de mercancías, al tiempo que consideran el aumento del número de habitantes en las ciudades, la creciente complejidad de las demandas de los clientes y los mercados altamente competitivos. Esto permite minimizar los costes monetarios y ambientales del transporte de mercancías en las áreas metropolitanas. Muchos de los problemas de toma de decisiones en este contexto se pueden formular como problemas de optimización combinatoria. Si bien existen diferentes enfoques de resolución exacta para encontrar soluciones óptimas a tales problemas, su complejidad y tamaño, además de la necesidad de tomar decisiones instantáneas con respecto al enrutamiento, la programación o la ubicación de las instalaciones, hacen que dichas metodologías sean inaplicables en la práctica. Debido a su capacidad para encontrar soluciones pseudoóptimas casi en tiempo real, los algoritmos metaheurísticos reciben cada vez más atención por parte de investigadores y profesionales como alternativas eficientes y fiables para resolver numerosos problemas de optimización en la creación de la logística de ciudades inteligentes. A pesar de su éxito, las técnicas metaheurísticas tradicionales no representan completamente la complejidad de los sistemas más realistas. Al asumir insumos y restricciones de problemas deterministas, se ignora la incertidumbre y el dinamismo experimentados en los escenarios de transporte urbano. Los algoritmos simheurísticos persiguen superar estos inconvenientes integrando cualquier tipo de simulación en procesos metaheurísticos con el fin de considerar la incertidumbre inherente en la mayoría de las aplicaciones de la vida real. Esta tesis define e investiga el uso de algoritmos simheurísticos como método adecuado para resolver problemas de optimización que surgen en la logística de ciudades inteligentes. Se aplican algoritmos simheurísticos a una variedad de problemas complejos, incluyendo la recolección de residuos urbanos, problemas de diseño de la cadena de suministro integrada y modelos de transporte innovadores relacionados con la colaboración horizontal entre los socios de la cadena de suministro. Además de las discusiones metodológicas y la comparación de los algoritmos desarrollados con los de referencia de la bibliografía académica, se muestra la aplicabilidad y la eficiencia de los algoritmos simheurísticos en diferentes estudios de casos a gran escala.Smart city logistics are a crucial factor in the creation of efficient and sustainable urban transportation systems. Among other factors, they focus on incorporating real-time data and creating collaborative business models in urban freight transportation concepts, whilst also considering rising urban population numbers, increasingly complex customer demands, and highly competitive markets. This allows transportation planners to minimize the monetary and environmental costs of freight transportation in metropolitan areas. Many decision-making problems faced in this context can be formulated as combinatorial optimization problems. While different exact solving approaches exist to find optimal solutions to such problems, their complexity and size, in addition to the need for instantaneous decision-making regarding vehicle routing, scheduling, or facility location, make such methodologies inapplicable in practice. Due to their ability to find pseudo-optimal solutions in almost real time, metaheuristic algorithms have received increasing attention from researchers and practitioners as efficient and reliable alternatives in solving numerous optimization problems in the creation of smart city logistics. Despite their success, traditional metaheuristic techniques fail to fully represent the complexity of most realistic systems. By assuming deterministic problem inputs and constraints, the uncertainty and dynamism experienced in urban transportation scenarios are left unaccounted for. Simheuristic frameworks try to overcome these drawbacks by integrating any type of simulation into metaheuristic-driven processes to account for the inherent uncertainty in most real-life applications. This thesis defines and investigates the use of simheuristics as a method of first resort for solving optimization problems arising in smart city logistics concepts. Simheuristic algorithms are applied to a range of complex problem settings including urban waste collection, integrated supply chain design, and innovative transportation models related to horizontal collaboration among supply chain partners. In addition to methodological discussions and the comparison of developed algorithms to state-of-the-art benchmarks found in the academic literature, the applicability and efficiency of simheuristic frameworks in different large-scaled case studies are shown

    Multi-attribute deterministic and stochastic two echelon location routing problems

