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Abstract

In this thesis, the production planning of a multi-stage manufacturing system is optimized in order
to improve the delivery performance. The manufacturing system consists of three stages and every
stage is optimized in a different way. Stage 1 is optimized using a discrete event simulation (DES)
to generate an inventory policy which guarantees a 99% fill rate. A Genetic Algorithm (GA) is
used to tackle a dual resource constraint flexible job shop scheduling problem with scarce setup
operators(DRC-FJSSP-SSO) in stage 2 and capacity planning is used to optimize stage 3. Finally,
the stages are combined and the new total production time is compared to the current one.
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Executive Summary

This thesis is conducted at Royal Philips NV at the 1D grids factory in Best. At this location,
anti-scatter grids are produced which are used in x-ray scanners to sharpen the image and reduce
the amount of radiation required. Within Philips, these anti-scatter grids are produced from raw
materials. In this production process, there are several challenges, e.g. the yield is low, the capacity
of machines is limited and the capacity of skilled operators is lacking. To deal with these challenges
and to still have a good delivery performance, good planning of capacity and scheduling of orders
is required. Therefore, the main research objective of this thesis is to provide recommendations on
how planning and scheduling of anti-scatter grids, within a multi-stage manufacturing system, can
improve the delivery performance to close the gap to the aimed 95%.

Figure 1: Process Flow for a regular grid

Figure 1, shows what the multi-stage manufacturing system looks like. At Philips, the system
will consist of three stages where each of the stages will be optimized in its own way. Stage 1
will be optimized using a discrete event simulation. The goal is to generate an inventory policy
that guarantees a 99% fill rate. Stage 2 can be seen as a dual recourse constrained flexible job
shop scheduling problem with scarce setup operators. This is a scheduling problem where a job is
produced on an eligible machine and the machine has to be set up by an eligible operator. This
is a complex problem and that is the reason why exact methods will not tackle this problem in
a reasonable computation time. Therefore, a genetic algorithm, based on Obimuyiwa (2020) is
developed. A genetic algorithm is based on concepts of evolution and natural selection. The idea
is to create random solutions for a given optimization problem and ‘evolve’ the solutions towards
optimal solutions. The optimal solution is in this case based on the selection pressure induced by
the objective function. A genetic algorithm is developed because it is used most often for these
types of problems, it is very effective for combinatorial problems, it is very effective when handling
large search space, it is a simple process and has strong extensibility. Using this genetic algorithm,
a schedule for stage 2 can be generated. For stage 3, the amount of operators at each processing
step is determined based on the number of grids that are produced per day. All activities within
stage 3 are mapped with corresponding times. With this knowledge, it can be determined how
many grids a processing step can handle with X operators. This means that it can be determined
how many operators are required when producing several grids in stage 2.

To incorporate stage 1 into the other two stages, an assumption is made. It is assumed that, if the
reorder levels and review period are used, the inventory will never drop below 0. This means, there
is always enough inventory to start production in stage 2. This is a realistic assumption because the
inventory policies are based on a 99% fill rate. Combining stage 2 and stage 3 is done by interpreting
stage 3 as one unit. This unit, Post-processing, is then added to the GA. When the processing time
is determined, the steady-state of the total production time can be determined using a Markov chain.
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For stage 1, inventory policies are determined which guarantee a 99% fill rate. The inventory poli-
cies have to be updated over the months since the demand in the simulation is based on historic
demand. To make sure that new demand patterns are taken into account, the demand in the dis-
crete event simulation has to be updated.

The genetic algorithm gave the following results. When using 3 operators at Operation 2 during
every shift, it is at least possible to process 150 jobs per day. This results in 750 jobs per week.
When taking yield into account, this results in 488 jobs per week which are completed from the 750
jobs. 488 jobs per week are above the current target amount of jobs that have to be finished per
week. If only 2 shifts are used per day, at least 98 jobs can be processed per day. This leads to 325
jobs that are completed per week if the average yield is used for the calculation. This is slightly
below target and therefore, an extra shift can be useful. Next to that, the results show that the
GA tries to schedule jobs with similar heights (and line types) on the same machine. This is useful
to minimize setup times. When the height (and line type) differ, the machine requires a setup by
an operator or maintenance operator. A height difference requires a larger setup than a difference
in line type. That is why machines rarely change the height, but do change line types.

Capacity planning is used to optimize stage 3. Based on the number of grids produced in stage 2,
a set of eligible operators has to be active at each processing step. For example, a scenario which
is realistic and requires the fewest number of operators is: Post-processing 1 = 2-2-0, Veneer =
1-1-1 and Post-processing 2 = 1-1-1. This means that for Post-processing, 2 operators are required
for shifts 1 and 2. For Veneer a single operator is required in every shift and the same goes for
Post-processing 2. With these operators, 100 grids can be processed per day.

When combining all three stages, the total production time can be determined. The current total
production time and the improved total production time are both shown in Figures 2 and 3 respec-
tively. It can be seen that 90% of all grids are completed within 29.6 days when using the current
scheduling method and 22.3 days when using the improved method. This improvement is purely
based on having the right number of operators at the right processing step and releasing a new
production order once a grid is scrapped.

Figure 2: Current total production time Figure 3: Improved total production time

To summarize, Philips should take new reorder levels into account to make sure that there is always
enough stock to start producing grids. Next, 3 operators are required for the fusing step in the
production line. The grids should be scheduled based on the characteristic “height”. the setup
times will be minimized when multiple grids with the same height are processed consecutively on
the same machine. Finally, the number of operators at each processing step in stage 3 should be
based on how many grids are produced in stage 2 of the system. The bottleneck rate of stage 3
should at least be larger than the number of grids that are produced in stage 2 minus the yield.
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When keeping all these improvements in mind, the total production time will decrease and it will
be possible to guarantee a 6-week delivery period. There is only one problem. Currently, there is
a large backlog which means that products are not produced right away. If this takes longer than
two weeks, less than 90% of the grids can be delivered within six weeks. This is because 29.6 days
are required to complete 90% of the jobs. Therefore, another recommendation would be to spend
a couple of weeks with the maximum number of operators in every shift to reduce this backlog.
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1 Introduction

X-ray scanners are used worldwide. The concept of these scanners is based on x-rays entering
diverse parts of an object differently based on their density. A difference in density can therefore
be shown in the images when the x-rays reach the detector. In the medical world, images, which
are created using x-rays, can detect bones and other structures in the body like the heart and some
types of tumors. In most cases, x-ray scanners are used to make a general diagnosis.

To sharpen the image, anti-scatter grids can be used. An anti-scatter grid is a grid that filters out
scattered radiation, which only negatively influences the sharpness of the image. Philips produces
these anti-scatter grids. The production of these anti-scatter grids is performed in the Imaging
Component (IC) Factory. Philips is specialized in making fiber-interspaced anti-scatter grids. A
type of paper (fiber) is used as a component of their grid. By doing this, instead of using plastic or
aluminum, less radiation is required during the scan. This is because radiation passes more easily
through fiber than through other materials. In this way, the anti-scatter grids not only sharpen the
image, but also reduce the amount of radiation required for the scan. X-ray scanners are crucial
tools for doctors, but there are risks associated with radiation. Radiation can cause damage to
the cells in our body. That is why doctors want to minimize the amount of radiation that is used
during a scan. Hence, fiber-interspaced anti-scatter grids are preferred.

This master thesis is performed at Royal Philips NV and is aimed to provide recommendations on
how production planning and scheduling of anti-scatter grids can improve delivery performance.
In this chapter, Section 1.1 will provide further information regarding the context of the project.
Section 1.2 will define the problem statement and Section 1.3 will give a complete representation
of the scope of this thesis. Finally, the last section of this chapter (Section 1.4) will present the
research questions. In Chapter 2, the Literature background is discussed. Chapter 3 explains which
methods are used in this thesis. Chapter 4 will show the results of the models and in Chapter 5,
these results will be discussed and the research questions will be answered.

1.1 Context Description

Section 1.1.1 will give some in depth information about Philips. Next, Section 1.1.2 will explain in
more detail about the factory where this thesis is conducted. Section 1.1.3 gives a clear overview
of how anti-scatter grids work and finally, Section 1.1.4 will explain how an anti-scatter grid is
produced.

1.1.1 Royal Philips NV

In 1891 Royal Philips NV was founded. The focus in that day was the carbon-filament lamp, but over
the years, Philips started to produce a variety of products in numerous markets. Currently, Philips
is almost every year in the top 10 patent applicants to the European Patent Office. This shows
the innovative aim of Philips. Today, Philips’s product portfolio has however drastically changed.
Currently, Philips focuses only on healthcare-related products. “ At Philips, our purpose to improve
people’s health and well-being through meaningful innovation is at the heart of everything we do.
Never has this central tenet been more important than it is now, in these challenging times.”
(Philips, 2021).

1.1.2 IC Factory

This master thesis will be performed at Philips Medical Systems at Factory Best. The department
within Factory Best is Component Repair & Refurbishment (CR&R). The IC Factory, within
CR&R, is the area where this thesis will be conducted. In Best, fully working medical systems are
assembled, ready to ship to the customer. Within the IC Factory grids are produced that are used

1



for internal Philips departments (e.g. Image Guided Therapy (IGT), Diagnostic X-Ray (DXR),
Computed Tomography (CT)) and Original Equipment Manufacturer (OEM) customers. Within
the IC factory, 2 types of grids are produced. Internally, these are called: 1D and 2D grids. 1D grids
are Smit Röntgen fiber-interspaced anti-scatter grids that are used for IGT- and DXR systems. 2D
grids are Tungsten anti-scatter grids that are used for CT scanners. The focus of this master thesis
will be to come up with recommendations for the production schedule of 1D grids. The purpose of
a grid and how a grid is produced can be read in the Chapters 1.1.3 and 1.1.4.

1.1.3 Anti-Scatter Grids

An Anti-Scatter Grid is used to create sharp images using x-rays. The purpose of the grid is to fil-
ter out the scattered radiation. Scattered radiation is sometimes formed when the radiation passes
through the object which has to be scanned. It bounces off something within the scanned object
and is therefore no longer useful for the image and can only negatively influence the image. The
grid makes sure that most scattered radiation is filtered out. This is done by using thin fiber and
lead strips. These are glued to each other at an angle. Lead absorbs the radiation while fiber let
the radiation pass through. This means only radiation that has not changed direction will pass
through the grid and will land on the detector as can be seen in Figure 4. The blue strips are the
lead strips (these absorb the scattered x-rays) and the white strips are the fiber.

Figure 4: Anti-Scatter Grid (Cattin, 2016)

How the grids are produced and how the complete production line looks, will be described in the
following chapter.

1.1.4 Process flow

As mentioned before, grids are produced from small strips of lead and fiber, called lamellae. How-
ever, the first processing step is not combining these strips. The process of producing a grid starts
with: rolls of fiber, rolls of lead, shellac, glue, metal frameworks and carbon. How these materials
will be combined is in detail explained below. Because certain types of grids need different process-
ing steps only the process flow of a regular grid is explained. The flow is also visualized in Figure
5 and enlarged in Appendix A.
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Figure 5: Process Flow of a regular grid

1. Oven
Once the rolls of fiber are received from the supplier they are stored within the production location.
This is because this production line has a low humidity-controlled climate. This means that before
the fiber can be used it has to dry for multiple days/weeks. To speed up this process, rolls of fiber
can also be placed in an oven. They have to be in for around 3 days. In total 5 ovens can be used
to dry the fiber. Once the rolls have been dried they are ready for the next step. In total 5 different
types of fiber are used to produce grids. Each type of fiber differs in thickness.

2. Planing
The second step is called planing. In this step, the fiber is planed to a certain thickness. The 5
types of fiber can create a total of 13 different thicknesses of fiber. Planing is done using a machine
where the roll is unrolled, planed and then rolled back up again. Every roll of fiber has to be planed
at least 4 times to create the right thickness. In total 2 planing machines are used. Once the fiber
has the right thickness it can go on to the next step.

3. Apply shellac
In this step, the shellac is applied to one side of the fiber. Shellac is a type of glue which is necessary
for this process. This is because it dries quickly and once it is dry it can become sticky again when
it is electrified. Once this step is finished the roll of fiber has turned into a roll of fiber with shellac
on one side of it.

4. Cache
After the shellac is applied to one side, the other (empty) side can be glued to lead. This is done
with two-component glue. A layer of lead is glued to the empty side of the roll of fiber. Once the
lead is applied, the end product is a roll of fiber with on one side shellac and the other side a thin
layer of lead. This is called a cached roll. Because the 2 component glue has to dry these rolls have
to be placed in storage for 3 days. There is one exception. One type of cached roll has to dry for
14 days. This is because the yield will increase (in quality checks 1 and 2) if it dries for a longer
time. There are three different types of lead. They also differ in thickness. The combination of the
type of lead and type of fiber is pre-determined.

5. lamellae roll maker
Once the glue has dried for 3 or 14 days it is ready to go to the next stage. This is where the
lamellae are created. A cached role is placed into the machine and a roll with a pre-determined
amount of lamellae is produced. These rolls of lamellae are produced per order. Therefore a roll of
lamellae is already linked to a specific type of grid to be produced. In total there are three machines
which can perform this step. They only differ in the type of lamellae they can produce. They can
produce lamellae with different heights. Once a roll of lamellae is finished it is stored in a rack. For
each sticking machine, which will be discussed in the next production step, there is enough storage
to hold two rolls of lamellae.
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6. Sticking/fusing
In this step, the grid can be produced. The roll of lamellae is placed on a specific sticking machine.
The machine glues the lamellae one by one to each other at a predetermined angle. The lamellae
is placed against the previous lamellae. Next, the lamellae are electrified and the shellac becomes
sticky again. Now the shellac is sticky, the lamellae is glued to the previous lamellae and stays in
place. In total there are 34 sticking machines. Not all of them can produce the same type of grids.
There are two types of sticking methods, e.g. lead against beam (LTB) and shellac against beam
(STB), which produce different types of grids. Currently, 27 machines use the STB method and 7
machines use the LTB method. Besides this, the machines differ in other settings. Every machine
can produce only a limited variety of grids. On average 8 different grids can be produced on a
machine.

The production length of one grid also differs per type. For some grids, the sticking process only
takes 3 hours, while for others it can be 7 hours. It depends very much on the thickness of the fiber
and the size of the grid. Before machines can be used for production, they have to be cleaned and
set to the correct settings. This can be seen as the setup for each production.

7. Middle Lamellae Measurement
Once the grid is produced it goes directly to the Middle Lamellae Measurement (MLM). A line is
drawn on the lamellae which is completely vertical. After this step, the grid can be checked for
errors.

8. Quality Check 1
Now the line is drawn at the most vertical lamellae of the grid it is ready for the first quality check.
The newly created grid is placed in between the detector and the radiation tube. Next, an image
is created using x-rays. The image is checked by software and a qualified operator. If the image
shows errors, the grid is rejected and recycled. If the grid has passed the quality check it can go to
the next step.

9. Sawing
In this processing step, the grid is sawn into the right size. Once this is completed, the internally
produced metal framework is placed around the grid. This framework is produced and washed in
a different part of the factory.

10. Cleaning
Now the grid has a metal framework around it the grids are sanded and cleaned.

11. Veneers
Once the grid is cleaned, it is ready to get veneered. Once the veneer has been applied, a pre-cut
piece of carbon is placed on top of the grid. This carbon first has to be cut and sanded before it
can be used. When the carbon is applied the grid has to dry for 12-16 hours in a press.

12. Scraping off
As soon as the 12-16 hours are over the grids can be taken out of the press. It has to be unpacked
and scanned. Once this is done, parts of the veneer can get scraped off. This process is harder for
the operator if the grid is left longer in the press. Once the veneer is scraped off, the grid has to
harden for 24 hours.

13. Finishing
In this step, all grids are milled and engraved. It is also possible for the customer to add additional
options like holes or a handle. In total there is 1 milling machine, but currently, a new machine
is ordered which can mill and perform other actions twice as fast. Other machines are used for
engraving and drilling. Multiple actions can be performed in this step.
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14. Quality Check 2
Once all production steps within Philips have been passed, the grid is once more checked for errors.
This is again done by creating an image using radiation with the grid placed in front of the detector.
However, in some cases, there is a stricter quality check than the one before. This is only done at
customers’ requests.

15. Painting
Once the grid is finalized and approved some grids have to go to an external paint shop. Every
Monday a shipment is sent and received. This step increases the total lead time by at least 1 week.
Sometimes it is even more. If the product is for example ready on a Tuesday, it has to wait until
Monday before it can be shipped to the paint shop.

16. Packaging & Shipping
Once the grid has returned from the paint shop it can be packed and sent to the customer or be
placed in the storage location. The shipping is done by a third-party logistic provider.

1.2 Problem Statement

Providing Philips- and OEM customers with anti-scatter grids is important. It is even more im-
portant to make the Requested Delivery Date (RDD). If the safety stock at the ordering Philips
department is empty and the grids are not delivered on time, shipments of complete x-ray scanners
are delayed. OEM customers are likely to stop ordering at Philips once the order is delivered after
the RDD. This means that they start ordering their grids from Philips’ competitors, because Philips
is a non-reliable supplier. This can lead to loss of sales and will negatively influence Philips.

When a customer orders one or more grids at Philips, the sales department tells the customer
that the grid(s) will be delivered in 6 weeks. The On Time To Request (OTTR) is the delivery
performance Key Performance Indicator (KPI). Currently, the OTTR is on average 65% as can be
seen in Figure 6. This means that on average 35% of all orders are not delivered within 6 weeks.
Philips aims to improve this KPI to 95%.

