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ABSTRACT 

Performance-based seismic design has been the thrust of international research on 

earthquake engineering for the past 20 years. The major decisive factor for the success 

of its most recent framework is the development of efficient “preliminary design” 

methodologies that follow common design formats in order to maintain the process at 

an affordable level of complexity for practitioners. Using the traditional force-based 

seismic design method for this purpose, though simple and easy, will be inefficient  because 

it designs structures to only one performance objective (which is life safety), and any other 

performance objective would be part of the drift check that follows the design, which will 

result in a highly iterative process. Therefore, in order to use the standard seismic design 

method in the context of the performance-based framework, there is a need for its 

adjustment to match the multi-level performance concept, by incorporating the 

performance measures at the beginning.  

The potential of a hybrid force/displacement design format in this respect has been well 

recognized and developed over a decade for steel structures. The method is 

characterized by the establishment of a direct analytical link between the performance 

requirements and the reduction of elastic forces to the design force level, in a format 

that mixes the advantages of both force-based and displacement-based methods. Using 

the same analytical architecture, this thesis, titled “Modified Force/Displacement-based 

Procedure for Performance-based Seismic Design of Regular RC Frames,” proposes a 

“tool” for preliminary design of RC framed structures that can be suitable for the design 

office environment.  The methodology uses displacement demand as input parameter, 

which more rationally represent actual earthquake response and eliminates the iterative 

steps required to satisfy the acceptable performance limits in the traditional code design 

procedure. The research serves to develop the displacement estimate relations for RC 

structures for use at the beginning of design, which lie at the heart of this design method. 

For development of these displacement prediction relations, prototype structures with 

various geometrical characteristics are selected for study. A rigorous modelling 

approach and validated analytical tool are utilized to perform nonlinear time-history 

analysis as the closest approximation of actual earthquake loading. Incremental 

dynamic analysis is performed, employing a diverse range of synthetically developed 

ground motion records, in order to identify the ground motion intensity at which three 

preselected damage levels are reached, as defined by the inter-story drift ratio (the 

chosen damage metric). Time-history analysis is conducted at those determined loading 

levels and the displacement response values are analyzed. Adopting nonlinear 

regression, equations are developed for estimating the roof displacement as a factor of 

the performance target (in terms of the inter-story drift ratio) and some structural 

attributes such as the number of floors and bays. This estimate can be used together 

with the roof yield displacement to derive a performance-dependent force-reduction 

factor, and design can then proceed in the conventional way. A design case study helps 

to prove the efficiency and higher reliability of the proposed modification in achieving 

targeted performance and thus its suitability for application in performance-based 

design, provided elimination of its limitations and broadening its scope of application. 

Keywords: Performance-based seismic design, Hybrid force/displacement design method, Reinforced 

Concrete structures, Moment-resisting frames, Maximum displacement estimates, Drift 
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Chapter 1 

1 

INTRODUCTION 

1.1 PREAMBLE 

Through history, seismic design techniques have been in a continuing process 

of evolution – much more than design for any other load cases such as gravity, wind 

and snow. Because it is difficult to replicate the complex geological nature of an 

earthquake in an experiment, some missing links remain unsolved, while nature stays 

the principal laboratory. Observations of the performance of buildings during damaging 

earthquakes have always revealed deficiencies in design and construction practices and 

have triggered a need for change.  Advances in the state of knowledge about earthquake 

occurrence and ground motion characteristics have also allowed replacing empirical 

rules with scientifically-based relations. Moreover, the development of computer-aided 

design tools and analytical techniques, for example finite element analysis and dynamic 

analysis, has effected a paradigm shift in the design practice. 

Although earthquakes impose deformations on structures rather than forces, 

seismic design have always followed a force-based design (FBD) procedure, as an 

extension to traditional gravity and wind load design schemes. The first seismic design 

procedures in the early twentieth century called for designing structures to have 

sufficient resistance to withstand the inertia forces resulting from the base displacement 

and perceived as simple mass-proportional lateral forces, based on an elastic analysis. 

