6,744 research outputs found

    A hybrid computational approach for seismic energy demand prediction

    Get PDF
    In this paper, a hybrid genetic programming (GP) with multiple genes is implemented for developing prediction models of spectral energy demands. A multi-objective strategy is used for maximizing the accuracy and minimizing the complexity of the models. Both structural properties and earthquake characteristics are considered in prediction models of four demand parameters. Here, the earthquake records are classified based on soil type assuming that different soil classes have linear relationships in terms of GP genes. Therefore, linear regression analysis is used to connect genes for different soil types, which results in a total of sixteen prediction models. The accuracy and effectiveness of these models were assessed using different performance metrics and their performance was compared with several other models. The results indicate that not only the proposed models are simple, but also they outperform other spectral energy demand models proposed in the literature

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    SiSeRHMap v1.0: A simulator for mapped seismic response using a hybrid model

    Get PDF
    SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches 5 and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System) Cubic Model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear 10 equivalent analysis produces acceleration response spectra of shear wave velocitythickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA) and the Levenberg–Marquardt Algorithm (LMA) as the final optimizer. In the fi15 nal step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets 20 of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique

    An Assessment to Benchmark the Seismic Performance of a Code-Conforming Reinforced-Concrete Moment-Frame Building

    Get PDF
    This report describes a state-of-the-art performance-based earthquake engineering methodology that is used to assess the seismic performance of a four-story reinforced concrete (RC) office building that is generally representative of low-rise office buildings constructed in highly seismic regions of California. This “benchmark” building is considered to be located at a site in the Los Angeles basin, and it was designed with a ductile RC special moment-resisting frame as its seismic lateral system that was designed according to modern building codes and standards. The building’s performance is quantified in terms of structural behavior up to collapse, structural and nonstructural damage and associated repair costs, and the risk of fatalities and their associated economic costs. To account for different building configurations that may be designed in practice to meet requirements of building size and use, eight structural design alternatives are used in the performance assessments. Our performance assessments account for important sources of uncertainty in the ground motion hazard, the structural response, structural and nonstructural damage, repair costs, and life-safety risk. The ground motion hazard characterization employs a site-specific probabilistic seismic hazard analysis and the evaluation of controlling seismic sources (through disaggregation) at seven ground motion levels (encompassing return periods ranging from 7 to 2475 years). Innovative procedures for ground motion selection and scaling are used to develop acceleration time history suites corresponding to each of the seven ground motion levels. Structural modeling utilizes both “fiber” models and “plastic hinge” models. Structural modeling uncertainties are investigated through comparison of these two modeling approaches, and through variations in structural component modeling parameters (stiffness, deformation capacity, degradation, etc.). Structural and nonstructural damage (fragility) models are based on a combination of test data, observations from post-earthquake reconnaissance, and expert opinion. Structural damage and repair costs are modeled for the RC beams, columns, and slabcolumn connections. Damage and associated repair costs are considered for some nonstructural building components, including wallboard partitions, interior paint, exterior glazing, ceilings, sprinkler systems, and elevators. The risk of casualties and the associated economic costs are evaluated based on the risk of structural collapse, combined with recent models on earthquake fatalities in collapsed buildings and accepted economic modeling guidelines for the value of human life in loss and cost-benefit studies. The principal results of this work pertain to the building collapse risk, damage and repair cost, and life-safety risk. These are discussed successively as follows. When accounting for uncertainties in structural modeling and record-to-record variability (i.e., conditional on a specified ground shaking intensity), the structural collapse probabilities of the various designs range from 2% to 7% for earthquake ground motions that have a 2% probability of exceedance in 50 years (2475 years return period). When integrated with the ground motion hazard for the southern California site, the collapse probabilities result in mean annual frequencies of collapse in the range of [0.4 to 1.4]x10 -4 for the various benchmark building designs. In the development of these results, we made the following observations that are expected to be broadly applicable: (1) The ground motions selected for performance simulations must consider spectral shape (e.g., through use of the epsilon parameter) and should appropriately account for correlations between motions in both horizontal directions; (2) Lower-bound component models, which are commonly used in performance-based assessment procedures such as FEMA 356, can significantly bias collapse analysis results; it is more appropriate to use median component behavior, including all aspects of the component model (strength, stiffness, deformation capacity, cyclic deterioration, etc.); (3) Structural modeling