    Full text link
    Les problèmes de localisation-routage à deux échelons (2E-LRP) sont devenus un domaine de recherche important dans le domaine de la logistique et de la gestion de la chaîne d'approvisionnement. Le 2E-LRP représente un problème d'optimisation dans les systèmes de distribution non dirigés, visant à organiser le transport de marchandises entre les plateformes et les clients par le biais d'installations intermédiaires appelées satellites. Ce problème implique de prendre des décisions simultanées concernant l'emplacement d'un ou deux niveaux d'installations (plateformes et/ou satellites) et de créer un ensemble limité d'itinéraires aux deux échelons afin de répondre efficacement à toutes les demandes des clients. Récemment, la communauté scientifique s'est intéressée de plus en plus à l'étude et à la résolution de problèmes plus réalistes. Cet intérêt provient de la reconnaissance du fait que les systèmes de distribution du monde réel sont caractérisés par une multitude de complexités et d'incertitudes qui ont un impact significatif sur l'efficacité opérationnelle, la rentabilité et la satisfaction des clients. Les chercheurs ont reconnu la nécessité d'aborder ces complexités et incertitudes pour développer des solutions pratiques et efficaces. Cette thèse comprend trois études différentes, chacune correspondant à un article de recherche autonome. Dans les trois articles, nous nous concentrons sur différents 2E-LRP riches qui comprennent plusieurs attributs en interaction. Ces variantes du problème sont appelées problèmes de localisation-routage à deux échelons et à attributs multiples (2E-MALRP). Pour analyser l'influence des incertitudes sur les solutions optimales et les processus de prise de décision, nous considérons à la fois les perspectives déterministes et stochastiques. Cette approche nous permet de mieux comprendre le comportement de ces problèmes complexes. Le premier document de recherche abordé dans cette thèse se concentre sur un problème de localisation-routage déterministe à deux échelons et à attributs multiples avec synchronisation de la flotte dans les installations intermédiaires (2E-MALRPS). Le cadre du problème comprend divers facteurs, notamment la demande de marchandises multiples dépendant du temps, les fenêtres temporelles, le manque de capacité de stockage dans les installations intermédiaires et la nécessité de synchroniser les flottes opérant à différents échelons. Dans le 2E-MALRPS, tous les paramètres, tels que les demandes des clients, les temps de trajet et les coûts, sont connus avec certitude. Dans cet article, nous introduisons le cadre du problème, présentons une formulation de programmation en nombres entiers mixtes et proposons un cadre de découverte de discrétisation dynamique comme méthode de résolution du problème. Le deuxième article de cette thèse traite du problème de localisation-routage à deux échelons en cas de demandes stochastiques et corrélées (2E-MLRPSCD). Contrairement au 2E-MALRPS, le 2E-MLRPSCD prend en compte les incertitudes liées aux demandes des clients, ainsi que la corrélation entre ces demandes. Nous formulons le problème sous la forme d'un modèle de programmation stochastique en deux étapes. Au cours de la première étape, des décisions sont prises concernant la conception des installations satellites, tandis qu'au cours de la deuxième étape, des décisions de recours déterminent la manière dont les demandes observées sont servies. Nous proposons une métaheuristique de couverture progressive comme méthode de résolution. Dans cette approche, nous incorporons deux structures de population dans le cadre de la couverture progressive. Ces structures renforcent la diversité des décisions de conception obtenues pour chaque sous-problème de scénario et fournissent des informations pertinentes pour améliorer la qualité de la solution. En outre, nous introduisons et comparons trois nouvelles stratégies différentes pour accélérer la recherche de l'espace de solution pour le problème stochastique. Finalement, le troisième article présenté dans cette thèse se concentre sur un problème de localisation-routage multi-attributs à deux échelons avec des temps de trajet stochastiques (2E-MALRPSTT). Le 2E-MALRPSTT combine un problème multi-attributs riche avec des éléments stochastiques, en particulier en considérant des temps de trajet stochastiques. Pour traiter le problème stochastique complet, un cadre de couverture progressive (PH) est proposé en s'appuyant sur les lignes directrices méthodologiques définies dans notre deuxième article pour le 2E-MLRPSCD. En outre, une heuristique basée sur la décomposition est introduite pour accélérer le cadre PH, et deux nouvelles stratégies d'agrégation sont présentées pour accélérer le processus de consensus concernant les décisions de la première étape. Les contributions présentées dans cette thèse couvrent divers aspects de la modélisation et des méthodologies de solution pour les 2E-MALRP riches, à la fois d'un point de vue déterministe et d'un point de vue stochastique. Les trois articles inclus dans cette thèse démontrent l'efficacité des approches proposées à travers des campagnes expérimentales étendues, mettant en évidence leur efficacité de calcul et la qualité des solutions, en particulier dans les cas difficiles. En abordant les aspects déterministes et stochastiques de ces 2E-MALRP, cette thèse vise à contribuer à l'ensemble des connaissances en optimisation de la logistique et de la chaîne d'approvisionnement, à répondre aux besoins importants de la littérature actuelle et à fournir des informations importantes pour les systèmes de distribution à deux échelons dans divers contextes.The Two-Echelon Location-Routing Problems (2E-LRPs) have emerged as a prominent research area within the field of logistics and supply chain management. The 2E-LRP represents an optimization problem in undirected distribution systems, aiming to streamline freight transportation between platforms and customers through intermediate facilities known as satellites. This problem involves making simultaneous decisions concerning the location of one or two levels of facilities (platforms and/or satellites) and creating a limited set of routes at both echelons to effectively serve all customer demands. In recent years, there has been a growing interest among the scientific community in studying and solving more realistic problem settings. This interest arises from the recognition that real-world distribution systems are characterized by a multitude of complexities and uncertainties that significantly impact operational efficiency, cost-effectiveness, and customer satisfaction. Researchers have acknowledged the need to address these complexities and uncertainties to develop practical and effective solutions. This dissertation comprises three distinct studies, each serving as a self-contained research article. In all three articles, we focus on different rich 2E-LRPs that encompass multiple interacting attributes. These problem variants are referred to as two-echelon multi-attribute location-routing problems (2E-MALRPs). To analyze the influence of uncertainties on optimal solutions and decision-making processes, we consider both deterministic and stochastic perspectives. This approach allows us to gain insights into the behavior of these complex problem settings. The first research paper addressed in this thesis focuses on a deterministic two-echelon multi-attribute location-routing problem with fleet synchronization at intermediate facilities (2E-MALRPS). The problem setting encompasses various factors, including time-dependent multicommodity demand, time windows, lack of storage capacity at intermediate facilities, and the need for synchronization of fleets operating at different echelons. In the 2E-MALRPS, all parameters, such as customer demands, travel times, and costs, are known with certainty. In this paper, we introduce the problem setting, present a mixed-integer programming formulation, and propose a dynamic discretization discovery framework as the solution method to address the problem. The second paper in this thesis addresses the two-echelon multicommodity location-routing problem with stochastic and correlated demands (2E-MLRPSCD). In contrast to the 2E-MALRPS, the 2E-MLRPSCD takes into account uncertainties related to customer demands, as well as the correlation among these demands. We formulate the problem as a two-stage stochastic programming model. In the first stage, decisions are made regarding the design of satellite facilities, while in the second stage, recourse decisions determine how the observed demands are allocated and served. We propose a progressive hedging metaheuristic as the solution method. In this approach, we incorporate two population structures within the progressive hedging framework. These structures enhance the diversity of the design decisions obtained for each scenario subproblem and provide valuable insights for improving the solution quality. Additionally, We also introduce and compare three different novel strategies to accelerate the search for the solution space for the stochastic problem. Finally, the third paper presented in this thesis focuses on a multi-attribute two-echelon location-routing problem with stochastic travel times (2E-MALRPSTT). The 2E-MALRPSTT combines a rich multi-attribute problem setting with stochastic elements, specifically considering stochastic travel times. To address the complete stochastic problem, a progressive hedging metaheuristic is proposed building on the methodological guidelines defined in our second paper for the 2E-MLRPSCD. Furthermore, a decomposition-based heuristic is introduced to accelerate the PH framework, and two novel selection strategies are presented to expedite the consensus process regarding the first-stage decisions. The contributions presented in this thesis encompass various aspects of modeling and solution methodologies for rich 2E-MALRPs from both deterministic and stochastic perspectives. The three articles included in this thesis demonstrate the effectiveness of the proposed approaches through extensive experimental campaigns, highlighting their computational efficiency and solution quality, particularly in challenging instances. By addressing the deterministic and stochastic aspects of these 2E-MALRPs, this thesis aims to contribute to the broader body of knowledge in logistics and supply chain optimization, fill important gaps in the present literature and provide valuable insights for two-echelon distribution systems in diverse settings