According to Hopp and Spearman (2011), there can be multiple aspects that negatively affect the
delivery performance within a factory: (1) An unrealistic RDD. (2) Not being able to start produc-
tion due to a shortage of materials. (3) Too low capacity of machines and or operators combined
with a large demand. (4) The cycle time, the time it takes to do a process, can also be a factor
when it becomes larger than the 6 weeks. In this case, the RDD is realistic, but the production
process can be further improved to reduce cycle time. In the case of (1), the 6-week processing time
might be too optimistic. All 4 aspects will be further explained in the upcoming subsections.

The RDD can be seen as a given variable during this master thesis. The current processing time
is set to 6 weeks. The results of this master thesis can determine if 6 weeks is a feasible period.
Aspects 2 and 3 can be influenced by having a good planning. During the production process,
the capacity of machines and operators can be affected to make sure you will not try to produce
more than is possible with the available resources. Good planning will contribute to fewer material
shortages. Aspects 3 and 4 can be improved with scheduling. Krajewski et al. (2010) mentions
that effective production scheduling is also very important for successful factories. Allocating re-
sources over time for a certain task is necessary because otherwise the workload will be unbalanced
and this can cause production uncertainty in organizations (Zhang and Wang, 2016). How these
factors influence the delivery performance and how Philips currently performs is explained in the
subsections below.
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Figure 6: On Time To Request performance

Requested Delivery Date

The time in which a grid has to be produced and shipped to the customer is 6 weeks. Currently, only
65% of the orders make it to the customer in these 6 weeks. It is not clear whether these 6 weeks are
an accurate reflection of the time that is required to produce and ship a grid. It might be the case
that the sales department is promising unrealistic delivery dates. That means that the production
process cannot be finished before it has to be delivered. To find out how well the production line
is currently performing and how well it can perform, Hopp and Spearman (2011) defined simple
formulas. The production lines’ best-, worst- and practical worst case scenarios of the throughput
and cycle time can be determined using these formulas. Once these are calculated, the actual val-
ues of the throughput and cycle time can be determined and it can be examined if the production
process is performing well or not. How to determine these scenarios will be explained in Section 2.3.

Raw material Shortage

Within a production process, it can occur that the production cannot start due to a shortage of
materials. This can for example be caused by a bad planning, which means that the materials are
ordered too late, and mistakes from the supplier of the materials. Within the IC factory, this rarely
occurs. This is because only a small number of products are required, from a local and mature
supply chain, to produce anti-scatter grids. Therefore, this possible cause for the low OTTR will
be kept out of scope.

Capacity

The capacity of this production line consists of two aspects, machines and operators. There are a
limited amount of machines available and some of them also have a fixed configuration which means
that they are not able to produce all types of grids. Operators control the machines. Most operators
are trained in one or multiple processing steps. This means that they can perform these steps, but
are not qualified to work on processing steps somewhere else down the production line. This means
that if the whole production line is required to be active, the operators with the right training are
necessary. Every production line has a maximum capacity of products it can produce per time
unit. If demand is increasing and more products have to be produced, the machine may reach
its maximum capacity. This means capacity (machines and/or operators) has to increase, fewer
orders have to be accepted by the sales department, or the production process has to be improved
which will increase the throughput of the production line. In the following sections, machine- and
operator capacity and growing demand are explained in more detail.

Machines
The first capacity restriction is regarding the number of machines and their configuration. For the
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sticking machines, the constraint is the configuration of the machines. Not all grids can be produced
on every machine. This can lead to machines being not active. Besides that, these machines are
also very sensitive to failures. This means that sometimes a machine is down and maintenance
has to take place. Also, there is only one milling machine. On this machine, all grids have to be
processed and a large part of the frameworks have to be produced. The combination of processing
grids and producing frameworks means that the machine almost is a utilization runner to fulfill
demand. That is why a new milling machine is ordered which has twice the capacity. Besides that
this machine can also directly add engravings and holes to the grid, which saves extra processing
steps.

Operators
As explained before, every operator specializes in different processing steps. For example, there are
only 3 operators which are qualified/trained to perform quality checks. This directly means that
if 2 operators are for some reason absent, fewer grids can be checked that day and this leads to
a large inventory. Next to that experienced employees work faster than others. This means that
for example, 2 experienced operators can almost activate all ”sticking machines”, while this is for
3 regular operators also the limit. The output of a processing step depends very much on which
operator(s) is/are working. To conclude, the lack of employees, with the right skill set, ensures that
certain processing steps could not perform as well as planned. This can lead to a longer cycle time
and it can increase the Work In Progress (WIP) and decrease the OTTR.

Demand
As can be seen in Figure 7 the sales forecast of 1D grids (for the upcoming 6 weeks) plus backlog has
kept increasing since the start of 2021. It has never been this high before. Besides that, the 2D grids,
which are also produced in the IC Factory (but on other machines), have an even larger demand
growth (not shown in the Figure). During the past years, more time went into the production and
planning of 2D grids. This led to less attention to the 1D grid production process. It is, therefore,
less improved over the past couple of years than desired, while demand has significantly grown.

Figure 7: Sales forecast upcoming 6 weeks

Cycle Time

Cycle time is the sum of activity durations, fewer overlaps between activities, plus the sum of queue
times, consequently, cycle times can be reduced by reducing queue times, overlapping activities and
reducing activity duration (Ballard, 2001). A long job cycle time results in the accumulation of
WIP (Hopp and Spearman, 2011). Besides that, the risk that the product is polluted increases
if the cycle time is long (Bon and Samsudin, 2018). According to Hopp and Spearman (2011), a
larger cycle time leads to less flexibility, with respect to releasing the orders and lower quality of
the products, because products are placed for a longer time in a queue. There are different reasons
which influence the cycle time according to Hopp and Spearman (2011).

7



WIP
The WIP is directly related to the cycle time and the throughput. This relationship is defined as
Little’s Law (Little, 1961). L defines the WIP, λ is the throughput of the machine/system and W
is the cycle time.

L = λ ·W (1)

From Equation 1 it can be concluded that a high WIP leads to a high Cycle Time if the throughput
is kept constant. The variability buffering law (Hopp and Spearman, 2011), implies furthermore
that if you want to reduce the WIP but do not reduce the variability, it will cause the throughput
to decrease (Reyes et al., 2017).

Currently, the WIP of the anti-scatter grid production line is approximately 1700 units. Philips
aims to have the WIP at 1000 units. This target is currently based on experience, so it might be the
case that the aim of 1000 units of WIP is not optimizing the cycle time. A large WIP usually has
some disadvantages, as explained above. It can increase the cycle time of products. This is because
queues are formed before processing steps. A grid has to wait at a machine until all products,
which arrived earlier, are processed. This means, that instead of going directly from step to step
in a production line, the grid has to wait at every step before it can be processed.
Next to that, there will also come more opportunities for errors in the production process. Due to
the large piles of inventory before every processing step grids are stationed for a longer time in one
place. This can lead to pollution of the grids which decreases the yield even more. The employee
responsible for the quality during the production process is also convinced this is currently the case.
Prioritizing orders, when there is a large inventory, also becomes quite challenging. This is because
large amounts of grids are everywhere and the operator has to find the grids which have the most
priority.

Machine Utilization
Some people expect that to produce as many products as possible machines have to be active 24/7.
This is however not the case. According to the law of utilization of Hopp and Spearman (2011),
it is stated that if a station increases utilization without making any other changes, average WIP
and cycle time will increase in a highly nonlinear fashion. This is because a small error within the
machine can lead to consequences for all the to-be-produced products. It is currently unclear what
the utilization is of machines at Philips.

Yield
Scrapping products during the production process has a negative influence on three aspects, Through-
put, WIP and cycle time (Hopp and Spearman, 2011). The throughput is affected in a way that
if the scrap rate is large enough, it can cause a capacity problem at a machine. Because more and
more products have to pass this machine and there is a possibility that the machine does not have
enough capacity to produce the grids. If machines have to be used more often due to the low yield,
the variability of the line also increases, which will therefore require a larger WIP (and cycle time)
to remain at a certain throughput. The low yield also affects the cycle time directly. Due to the
high scrap rate, a product has to be produced more often and variability increases. Together with
the fact that extra WIP is in the line which leads to longer average cycle times, and the increase of
variability of cycle times, the delivery performance becomes worse. It is stated that the later the
product is scrapped in the line, the worse the consequences will be(Hopp and Spearman, 2011).

Within the IC factory, scrapping occurs. As mentioned in Section 1.1.4, there are 2 quality checks
within the production line. The first one is performed right after the MLM. The average yield of
the past month for this check is 78.8%. This means that 21.2% of all grids are rejected due to
error(s) during the quality check. The second quality check is performed once the grid is almost
finished. Although you would expect that the yield should be large, because of the fact that already
a quality check has been performed, the average yield for the past month is just 77.0% for this check.
This means that once the grid is nearly completed 23.0% of all grids are still rejected. This has a
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Figure 8: Yield during September 2021

greater impact than the previous quality check, because more resources went into the grid and the
production of a new grid has to start all over again, while it was expected that a grid was almost
complete. Combining the yield of both quality checks results in an average yield of 60.6%. This
means that if 1000 grids are produced, 787 pass the first quality check and finally only 606 will be
completed to ship to the customer. If the demand for the next couple of weeks is 1000 grids and
we assume the yield to be 60.6%, 1650 grids have to be produced to meet the demand. For some
types, the total yield is even worse than 60.6%. The overall average yield ranges from 30% to 66%
per type of grid. The yield of the past month can be seen in Figure 8

Planning & Scheduling

A problem regarding the planning is that currently, the outflow of the production line is not con-
stant and reliable. It is unclear how much materials you should use as input and when to start
producing to get the ordered products at the pre-determined date. This makes it very hard to plan
the production process.

Since on average 35% of the grids are rejected and therefore on average 35% of the grids have to be
reproduced, the average cycle time of grids will also increase. The planning system which is used in
the factory is not built to compensate for the expected loss of grids. This means that if there is an
order of 20 grids, the shift leaders can only start producing 20, while it is expected when assuming
the average yield, that 33 grids have to be produced to end up with 20 grids. Once 1 of the 20 grids
is rejected, the shift lead has to start the production of a new grid. This, therefore, increases the
lead time by a couple of times the actual lead time. This will finally affect the delivery performance.

Next to that it currently is not clear which orders have to be produced per day. The shift leaders
receive a priority list which is based on the sales order list. However, the importance of each order
is not shown. This means, that if the order has to be produced quickly, because the customer
cannot wait any longer, the only way to ‘prioritize’ this order is by asking the shift leads to start
the production of this grid. Currently, they get requests from multiple different employees and
this gets confusing for team leads, because different employees mention that different orders have
priority. This makes scheduling hard. Next, most of the time several order receipts are created per
machine and given to the operators. There is no order in how these sales orders should be produced.
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Conclusion

Producing the right and enough grids within the IC factory is of high importance for Philips. By
doing this, the target for the OTTR KPI can be met. This needs to happen because customers
expect a reliable supplier of anti-scatter grids. Besides that, Philips is not the only supplier of
grids. This means that if Philips is not delivering the grids before the RDD, customers might stop
ordering and go to Philips’ competitors. This will lead to a significant amount of lost sales and will
therefore decrease the revenue generated by this department. Meeting the OTTR target is hard for
Philips. The reason why Philips struggles with the delivery performance can be caused by multiple
aspects. If the delivery performance is not met, it means that 6 weeks of production time is too
optimistic or that the cycle time for a grid is too high. It can also occur that raw materials are
not present when they are required (but it is assumed to be not the case in this thesis) or that
demand exceeds the maximum capacity of produced products. The high cycle time can be caused
by different aspects. Firstly, part of the produced grids is scrapped. Currently, around 60% of all
produced grids are rejected due to production errors. Secondly, the WIP within the production
line is very high, which leads to large waiting times and more pollution of the grids. Thirdly the
capacity of operators combined with the increasing demand can lead to the fact that the maximum
capacity of the production line is reached. The demand for anti-scatter imaging grids has kept
increasing, while capacity planning has almost not improved. Lastly, the priority scheduling of
grids, which grid has to be produced first because it has priority, is almost not implemented in the
current system. Next to that, it has hard to schedule when to start producing if the output of each
processing step is irregular.
The main objective of this master thesis will be to develop a scheduling system that determines
what orders to schedule in what sequence to improve the OTTR level, while keeping in mind the
constraints that are present in the IC factory.

1.3 Scope

Within this thesis, multiple aspects are left out of scope. The first one is the focus on 1D grids
instead of 1D and 2D grids in the IC factory. This is because the production line of both types
of grids differs too much to combine them in one model. When deriving recommendations, it is
tried to generalize recommendations for the 1D grid production line to determine if these are also
applicable for the 2D grid production line. Next up it is assumed that there are three main types of
1D grids. Within the IC factory in total, 173 different types of 1D grids are ordered over the past
year. Grids differ in size, shape and thickness. During the finishing processing steps, there is also
variation possible concerning the looks of the grid. Extra holes, grips, etc. can be applied to the
grid to meet the customers’ requests. In total 17000 good quality grids have been produced over the
past year. The grid which is most frequently produced during the past year is produced 1792 times.
In this thesis, it is assumed that all grids are assigned to three main groups that are produced, e.g.
Mammography-, Regular- and Round grids. Almost all grids can be subdivided into these groups.
This is therefore the reason that this assumption is made. Another assumption that is made is re-
garding the supply of materials. As mentioned before it is assumed that there are always materials
on stock to start producing grids. This can be assumed due to the mature and local supply chain.
The most important scope of this thesis is that only planning and scheduling will be revised and
developed. The actual production process and the associated yield are given and cannot be changed.

1.4 Research Questions

This thesis focuses on a multi-stage manufacturing system within the IC factory at Philips. Within
this factory, anti-scatter grids are produced. Currently, the delivery performance is about 30 per-
centage points below target. To improve the delivery performance, planning of capacity (machines
and human workload) and scheduling of orders have to be performed.
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The main research objective for this master thesis is to provide recommendations on how planning
and scheduling of anti-scatter grids, within a multi-stage manufacturing system, can improve the
delivery performance to close the gap to the aimed 95%. This means that the goal is not to meet
the 95% OTTR, but to improve the planning and scheduling to optimize the OTTR. The following
research questions will help to meet this objective.
The main research question in this thesis is formulated as follows:

How should Philips plan capacity and schedule orders to improve the OTTR,
while keeping in mind the constraints?

To help to answer the main research question, several sub research questions are formulated. The
first research question is used to optimize the inventory of stage 1 of the production process.

1. How should the inventory level of S1 be managed to make sure further processing steps can start
immediately?

The second sub research question tries to find methods that will lead to an increase in output of
stage 2 and improve reliability of this output.

2. How can the DRC Flexible Job Shop with setup operators of S2 be scheduled to achieve a larger
and more reliable output?

Subsequently, the third sub research question is used to answer how stage 3 of the process can have
a constant flow of products based on the amount of operators that are available.

3. How to determine the required number of eligible operators in S3 to have a constant flow of
products?

Next, sub research question 4 will combine the results of all three stages.

4. How can all three models for S1, S2 & S3 be combined?

The last sub research question will provide recommendations on how to improve the OTTR perfor-
mance.

5. Which changes could potentially improve the OTTR performance and how can these be imple-
mented?

Finally, the main research question can be answered by combining the results of the sub research
questions. The answer to the main research question will give Philips insight in how to better plan
capacity and schedule orders to improve the OTTR.
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2 Literature Background

The production line of Philips can be split up into 3 different stages (S1, S2 and S3), see Appendix
A . S1 differs the most when comparing the three stages. In the first stage, the rolls are produced
to be ready for further processing steps. In stages 2 and 3, every order is produced individually.
The second and third stages can again be split into 2 different parts. In S2, processing times are
larger than in the S3 and the same route is followed for almost all different types of grids in S2.
S3 has multiple processing steps which only take a couple of minutes to complete. It is therefore
not useful to create a schedule for this part of the production line. Also, grids take a very different
routing which makes scheduling even harder.

The first part of the production process is similar to an Inventory Control Model. The amount of
stock is currently monitored by experienced operators. If the operator thinks there is a shortage
of a certain type of product (s)he starts producing it. If the shift lead gets notified that there is a
large demand for a certain type of product, the operator gets alerted and (s)he also starts producing
more of these types of products. In most cases, this is going smoothly, but sometimes products
are not in stock when they are required for further processing steps. Currently, this stage of the
process is very much dependent on the experience of operators.

The second part of the production process is a Job Shop where every order is individually manu-
factured. Every order has a similar routing through the production line.

Within the last part of the system, orders have different routings and have to pass different machi-
nes/ processing steps. There are processing steps that every order has to pass, but there are also
steps where only a few of the orders are handled. Besides that, processing times take only a couple
of minutes which makes it hard to create a schedule.

For these three stages, different optimization methods will be explained. Section 2.1 will clarify
the literature background of inventory control. In Section 2.2, the literature for optimizing stage
2 will be illustrated. Finally, Section 2.3 will define the theoretical background of stage 3 of the
production process.

2.1 Stage 1 - Inventory Control

In this section, first, inventory control policies are discussed in Section 2.1.1. Afterwards, also de-
mand forecasting is explained in Section 2.1.2.

2.1.1 Inventory Control Policies

A lot of research is done concerning inventory control(Silver et al., 1998; Cachon and Terwiesch,
2008; Nahmias and Cheng, 2009; Taylor et al., 2013; Anderson et al., 2018). Different notations are
used within the performed research, but in this thesis, the notation of Silver et al. (1998) will be
used. This is because Silver et al. (1998) introduced a very large classification of inventory control
systems.