New extensive research and empirical evidence in the 1960’s led to the awareness that 

due to the great uncertainty surrounding the estimation of seismic loading, it is not 

economical and may still be unreliable to design a structure to respond in the elastic 

range to a ground motion representative of the maximum intensity earthquake with low 

probability of occurrence. Therefore, relying on the structure’s capacity to dissipate a 

substantial portion of the energy imparted to it through ductile behavior of its elements, 

seismic design started to deliberately allow inelastic response, while still performing an 

elastic analysis based on reduced design force levels.  The reduction is achieved using 

a stipulated force reduction factor (R) (response modification factor R in US codes and 

behavior factor q in Eurocode), that were derived empirically as an estimate of assumed 
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system ductility. This approach, which in its simplest form is referred to as the 

equivalent static load method (ESLM), remains a mainstream in seismic design practice 

until present. 

A major shift in seismic design philosophy occurred in response to the ensuing 

losses of the 1995 Kobe Earthquake and the 1994 Northridge earthquake which are 

considered among the costliest earthquakes in history. Code-compliant buildings at that 

time suffered significant levels of structural and nonstructural damage that were 

deemed far from acceptable by the public, despite satisfying the design objective of 

life-safety. For the first time a lesson was learnt that challenged the design objective in 

the first place rather than the design approach. There were increased demands from 

stakeholders for better accountability of new and existing designs which they needed 

to make reliable economic and life-safety decisions. This led to a new perception of 

life-cycle cost as an added key design variable, and thus research practice has moved 

towards predictive methods for assessing different levels of seismic performance. At 

this point, the requisite to switch to performance-based design – a design whose 

objectives are in terms of multiple performance levels – became imperative.   

Along with the growing interest in development of performance-based codes to 

replace common prescriptive codes came the realization that seismic vulnerability of 

structures to various types of risks (for example loss of usage, repair and collapse) is 

directly related to their damage potential, which is better represented by displacement 

than force parameters.  This brought emphasis on displacement as a governing design 

parameter and highlighted the limitations of the well-established FBD procedures in 

representing seismic demand and capacity in strength terms.  Consequently, new design 

approaches, based on deformation parameters, were developed, that are generally 

termed displacement-based design (DBD) methods. In the DBD design process, the 

demand – as represented by the displacement of the structure in response to the design 

level earthquake – is compared to target displacement values based on the structure’s 

displacement capacity. Since this is a more realistic approximation of the actual 

response of structures, DBD is considered a promising approach for performance-based 

seismic design provided proper implementation in the standards. 
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The current and future approach for performance-based seismic design (PBSD) 

was first liberally described in the FEMA-445 document published by the Federal 

Emergency Management Agency of the United States (FEMA, 2006). The document 

presents a comprehensive approach for performance-based design that converts 

probabilities of exceeding values of performance metrics, whether displacements or 

forces, to real-world losses such as casualties, time lost without operation, repair and 

replacement costs. The procedure is illustrated in Figure 1-1. It starts with description 

of the selected performance objectives that form input design criteria for performing a 

preliminary design, then the designed structure’s performance is assessed and evaluated 

in terms of achieving the predefined objectives and the process is repeated iteratively, 

if required, till the desired design objectives are satisfied. The methodology for the third 

step which is the performance assessment has been already presented in the P-58 report 

(ATC, 2012), while progress in the second step of performing preliminary building 

design has been slow where it is expected to be developed as part of the second phase 

of the FEMA project.  

 

Figure1-1 Performance-based seismic design approach, reproduced from FEMA-445 (2006) 
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1.2 PROBLEM STATEMENT 

In the context of the latest approach for performance-based design as presented 

in the FEMA-445 report and summarized in Figure 1-1, the performance assessment 

methodology (step 3) is a relatively long process that involves advanced structural 

analysis techniques and complex probabilistic approaches, therefore an efficient 

preliminary building design (step 2) is of paramount importance to avoid the time 

consuming iterations of performance assessment. The FEMA-445 report itself 

acknowledges the challenge of developing efficient preliminary designs capable of 

meeting the desired objectives without extensive iterations and defines this challenge 

as the major decisive factor of the success of the whole framework of performance-

based design, because otherwise the implementation process will be inefficient and 

uneconomical. The key requirement is that this design needs to address the system 

geometrical attributes as well as proportioning it in a manner consistent with the defined 

performance objectives (FEMA, 2006).  