uncertainties related to component deformation capacity and post-peak degrading stiffness can impact the variability of calculated collapse probabilities and mean annual rates to a similar degree as record-to-record variability of ground motions. Therefore, including the effects of such structural modeling uncertainties significantly increases the mean annual collapse rates. We found this increase to be roughly four to eight times relative to rates evaluated for the median structural model; (4) Nonlinear response analyses revealed at least six distinct collapse mechanisms, the most common of which was a story mechanism in the third story (differing from the multi-story mechanism predicted by nonlinear static pushover analysis); (5) Soil-foundation-structure interaction effects did not significantly affect the structural response, which was expected given the relatively flexible superstructure and stiff soils. The potential for financial loss is considerable. Overall, the calculated expected annual losses (EAL) are in the range of 52,000to52,000 to 97,000 for the various code-conforming benchmark building designs, or roughly 1% of the replacement cost of the building (8.8M).Theselossesaredominatedbytheexpectedrepaircostsofthewallboardpartitions(includinginteriorpaint)andbythestructuralmembers.Lossestimatesaresensitivetodetailsofthestructuralmodels,especiallytheinitialstiffnessofthestructuralelements.Lossesarealsofoundtobesensitivetostructuralmodelingchoices,suchasignoringthetensilestrengthoftheconcrete(40EAL)orthecontributionofthegravityframestooverallbuildingstiffnessandstrength(15changeinEAL).Althoughthereareanumberoffactorsidentifiedintheliteratureaslikelytoaffecttheriskofhumaninjuryduringseismicevents,thecasualtymodelinginthisstudyfocusesonthosefactors(buildingcollapse,buildingoccupancy,andspatiallocationofbuildingoccupants)thatdirectlyinformthebuildingdesignprocess.Theexpectedannualnumberoffatalitiesiscalculatedforthebenchmarkbuilding,assumingthatanearthquakecanoccuratanytimeofanydaywithequalprobabilityandusingfatalityprobabilitiesconditionedonstructuralcollapseandbasedonempiricaldata.Theexpectedannualnumberoffatalitiesforthecode−conformingbuildingsrangesbetween0.05∗10−2and0.21∗10−2,andisequalto2.30∗10−2foranon−codeconformingdesign.Theexpectedlossoflifeduringaseismiceventisperhapsthedecisionvariablethatownersandpolicymakerswillbemostinterestedinmitigating.Thefatalityestimationcarriedoutforthebenchmarkbuildingprovidesamethodologyforcomparingthisimportantvalueforvariousbuildingdesigns,andenablesinformeddecisionmakingduringthedesignprocess.Theexpectedannuallossassociatedwithfatalitiescausedbybuildingearthquakedamageisestimatedbyconvertingtheexpectedannualnumberoffatalitiesintoeconomicterms.Assumingthevalueofahumanlifeis8.8M). These losses are dominated by the expected repair costs of the wallboard partitions (including interior paint) and by the structural members. Loss estimates are sensitive to details of the structural models, especially the initial stiffness of the structural elements. Losses are also found to be sensitive to structural modeling choices, such as ignoring the tensile strength of the concrete (40% change in EAL) or the contribution of the gravity frames to overall building stiffness and strength (15% change in EAL). Although there are a number of factors identified in the literature as likely to affect the risk of human injury during seismic events, the casualty modeling in this study focuses on those factors (building collapse, building occupancy, and spatial location of building occupants) that directly inform the building design process. The expected annual number of fatalities is calculated for the benchmark building, assuming that an earthquake can occur at any time of any day with equal probability and using fatality probabilities conditioned on structural collapse and based on empirical data. The expected annual number of fatalities for the code-conforming buildings ranges between 0.05*10 -2 and 0.21*10 -2 , and is equal to 2.30*10 -2 for a non-code conforming design. The expected loss of life during a seismic event is perhaps the decision variable that owners and policy makers will be most interested in mitigating. The fatality estimation carried out for the benchmark building provides a methodology for comparing this important value for various building designs, and enables informed decision making during the design process. The expected annual loss associated with fatalities caused by building earthquake damage is estimated by converting the expected annual number of fatalities into economic terms. Assuming the value of a human life is 3.5M, the fatality rate translates to an EAL due to fatalities of 3,500to3,500 to 5,600 for the code-conforming designs, and 79,800forthenon−codeconformingdesign.ComparedtotheEALduetorepaircostsofthecode−conformingdesigns,whichareontheorderof79,800 for the non-code conforming design. Compared to the EAL due to repair costs of the code-conforming designs, which are on the order of 66,000, the monetary value associated with life loss is small, suggesting that the governing factor in this respect will be the maximum permissible life-safety risk deemed by the public (or its representative government) to be appropriate for buildings. Although the focus of this report is on one specific building, it can be used as a reference for other types of structures. This report is organized in such a way that the individual core chapters (4, 5, and 6) can be read independently. Chapter 1 provides background on the performance-based earthquake engineering (PBEE) approach. Chapter 2 presents the implementation of the PBEE methodology of the PEER framework, as applied to the benchmark building. Chapter 3 sets the stage for the choices of location and basic structural design. The subsequent core chapters focus on the hazard analysis (Chapter 4), the structural analysis (Chapter 5), and the damage and loss analyses (Chapter 6). Although the report is self-contained, readers interested in additional details can find them in the appendices