Silver et al. (1998) make use of two types of reviewing the inventory. Continuous and in fixed
periods. In practice, a periodic review period is applied in most situations(van Donselaar and
Broekmeulen, 2017). The review period is called the time between two moments when the inven-
tory levels are reviewed and are denoted by Silver et al. (1998) with the capital letter R. Another
aspect that differs in inventory policies is the replenishment quantity. In some policies, the in-
ventory position (IP) is replenished using (integer multiples of) a fixed quantity. This is the case
when ordering or production is done in batches. To denote the fixed base replenishment quantity,
the capital letter Q is used by Silver et al. (1998). In other policies the replenishment quantity
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is variable. In these cases, the IP is replenished to a fixed order-up-to level denoted by Silver
et al. (1998) as capital letter S. Most policies make use of a reorder level, denote by the small letter
s (Silver et al., 1998). If the IP drops below this level a new order is placed or production is started.

Silver et al. (1998) defined multiple inventory control policies, which can be used to optimize an ob-
jective like backorders, fill rate, or inventory on hand (IOH). 5 common used policies are: (R, s, nQ),
(R, s, S), (R,S), (s, nQ) and (s, S). Below, all policies are explained in detail. In the case of this
thesis ordering products can be assumed to be similar to producing products.

Table 1: Multi-Period Inventory control policies

Policy Explanation

(R, s, nQ) The stock is reviewed every R periods. When the stock drops
below the reorder level, s, nQ units are ordered to bring the stock
back up to the reorder level.

(R, s, S) The stock is reviewed every R periods. When the stock drops
below the reorder level, s, A variable amount of units is ordered
to bring the stock back up to the order up-to level, S.

(R,S) The stock is reviewed every R periods and every period X units
are ordered to bring the stock back up to the order up-to level, S.

(s, nQ) The stock is continuously reviewed. When the stock drops below
the reorder level, s, nQ units are ordered to bring the stock back
up to the reorder level.

(s, S) The stock is continuously reviewed. When the stock drops below
the reorder level, s, A variable amount of units is ordered to bring
the stock back up to the order up-to level, S.

To determine which policy suits a production line best, two questions have to be answered. First,
does the factory work with advanced technology which keeps track of stock? Second, how many
products are produced at once?

Singha et al. (2017) mentions that continuous reviewing is useless without the technology to support
this. If the technology is not available, it means that an employee has to check manually what the
stock level is. Sani and Kingsman (1997) for example mentions that the (s, S) policy is performing
best for the management of items of low and intermittent demand. However, this policy cannot be
used if technology is not available in this factory. This means, first the factory should see if the
policy is possible to implement. The second question is important, because some production lines
might only be able to produce batches of products, while other production lines can produce one
product at a time. For Philips, it is the case that technology to continuously review the stock is
not available. Besides that, they only produce in batches of 9 rolls. This means that there is only
one policy applicable for the production line, e.g. (R, s, nQ).

For these policies, exact formulas can be derived to calculate for example the expected backorders,
fill rate, IOH and others. To derive these formulas some assumptions are made which are, when
used in practice, sometimes not realistic assumptions. Demand is for example stationary and lead
times are deterministic. To relax the assumptions for demand and lead times, van Donselaar and
Broekmeulen (2017) created lecture notes. Within these lecture notes, several assumptions are
relaxed. This means that non-stationary demand and stochastic lead times can be implemented,
while still being able to derive exact formulas.

To improve the first production segment of Philips, this production segment should have stock for
all types of products when they are required. By doing this there is no delay for further processing
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steps. The KPI to be improved is called the fill rate. It is defined as the long-term fraction of
demand delivered immediately from stock (van Donselaar and Broekmeulen, 2017). If the fill rate
is 100% it means that in the long run, all demand is delivered out of stock and this means all further
processing steps can start without any delay.

A disadvantage is that every product has its own inventory. This means 13 different reorder levels
have to be determined for Philips. The results of these calculations have to be combined to check
if these are feasible in the actual factory. This means the results of 13 different inventory models
have to be combined to get the desired schedule which takes production- and storage capacity into
account. Simple heuristics can be used to tackle this problem (Greeff and Ghoshal, 2004). Exam-
ples of simple heuristics are earliest due date, random, prioritizing the orders, etc.. van Donselaar
and Broekmeulen (2017) also developed a prioritizing method. If a maximum amount of money is
available to hold inventory it is decided based on backorder costs and fill rate which items should
be kept as inventory. The input of this final heuristic will be the time between orders. The output
will be a realistic schedule of production, while taking capacity into account.

2.1.2 Demand Forecasting

To create an inventory control model, future demand has to be known. This can be done by fore-
casting demand. Increasing demand can be forecasted using Exponential Smoothing with a Linear
Trend, also known as Double Exponential Smoothing (Hopp and Spearman, 2011). A Linear trend
is added, because demand for anti-scatter grids is increasing over time.

Double Exponential Smoothing is chosen, because firstly, it suits non-stationary demand, which is
the case at Philips. Secondly, it is a flexible method in the sense that it updates its estimate of
the trend. This property ensures that the forecasts react to changes in the trend, which is very
practical in reality as the trend in demand is rarely stable over a long time period. At last, double
exponential smoothing is very explainable. The user can easily understand how and why a forecast
is generated. This can for example help when debugging the model.

Double Exponential Smoothing makes a forecast for the next period based on a smoothed demand
estimate and a smoothed trend estimate. The demand estimate is based on the most recent demand
observation and the most recent forecast. Put formally (Hopp and Spearman, 2011):

F (t) = αD(t) + (1− α)[F (t− 1) + T (t− 1)],
T (t) = β[F (t)− F (t− 1)] + (1− β)T (t− 1),

f(t+ τ) = F (t) + τT (t),
(2)

where F (t) is the demand estimate at time t, D(t) the demand realisation at time t, T (t) the trend
estimate at time t and f(t+ τ) is the forecast for τ periods in the future. α and β are smoothing
constants to be chosen by the user.

If seasonality is visible in the demand pattern, triple exponential smoothing can be used. This is
done using Winters method shown below (Winters, 1960).

F (t) = α D(t)
c(t−N) + (1− α)[F (t− 1) + T (t− 1)],

T (t) = β[F (t)− F (t− 1)] + (1− β)T (t− 1),

c(t) = γD(t)
F (t) + (1− γ)c(t−N),

f(t+ τ) = [F (t) + τT (t)]c(t+ τ −N), t+ τ = N + 1, . . . , 2N.

(3)

Some (parts) of the equations are similar to the double exponential smoothing method. Currently
the basic idea is to estimate a multiplicative seasonality factor c(t), t = 1, 2, . . . , where c(t) rep-
resents the ratio of demand during period t to the average demand during the season. Therefore,
if there are N periods in the season (for example, N = 12 if periods are months and the season is
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1 year), then the sum of the c(t) factors over the season will always be equal to N . γ is an extra
smoothing constant that has to be chosen by the user.

2.2 Stage 2 - Job Shop Scheduling

Job shop scheduling or the job-shop scheduling problem (JSSP) is an optimization problem in which
various manufacturing jobs are assigned to machines at particular times while trying to minimize
the makespan. This is the total duration until all jobs are processed. Scheduling has direct impacts
on the production efficiency and costs of a manufacturing system (Zhang et al., 2019). Since the
late 50s it has attracted great research attention (Smith et al., 1956; Wagner, 1959; Bowman, 1959;
Manne, 1960). Lenstra et al. (1977) showed that the JSSP is a NP-hard problem. Scheduling al-
gorithms can be solved exactly or using approximate methods. Past decades approximate methods
gained more attention, but this will be explained later on.

Over the years the JSSP has been studied in more detail and with more constraints. Deterministic
JSSP(Carlier and Pinson, 1989) (Applegate and Cook, 1991), Robust JSSP (Jamili, 2016), with
few operators JSSP (Paksi and Ma’ruf, 2016), flexible JSSP (Pezzella et al., 2008) and many more
variants of the JSSP have been studied. In this thesis, the focus will be on a flexible job shop with
a dual resource constraint. A flexible job shop or the flexible job-shop scheduling problem (FJSSP)
is an extension of the classical JSSP that allows an operation to be processed by any machine from
a given set of alternative machines (Chaudhry and Khan, 2016). When capacity constraints can be
caused by both machines and human operators, systems are known as Dual Resource Constrained
(DRC).To be more precise, it can be defined as when operators are the constraining resource who can
transfer across various workstations as required (Treleven, 1989; Hottenstein and Bowman, 1998).
DRC schedules however assume that operators are busy during the processing time of a product at
a machine. That is why Obimuyiwa and Defersha (2020) changed this assumption to: Operators
are only busy during the setup time for a product on a machine. Philips has multiple similar ma-
chines for production processes and has a limited amount of operators who are only required for
the setup of a machine. That is why an FJSSP with DRC with setup operators is used in this thesis.

In Section 2.2.1, the Dual-Resource Constrained Flexible Job Shop Scheduling Problem is further
explained. Section 2.2.2 clarifies the usage of a Mixed Integer Linear Programming (MILP) for this
problem and Section 2.2.2 denotes multiple ways of solving this type of problem.

2.2.1 Dual-Resource Constrained Flexible Job Shop Scheduling Problem

One of the main objectives of job shop research is to align capacity and workload. Most literature
assumes that capacity is the single variable (Thürer, 2018). But, in practice, most manufacturing
systems are not only limited to machine capacity. They are also constrained by operator capacity
(Bokhorst and Gaalman, 2009). This is because a machine requires in most cases an operator to
function. Three elements have to be aligned in this type of scheduling problem: (1) the workload
(or demand), (2) the machine capacity/capability and (3) the worker capacity/capability (Thürer,
2018). The main objective of operator-workload scheduling in DRC systems is to have the right
amount of eligible operators to perform the required tasks at the right time (Obimuyiwa, 2020).
The DRC system will perform more efficiently when operators have a diverse skill set (Azizi et al.,
2010). However, according to (Gel et al., 2007), having a team with fully-trained operators is also
not desired due to the high costs of training.

As mentioned above, the classical job shop scheduling problem is NP-hard (Lenstra et al., 1977).
DRC systems are even more complex due to the extra resource-constrained (Xu et al., 2011). Within
these systems, it is necessary to also take into account the worker assignment, where to assign a
worker and how to do so. Because these additional aspects are added, analytical solutions are no
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longer feasible or adequate (Xu et al., 2011). Currently, other approaches such as meta-heuristics
like genetic algorithms (GA) (Paksi and Ma’ruf, 2016) and Ant Colony Optimization are used to
tackle the DRC type scheduling problems. The systematic review of the literature by Thürer (2018)
confirms this. Currently, there is a tendency towards advanced scheduling mechanisms. Before, the
DRC scheduling problem was mainly simulated, but literature tends toward mathematical modeling.

Obimuyiwa and Defersha (2020) performed a literature review of algorithms that are used for
solving the DRC JSSP and DRC FJSSP. Only literature between 1997 and 2020 is reviewed. As
can be seen in Figure 9, a single meta-heuristic is used most often in literature. This is a GA and it
will be explained in Section 2.2.2. Next to determining the frequently used algorithms in the recent
literature, Obimuyiwa and Defersha (2020) discovered a research gap. None of the revised research
considers scarce resources, especially in the area of operators. For example, what happens if there
are only a few operators which have to perform a setup operation on all machines, or if there is
only one operators eligible to perform a setup on a certain machine. Obimuyiwa (2020) developed
a model where eligible operators are used to setting up machines. How this model works will be
explained in Section 2.2.2.

Figure 9: Classification of algorithms used in addressing DRC JSSP and DRC FJSSP (Obimuyiwa,
2020)

2.2.2 Methods

Figure 9 shows frequently used algorithms to tackle DRC FJSSP and DRC JSSP. An advantage of
simulation-based scheduling is the ease of explaining the model, because the manufacturing system
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is modeled on the computer. It is very intuitive, because the simulation tries to copy the behavior
of the real manufacturing system. By doing this more people understand what is going on and
managers can be convinced with more ease. Besides that simulation is a powerful tool, dispatching
rules and system design can also easily be changed (Mourtzis, 2020). This means it is easy to com-
pare different approaches. A disadvantage of simulations is that there is no general understanding
of when a dispatching rule is performing well. This means that to find a successful schedule a lot of
trial-and-error has to take place (Kulkarni and Venkateswaran, 2015). Within the past decades, the
DRC job-shop scheduling is mainly tackled by simulation algorithms(Treleven and Elvers, 1985).
But the problem is that it fails to achieve sufficiently accurate results, despite handling simple
job-shop scheduling problems (Yinan et al., 2014) (Tang et al., 2016).

Due to the complexity of the problem, meta-heuristics are more suitable (Paksi and Ma’ruf, 2016).
The GA is the most frequently used method to solve this problem as could be seen in Figure 9.
Pezzella et al. (2008) mentions that GAs have been successfully adopted to solve the FJSSP. GAs
is used due to its practical implementation in industry (Paksi and Ma’ruf, 2016). Besides that
GAs are very effective at performing a global search for combinatorial problems (Chaudhry and
Drake, 2009; Werner, 2013). Obimuyiwa (2020) mentions that GAs have good accuracy in solving
large-scale scheduling problems. Some studies mention that GAs are faster concerning computation
time, but this is very problem-specific (Dı́az et al., 2020). A GA is most often used for DRC-FJSSP,
due to the fact that it has rapid random search ability, strong robustness, simple process and strong
extensibility (Cellura et al., 2011; Mohammed et al., 2017; Abo-Zahhad et al., 2014). Moreover,
it has been proven that it is one of the most effective evolutionary technique for solving different
types of JSSP (Wu et al., 2018). Of course, there are also some disadvantages of GAs. Optimization
results sometimes depend on the quality of the starting population (Zhong et al., 2018). This means
that it is important how to determine the initial population.

Particle Swarm Optimization is also a frequently used meta-heuristic. Particle Swarm Optimiza-
tion was first proposed by Eberhart and Kennedy (1995) for continuous optimization problems.
The main advantage of Particle Swarm Optimization is that it has fewer control parameters in
continuous space(Katherasan et al., 2014) (Coello et al., 2004). On the other hand, Particle Swarm
Optimization is limited to combinatorial optimization problems. This is because updating the po-
sition is carried out in continuous space (Zhang et al., 2017).

Ant Colony Optimization is also frequently used since it can easily avoid additional calculation
time, which can be caused by infeasible solutions (Li et al., 2011). This is because the solution is
constructed by performing actions in different stages.

Another frequently used meta-heuristic is Simulated Annealing. It was first proposed by Kirk-
patrick et al. (1983). It has been applied successfully for combinatorial optimization problems over
the past years (Yazdani et al., 2015). Besides that, Simulated Annealing is capable of escaping local
optima by allowing moves to previous solutions while searching for the global optimum (Yazdani
et al., 2015).

In this section, a MILP and a GA will be explained in more detail. A MILP is discussed, because
optimal solutions can be determined using this method. A GA is explained, because this is the
most common method to solve this type of problem.

MILP
A common method to formulate a JSSP is by means of MILP problems. MILP is an optimization
problem in which a nonempty subset of integer variables (unknowns) and a subset of real-valued
(continuous) variables exist, the constraints are all linear equations or inequalities, and the objec-
tive is a linear function to be optimized (Wolsey, 2007).

Although MILP can give optimal solutions for small and medium-sized problems, the performance
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deteriorates with problem size. The number of decision variables in the MILP increases at a much
higher rate with the increasing size of the job shop. For larger problems, the MILP model may
take several hours to converge, if at all (Kulkarni and Venkateswaran, 2015). According to Ku and
Beck (2016), modern MILP solvers can prove optimality for moderate-sized problems very quickly.

Different methods have been developed to solve a form of JSSP. Carlier and Pinson (1989) and
Applegate and Cook (1991) have for example developed exact algorithms using MILP to solve the
Deterministic JSSP with the help of Branch & Bound procedures. Past decade, also meta-heuristic
approaches like GA (Spanos et al., 2014), Particle Swarm Optimization (Sha and Lin, 2010) and
tabu search (Zhang et al., 2008) have been developed to solve the problem. The advantage of
meta-heuristics is that it can handle larger-sized problems. Meta-heuristics usually take less time
than algorithmic methods to come up with a ‘good’ solution for larger problems. However, they do
not guarantee optimality.

Genetic Algorithm
GAs were introduced by Holland et al. (1975). A GA is based on concepts of evolution and natural
selection. The idea is to create random solutions for a given optimization problem and ‘evolve’
the solutions towards optimal solutions. The optimal solution is in this case based on the selection
pressure induced by the objective function. A GA can be very effective when handling large search
spaces (Nobile, 2021). How GAs exactly work is explained below and visualized in Figure 10.

1. N individuals are created: the population

2. The fitness for all individuals is determined

3. A selection mechanism is used to create pairs of individuals (with a probability proportional
to their fitness value)

4. The selected pairs exchange ‘chromosomes’ (part of the encoded schedule in this case) to form
new individuals

5. The new individuals mutate (part of the matrix is randomly changed)

6. The new individuals (offspring) replace the old population

7. If the termination criterion is met, the solution will be the best fitting individual. Else, go to
step 2

Figure 10: Genetic Algorithms iterative process (Nobile, 2021)
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2.3 Stage 3 - Capacity Planning

To determine how well a production line or machine is performing, Hopp and Spearman (2011)
developed some simple formulas, based on Little’s Law (Little, 1961) as can be seen in equation
(4).