The current state of knowledge renders two options for preliminary design, 

either building code provisions for force-based design (FBD) or the aforementioned 

displacement-based design (DBD) methods developed specifically for performance-

based application. In modern seismic codes, FBD incorporates displacement control as 

a final design check, rather than a design criterion – which can result in re-design in an 

iterative process to fulfill the target displacement limits. Also, FBD has several other 

drawbacks like relying on empirically-derived force reduction factors as well as 

displacement modification factors used to estimate inelastic displacement from its 

elastic counterpart (Elnashai and Mwafy, 2002). On the other side, limitations of 

present DBD techniques have been identified by several researchers (Sullivan et al., 

2003). Firstly, a predesigned structure is needed to get a starting estimate for the 

displacement demand, which renders these DBD methods more applicable to 

performance evaluation of existing structures for rehabilitation, rather than new 

designs. Besides, these procedures have many approximations especially regarding 

adoption of an equivalent single-degree-of-freedom (SDOF) representation of the 

structure and not recognizing basic differences in response due to different lateral load 

resisting systems. More importantly, existing DBD process is relatively complex and 
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lack practicality and acceptance in the design community when compared to 

conventional methods, as evidenced by results of a recent survey of practicing engineers 

in North America about their current seismic design practice (Kramer, 2011).  

Accordingly, FBD is likely to remain the principal method of seismic design for 

some time. Therefore, for performance-based seismic design to be a viable practice in 

the design office, there is a need to bridge the gap between conventional FBD seismic 

design methods (that have always been in accordance with common education of 

practitioners) and the FEMA performance-based design framework (that requires a 

preliminary design methodology directly based on, and capable of achieving the 

intended performance targets, so as to minimize subsequent performance assessment).  

1.3 RESEARCH OBJECTIVES 

The general aim of this research is to propose an efficient seismic design 

approach for reinforced concrete (RC) structures that can serve to meet the rising call 

for performance-based engineering design without sacrificing practicality of traditional 

practice. To fit into the context of performance-based seismic design, the procedure 

should treat damage and displacements as a target design condition, rather than an 

outcome of analysis, while in order to maintain simplicity, the well-known FBD method 

should be employed. In a sense, the objective is to develop a method that mixes the 

advantages of the force-based and displacement-based method, where the design starts 

with a displacement variable that is converted into a force parameter, so that design can 

proceed in the conventional way. The vision of the proposed design process is that the 

designer can perform a design of optimum performance control, based on elastic 

analysis and using traditional code formats for earthquake representation, with 

minimum amount of iterations after the initial design. On the long run, the application 

of the recommended design scheme can be validated for a wider range of structural 

systems and materials, for implementation in design codes and textbooks.  

The basis of the designated methodology has been first proposed for steel 

moment resisting frame structures by Bazeos and Beskos (2003), later developed in 

detail (Karavasilis et al, 2006-2010; Stamatopoulos and Bazeos, 2011; Skalomenos et 

al., 2015; Tzimas et al., 2013, 2017), and is still under refinement till present.  This 
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group of researchers have termed it the hybrid force/displacement (HFD) based method.  

The present work is an additional effort along the same frontier of employing a HFD 

design method for preliminary performance-based seismic design but through 

application on RC framed structures, which does not only represent a gap in the 

literature but also requires extensive study due to the complex hysteretic behavior of 

RC as a composite nonlinear material.  

Within this framework, the key objectives of this thesis are   

1. Study and present the application of the HFD design method to reinforced concrete 

framed structures with limited ductility, as a modification to the traditional force-

based seismic design method to satisfy various performance objectives.  

2.  Develop prediction equations and design charts for estimating the maximum roof 

displacement of the building corresponding to various target performance levels, 

based on extensive nonlinear incremental dynamic time-history analyses. The 

developed relationships can be used to map the HFD design procedure to RC 

structures, where they are used for calculation of the force reduction factor at the 

initiation of design, and thus should be independent of the section properties. 

3. Validate the enhancement achieved by the modified design in realizing performance 

objectives based on a case study, where results from the developed HFD design are 

compared to those from conventional force-based design method.   