    Modified force/displacement-based procedure for performance-based seismic design of regular RC frames

    Get PDF
    Performance-based seismic design has been the thrust of international research on earthquake engineering for the past 20 years. The major decisive factor for the success of its most recent framework is the development of efficient ñ€Ɠpreliminary designñ€ methodologies that follow common design formats in order to maintain the process at an affordable level of complexity for practitioners. Using the traditional force-based seismic design method for this purpose, though simple and easy, will be inefficient because it designs structures to only one performance objective (which is life safety), and any other performance objective would be part of the drift check that follows the design, which will result in a highly iterative process. Therefore, in order to use the standard seismic design method in the context of the performance-based framework, there is a need for its adjustment to match the multi-level performance concept, by incorporating the performance measures at the beginning. The potential of a hybrid force/displacement design format in this respect has been well recognized and developed over a decade for steel structures. The method is characterized by the establishment of a direct analytical link between the performance requirements and the reduction of elastic forces to the design force level, in a format that mixes the advantages of both force-based and displacement-based methods. Using the same analytical architecture, this thesis, titled ñ€ƓModified Force/Displacement-based Procedure for Performance-based Seismic Design of Regular RC Frames,ñ€ proposes a ñ€Ɠtoolñ€ for preliminary design of RC framed structures that can be suitable for the design office environment. The methodology uses displacement demand as input parameter, which more rationally represent actual earthquake response and eliminates the iterative steps required to satisfy the acceptable performance limits in the traditional code design procedure. The research serves to develop the displacement estimate relations for RC structures for use at the beginning of design, which lie at the heart of this design method. For development of these displacement prediction relations, prototype structures with various geometrical characteristics are selected for study. A rigorous modelling approach and validated analytical tool are utilized to perform nonlinear time-history analysis as the closest approximation of actual earthquake loading. Incremental dynamic analysis is performed, employing a diverse range of synthetically developed ground motion records, in order to identify the ground motion intensity at which three preselected damage levels are reached, as defined by the inter-story drift ratio (the chosen damage metric). Time-history analysis is conducted at those determined loading levels and the displacement response values are analyzed. Adopting nonlinear regression, equations are developed for estimating the roof displacement as a factor of the performance target (in terms of the inter-story drift ratio) and some structural attributes such as the number of floors and bays. This estimate can be used together with the roof yield displacement to derive a performance-dependent force-reduction factor, and design can then proceed in the conventional way. A design case study helps to prove the efficiency and higher reliability of the proposed modification in achieving targeted performance and thus its suitability for application in performance-based design, provided elimination of its limitations and broadening its scope of application
    • 

    corecore