L = λ ·W (4)

where L is used for the cycle time, λ defines the throughput and W the current work in progress.
With these formulas the cycle time and throughput of different scenarios can be calculated over a
varying amount of WIP.

In total, Hopp and Spearman (2011) defined three scenarios, i.e. best case, worst case and practical
worst case. The actual cycle time (CT) and throughput (TH) can be benchmarked against these
three scenarios. In Figure 11 an example is shown how this would look like. When calculating the
actual throughput and cycle time, it is desired to be in the ‘good region’ as can be seen in Figure 11.

Figure 11: Example of determining if manufacturing system is performing well or not (Hopp and
Spearman, 2011)

For the best case performance scenario it is assumed that a product does not have to wait before
it can be processed. The time it takes for a product to get produced without waiting is defined as
the raw processing time (T0). The machine which takes longest to complete is the bottleneck of
the manufacturing system. The rate it produces units is defined as the bottleneck rate (rb). The
WIP level (w) for which the bottleneck rate and raw processing time is given and the throughput
is maximized is known as the critical WIP (W0). This lead to the following equation

W0 = rb · T0

To determine the three scenarios Hopp and Spearman (2011) developed some formulas. For the
best-case performance scenario the cycle time (CTbest) and throughput (THbest) are:

CTbest =

{
T0 if w ≤ W0,
w
rb

otherwise.

THbest =

{
w
T0

if w ≤ W0,

rb otherwise.

For the Worst-Case Performance scenario the cycle time (CTworst) and throughput (THworst) are:

CTworst = w · T0,
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THworst =
1

T0
.

And for the Practical Worst-Case Performance scenario the cycle time (CTPWC) and throughput
(THPWC) are:

CTPWC = T0 +
w − 1

rb
,

THPWC =
w

W0 + w − 1
· rb.

Using these formulas, the current performance of the production line can be determined, while
taking the amount of operators into account. The throughput of every processing step can be
calculated and with these results the number of operators can be determined.

Batching
Batching can be used to keep grids getting processed in the right order. Next to that batching can
have a great influence on scheduling. When the batch sized is correctly chosen, it can keep cycle
time low and due dates are more easily met (Hopp and Spearman, 2011). Hopp and Spearman
(2011) defines the serial batch size as the number of jobs of a common family processed before
the workstation is changed over to another family. In the case of Philips there are three types of
families, e.g. Mammography-, Regular- and Round grids.

According to the law of process batching (Hopp and Spearman, 2011), it might be beneficial to
have a batch size greater than one, cycle time grows proportionally with batch size and cycle time
will be minimized for some batch size. To determined the optimal batch size Hopp and Spearman
(2011) defined the following formulas.

te = s+ k ∗ t

u0 = ra ∗ t

u∗ =
ra
k∗

· te =
√
u0

k∗ =
ra · s√
u0 − u0

where, te is defined as the effective processing time. s is the setup time, k the size of the batch and
k∗ therefore the optimal batch size. t is the processing time per unit. ra is defined as the arrival
rate of units. u0 is the utilization without setup and u∗ the optimal utilization.

An easy way to reduce cycle time in factories is by reducing transfer batching. This is the number
of parts that accumulate before being transferred to the next station (Hopp and Spearman, 2011).
This is also something to keep in mind while considering batching as an option to prioritize orders
within the production line. The average waiting time before a batch can go to the next step can
be calculated using the following formula.

Average wait to batch time =
k − 1

2 · ra
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3 Methodology

In this chapter, 4 different sections will be discussed. Section 3.1 explains the method to optimize
stage 1. Section 3.2 shows a method how the DRC-FJSSP-SSO will be solved. The third sec-
tion (Section 3.3), a method is presented to solve stage 3 of the production process and finally, a
method is explained how the three stages can be combined. The interaction and deliverable of the
four methods is visualized in Figure 12.

Figure 12: Interaction between methods

3.1 Stage 1 - Inventory Control

To manage the inventory of stage 1, a suitable inventory policy has to be determined. An inven-
tory policy determines at which inventory level new products should be produced, how often the
inventory should be reviewed and how many products should be produced at once. Section 2.1.1
discusses five different inventory policies. The policy which can be used by Philips is the (R, s, nQ)
policy. This is the only policy that can be used due to two reasons: (1) Stage 1 produces in batches
of nine fiber rolls at a time and (2) the 1D grids department does not have the right technology
to keep continuous track of all inventory. The first reason forces the policy to produce in batches
which means that nQ products can be produced per time. The lack of the right technology leads
to the fact that inventory has to be checked manually. This can be done in different time periods.
Therefore, it is important to know the review period R.

The (R, s, nQ) policy is now explained in more detail. First, the difference between IP and IOH has
to be explained. The IOH is all inventory that is available within the location. This can be negative
if products are demanded, but there is no more stock available. These are called backorders. IP is
the IOH, but with all products which are in the system. This means that all products which are
already in production are added to the IP. Figure 13 illustrates how the (R, s, nQ) policy works.
Every R time units, the IP is reviewed. If the IP is below the reorder level (s), an order is placed
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to produce nQ products. The amount of products that will be produced depends on the number
of products to exceed the reorder level once again and the batch size (Q). Let us consider the case
where the reorder level is 22, the IP is 9, the IOH also has a value of 9 and the batch size is 5. If
at this moment the IP is reviewed, it can be concluded that 13 products are required to meet the
reorder level. However, the production occurs in batches of 5 products at a time. This means that
3 batches have to start in the production process. This will lead to the IP being updated to 24 and
the IOH still being 9. After L time units the products are finished and the IOH is increased by 15
units. The review period and the reorder level are used to determine a suitable inventory policy for
this production process.

Figure 13: Example of an (R,s,nQ) inventory policy (van Donselaar and Broekmeulen, 2017)

To ensure that the optimal parameter (R and s) settings for the inventory policy are chosen, a Dis-
crete Event Simulation (DES) is developed within the Python programming environment. The DES
will test different parameter settings and find the right settings to meet the fill rate requirement of
99%. To create the DES, several steps are required. (1) the different steps of the production process
have to be mapped. (2) Demand data has to be gathered and transformed to fit the simulation.
(3) Processing times have to be determined. (4) The number of kached rolls from 1 container of
fiber rolls has to be calculated. (5) The amount of grids produced from 1 kached roll has to be
determined. (6) The production capacity for each process step has to be determined. Steps (2) -
(5) might be challenging to perform due to huge variation in the production process, as well as the
diversity of types of products.

The first step which is required for the creation of the DES has already been performed in Section
1.1.4. The DES will take five processing steps into account. In Appendix A, it is shown as stage 1.
First, the fiber is dried. Next, the fiber is planed to the right thickness. The third step is applying
shellac to one side of the fiber. Then the other side of the fiber is glued to a strip of lead. Finally,
the glue has to dry for a couple of days.

The demand data, as mentioned in step (2), is gathered from an internal order list. In this list, all
historic and future orders are displayed. There are several possibilities to use this data for the DES.
The two most obvious methods are: the historic demand data can be used to forecast upcoming
orders and the upcoming orders (including backlog) can be used to get an accurate view of the
upcoming orders. Forecasting orders, however, is not suitable for this data set. This is because
there is a lot of variation in the data set as visualized in Tables 2 and 3. Table 2 shows the coefficient
of variance during the year is in all cases larger than 0.5, which makes it very hard to forecast.
Next, Table 3 shows the increase and decrease of average demand per day over the years. It can be
seen that almost every line type has a year where the demand is very large or low compared to its
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previous year. The demand data per line type is too variable. Therefore, forecasting is very hard,
because it is unclear what the customers will be ordering next year. This is the reason why the
demand, which is used in the DES, will be based on the historic data of previous months/years.
By updating this data set every couple of months, the demand will be accurate most of the times.
To get an indication how much grids are ordered per line type, Table 4 shows the average demand
of last 2.5 year per line type. It can be seen that line type 50L is not ordered. For each of these
line types, it is checked whether the demand follows a certain distribution. If so, this distribution
is used within the DES. To fit certain distributions on the demand data, first, the parameters of
the distribution have to be determined. Only distributions which have a boundary at 0 were taken
into account. This is because the demand can not be less than 0. Next to that the distribution
had to be discrete, due to the fact that demand can only be ordered in integers. For all line types,
the Truncated Poisson distribution performed best. To see if the Truncated Poisson distribution
fits the historic demand data, a Chi square test is performed. The results are shown in Table 5
and it can be concluded that none of the data of the line types fits with the Truncated Poisson
distribution because the p-value is below 0.05. This is the reason why no distribution will be used
in the DES to sample demand. Instead, historic demand data is used in the DES.

Table 2: Coefficient of variation of different years

2019 2020 2021 2022
31L 1.53 1.00 1.43 0.70
36L 1.25 1.26 1.11 0.85
40L 0.66 0.62 0.57 0.54
41L 0.67 0.58 0.59 0.51
44L 0.61 0.62 0.52 0.44
50L NA 5.23 9.06 4.36
52L 1.62 2.16 1.42 1.55
57L 9.00 6.35 4.06 3.00
60L 0.50 0.55 0.54 0.53
67L 0.81 0.69 0.59 0.62
70L 0.65 0.52 0.60 0.46
74L 0.98 0.74 1.04 0.77
80L 1.08 1.09 1.39 0.66
85L 2.08 2.78 4.18 1.72

Table 3: Increase/Decrease average demand per
day per line type

2019-2020 2020-2021 2021-2022
31L 4.7% -10.9% 50.5%
36L -6.5% 37.4% -8.6%
40L 26.7% 34,9% -49.4%
41L -3.8% -5.0% 5.6%
44L -8.0% 47.1% -28.5%
50L NA -75% 400.0%
52L -39.7% 201.6% -22.1%
57L 87.5% 246.7% 13.5%
60L 5.2% -7.7% 31.4%
67L 8.8% 12.1% -24.9%
70L 13.6% -36.4% 115.3%
74L 65.2% -42.4% 130.0%
80L 32.1% 37.8% 220.0%
85L -24.5% -32.4% 332.0%

Table 4: Grids required per day per line type

31L 36L 40L 41L 44L 50L 52L 57L 60L 67L 70L 74L 80L 85L

6 3 15 16 16 0 2 1 20 3 21 6 4 2

Table 5: Chi squared - test

31L 36L 40L 41L 44L 50L 52L 57L 60L 67L 70L 74L 80L 85L

statistic 380.8 265.3 2046.4 1609.9 2999.9 120.1 134.6 168.2 2736.9 1382.8 1392.2 1418.5 325.4 186.2
p-value 3.1e-20 6.3e-10 1.9e-279 1.5e-204 0.0 3.2e-4 3.6e-4 2.8e-5 0.0 1.47e-165 8.2e-162 4.2e-174 1.4e-12 7.4e-5

The processing times of each step are not registered in a database. However, there are some
timestamps registered on paper and in a database. This is the case for the starting time of the
planing process and the end moment of applying the lead. These time points can give to a certain
extent an indication of what the processing times are. Next to this data, there are also very
experienced operators. The processing time indications are therefore checked by the experienced
operators to see if they are accurate. The time of the drying steps is pre-determined. The first
drying step takes 3 days if the container is placed in an oven. If not, the container has to stay in the
factory for more days, but the length of this stay depends on the line type. The processing/waiting
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times that are used are presented in Table 6. The Processing time is the time from planing the
fiber until the lead is glued on the fiber including possible waiting times between the processes.

Table 6: Average lead times per line type in days

31L 36L 40L 41L 44L 50L 52L 57L 60L 67L 70L 74L 80L 85L

Process time 3.8 3 5 5.7 4.8 4.8 4 8.7 12 9.3 8.7 9.2 6.3 9.2
Wait time (pre) 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Wait time (after) 3 3 3 3 13 3 3 3 3 3 3 3 3 3

Since the rolls of fiber are not always similar in size, it is challenging to predict how many grids
a container of fiber will produce. The team leads have a document containing a rough indication
of these numbers. Together with several experienced operators and engineers, this document has
been checked and this led to the values presented in Table 7.

Table 7: Average number of kached rolls per container of fiber

31L 36L 40L 41L 44L 50L 52L 57L 60L 67L 70L 74L 80L 85L

9 9 9 9 14 14 14 10 20 20 20 20 10 10

The fifth data requirement is the number of grids that can be produced with one kached roll. Again
there is much variation in this step. The grids can for example differ in size. Together with a team
lead, operators and engineers, the following data was gathered. On average one kached roll will
result in 3 grids.

Table 8: Average number of grids per kached roll

31L 36L 40L 41L 44L 50L 52L 57L 60L 67L 70L 74L 80L 85L

3 3 3 3 4 3 3 3 3 4 4 3 3 3

At last, the capacity per production step has to be determined. The planing process contains 2 ma-
chines that work in parallel. Besides, the morning and midday shifts always devote an operator to
this process. This means that 80 hours per week are used for planing. In these 80 hours, the 2 ma-
chines can produce 10 containers with different types of fiber. This is directly the process step that
has the smallest production capacity. In the next two steps, 2 containers can be processed per shift
(consists of 8 hours). This results in a capacity of 20 containers per week if 2 shifts are used per day.

Finally, the fill rate has to be calculated to see if the preferred 99% is reached. This can be done by
dividing the time where the IOH is positive by the total time. If the total time (simulation length)
is very large, the fill rate will converge to its steady state. This is useful, because this makes the
fill rate an important result. By changing the review period and the reorder level, the fill rate will
be influenced. For example, if the reorder level is 5, the review period is 1 month and the demand
per week is 10 items, a low fill rate will be the result. Because the demand in this example is very
large compared to the low reorder level and long review period, it will lead to a very low fill rate.
Increasing the reorder level or shortening the review period can increase the fill rate. The optimal
review periods and reorder levels per line type can be determined by systematically checking differ-
ent combinations. Besides that, also a varying demand is compared to see if this impacts the two
parameters.

3.2 Stage 2 - DRC-FJSSP-SSO

In the next stage, a Dual Resource Constraint Flexible Job Shop Scheduling Problem with Scarce
Setup Operators (SSO) model is developed, based on (Obimuyiwa, 2020). A MILP is used to de-
scribe the model. Two methods are used to solve this model. First, the MILP is solved using an LP
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solver and afterwards, a GA is used to solve the model. Two different methods are used because
the LP solver is expected to be unable to solve the problem within a reasonable computation time.
The method for developing and solving a MILP is explained in Section 3.2.1 and the method of
how a GA is used to solve this problem is described in Section 3.2.2.

The functioning of the DRC-FJSSP-SSO is visualized in Figure 14. It works as follows, each Job
consists of several Operations. In the case of Philips, each Job consists of 3 Operations: Matten,
Plakken and MLM respectively Operation 1, Operation 2 and Operation 3. These Operations have
to be processed in this sequence. Every operation has to be processed on a machine. It can be
the case that there is only 1 machine applicable for an operation, but it can also be that there
are multiple eligible machines. For each operation performed on a machine, an eligible operator
will perform a setup on the machine. When this setup is done, the operation can start and the
operator does not have to monitor the machine anymore. If an operation is completed, the next op-
eration can start if an eligible machine and eligible operator are available. Every machine performs
runs. This means, when a machine is processing its first job, this is its first run. When this job is
finished, the second run can start for this machine. The same goes for the operators. But for oper-
ators, the runs are setups. This means an operator can perform setup multiple setups consecutively.

Figure 14: DRC-FJSSP-SSO visualized

The parameters, processing time, setup time, eligible machine, eligible operators, and demand have
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to be determined beforehand and can be found in Appendix C. The values for the processing time
of the first and third operations are based on operator experience. The processing times for these
operations are grid-independent. For the second Operation, the processing time is grid-dependent.
Each machine has its own time in which it glues 1 lamellae to the previous one. This is in all cases
between 4 and 8 seconds. This time is manually determined using a stopwatch because no better
data was available. The time of glueing 1 lamellae is then multiplied by the number of lamellae,
which differs per type of grid.

Furthermore, the setup time is also not known beforehand. That is why these times also are based
on operator experience. First the different setups have to be determined. For Operation 1, there are
3 different setup options. First, the grid type which is being produced is the same as the previous
grid which is produced on that machine. Second, the line type differs from the previous and current
grid types. At last, the height of the previous and current grid types are different. For the second
operation, there are 2 different types of machines, one that uses the STB method and one that uses
the LTB method. The machines which produce using the STB method have the same setup options
as the machines of Operation 1. This means the grid type is the same, the line type differs, or the
height differs. The machine which produces using the LTB method only has 1 setup time. The
same goes for the machine for Operation 3. The time belonging to these different types of setups
are displayed in Appendix C.

The list of eligible machines for each operation and eligible operators for each machine can also be
found in Appendix C. The demand data which is used is again based on backlog and real future
demand for the upcoming 6 weeks.The real future demand is known for 6 weeks, because products
are ordered beforehand.

3.2.1 MILP

The mathematical model of Obimuyiwa (2020) is used to replicate the production process of Philips.
Several changes have been made to the model. First, 2 mistakes were resolved in the model, and
second, 2 extra constraints have been added to create a variable setup time. The complete model
is shown and explained below.