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141

    Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization

    Get PDF
    This dissertation presents metaheuristic approaches in the areas of genetic algorithms and ant colony optimization to combinatorial optimization problems. Ant colony optimization for the split delivery vehicle routing problem An Ant Colony Optimization (ACO) based approach is presented to solve the Split Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one vehicle. The proposed ACO based algorithm is tested on benchmark problems previously published in the literature. The results indicate that the ACO based approach is competitive in both solution quality and solution time. In some instances, the ACO method achieves the best known results to date for the benchmark problems. Hybrid genetic algorithm for the split delivery vehicle routing problem (SDVRP) The Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field of transportation and logistics. There are various variants of VRP which have been developed of the years; one of which is the Split Delivery Vehicle Routing Problem (SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid genetic algorithm comprising a combination of ant colony optimization, genetic algorithm, and heuristics is proposed and tested on benchmark SDVRP test problems. Genetic algorithm approach to solve the hospital physician scheduling problem Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals and high levels of service time variation. The problem is to find a shift schedule that considers queuing effects and minimizes average patient waiting time and maximizes physicians’ shift preference subject to constraints on shift start times, shift durations and total physician hours available per day. An approach that utilizes a genetic algorithm and discrete event simulation to solve the physician scheduling problem in a hospital is proposed. The approach is tested on real world datasets for physician schedules
    corecore