702 research outputs found

    An estimation of distribution algorithm for combinatorial optimization problems

    Get PDF
    This paper considers solving more than one combinatorial problem considered some of the most difficult to solve in the combinatorial optimization field, such as the job shop scheduling problem (JSSP), the vehicle routing problem with time windows (VRPTW), and the quay crane scheduling problem (QCSP). A hybrid metaheuristic algorithm that integrates the Mallows model and the Moth-flame algorithm solves these problems. Through an exponential function, the Mallows model emulates the solution space distribution for the problems; meanwhile, the Moth-flame algorithm is in charge of determining how to produce the offspring by a geometric function that helps identify the new solutions. The proposed metaheuristic, called HEDAMMF (Hybrid Estimation of Distribution Algorithm with Mallows model and Moth-Flame algorithm), improves the performance of recent algorithms. Although knowing the algebra of permutations is required to understand the proposed metaheuristic, utilizing the HEDAMMF is justified because certain problems are fixed differently under different circumstances. These problems do not share the same objective function (fitness) and/or the same constraints. Therefore, it is not possible to use a single model problem. The aforementioned approach is able to outperform recent algorithms under different metrics for these three combinatorial problems. Finally, it is possible to conclude that the hybrid metaheuristics have a better performance, or equal in effectiveness than recent algorithms

    Integrating sustainability into production scheduling in hybrid flow-shop environments

    Get PDF
    Global energy consumption is projected to grow by nearly 50% as of 2018, reaching a peak of 910.7 quadrillion BTU in 2050. The industrial sector accounts for the largest share of the energy consumed, making energy awareness on the shop foors imperative for promoting industrial sustainable development. Considering a growing awareness of the importance of sustainability, production planning and control require the incorporation of time-of-use electricity pricing models into scheduling problems for well-informed energy-saving decisions. Besides, modern manufacturing emphasizes the role of human factors in production processes. This study proposes a new approach for optimizing the hybrid fow-shop scheduling problems (HFSP) considering time-of-use electricity pricing, workers’ fexibility, and sequence-dependent setup time (SDST). Novelties of this study are twofold: to extend a new mathematical formulation and to develop an improved multi-objective optimization algorithm. Extensive numerical experiments are conducted to evaluate the performance of the developed solution method, the adjusted multi-objective genetic algorithm (AMOGA), comparing it with the state-of-the-art, i.e., strength Pareto evolutionary algorithm (SPEA2), and Pareto envelop-based selection algorithm (PESA2). It is shown that AMOGA performs better than the benchmarks considering the mean ideal distance, inverted generational distance, diversifcation, and quality metrics, providing more versatile and better solutions for production and energy efciency

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    A game theory model based on Gale-Shapley for dual-resource constrained (DRC) flexible job shop scheduling

    Get PDF
    Most job shops in practice are constrained by both machine and labor availability. Worker assignment in these so-called Dual Resource Constrained (DRC) job shops is typically solved in the literature via the use of meta-heuristics, i.e. “when” and “where” rules, or heuristic assignment rules. While the former does not necessarily lead to optimal results, the latter suffers from high computational time and complexity, especially when there is a large number of workstations. This paper uses game theory to propose a new worker assignment rule for DRC job shops. The Gale-Shapley model (also known as the stable marriage problem) forms a ‘couple’ made up of a worker and machine following a periodic review strategy. Simulation is used to evaluate and compare the proposed model to “when” and “where” rules previously proposed in the literature. Simulation experiments under different conditions demonstrate that the Gale-Shapley model provides better results for worker assignments in complex DRC systems, particularly when the workers have different efficiency levels. The implications of the findings for research and practice are outlined

    A research survey: review of flexible job shop scheduling techniques

    Get PDF
    In the last 25 years, extensive research has been carried out addressing the flexible job shop scheduling (JSS) problem. A variety of techniques ranging from exact methods to hybrid techniques have been used in this research. The paper aims at presenting the development of flexible JSS and a consolidated survey of various techniques that have been employed since 1990 for problem resolution. The paper comprises evaluation of publications and research methods used in various research papers. Finally, conclusions are drawn based on performed survey results. A total of 404 distinct publications were found addressing the FJSSP. Some of the research papers presented more than one technique/algorithm to solve the problem that is categorized into 410 different applications. Selected time period of these research papers is between 1990 and February 2014. Articles were searched mainly on major databases such as SpringerLink, Science Direct, IEEE Xplore, Scopus, EBSCO, etc. and other web sources. All databases were searched for “flexible job shop” and “scheduling” in the title an

    Flexible jobshop scheduling problem with resource recovery constraints.