Sets

Rm: Set of number of production runs per machine (1, . . . , Rm),
M : Set of Machines
O : Set of Operations
J : Set of Jobs (1, . . . , J),
Kn: Set of number of setups per Operator (1, . . . ,Kn),
N : Set of Operators

Parameters

Rm: The maximum number of runs for machine m,
Kn: The maximum number of setups for Operator n,
Po,j,m: Is 1 if operation o of job j can be processed on machine m, 0 otherwise,
Θn,m: Is 1 if operator n is eligible to operate machine m , 0 otherwise,
Ω: Large positive number (at least twice as large as the job with the longest processing time for
Operation 2),
Hm,j,j′ : Setup time of machine m from job j to job j′ ,
To,j,m: Processing time of operation o of job j on machine m
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Decision Variables

Ĉr,m ≥ 0: Completion time of the rth run on machine m,

Co,j ≥ 0: Completion time of operation o of job j,

sk,n ≥ 0: Completion time of kth setup of operator n,

Cmax ≥ 0: Makespan, i.e. completion time of all jobs,

Sr,m,o,j ≥ 0: Setup time for operation o of job j for the rth run on machine m,

xr,m,o,j =

{
1, if operation o of job j for the rth run on machine m is selected,

0, otherwise.

yk,n,r,m =

{
1, if the kth setup of operator n is for the rth run on machine m is selected,

0, otherwise.

zr,m =

{
1, if the rth run of machine m is selected,

0, otherwise.

gk,n =

{
1, if the kth setup of operator n is selected,

0, otherwise.

Next, the model itself is explained per constraint. Equation (5) is the objective function of this
model. It states to minimize the makespan.

Min Cmax (5)

Subsequently, equation (6) makes sure that the makespan is the time at which the last operation
is finished.

Cmax ≥ Co,j , ∀(o, j), (6)

In constraints (7) and (8) it stated that if operation o of job j is running on machine m on the rth

run, the time of machine m when it performs the rth run is equal to the time at which operation o
of job j is completed.

Ĉr,m ≥ Co,j +Ω · xr,m,o,j − Ω, ∀(r,m, o, j), (7)

Ĉr,m ≤ Co,j − Ω · xr,m,o,j +Ω, ∀(r,m, o, j), (8)

Constraint (9) shows that if operation o of job j is running on machine m on the 1st run, the
completion time is equal to the Processing time combined with the setup time.

Ĉ1,m − To,j,m − S1,m,o,j +Ω · (1− x1,m,o,j) ≥ 0, ∀(m, o, j), (9)

Constraint (10) is similar, but it explains what happens to the completion time if it is not the first
run. In that case, the completion time is equal to the completion time of the previous run on that
machine plus the processing time and setup time.

Ĉr,m − To,j,m − Sr,m,o,j +Ω · (1− xr,m,o,j) ≥ Ĉr−1,m, ∀(r,m, o, j)|(r > 1), (10)

In Equation (11) a mistake within the model from (Obimuyiwa, 2020) was corrected. The plus sign
was a minus, but this led to decision variables becoming as large as Ω. By changing it to a plus
sign, the constraint works as it should. This is, a consecutive Operation of a Job can start at the
time point where the first operation is finished.

Ĉr,m − To,j,m − Sr,m,o,j +Ω · (2− xr,m,o,j − xr′,m′,o−1,j) ≥ Ĉr′−1,m′ , (11)

∀(r,m, r′,m′, o, j)|((r,m) ̸= (r′,m′)) ∧ (o > 1),
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Equation (12) shows that the completion time of the kth setup of operator n is equal to the rth run
of machine m minus the processing time, if the kth setup of operator n is used for run r on machine
m and if operation o of job j is running on machine m on run rth run.

sk,n − Ω · (2− xr,m,o,j − yk,n,r,m) ≤ Ĉr,m − To,j,m, ∀(r,m, o, j, k, n), (12)

The next two constraints make sure that the completion time of the kth setup of operator n is larger
than the setup time (if it is the first run of the machine) or the setup time plus the completion time
of the previous run of that machine.

sk,n − S1,m,o,j +Ω · (2− x1,m,o,j − yk,n,1,m) ≥ 0, ∀(m, o, j, k, n), (13)

sk,n − Sr,m,o,j +Ω · (2− xr,m,o,j − yk,n,r,m) ≥ Ĉr−1,m, ∀(r,m, o, j, k, n)|(r > 1) (14)

Equations (15) and (16), explain that the completion time of the kth setup of operator n is larger
than the setup time (if it is the first setup of the operator) or the setup time plus the completion
time of the previous setup of the operator.

s1,n − Sr,m,o,j +Ω · (2− xr,m,o,j − y1,n,r,m) ≥ 0, ∀(r,m, o, j, n), (15)

sk,n − Sr,m,o,j +Ω · (2− xr,m,o,j − yk,n,r,m) ≥ sk−1,n, ∀(r,m, o, j, k, n)|(k > 1), (16)

Equation (17) verifies that when operation o of job j is running on machine m on the rth run, it
can only be active if operation o of job j can be processed on machine m.

xr,m,o,j ≤ Po,j,m, ∀(r,m, o, j), (17)

The next constraint is quite similar, since it makes sure that when setup k of operator n is processed
on machine m on the rth run, it can only be active if operator n has the skills to use machine m.

yk,n,r,m ≤ Θn,m, ∀(k, n, r,m), (18)

Equation (19) ensures that operation o of job j can only be processed on 1 run on a machine.

M∑
m=1

Rm∑
r=1

xr,m,o,j = 1, ∀(o, j), (19)

The next constraint explains which run of a machine is selected. Equation (21) continuous on
constraint (20) and states that a run on a machine can only be used if the previous run is also used.

J∑
j=1

Oj∑
o=1

xr,m,o,j = zr,m, ∀(r,m), (20)

zr,m ≤ zr−1,m, ∀(r,m)|(r > 1), (21)

For the next constraint, Equation (22), again a mistake was removed from the model of (Obimuyiwa,
2020). The variable after the equal sign first stated gk,n. This is corrected to zr,m. This is, because
the sum of all possible setups which can be performed by an operator on a certain machine and
run, can only be 1 if run r on machine m is used.∑

n∈N

∑
k∈Kn

yk,n,r,m = zr,m, ∀(r,m), (22)

Equation (23) makes sure that setup k of operator n can at most be used once for all runs on all
machines.

M∑
m=1

Rm∑
r=1

yk,n,r,m = gk,n, ∀(k, n), (23)
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The next constraint shows that a setup of a certain operator can only be done if (s)he already did
their previous setup.

gk,n ≤ gk−1,n, ∀(k, n)|(k > 1), (24)

Equations (25) and (26), guarantee that the Operation sequence has to be kept for all x variables.
This means that if a previous Operation is performed, an upcoming Operation cannot be performed
on that same machine in an earlier run.

xr′,m,o′,j ≤ 1− xr,m,o,j , ∀(r, r′,m, o, o′, j)|(o′ < o) ∧ (r′ > r), (25)

xr′,m,o′,j ≤ 1− xr,m,o,j , ∀(r, r′,m, o, o′, j)|(o′ > o) ∧ (r′ < r), (26)

The same is done for the y variable by including Equation (27) and (28). Here, if a previous setup
is performed, an upcoming setup cannot be performed on that same machine in an earlier run and
vice versa.

yk′,n,r′,m ≤ 1− yk,n,r,m, ∀(k, k′, n, r, r′,m)|(k′ < k) ∧ (r′ > r), (27)

yk′,n,r′,m ≤ 1− yk,n,r,m, ∀(k, k′, n, r, r′,m)|(k′ > k) ∧ (r′ < r), (28)

Equations (30) and (29) are newly added constraints. Equation (29) makes sure that in the first
run, the setup time is always equal to 5 since no starting configuration is taken into account. This
is based on the fact that the operators has to start the machine. Equation (30) ensures that the
setup time of the new job depends on the job that was processed in the previous run on that specific
machine. Therefore, this developed model can take machine configuration into account. The setup
times on a machine are not always the same but can differ based on previous and current type of
produced product. When reviewing literature, the combination of having a DRC-FJSSP-SSO with
a setup time dependant on the previous production run is not found. This is due to the fact that
a DRC-FJSSP-SSO is not common in literature. Therefore, this development cannot be found.

S1,m,o,j = 5, ∀(m, o, j), (29)

Hm,j,j′ · (xr,m,o,j + xr+1,m,o,j′)−Hm,j,j′ ≤ Sr+1,m,o,j′ , ∀(r,m, o, j, j′)|(r > 1) ∧ (j ̸= j′), (30)

Finally, Equation (31) tells that x, y, z and g are binary variables.

xr,m,o,j , yk,n,r,m, zr,m, gk,n ∈ {0, 1}, ∀(r,m, o, j, k, n) (31)

To summarize the mathematical model,

Min Cmax,

s.t. (6)− (31).

The MILP will be solved using PulP in Python. PulP is an Linear Programming (LP) modeler
and is used to program this mathematical model. Within PulP several solvers can be used like,
GUROBI, CPLEX and GLPK. The computation time when using a different solver can differ quite
much, so multiple solvers will be tested. The MILP is solved using PulP to find an optimal solution
for this problem. In Section 4.2.1, it can be seen that solvers require a lot of computation time
to find optimal results. In order to investigate whether the optimal solution can be found with a
method requiring less computational time, a GA is modeled in the next phase.
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3.2.2 GA

GAs were introduced by Holland et al. (1975) and are based on concepts of evolution and natural
selection. The idea is to create random solutions for a given optimization problem and “evolve” the
solutions towards an optimal solution. The optimal solution is in this case based on the selection
pressure induced by the objective function. A GA can be very effective when handling large search
spaces (Nobile, 2021). It is are therefore not used to find an optimal solution, but rather to find
“good” solutions for a very complex problem. How GAs exactly work is explained in the steps
below and visualized in Figure 15. Next, every step within the iterative cycle will be explained in
more detail. These steps are based on Nobile (2021).

1. (Population) N “random” individuals are created: the population

2. (Fitness evaluation) The fitness value for all individuals is determined

3. (Termination criterion) If the termination criterion is met, the algorithm will stop and the
solution will be the best fitting individual. Else, go to step 4

4. (Selection of parents) A selection mechanism is used to create pairs of individuals (with a
probability proportional to their fitness value)

5. (Crossover) The selected pairs exchange “chromosomes” to form new individuals

6. (Mutation) The new individuals mutate

7. (New Offspring) The new individuals, i.e. offspring, replace the old population, go to step 2

Figure 15: Genetic Algorithms iterative process (Nobile, 2021)

1. Create initial population
In most cases, the population of N individuals is created randomly. This is done using a uniform
distribution or via some information that is already known. An advantage of using the uniform dis-
tribution is that no bias is introduced in the process. A disadvantage is that it might take longer to
converge to the optimal solution. A biased starting population might converge sooner, but it might
be the case that the population becomes too biased and all variation is gone. For a DRC-FJSSP an
individual contains multiple genes. A single gene looks like a list of 4 numbers, (j, o,m, n), where
j is formulated as the job, o as the operation of the job, m is the machine where the process takes
place and n is the operator which is required to process the task. This means that if there are 3
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jobs and each job contains 4 operations, an individual contains 12 genes.

Bias can be added to the starting population by changing the order of the genes. In this thesis
several biased and a random starting populations are tested. First, genes are tested where they
represent a sequence of operations, see Figure 16. This means that all genes for Operation 1 are first
in the schedule, next up the genes for Operation 2 will follow, and finally the genes for Operation
3. This bias is chosen, because first, all prior operations are scheduled before scheduling the next
operation which will decrease the waiting time of operations. This means that first, Operation 1
from every job will be scheduled. Next, Operation 2 of every job and finally, Operation 3 of all jobs.

Figure 16: Biased starting population: Genes are in sequence of operation

The second biased starting population that is used is again arranging the genes based on operation,
but also on the job, see Figure 17. This means that first job x will be scheduled all the way from
Operation 1 until Operation 3. Next, all operations for another job are scheduled. This is again
done to reduce waiting times. If an operation is scheduled right after another operation, it does not
have to wait (if there are machines and operators available) to be processed.

Figure 17: Biased starting population: Genes are in sequence of job and operation

The random schedules have only one constraint, which is that operations have to be arranged in the
right order. This means, first Operation 1 has to be scheduled, which is followed up by Operation
2 and finally Operation 3. A possible schedule can thus look like Figures 16 and 17, but different
configurations, like Figure 18, are also possible.

Figure 18: Random starting population

A combination of these different types of individuals will also be used as a starting population.

2. Fitness evaluations
In the population, every individual has to calculate the fitness value. In the case of a scheduling
problem, this might be the makespan or the number of tardy jobs. In this thesis, it is chosen to
minimize the completion time of every operation of every job. Although the makespan of a so-
lution is the final goal, this is not minimized. This is since minimizing the makespan takes a lot
of computation time and the GA will be more likely to be stuck in a local optimum. The reason
why minimizing the total completion time of each operation does not often get stuck in the local
optimum, is the fact that there are a lot of possibilities to reduce this objective. If one operation
is changed in the schedule, the objective will probably differ. It is, therefore, easier to reduce this
objective. The makespan cannot easily be minimized, due to the fact that only the completion
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time of the last operation has to be decreased to minimize the objective. It is therefore much
harder to reduce this objective in a large and complex problem. Maassen et al. (2020) showed that
minimizing the total completion time, performed very well on minimizing the core waiting time.
Minimizing the core waiting time led moreover to a lower makespan. This means that minimizing
the completion time, will in most cases lead to a lower makespan.

3. Termination criterion
In most real-world scenarios, the optimal fitness value is unknown. This means that the final solu-
tion might not be the optimal solution. To still get a valid solution three termination criteria are
mentioned: (1) terminate as soon as the fitness value reaches a user-defined threshold, (2) terminate
after a fixed amount of generations or (3) terminate when the population loses diversity.

4. Selection of parents
Parent selection implements the “survival of the fittest”. This selection process must be done
carefully. Removing all “bad” solutions too fast can lead to a loss of diversity. This can result
in a final solution being at a local optimum. The methods that are used to select parents are
problem-dependent. For this problem, tournament selection is used. It works as follows. k unique
individuals are chosen from the population to participate in the tournament. The individual with
the best fitness value within the tournament wins the tournament and is therefore selected. An
advantage of this method is that every individual can be chosen. Moreover, the selection pressure
can be controlled using parameter k. A large k will lead to “bad” individuals having a smaller
possibility of being chosen.

5. Crossover
Crossover means that the chosen parents mate and create offspring/individuals by exchanging a
part of their genes. The underlying idea is those sub-optimal parents contain good patterns within
their genes. These patterns, once combined with the other parent might lead to “excellent” new
individuals. The crossover occurs with a crossover probability (Pc). If parents do not undergo
crossover they are the offspring themselves. The main objective of this crossover is not just to
produce new individuals with a better fitness, but also to get individuals which are valid based on
the problem type (Sivanandam and Deepa, 2008; Talbi, 2009)). Kacem et al. (2002), Lee et al.
(1998) and Defersha and Chen (2010) used crossovers which can be used for a DRC FJSSP. The
crossover operators are called: Machine-operation crossover operator(MO), Job-operation sequence-
order crossover operator(JOSO), and single-point crossover operator(SP). For a population, without
any bias, these are good operators, but if bias is introduced in the starting population it is also
required to keep this bias. Otherwise, the schedule will become infeasible. That is why different
crossover operators are used when using a biased starting population. The crossover operator that
will be used in this thesis is the JOSO crossover operator. This is because the sequence of the genes
is very important to increase the fitness and the JOSO operator will keep this into account. The
steps performed by the JOSO crossover operator are explained below and visualized in Figure 19.
It can be seen that offspring one gets random genes from its first parent, next this offspring receives
its genes from the second parent in such a way that the schedule is feasible.

1. Two new individuals are created using random genes of one of their parents (see left side of
Figure 19)

2. The rest of the genes are retrieved from the other parent in the same sequence as its parent.

3. The machine-assignment value is retrieved from the other parent and a new machine-assignment
value is assigned (see right side of Figure 19)
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Figure 19: Job-operation sequence-order crossover

For the biased schedules, the crossover works similarly. Figure 20 shows when genes are in sequence
of operation. In this case, the genes of operation 1 can only be in the first half of the schedule,
and the genes of operation 2 can only be in the second half of the schedule. This will lead to the
fact that all operations 1 are first fully scheduled and then operation 2 can start. The other biased
schedule, where genes are in sequence of job and operation, will switch complete jobs, see Figure
21. That means that Operations 1, 2 and 3 are all replaced if that has to happen.

Figure 20: Crossover operator for genes in a sequence of operation

Figure 21: Crossover operator for genes in a sequence of job and operation

6. Mutation
A mutation is used to introduce new genetic material into the population. By doing this a pop-
ulation can get out of a local optimum. The mutation can lead to big jumps within the search
space. The probability of a mutation is set to be Pm. Multiple mutations can be used but the most
frequently used one is the uniform mutation. It picks a random gene and assigns a new random
variable. In the case of the genes that are used in this thesis, (j, o,m, n), the machine and operator
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are changed and two genes switch places.

7. New offspring
After the mutation might have taken place, the new offspring is complete and a new population is
formed. This means the iterative cycle starts again until the termination criterion is met.

Optimizing Genetic Algorithm
Trying to optimize the GA is hard. Hyper-parameters are therefore of great importance. By choos-
ing the wrong values, the population might converge too fast or diversity can be lost. A poorly
chosen mutation probability can for example lead to not being able to escape local optima, or not
being able to preserve a good scheme.Therefore, the hyper-parameters have to be tested for differ-
ent values to determine which values lead to the best result. The value for each hyper-parameter
is problem-dependent (Nobile, 2021). This means it cannot be stated beforehand that a certain
value will work. The hyper-parameters that will be tested are the tournament size, the crossover
probability and the mutation probability.

Modeling
The GA is programmed in Python using the DEAP module (Fortin et al., 2012). This module
contains the basics of a GA, but you can use your own operators. This is useful because different
crossover- and mutation operators are used.

3.3 Stage 3 - Capacity Planning

For the final stage, the maximum capacity of each process is determined based on the number of
available operators. First, all activities that have to be done by operators per processing step have
to be captured. Second, activities have to be checked for constraints. Herewith, certain activities
require multiple machines or operators. Next, for all activities, the time it takes has to be mapped.
This can be achieved by checking how long it takes to process one grid, or how long this activity
takes per shift. When all activities have corresponding times, the happy flow of this stage can be
determined. At Philips, there are three different main grid types: Regular-, Mammography- and
Round grids. Each of them has a different routing through this stage. That is why they will have
different production times.

For each process that might be a bottleneck (Post-processing 1, Veneer and Post-processing 2),
different configurations of operators will be examined. For example, configuration 1-2-1 means that
there is one operator during shift 1, two operators during shift 2 and again one operator during
shift 3. Now it can be calculated how much time per shift is available to perform all activities.
By computing the available time per shift, it can be determined how many grids can be processed
within 24 hours in this stage. Besides, with this knowledge, the bottleneck of these three processes
can be determined.

Using the bottleneck rate, the performance of stage 3 can be examined based on throughput and
cycle time. Hopp and Spearman (2011) developed simple formulas, based on Little’s Law (Little,
1961) to examine the performance. In total, Hopp and Spearman (2011) defined three scenarios:
best case, worst case and practical worst case. The time it takes for a product to get produced
without waiting is defined as the raw processing time (T0). The machine which takes the longest
to complete is the bottleneck of the manufacturing system. The minimum rate at which a ma-
chine produces products is defined as the bottleneck rate (rb). The WIP level (w), for which the
throughput is maximized is known as the critical WIP (W0). This leads to Equation (32):

W0 = rb · T0 (32)

For the best-case performance scenario, it is assumed that a product does not have to wait before
it can be processed. The formulas for the best-case performance scenario concerning the cycle time
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(CTbest) and throughput (THbest) are:

CTbest =

{
T0 if w ≤ W0,
w
rb

otherwise.

THbest =

{
w
T0

if w ≤ W0,

rb otherwise.

For the Worst-Case Performance scenario, it is assumed that every order waits for its previous
order to be finished before it can start. The formulas to determine the cycle time (CTworst) and
throughput (THworst) are:

CTworst = w · T0,

THworst =
1

T0
.

And for the Practical Worst-Case Performance scenario is based on the average waiting time at
each processing step. The formulas for the cycle time (CTPWC) and throughput (THPWC) for this
scneario are:

CTPWC = T0 +
w − 1

rb
,

THPWC =
w

W0 + w − 1
· rb.

If the actual throughput or cycle time is between the best-case scenario and the practical-worst-
case scenario, the production line is lean. For these formulas to hold, the production line has to
be stationary. This is however not the case currently. Philips is constantly trying to improve the
throughput and decrease the cycle time of the line. This is why these formulas cannot be used.

3.4 Combining Stages

The last part of this thesis will combine the three stages. First stage 1 is considered. If Philips will
use the inventory policy that will be determined, the fill rate would be at least 99%. Knowing this,
it can be assumed that there is always inventory available to start the production process in stage 2.

Stages 2 and 3 will on the other hand be combined within one model. The GA from stage 2 can be
used for this. Implementing stage 3 into the GA is done by assuming that stage 3 is one unit as can
be seen in Appendix B. The number of operations is increased by one. This operation, Operation 4,
is called Post-processing. Operation 4 will differ in production time based on the characteristics of
the grid. This is since regular-, mammography- and round grids have a different routing in stage 3.
The number of operators, which are required for this stage, can be determined using the capacity
scheduling. Different scenarios can be used, which means that a different number of operators are
used.

Subsequently, yield is taken into account during Post-processing. Quality check 1 has an average
yield of 78.8% and Quality check 2 has an average yield of 77%. The percentages can be used to
determine how many grids will on average be in Operation 4 and how many grids on average will
be completed. Based on the number of grids that have to be processed in Operation 4, it can be
determined how many operators are required within Operation 4.

At last, the average total production time of a grid can be determined. This can be done using
the results of the adapted GA and the results of stage 3. A Markov chain can be created as can
be seen in Figure 22. Using the Markov chain, the steady-state of the total production time can
be determined while taking into account the yield (Prob) and production times per processing step
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(Pt). The current average production time of the complete production line is then compared to the
average production time when entering the newly found processing times.

Figure 22: Markov chain of stage 2 and stage 3
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4 Results

In this section the results will be presented for all three stages separately and combined. First the
results of the DES will be explained. Next, the results of the MILP and GA will be discussed. As
third, the results of stage 3, capacity scheduling, will be reviewed. Finally the models are combined
and evaluated.

4.1 Inventory Control

A simulation should have a warm-up period. In this period, the simulation does not show the
correct results, because it is not fully active yet. Figure 23 illustrates this. Right at the beginning
of the simulation the IOH drops. This is because in the beginning nothing is being produced. Once
the first batch of products is being produced, it still takes some time (waiting time + processing
time) until it is ready to use. During this period demand keeps coming which led to the IOH being
far below zero. To fix this problem, inventory/WIP was added at the beginning of a simulation.
In that case, see Figure 24, the IOH will not drop, because products are still being produced. It
can be seen that the fill rate is not 100%, because the IOH will still drop in some cases. For this
example, a simulation length of 1 year is chosen. The green line in Figure 24 represents the reorder
level and if the IOH goes below the red line there is not enough inventory. The policy (1, 30, n ∗ 27)
represents the (R, s, nQ) policy. R is the review period of 1 day, s is the reorder level of 30 and Q
is 27, which is the amount that has to be produced per batch.

Figure 23: IOH and IP over time with warm-up period
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Figure 24: IOH and IP over time with warm-up period

In Appendix D it can be seen that reorder levels for all line types are determined. The review
period varies between 1, 2 and 7 days. The lead time and demand have a low and high variant.
When it is low, it is decreased with 20% and when it is high, it means the average is increased
with 20%. This is done to simulate (non) busy periods within the simulation. The reorder levels
are displayed in kached rolls. This means that they can be converted to grids or fiber containers
by using the data from Section 3.1. These results are determined from the DES with a simulation
length of 2.5 years. Each simulation was done 500 times which leads to accurate average results.
The most realistic reorder levels are shown in Table 9. In this scenario, the exact historic demand
is used, the lead time is average and the review period is set to one day. It shows that for the line
types, 60L, 70L and 74L, the reorder levels are the larges. This can be explained because these
are the line types with the largest demand. Line type 44L also has a relative large reorder level,
because this line type has a very large waiting time included in the process.

Table 9: Reorder level (in kached rolls) of all line types with average demand, average lead time
and R = 1

31L 36L 40L 41L 44L 50L 52L 57L 60L 67L 70L 74L 80L 85L

s 12 8 11 11 17 3 5 7 28 10 25 28 13 10

The main results for the reorder levels are: (1) it increases when the Lead Time increases, (2) it
increases when the review period becomes longer, and (3) it increases when the demand becomes
larger. If the Lead Time becomes larger it means that it takes longer to supply the products. To
ensure that the IOH does not become negative, the reorder level is increased. If the review period
becomes longer, it takes more time to notice if the IP dropped below the reorder level and in this
time period, the IOH may already be below zero. At last, if the demand increases, the reorder level
increases. This also makes sense, since more products are required in the same time period. This
will lead to a steeper decrease in IOH and therefore it is more likely that it will drop below zero.
Therefore, the reorder level has to be increased to keep at least the 99% fill rate.
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4.2 Dual Resource Constraint Flexible Job Shop Scheduling with Setup
Operators

In this section, the results of solving the DRC-FJSSP-SSO will be discussed. In Section 4.2.1, the
MILP will be reviewed. Section 4.2.2 elaborates on the results of the GA.

4.2.1 MILP

The MILP was solved with three different solvers: PulP’s main solver, GUROBI and GLPK. From
these three solvers, GUROBI performed far better than the other two. The computation time for
scheduling six jobs using GUROBI was about 1 minute, while the others could not deal with six
jobs within an hour. This is shown in Table 10. The large computation time is the reason why only
the results of the GUROBI solver are used.

Table 10: Computation time in seconds for different solvers

#jobs \Solver GUROBI GLPK PulP
4 jobs 4 >3600 1882
5 jobs 8 >3600 >3600
6 jobs 62 >3600 >3600

Figure 25 shows an optimal solution when processing six jobs. On the vertical axes, the machines
are displayed. m2 and m3 are used for operation 1, m12 - m59 for operation 2 and m88 for the last
operation. It can be seen that this schedule is optimal. This is because Job 4, the purple bar in
Figure 25, has the longest processing time, but also starts first and finishes last. Because Job 4 is
not able to produce quicker, this is the minimum time it takes to complete all six jobs. There might
be a possibility that Job 4 can be processed on another machine to reduce the production time,
but this is checked and is not the case. This means that for these six jobs the optimal production
time is 404 minutes. As mentioned before, the solver took 62 seconds to output these results. If
the amount of jobs is increased, the computation time also increases. Seven jobs already took 8
minutes and the solution for 8 jobs was not yet found after 2 hours. Computation time increases
exponentially from here. To overcome the problem of extreme large computation times, a developed
GA is used.
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Figure 25: Optimal Solution for 6 jobs using the GUROBI LP solver

4.2.2 GA

First, it had to be decided which type of starting population would be used, a random or biased
starting population. As mentioned in Section 3.2.2, three different starting populations with cor-
responding operators were examined. All were tested using “standard” hyper-parameter settings.
The tournament size is usually set around 3, the crossover probability at 0.9 and the mutation
probability at 0.05 Nobile (2021). These are however problem-specific, thus they will be optimized
later on. The GA has ran 1000 generations and this was done 50 times. The average fitness values
of the 50 runs can be seen in Figures 26, 27 and 28. A random starting population had on average
a fitness value of 578582. The biased starting population with consecutively operations of the same
job had a fitness value of 348981 and the biased starting population where first all operations of
Operation 1, than 2 and last 3, were scheduled had on average a fitness value of 556242. Figure 28
also contains more variation within the different runs as can be seen by the large fluctuation in for
the worst individual.

Figure 26: Random starting
population

Figure 27: Biased starting pop-
ulation, (O1,O2,O3,O1,O2,O3)

Figure 28: Biased starting pop-
ulation, (O1,O1,O2,O2,O3,O3)

It can be concluded that the biased starting population including the corresponding operators per-
formed significantly better than the random starting population and operators. This means that
all upcoming results will be using a biased starting population and biased operators. The bias that
is added is that Operations of the same job are scheduled consecutively like in Figure 29.
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Figure 29: Example of biased schedule that will be used

Next, the hyper-parameters (tournament size, crossover probability and mutation probability) were
determined. The tournament size is usually set around 3, the crossover probability around 0.9 and
the mutation probability around 0.05 Nobile (2021). However, this is problem-specific, which meant
that different combinations have to be checked. In Appendix E the results of the different config-
urations can be seen. In all these situations that are checked there were 35 Jobs, one operator for
Operation 1, three operators for Operation 2 and one operator for Operation 3. Every configuration
was tested using 1000 generations which were ran 50 times. The average solution of these 50 runs
at the end of 1000 generations is presented in the tables in Appendix E. It can be observed that
k = 3, Pc = 0.9 and Pm = 0.15 results in the lowest fitness values. Therefore, these are the setting
that will be used to obtain all results.

Finally, it is also concluded that the termination criterion is set to be a maximum number of gen-
erations. This is due to the fact that the GA should explore as long as possible. Because the
mutation probability is relatively large, it can impact the population even when there is almost
none variation left in the population.

MILP comparison
When using the same six jobs as for the MILP, the GA found the optimal solution of 404 minutes
similar to the MILP, see Figure 30. This was done using a random starting population. Within six
generations, an optimal solution was already found. Running six generations of this schedule takes
less than 1 second. It can be concluded that it is faster to use the GA than the MILP solver.

Figure 30: Optimal Solution

1 day schedule
When production at the factory is going well in stage 2 of the production line, 120-130 grids are
being processed per day. This is based on internal data. This is the reason why for 1 day, 128 jobs
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are scheduled in this GA. By doing this, the solution can be benchmarked. That means that the
128 jobs should be able to be processed within 24 hours.

The amount of generations that a GA runs, impacts the quality of the solution. If the GA runs
for more generations, it will more likely lead to a better solution. The GA tries to minimize the
completion times of every operation. The fitness value of the solutions will slowly decrease over
time, but after a certain amount of generations, the fitness will not decrease as fast anymore. From
this point, the mutation is required to receive better schedules, because more and more individuals
in the population become similar. This can be seen in a convergence plot in Figure 31. This Figure
shows the average fitness value per generation of 50 different runs. This means, the same GA has
ran 50 times and the fitness values per generation are saved. Next, these average of the fitness
value per generation was determined. In Figure 31, the minimum-, average- and maximum fitness
values of each generation are visualized. At approximately generation 450, it can be seen that
the decrease in fitness becomes smaller. The average population fitness and best individual fitness
almost become similar. Based on this, it can be said that there is not much variation left in the
population. However, the fitness value will still be decreasing over time. The mutation operator
makes sure this happens. It changes small parts of a schedule to create diversity in the population.

Figure 31: Convergence plot

In Figure 32 the best-found solution can be seen. For this schedule, one operator for Operation 1,
three operators for Operation 2 and one operator for Operation 3 are required. The GA used 40000
generations, which took 603 minutes to run. Most jobs (108) end before 1440 minutes, which is
24 hours. This means that when this schedule is used, 128 jobs can be started in a day and this
will lead to 128 jobs being finished within 24 hours. This is since at the end of the night certain
machines are still active, but not yet finished. These jobs are then ready the next day. These are
the jobs that finish after the 1440 minutes. This means when you take WIP into account, 128 jobs
can be processed within 24 hours.

Figure 33 and 34 show the utilization of the operators and machines respectively. Figure 33 illus-
trates that the utilization of the operator of Operation 1 (OMM1) is 62% of the time busy with
setting up machines. Operators 1, 2 and 3 (OPP1, OPP2 and OPP3) for Operation 2 have on
average a utilization of 45%. At last, the operators which performs Operation 3 (OML1) has a
utilization of 7%. When checking the utilization of the machines, it can be concluded that machine
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2 and 3 are mostly used during Operation 1. Next, machines which use the STB method in Opera-
tion 2, have on average a utilization 55%. The other machines within Operation 2 have on average
utilization 43%. Machine 88, which performs Operation 3, has a utilization of 28%. Figure 34
also shows that some machines are used more often than others. The reasons for certain machines
being more used than others are (1) the demand for grids which can be produced on this machine
is larger and (2) the processing times for certain machines differ. This means that some machines
can process a grid faster than others.

Figure 32: Schedule after 40000 generations

Figure 33: Operator utilization 128 jobs
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Figure 34: Machine Utilization 128 jobs

As can be seen in Figure 32, three operators seem necessary to deal with all the jobs in Operation 2.
To check this, the number of operators is changed for Operation 2 in steps of 1 form 2 to 6. Average
schedules of these different schedules can be seen Figures 45, 46,47 and 48 in Appendix F. All five
schedules were running for 1000 generations and this was done 50 times. As illustrated, 2 operators
at Operation 2 resulted on average in a makespan of 2200 minutes, 3 Operators lead to a schedule
around 2100 minutes, the GA generated a schedule with 4 Operators to be finished in 2000 minutes,
5 operators were on average finished within 1960 minutes and 6 operators also required around 1960
minutes. However, the makespan is not minimized. The completion times of every operation are
minimized. This was done to make sure the GA kept decreasing its fitness value. Besides, mini-
mizing the total completion times of all operations will also lead to low makespan(Maassen et al.,
2020). In Appendix F, the convergence plots can be seen of each type with corresponding fitness
values. It shows that the GA with 2 operators leads to an average fitness value of 365243, the GA
with 3 operators to a fitness value of 348981, the GA with 4 operators to a fitness value of 337125
and when 5 or 6 operators are used, the fitness value was on average 333413 and 333386. Having
5 operators could therefore be beneficial. 6 Operators would not further improve the schedule. A
remark is that this cannot be stated for certain, because the schedules are not optimal.

The utilizations of each operator and all machines are also shown in Appendix F. For the operators,
the results show that the utilization of Operation 1 and 3 are respectively 60% and 5%. The uti-
lization of operators of Operation 2 were respectively 60%, 40%, 30%, 25% and 22% for a GA with
2-, 3-, 4-, 5- and 6 operators. The machine utilization, Appendix F, did not give different results
when changing the number of operators. The average utilization of the machines was 43%. It is
visible that some machines are more often used than others, for example, Machine 2 for Operation
1 and Machines 12, 17, 32 and 36 for operation 2. On the other hand, Machines 13 and 33 were
used less compared to the other machines. It can also be seen that the machines which have used
the LTB method during Operation 2, have on average a smaller utilization than machines that use
the STB method. This can be explained by the larger demand for grids that use the STB method.

The utilization diagrams of Figures 32 and 46 can be compared. It can be seen that the utilization
of the schedule which has ran 40000 generations is almost everywhere larger. This is due to the
fact that this schedule is more optimal than the other and therefore, the operations are scheduled
with less waiting time.