    Get PDF
    Objectives and methods of study: The general objective of this research is to study a scheduling problem found in a local brewery. The main problem can be seen as a parallel machine batch scheduling problem with sequence-dependent setup times, resource constraints, precedence relationships, and capacity constraints. In the first part of this research, the problem is characterized as a Flexible Job-shop Scheduling Problem with Resource Recovery Constraints. A mixed integer linear formulation is proposed and a large set of instances adapted from the literatura of the Flexible Job-shop Scheduling Problem is used to validate the model. A solution procedure based on a General Variable Neighborhood Search metaheuristic is proposed, the performance of the procedure is evaluated by using a set of instances adapted from the literature. In the second part, the real problem is addressed. All the assumptions and constraints faced by the decision maker in the brewery are taken into account. Due to the complexity of the problem, no mathematical formulation is presented, instead, a solution method based on a Greedy Randomize Adaptive Search Procedure is proposed. Several real instances are solved by this algorithm and a comparison is carried out between the solutions reported by our GRASP and the ones found through the procedure followed by the decision maker. The computational results reveal the efficiency of our method, considering both the processing time and the completion time of the scheduling. Our algorithm requires less time to generate the production scheduling (few seconds) while the decision maker takes a full day to do it. Moreover, the completion time of the production scheduling generated by our algorithm is shorter than the one generated through the process followed by the decision maker. This time saving leads to an increase of the production capacity of the company. Contributions: The main contributions of this thesis can be summarized as follows: i) the introduction of a variant of the Flexible Job-shop Scheduling Problem, named as the Flexible Job-shop Scheduling Problem with Resource Recovery Constraints (FRRC); ii) a mixed integer linear formulation and a General Variable Neighborhood Search for the FRRC; and iii) a case study for which a Greedy Randomize Adaptive Search Procedure has been proposed and tested on real and artificial instances. The main scientific products generated by this research are: i) an article already published: SĂĄenz-AlanĂ­s, CĂ©sar A., V. D. Jobish, M. AngĂ©lica Salazar-Aguilar, and Vincent Boyer. “A parallel machine batch scheduling problem in a brewing company”. The International Journal of Advanced Manufacturing Technology 87, no. 1-4 (2016): 65-75. ii) another article submitted to the International Journal of Production Research for its possible publication; and iii) Scientific presentations and seminars

    A Memetic Algorithm with Reinforcement Learning for Sociotechnical Production Scheduling

    Get PDF
    The following interdisciplinary article presents a memetic algorithm with applying deep reinforcement learning (DRL) for solving practically oriented dual resource constrained flexible job shop scheduling problems (DRC-FJSSP). From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material (BOM) manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration. In recent years, there has been extensive research on metaheuristics and DRL techniques but focused on simple scheduling environments. However, there are few approaches combining metaheuristics and DRL to generate schedules more reliably and efficiently. In this paper, we first formulate a DRC-FJSSP to map complex industry requirements beyond traditional job shop models. Then we propose a scheduling framework integrating a discrete event simulation (DES) for schedule evaluation, considering parallel computing and multicriteria optimization. Here, a memetic algorithm is enriched with DRL to improve sequencing and assignment decisions. Through numerical experiments with real-world production data, we confirm that the framework generates feasible schedules efficiently and reliably for a balanced optimization of makespan (MS) and total tardiness (TT). Utilizing DRL instead of random metaheuristic operations leads to better results in fewer algorithm iterations and outperforms traditional approaches in such complex environments.Comment: This article has been accepted by IEEE Access on June 30, 202

    Flexible Job-shop Scheduling Problem with Sequencing Flexibility: Mathematical Models and Solution Algorithms