3 day schedule
Running a schedule that consists of 350 jobs (which is a normal production target for three days)
takes even longer than for 128 jobs. Running 1000 generations for a schedule that contains 350 jobs
takes about 35 minutes to finish, while it only takes 13 minutes for a schedule with 128 jobs. This
is because when increasing the number of jobs, the schedule becomes larger and larger. This makes
it more complex for the GA to find better solutions. However, this was known beforehand and the
large complexity was the reason why a GA was chosen to solve the problem. Figure 35 illustrates a
solution that has run 20000 generations and uses one operator for Operation 1, three for operation 2
and one for operation 3. The makespan of this schedule is 4673 minutes. As mentioned, 350 jobs are
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usually produced within three days. Three days contain 4320 minutes, this means this schedule al-
most competes with the current schedules at Philips, because almost all jobs are processed in 3 days.

Figure 35: Schedule after 20000 generation of 350 jobs

When comparing the machine- and operator utilization of a 350 job schedule to a 128 job schedule
with 3 operators in Operation 2, it is visualized that the utilization for the operators is about 10%
larger, see Figure 36. This can mean that this schedule is even better than the 128 jobs schedule.
Figure 37, which shows the machine utilization, illustrates the same patterns as before. It is also
visible that the utilization increased by about 10%. The most used machine is still machine 2. Due
to the fact that none of the machines have a large utilization, a bottleneck cannot be determined.

Figure 36: Operator utilization of 350 Jobs
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Figure 37: Machine utilization of 350 Jobs

Another insight from the 350 job schedule, is the number of jobs that can be processed within one
day. The GA with 128 jobs proved that it when taking WIP into account, can handle 128 jobs
in a day. The maximum amount of jobs that were finished in 24 hours in the 350 job schedule
is 144 for Operation 1, 148 for Operation 2 and 153 for Operation 3, see Figure 38. This means
that if there is one operator available for Operation 1, three for operation 2 and one for Operation
3 for 24 hours, it is possible to finish around 150 jobs. This shows that Figure 32 is far from optimal.

Figure 38: 150 jobs end in 24 hours

Next, the type of job processed on a machine or by an operator is examined. First, every job
where an operator performs a setup is visualized in Figure 59 in Appendix G. As can be seen in
the figure, the setups that every operator performs are randomly spread over the schedule. This
means that every operator performs setups for all machines and that operators do not need to be
assigned to specific machines. Second, the amount of lamellae on a grid is examined. The more
lamellae a grid contains, the longer the processing time takes during Operation 2. What can be
concluded from Figure 60, is that during the first 2000 minutes of the schedule, significantly more
grids are processed with a lower amount of lamellae (<1700). For the medium size grids (number
of lamellae between 1700 and 2200) it is observed that they are more likely to be produced at the
end of a schedule. The large grids with more than 2200 lamellae do not show any pattern and
are produced evenly spread out over the schedule. The percentages of grids that are produced in
a certain time period with a low, medium or a large number of lamellae are shown in Table 11.
For example, between minute 0 and 500, 46% of all processed jobs have less than 1700 lamellae,
21% have between 1700 and 2200 lamellae and 33% have more than 2200 lamellae. At last, grids
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have to characteristics which are important fot setups, height and line type. Figure 61 in Appendix
G visualizes grids with a similar height/line type combination. This combination determines how
long the setup will take. There are five colors which represent the most common combinations.
Red, orange, purple, blue and grey represent respectively (1.5, 41L), (1.5, 60L), (1.5, 70L), (1.5,
74L) and (1.75, 40L). The first number represents the height and the second number the line type.
Green represents the remaining grids. Figure 61 in Appendix G shows that it occurs often that two
or more jobs with the same height/line type combination are processed consecutively on a machine.
This can be explained by the fact that processing similar jobs after one another reduces setup time.
However, this does not occur that often. When only the considering the height of a grid, it occurs
more often these grids are processed after one another. This makes sense, because a difference in
height has a significant larger impact on the setup time than a line type difference. Because this is
also not the case for all of the operations, it probably is the case that the schedule is not optimal
as expected.

Table 11: Production percentage per time period based on number of lamellae

lamellae \min 0-500 500-1000 1000-1500 1500-2000 2000-2500 2500-3000 3000-3500 3500 -4000 4000-4500 4500-5000
<1700 0.46 0.43 0.34 0.41 0.32 0.24 0.25 0.16 0.22 0

>1700 & <2200 0.21 0.30 0.30 0.37 0.36 0.55 0.47 0.61 0.61 1
>2200 0.33 0.27 0.36 0.22 0.32 0.21 0.28 0.23 0.17 0
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4.3 Capacity Scheduling

First, the activities which are performed by an operator per processing step were determined to-
gether with the time it takes to perform these activities. These activities with corresponding times
can be found in Appendix H. With these processing times a happy flow can be determined for all
three types of grids, Regular-, Mammography- and Round grids, Table 12. It is assumed that there
are no additional waiting times and that the grid can be shipped directly to the painting shop.
However, this is not likely, because grids can only be shipped to the painting shop at one moment
during the week.

Table 12: Happy flow cycle time stage 3

Regular Mammography Round
9.04 days 10.25 days 11.06 days

The next step is to determine which process step is the bottleneck in stage 3. This depends
on two resources: Operators and Machines. Three processes can lead to bottlenecks, which are
Post-processing 1, Veneer and Post-processing 2. For these three processes, it is shown how many
operators are available per shift in Appendix I. The configuration 1-1-1 means that in every shift
one operator is available. For example, on line 2 in Appendix I, the “Post-processing 1” process
has one operator for every shift. With this amount of operators, 110 grids can be processed in 24
hours. For the process step “Veneer” 115 grids can be processed, etc. By creating a lot of different
scenarios, the bottleneck of stage 3 can be determined for all of those. For example, the bottleneck
for line 2 is Post-processing 1 and it has a bottleneck rate of 110 grids per day.
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4.4 Combination

Combining all three stages gives the following results. First, if the reorder levels and review periods
of Appendix D are used it can be said that there will be at least a 99% certainty that there is
enough inventory to start producing at stage 2. In stage 2, 128 jobs are scheduled per day with
one operator for Operation 1, three for Operation 2 and one for Operation 3, see Figure 39. Stage
3 is added to the GA and this results in Figure 40. This figure visualises the start- and end time of
each job for Post-processing. Subsequently, it shows how many jobs are processed over time. This
differs, because during the quality checks, some of the grids are scrapped. At quality check1, on
average 21,2% of the grids are discarded and during quality check 2, 23% of the grids are scrapped.
The first decline that can be seen in Figure 40 represents all grids that did not pass quality check
1. The second decline in the figure are all the grids which did not pass quality check 2. The last
decline are all the grids which are completes and send to the customer. It can be concluded that in
between quality check 1 and quality check 2 around 105 grids were processed. This means that in
total 105 grids have to be processed in stage 3 to keep up with the production in stage 2. This is
possible with the right set of operators, which can be found in Appendix I. A set of operators have
to be found which have a bottleneck rate larger than 105 grids per day. Finally, in total around 77
grids were completed.

Figure 39: Schedule stage 2

Figure 40: Number of jobs in stage 3 from 1 day
of production in stage 2

Next, the average total production time can be determined for the production line and be compared
to the current average production time. The four different processing times that are required are,
(1)the processing times of stage 2, (2) the time from quality check 1 to quality check 2, (3) the time
it takes from quality check to sending the grid and finally (4), the time it takes to start a new job
once it is scrapped during a quality check. The average processing time for a random job on a day
in stage 2 is 0.5 day. This is not optimized in this thesis. The average processing time between
quality check 1 and quality check 2 was 8.32 days. When having enough operators to keep up with
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all demand, this should be possible in 5.03 days. This is based on the time it takes for a grid to
go through all activities in Appendix H. Next, the time between quality check 2 and sending the
order to the customer is on average 10.5 days. This cannot be improved, due to the fact that most
of the time the grid is at an external location. Finally, the time it takes to start a new production
for a certain order can be improved. Currently, it takes about half a day to start a new production.
This is due to the fact that new jobs are released twice a day. When this is done directly, this can
save up to 0.4 day per grid.

Combining this with the knowledge of the yield, Figure 22 can be entered. For this Markov chain
the steady state of the time it takes to complete can be determined. First, the current average total
production time is determined, see Figure 41. On average, it takes 22.4 days to complete a grid,
but the time it takes to complete 90% of the grids is already 29.6 days. With the new processing
times per processing step, the average total production time is equal to 17.9 days and 90% of these
jobs will be finished after 22.3 days. This can be seen from Figure 42. Both simulations were ran
10 million times.

When having the right amount of operators at the right section in the production line can signif-
icantly improve the total production time. Next to that, by decreasing the time when a grid is
scrapped until a new production is started the average total production time also decreases by 0.2
days. This has, as can be seen, as can be seen a smaller impact.

Figure 41: Current total production time Figure 42: Improved total production time
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5 Conclusion & Discussion

In this chapter, first, the research question will be discussed in Section 5.1. Next, Section 5.2
describes the limitations of this thesis. Subsequently, Section 5.3 provides recommendations for
Philips. Lastly, Section 5.4 will discuss possible directions for future research.

5.1 Conclusion

In the studied multi-stage manufacturing system of Philips, anti-scatter grids are produced from
raw materials. To ensure customers receive the anti-scatter grids before the RDD while consider-
ing constraints like yield, capacity and growing demand, planning and scheduling have to be on
point. Therefore, this thesis investigated planning and scheduling improvements for the multi-stage
manufacturing system. The main research question is as follows:

“How should Philips plan capacity and schedule orders to improve the OTTR,
while keeping in mind the constraints?”

To answer this research question, first, each stage had to be optimized. In stage 1, a discrete event
simulation has been developed that determines the best inventory policy which guarantees a 99%
fill rate. For each line type, a different inventory policy was generated and these can be renewed
by updating the historic demand data. By implementing the generated inventory policies, a 99%
fill rate is guaranteed. Therefore, it can be assumed that stage 1 is optimized as there is always
enough inventory to start the production process in stage 2.

Stage 2 can be described as a DRC-FJSSP-SSO. In literature, these problems are most of the time
solved using a GA, because exact solutions use too much computation time. This was checked
by creating a MILP model and testing several instances. An exact solution method indeed used
too much computation time. Therefore, a GA was developed which takes machines, operators
and variable setup times into account. Since every problem is different, several genetic algorithm
operators are tested to check which performs best for this type of problem. It is concluded that
a biased population, which schedules operations of each job right after the other, performed best
based in the fitness function. With these bias, a JOSO crossover operator and a machine/operator
mutation were developed. Next, the hyper-parameter settings also had to be optimized for this
specific problem. The optimal settings are (1) the tournament size is set to 3, (2) the crossover
probability is set to 0.9 and (3) the mutation probability is set to 0.15. With the right settings for
this problem type, a schedule for stage 2 can be generated. However, the GA did not outperform
the current scheduling method. The GA could generate similar schedules as currently, but could
not improve them due to the complexity of the problem. However, it can be concluded that having
more than five operators in Operation 2 is not beneficial and the setup time is minimized when
producing grids with similar heights on the same machine consecutively. Furthermore, at least 150
jobs can be processed within 24 hours using 3 operators at Operation 2. This means, that when
taking yield into account, at least 488 grids can be completed within a week. Currently, 400 grids
are completed per week.

Knowing that around 120 jobs are processed every day in stage 2, the average number of jobs to be
processed in stage 3 can be determined. The average yield in quality check 1 is equal to 0.787, which
means that on average 95 jobs have to be processed per day in stage 3 to keep up with incoming
grids. To meet this requirement, the right amount of skilled operators have to be allocated to each
each processing step. A thorough analysis is performed to see how long operators perform activities
at each processing step. With this knowledge, the number of operators can be determined at each
processing step to process at least 95 grids per day. Moreover, it can be concluded that the duration
of the happy flow of the complete production line for regular grids is 9.04 days in stage 3. In this
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happy flow, no waiting time is taken into account which is not very realistic.

The GA of stage 2 can be revised in a way that takes stage 3 also into account. This is done by
adding an extra operation. The same genetic algorithm operators and hyper-parameter settings are
used. When running the model, a schedule for stage 2 is still generated, but also the inventory of
stage 3 is visualized. When the grids are finished in stage 2, the grid starts production in stage 3.
Using the average yield, some grids are scrapped within stage 3 and the inventory decreases again.
This figure shows how many jobs have to be processed in stage 3 and with this knowledge the
right number of eligible operators can be determined to handle this flow. Furthermore, it compares
the total production time in the current and new situations. This is done by creating a Markov
chain and determining the steady-state of the total production time. 90% of all grids are currently
processed (stage 2 and stage 3) within 29.6 days, while in the new situation it only takes 22.3 days
to accomplish this. This means, that when processing around 120 grids in stage 2, it is possible to
deliver 90% of all grids within 22.3 days if the correct number of operators with the right skill-set
are available. This is a decrease of 24.6%. For this scenario, 2 operators should be available for
shifts 1 and 2 at Post-processing 1 and Post-processing 2 and 1 operator should be working every
shift to Veneer. This will lead to a total production time of 22.3 days and therefore it will be
possible to meet the RDD if the production is started in time.

5.2 Limitations

In this thesis, several assumptions were made to simplify the production environment. These as-
sumptions influence the results. For example the processing times of each production step. Most
processing times are not recorded by Philips. In a few cases, there is some data available, but most
often, the only way to define a processing time is by making an educated guess based on experienced
operators. It cannot be checked if these are reliable processing times, because the right data is not
registered. Another assumption that is made is that machines are always active and do not break
down. This is not realistic. Most of the machines are becoming old and maintenance is required
more and more often. For some processes, a machine can break down multiple times per order
handled. This will severely impact the processing times.

Another limitation of this research is that the schedules that are generated by the GA are not
optimal. Because solving this type of problem is very complex, the computation time is still very
large. It is much better than solving it using an LP solver, but when running the GA for 24 hours it
still does not find an optimal solution. Furthermore, the GA can be very random with its solutions.
The first time it might perform very well and the second time it can be the case that it performs
poorly. That is one of the disadvantages of using a GA.

The final limitation is regarding the fitness function of the GA. Currently, the completion time
of each operation is minimized while minimizing the makespan is the goal. The makespan is not
chosen to be the fitness function, because this led to more computation time and worse schedules
within a given time period. It can be argued that minimizing the total completion time lowers the
makespan (Maassen et al., 2020), however, when minimizing the completion time of each operation
it cannot be stated with 100% certainty that the makespan is always minimized. In some cases,
the fitness value was very low, but the makespan was large.

5.3 Recommendations

There are several recommendations regarding planning and scheduling to decrease the total pro-
duction time and with that increase the OTTR. For stage 1, Philips should take new reorder levels
into account to make sure that there is always enough stock to start producing in stage 2. The
review period should be one day to decrease the reorder levels. Next, the inventory policies should
be updated once every half year, or once the demand pattern changes drastically. By doing this,
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the inventory policy is taking the current demand pattern into account.

For stage 2, three operators are required for the fusing step in the production line. With three
operators, 150 grids per day can be processed and this is enough to meet the goal of 400 completed
grids per week. The grids should be scheduled based on the characteristic “height”, because the
setup times will be minimized when multiple grids with the same height are processed consecutively
on the same machine.

Finally, the number of operators at each processing step in stage 3 should be based on how many
grids are produced in stage 2 of the system. The bottleneck rate of stage 3 should at least be larger
than the number of grids that are produced in stage 2 minus the yield. By doing this, the WIP will
not be able to increase and therefore, a long cycle time and a worse yield can be prevented. Due to
the fact that Post-processing 1, Veneer and Post-processing 2 are the steps where the bottleneck is
most likely, it might also be useful to train more operators to perform these activities. These steps
are crucial within the total production line and it is, therefore, harder to process piled-up WIP.
Once a grid is scrapped at a quality check it can save time to directly release a new production
order instead of waiting for the next day.

When keeping all these improvements in mind, the total production time will decrease and it will
be possible to guarantee a 6-week delivery period. There is only one problem. Currently, there
is a large backlog which means that products are not produced right away. If this takes longer
than two weeks, less than 90% of the grids can be delivered within six weeks. This is because 29.6
days are required to complete 90% of the jobs. Therefore, another recommendation would be to
spend a couple of weeks with the maximum number of operators in every shift to reduce this backlog.

5.4 Future Research

The main limitation of this research was that the solution of the GA was not improving the current
scheduling method. Future research is required to decrease computation time or increase the effec-
tiveness of the GA. There are two options for this, (1) the GA is revised and (2) a new method is
developed. For option (1), the bias can be changed. A different bias might lead to better results.
Next, the operators can be adjusted. By discovering new operators, the individuals might have
better fitness and the computation time might decrease. Another possibility is to revise the fitness
function. The fitness function has a large impact on the GA since this is optimized. Developing
a better fitness function might lead to the GA converging faster to the global optimum. Option
(2) might also be beneficial if the GA does not perform as hoped. For example, a heuristic will
decrease the computation time, but the fitness value might not be as good. However, this is still
something to consider when continuing with this thesis.

Another way to improve the model is by implementing downtime of all machines. This is done
to make the model more realistic. Future research on how downtime can be implemented into
the simulation and GA is therefore required. Because the simulation is a DES, this can be easily
implemented. The only requirement is that the (average) time until machine failure occurs, has to
be known. Currently, this is not known at Philips and therefore, much data has to be gathered over
the upcoming period. Chaudhry and Khan (2016) mentions that an FJSSP, with taking downtime
into account, is already developed. This can be a starting point for implementing downtime in this
model.

Future research can also be done into finding a suitable fitness function that minimizes makespan.
This can be done by proving to what degree minimizing the completion time minimizes the makespan,
or by changing the fitness function for something that better minimizes the makespan. Proving
to what degree minimizing the completion time minimizes the makespan can be useful in order to
decide whether its is the right objective function or if it should be changed.
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Finally, processing times have to be determined in more detail, because this affects the models and
it is currently based on an educated guess. This means that future research has to be done into
how data of thecomplete production process can be gathered and stored.
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Appendices

A Process Flow

Figure 43: Process Flow of a regular grid
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B Simplified Process Flow

Figure 44: Process Flow of a regular grid after combining stages
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C Input Parameters Stage 2

Processing Times

Table 13: Processing Time (min), Operation 1 (Matten)

M1 M2 M3
Pt 15 15 15

Table 14: Processing Time (sec), Operation 2 (Plakken) for machines using the STB method

M11 M12 M13 M14 M15 M16 M17 M18 M20 M21 M22 M23 M24 M25 M26 M28 M29 M30 M31 M32 M33 M34 M35 M36
Pt 4.8 4.97 5.208 5.508 5.447 5.6 4.9 5.5 5.2 5.2 4.85 5 5.7 5 5.227 5.9 5 5.84 5.2 4.847 5.7 5.4 6 5.4

Table 15: Processing Time (sec), Operation 2 (Plakken) for machines using the LTB method

M50 M51 M52 M53 M54 M55 M56 M57 M58 M59
Pt 7.29 7.21 7.11 7.11 7.56 7.52 7.52 7.08 7.34 7.41

Table 16: Processing Time (min), Operation 3 (MLM)

M88
Pt 3

Setup Times

Table 17: Setup Time (min), Operation 1 (Matten) for all machines

Height difference Line type difference No difference
St 60 10 5

Table 18: Setup Time (sec), Operation 2 (Plakken) for all machines which use the STB method

Height difference Line type difference No difference
St 55 18 15

Table 19: Setup Time (sec), Operation 2 (Plakken) for all machines which use the LTB method

Always
St 15

Table 20: Setup Time (min), Operation 3 (MLM)

Always
St 1

Eligible Operators
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Table 21: Machines where operators are eligible to perform setups

OMM 1,2,3
OPP 11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,36,50,51,52,53,54,55,56,57,58,59
OML 88

Demand per day

Table 22: Average demand for 1 day, part 1

Job Height Line type Number of Lamellae Method
J0 1.5 70L 2415 STB
J1 1.5 70L 2415 STB
J2 1.5 70L 3470 STB
J3 1.5 70L 2657 STB
J4 1.5 70L 2657 STB
J5 1.5 70L 2657 STB
J6 2.0 44L 1205 STB
J7 1.5 41L 1622 STB
J8 1.5 41L 1622 STB
J9 1.5 41L 1622 STB
J10 1.5 41L 1622 STB
J11 1.5 41L 1622 STB
J12 1.5 31L 1173 STB
J13 1.5 31L 1173 STB
J14 1.5 31L 1173 STB
J15 1.5 60L 1610 STB
J16 1.5 60L 1610 STB
J17 2.5 44L 1563 LTB
J18 2.5 44L 1563 LTB
J19 2.5 44L 1563 LTB
J20 2.5 44L 1563 LTB
J21 2.5 44L 1563 LTB
J22 2.5 44L 1563 LTB
J23 2.5 44L 1563 LTB
J24 2.5 44L 1563 LTB
J25 2.5 44L 1563 LTB
J26 2.0 44L 2178 STB
J27 2.0 44L 2178 STB
J28 1.5 60L 2277 STB
J29 3.0 44L 2178 STB
J30 3.0 44L 2178 STB
J31 3.0 44L 2178 STB
J32 1.5 41L 1504 STB
J33 1.5 41L 1504 STB
J34 1.5 41L 1504 STB
J35 1.5 41L 1504 STB
J36 1.5 41L 1504 STB
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Table 23: Average demand for 1 day, part 2

Job Height Line type Number of Lamellae Method
J37 1.5 41L 1504 STB
J38 1.5 41L 1504 STB
J39 1.5 41L 1504 STB
J40 1.5 41L 1504 STB
J41 1.5 41L 1504 STB
J42 1.5 41L 1504 STB
J43 1.5 41L 1504 STB
J44 1.5 74L 1983 STB
J45 1.5 74L 1983 STB
J46 1.5 74L 1983 STB
J47 1.5 74L 1983 STB
J48 1.5 74L 1983 STB
J49 1.5 74L 1983 STB
J50 1.5 80L 3220 STB
J51 1.5 80L 3220 STB
J52 1.5 67L 2200 LTB
J53 1.5 67L 2200 LTB
J54 1.5 67L 2200 LTB
J55 1.5 67L 2200 LTB
J56 1.5 67L 2200 LTB
J57 1.5 67L 2200 LTB
J58 1.5 67L 2200 LTB
J59 1.5 67L 2200 LTB
J60 1.5 67L 2200 LTB
J61 1.5 67L 2200 LTB
J62 1.5 67L 2200 LTB
J63 2.5 44L 2352 LTB
J64 2.5 44L 2352 LTB
J65 1.75 40L 1980 LTB
J66 1.75 40L 1980 LTB
J67 1.5 70L 1852 STB
J68 2.5 36L 1782 STB
J69 2.5 36L 1782 STB
J70 2.5 36L 1782 STB
J71 1.5 60L 1546 STB
J72 1.5 60L 1546 STB
J73 1.5 60L 1546 STB
J74 1.5 60L 1546 STB
J75 1.5 60L 1546 STB
J76 1.5 60L 1546 STB
J77 1.5 60L 1546 STB
J78 1.5 60L 1546 STB
J79 1.5 60L 1546 STB
J80 2.0 40L 2121 STB
J81 1.75 40L 2112 STB
J82 1.75 40L 2112 STB
J83 1.75 40L 2112 STB
J84 1.75 40L 2112 STB
J85 1.75 40L 2112 STB
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Table 24: Average demand for 1 day, part 3

Job Height Line type Number of Lamellae Method
J85 1.75 40L 2112 STB
J86 1.75 40L 2112 STB
J87 1.75 40L 2112 STB
J88 1.75 40L 2112 STB
J89 1.75 40L 2112 STB
J90 1.75 40L 2112 STB
J91 1.5 70L 2343 STB
J92 1.5 70L 2343 STB
J93 1.5 70L 2343 STB
J94 1.5 60L 2125 STB
J95 1.5 74L 2000 STB
J96 1.5 74L 2000 STB
J97 1.5 74L 2000 STB
J98 1.5 74L 2000 STB
J99 2.0 44L 2159 LTB
J100 1.5 60L 2093 STB
J101 1.5 60L 2093 STB
J102 1.5 60L 2093 STB
J103 1.5 60L 2093 STB
J104 1.5 60L 2093 STB
J105 1.5 70L 1827 STB
J106 1.5 44L 1834 LTB
J107 1.5 44L 1834 LTB
J108 1.75 60L 2125 STB
J109 2.0 60L 2346 STB
J110 1.5 74L 2834 STB
J111 1.5 74L 2834 STB
J112 1.5 60L 2346 STB
J113 1.5 60L 2346 STB
J114 1.5 60L 2346 STB
J115 1.5 60L 2346 STB
J116 1.5 60L 2346 STB
J117 1.5 60L 2346 STB
J118 1.5 60L 1656 STB
J119 1.5 60L 1656 STB
J120 2.5 40L 2112 STB
J121 2.5 40L 2112 STB
J122 2.5 40L 2112 STB
J123 2.5 40L 2112 STB
J124 2.5 40L 2112 STB
J125 1.5 70L 2632 LTB
J126 1.5 70L 2608 LTB
J127 1.5 74L 2042 STB
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D Reorder Levels

Table 25: Reorder levels, 31L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 10 12 12 12 14 15 21 21 23
avg D 12 12 12 14 15 17 24 24 24
high D 12 12 13 15 16 17 25 26 28

Table 26: Reorder levels, 36L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 6 6 7 6 8 9 11 11 12
avg D 7 8 9 8 8 10 12 14 14
high D 8 10 11 9 10 11 15 16 17

Table 27: Reorder levels, 40L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 11 13 13 16 16 17 34 36 37
avg D 11 11 11 16 18 17 36 40 43
high D 13 13 13 18 18 19 47 47 48

Table 28: Reorder levels, 41L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 8 9 10 13 13 13 34 34 34
avg D 10 11 11 16 17 17 43 43 43
high D 11 11 12 17 17 18 44 44 45

Table 29: Reorder levels, 44L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 14 15 16 19 20 21 32 35 37
avg D 15 17 16 20 21 20 38 39 40
high D 19 20 20 23 24 24 48 50 51

Table 30: Reorder levels, 50L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 2 2 3 2 2 3 3 3 3
avg D 2 3 3 2 3 3 3 3 3
high D 2 3 4 2 3 4 3 4 4

Table 31: Reorder levels, 52L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 4 5 6 5 6 6 8 8 9
avg D 5 5 7 6 7 8 8 10 12
high D 6 7 8 7 8 9 11 13 13

66



Table 32: Reorder levels, 57L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 5 6 6 5 6 7 6 7 8
avg D 6 7 7 7 7 7 7 8 8
high D 6 7 8 6 7 8 8 9 10

Table 33: Reorder levels, 60L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 24 26 27 30 30 31 56 57 59
avg D 26 28 29 32 33 33 64 67 70
high D 26 28 29 32 34 33 68 70 73

Table 34: Reorder levels, 67L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 7 8 10 8 9 11 11 12 13
avg D 9 10 12 10 11 14 12 14 17
high D 10 11 14 12 13 16 14 16 19

Table 35: Reorder levels, 70L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 24 24 24 28 28 29 49 49 50
avg D 25 25 26 30 30 32 53 53 56
high D 26 26 26 31 31 32 58 58 62

Table 36: Reorder levels, 74L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 19 22 26 21 25 28 28 30 35
avg D 25 28 26 24 29 31 33 37 38
high D 26 29 30 28 30 32 40 41 42

Table 37: Reorder levels, 80L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 10 12 14 11 12 15 15 18 20
avg D 11 13 14 12 15 16 18 22 23
high D 14 15 15 15 15 16 23 24 24

Table 38: Reorder levels, 85L R=1, R=2, R=7

low LT avg LT high LT low LT avg LT high LT low LT avg LT high LT
low D 6 10 11 8 10 11 11 12 13
avg D 9 10 12 9 11 13 12 13 15
high D 10 12 13 11 12 15 14 16 18
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E Hyper-parameters GA

Table 39: Fitness values when k=2

Pm \Pc 0.8 0.85 0.9 0.95
0.05 405821 419764 427382 427994
0.1 422638 427424 434758 435992
0.15 429635 430110 442841 440090
0.2 444031 439452 452286 445456

Table 40: Fitness values when k=3

Pm \Pc 0.8 0.85 0.9 0.95
0.05 391767 376388 368161 362765
0.1 377876 361323 358361 359295
0.15 376290 365662 356521 363887
0.2 370763 364795 361665 401479

Table 41: Fitness values when k=4

Pm \Pc 0.8 0.85 0.9 0.95
0.05 398066 406993 369492 373145
0.1 392267 390845 363558 361003
0.15 388397 375426 360325 366280
0.2 375830 375096 364732 370775
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F Operator Comparison Stage 2

Figure 45: 2 Operators
for Operation 2

Figure 46: 3 Operators
for Operation 2

Figure 47: 4 Operators
for Operation 2

Figure 48: 5 Operators
for Operation 2

Figure 49: Convergence
Plot, 2 Operators for
Operation 2

Figure 50: Convergence
Plot, 3 Operators for
Operation 2

Figure 51: Convergence
Plot, 4 Operators for
Operation 2

Figure 52: Convergence
Plot, 5 Operators for
Operation 2

Figure 53: 2 Operators for Op-
eration 2

Figure 54: 3 Operators for Op-
eration 2

Figure 55: 4 Operators for Op-
eration 2
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Figure 56: 2 Operators for Operation 2

Figure 57: 3 Operators for Operation 2

Figure 58: 4 Operators for Operation 2
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G Grid Type Analysis Stage 2

Figure 59: Setup performed by operator
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Figure 60: Jobs categorized based on number of lamellae
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Figure 61: Jobs categorized based on height and line type
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H Activities Stage 3
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I Bottleneck Stage 3

Post-processing 1 Veneer Post-processing 2 P-p 1 Veneer P-p 2 Bottleneck rate
1-1-1 1-1-1 2-2-1 110 115 195 110
1-1-1 1-1-1 2-2-0 110 115 130 110
1-1-1 1-1-1 1-1-1 110 115 120 110
1-1-1 1-1-1 1-1-0 110 115 85 85
1-1-1 2-1-1 2-2-1 110 150 195 110
1-1-1 2-1-1 2-2-0 110 150 130 110
1-1-1 2-1-1 1-1-1 110 150 120 110
1-1-1 2-1-1 1-1-0 110 150 85 85
1-1-1 1-1-0 2-2-1 110 80 195 80
1-1-1 1-1-0 2-2-0 110 80 130 80
1-1-1 1-1-0 1-1-1 110 80 120 80
1-1-1 1-1-0 1-1-0 110 80 85 80
2-2-2 1-1-1 2-2-1 150 115 195 115
2-2-2 1-1-1 2-2-0 150 115 130 115
2-2-2 1-1-1 1-1-1 150 115 120 115
2-2-2 1-1-1 1-1-0 150 115 85 85
2-2-2 2-1-1 2-2-1 150 150 195 150
2-2-2 2-1-1 2-2-0 150 150 130 130
2-2-2 2-1-1 1-1-1 150 150 120 120
2-2-2 2-1-1 1-1-0 150 150 85 85
2-2-2 1-1-0 2-2-1 150 80 195 80
2-2-2 1-1-0 2-2-0 150 80 130 80
2-2-2 1-1-0 1-1-1 150 80 120 80
2-2-2 1-1-0 1-1-0 150 80 85 80
2-2-1 1-1-1 2-2-1 125 115 195 115
2-2-1 1-1-1 2-2-0 125 115 130 115
2-2-1 1-1-1 1-1-1 125 115 120 115
2-2-1 1-1-1 1-1-0 125 115 85 85
2-2-1 2-1-1 2-2-1 125 150 195 125
2-2-1 2-1-1 2-2-0 125 150 130 125
2-2-1 2-1-1 1-1-1 125 150 120 120
2-2-1 2-1-1 1-1-0 125 150 85 85
2-2-1 1-1-0 2-2-1 125 80 195 80
2-2-1 1-1-0 2-2-0 125 80 130 80
2-2-1 1-1-0 1-1-1 125 80 120 80
2-2-1 1-1-0 1-1-0 125 80 85 80
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Post-processing 1 Veneer Post-processing 2 P-p 1 Veneer P-p 2 Bottleneck rate
2-1-1 1-1-1 2-2-1 100 115 195 100
2-1-1 1-1-1 2-2-0 100 115 130 100
2-1-1 1-1-1 1-1-1 100 115 120 100
2-1-1 1-1-1 1-1-0 100 115 85 85
2-1-1 2-1-1 2-2-1 100 150 195 100
2-1-1 2-1-1 2-2-0 100 150 130 100
2-1-1 2-1-1 1-1-1 100 150 120 100
2-1-1 2-1-1 1-1-0 100 150 85 85
2-1-1 1-1-0 2-2-1 100 80 195 80
2-1-1 1-1-0 2-2-0 100 80 130 80
2-1-1 1-1-0 1-1-1 100 80 120 80
2-1-1 1-1-0 1-1-0 100 80 85 80
1-1-0 1-1-1 2-2-1 65 115 195 65
1-1-0 1-1-1 2-2-0 65 115 130 65
1-1-0 1-1-1 1-1-1 65 115 120 65
1-1-0 1-1-1 1-1-0 65 115 85 65
1-1-0 2-1-1 2-2-1 65 150 195 65
1-1-0 2-1-1 2-2-0 65 150 130 65
1-1-0 2-1-1 1-1-1 65 150 120 65
1-1-0 2-1-1 1-1-0 65 150 85 65
1-1-0 1-1-0 2-2-1 65 80 195 65
1-1-0 1-1-0 2-2-0 65 80 130 65
1-1-0 1-1-0 1-1-1 65 80 120 65
1-1-0 1-1-0 1-1-0 65 80 85 65
2-2-0 1-1-1 2-2-1 100 115 195 100
2-2-0 1-1-1 2-2-0 100 115 130 100
2-2-0 1-1-1 1-1-1 100 115 120 100
2-2-0 1-1-1 1-1-0 100 115 85 85
2-2-0 2-1-1 2-2-1 100 150 195 100
2-2-0 2-1-1 2-2-0 100 150 130 100
2-2-0 2-1-1 1-1-1 100 150 120 100
2-2-0 2-1-1 1-1-0 100 150 85 85
2-2-0 1-1-0 2-2-1 100 80 195 80
2-2-0 1-1-0 2-2-0 100 80 130 80
2-2-0 1-1-0 1-1-1 100 80 120 80
2-2-0 1-1-0 1-1-0 100 80 85 80
2-1-0 1-1-1 2-2-1 65 115 195 65
2-1-0 1-1-1 2-2-0 65 115 130 65
2-1-0 1-1-1 1-1-1 65 115 120 65
2-1-0 1-1-1 1-1-0 65 115 85 65
2-1-0 2-1-1 2-2-1 65 150 195 65
2-1-0 2-1-1 2-2-0 65 150 130 65
2-1-0 2-1-1 1-1-1 65 150 120 65
2-1-0 2-1-1 1-1-0 65 150 85 65
2-1-0 1-1-0 2-2-1 65 80 195 65
2-1-0 1-1-0 2-2-0 65 80 130 65
2-1-0 1-1-0 1-1-1 65 80 120 65
2-1-0 1-1-0 1-1-0 65 80 85 65
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