    Get PDF
    Marketing strategists usually advocate increased product variety to attend better market demand. Furthermore, companies increasingly acquire more advanced manufacturing systems to take care of the increased product mix. Manufacturing resources with different capabilities give a competitive advantage to the industry. Proper management of the current productions resources is crucial for a thriving industry. Flexible job shop scheduling problem (FJSP) is an extension of the classical Job-shop scheduling problem (JSP) where operations can be performed by a set of candidate capable machines. An extended version of the FJSP, entitled FJSP with sequencing flexibility (FJSPS), is studied in this work. The extension considers precedence between the operations in the form of a directed acyclic graph instead of sequential order. In this work, a mixed integer programming (MILP) formulation is presented. A single objective formulation to minimize the weighted tardiness for the FJSP with sequencing flexibility is proposed. A different objective to minimize makespan is also considered. Due to the NP-hardness of the problem, a novel hybrid bacterial foraging optimization algorithm (HBFOA) is developed to tackle the FJSP with sequencing flexibility. It is inspired by the behaviour of the E. coli bacteria. It mimics the process to seek for food. The HBFOA is enhanced with simulated annealing (SA). The HBFOA has been packaged in the form of a decision support system (DSS). A case study of a small and medium-sized enterprise (SME) manufacturing industry is presented to validate the proposed HBFOA and MILP. Additional numerical experiments with instances provided by the literature are considered. The results demonstrate that the HBFOA outperformed the classical dispatching rules and the best integer solution of MILP when minimizing the weighted tardiness and offered comparable results for the makespan instances. In this dissertation, another critical aspect has been studied. In the industry, skilled workers usually are able to operate a specific set of machines. Hence, managers need to decide the best operation assignments to machines and workers. However, they need also to balance the workload between workers while accomplishing the due dates. In this research, a multi-objective mathematical model that minimizes makespan, maximal worker workload and weighted tardiness is developed. This model is entitled dual-resource FJSP with sequencing flexibility (DRFJSPS). It covers both the machine assignment and also the worker selection. Due to the intractability of the DRFJSPS, an elitist non-dominated sorting genetic algorithm (NSGA-II) is developed to solve this problem efficiently. The algorithm provides a set of Pareto-optimal solutions that the decision makers can use to evaluate the trade-offs of the conflicting objectives. New instances are introduced to demonstrate the applicability of the model and algorithm. A multi-random-start local search algorithm has been developed to assess the effectiveness of the adapted NSGA-II. The comparison of the solutions demonstrates that the modified NSGA-II provides a non-dominated efficient set in a reasonable time. Finally, a situation where there are multiple process plans available for a specific job is considered. This scenario is useful to be able to react to the current status of the shop where unpredictable circumstances (machine breakdown, current product mix, due dates, demand, etc.) can be accurately tackled. The determination of the process plan also depends on its cost. For that, a balance between cost, and the accomplishment of due dates is required. A multi-objective mathematical model that minimizes makespan, total processing cost and weighted tardiness are proposed to determine the sequence and the process plan to be used. This model is entitled flexible job-shop scheduling problem with sequencing and process plan flexibility (FJSP-2F). New instances are generated to show the applicability of the model

    Continuous Process Improvement Implementation Framework Using Multi-Objective Genetic Algorithms and Discrete Event Simulation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose Continuous process improvement is a hard problem, especially in high variety/low volume environments due to the complex interrelationships between processes. The purpose of this paper is to address the process improvement issues by simultaneously investigating the job sequencing and buffer size optimization problems. Design/methodology/approach This paper proposes a continuous process improvement implementation framework using a modified genetic algorithm (GA) and discrete event simulation to achieve multi-objective optimization. The proposed combinatorial optimization module combines the problem of job sequencing and buffer size optimization under a generic process improvement framework, where lead time and total inventory holding cost are used as two combinatorial optimization objectives. The proposed approach uses the discrete event simulation to mimic the manufacturing environment, the constraints imposed by the real environment and the different levels of variability associated with the resources. Findings Compared to existing evolutionary algorithm-based methods, the proposed framework considers the interrelationship between succeeding and preceding processes and the variability induced by both job sequence and buffer size problems on each other. A computational analysis shows significant improvement by applying the proposed framework. Originality/value Significant body of work exists in the area of continuous process improvement, discrete event simulation and GAs, a little work has been found where GAs and discrete event simulation are used together to implement continuous process improvement as an iterative approach. Also, a modified GA simultaneously addresses the job sequencing and buffer size optimization problems by considering the interrelationships and the effect of variability due to both on each other
    • 

    corecore