1.4 SCOPE AND WORK PLAN 

The use of the proposed modified FBD method or HFD design method can be 

especially promoted in low-to-moderate seismic zones where the frequency and 

intensity of seismic events do not merit more complicated and costly seismic design 

procedures. Due to its low cost, RC construction is prevalent in many developing 

countries that meet this seismicity criteria for example Turkey, Pakistan, Colombia, 

Algeria and Egypt.  Moment-resisting frame buildings with limited ductility are chosen 

as the scope of study which are prominent lateral load-resisting systems in these areas, 

where all RC frames are inherently moment-resisting because building codes requires 

continuity of the reinforcing bars that compose the main structural framing system.  
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The research is applied in Egypt, employing seismic zones, material properties 

and design factors of the Egyptian seismic design code. ECP- 201 “The Egyptian Code 

for calculation of Loads and forces on Structural and masonry works” (ECP-201, 2012) 

which is largely in line with the Eurocode 8 (EN1998-1, 2004) – a widely used and well-

established source code for the European Union. Therefore, results of this study can be 

extended for application in other countries, and furthermore the approach can be adapted 

to other codes around the world.  

Low to moderate height frames with number of stories 4, 7 and 10 and number 

of bays 3, 5 and 7 are chosen for study, representing a variety of buildings commonly 

constructed in Egypt, where for example, RC frame buildings represent 55% of the new 

trend of low-density construction of gated communities in Greater Cairo (Dorra, 2011).  

The buildings are assumed to be for office use and to be located on soft soils. Still, the 

outcomes and findings of the study may be useful for seismic design of mid-rise 

building stock, not just in Egypt but also in other earthquake prone regions with similar 

seismic activity and construction practice.  

In order to formulate the HFD design method for RC frame structures, the 

relationship between the maximum roof displacement, building geometrical attributes 

and damage metrices at various performance levels is developed in order to be able to 

estimate a realistic R values, based on performance objectives, to be later used 

following the common guidelines of FBD. For this end, nonlinear time-history analysis 

is employed, as the closest representative of real structural behavior under seismic 

action, to study and establish the objective relation, under the suite of seven artificial 

ground motion records, generated and selected to match the design spectrum. Inter-

story drift ratio (IDR) is chosen as the Engineering Demand Parameter (EDP) that 

indicates the level of structural performance. Nonlinear models of the study frames 

having different geometrical properties are run with progressively increasing scale of 

accelerograms, scaled based on the Peak Ground Acceleration (PGA) as an intensity 

measure, and the values of IDR versus accelerogram scale factors are recorded.  Scale 

factors corresponding to three specifically defined performance levels:  Immediate 

Occupancy (IDR = 1%), Life Safety (IDR = 2%), and Collapse Prevention (IDR = 3%) 

are identified for studying the drift response at those specific performance levels. 

Employing nonlinear multi-variable regression analysis of the response values, a 
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relationship is developed between the maximum roof displacement and the maximum 

IDR along the height of the building for the different prototype structures, and 

consequently prediction charts are created that can be integrated into the HFD design 

method. Finally, a case study is presented to validate the reliability of the proposed 

modification in achieving the targeted performance.  

1.5 ORGANIZATION OF THE THESIS 

The research comprises five chapters, as follows: 

Chapter (1) briefly introduces the evolving nature of seismic design with performance-

based design as the ultimate target. The limitations of the available methods for 

performance-based design are briefly outlined that signifies the need for the current 

research, leading to the study objectives with definition of its scope and work plan.  

Chapter (2) covers a detailed appraisal of the philosophy of performance-based 

earthquake engineering, as well as the history and evolution of performance-based 

seismic design procedures. Also, it explains the different methods for performance-

based design while conducting a detailed categorized review of the available literature 

on similar studies. 

Chapter (3) presents the proposed hybrid force/displacement design method for 

performance-based design of RC moment-resisting frames. The targeted modification 

of the force-based method is described along with the expected advantages and 

procedural steps. The methodology for extension of the HFD design method to RC 

frames with its associated required analytical study is defined.  

Chapter (4) discusses in detail the numerical analysis and the nonlinear modeling 

technique. It explains the prototype models employed, the case study scenarios chosen, 

the stages of analysis with the corresponding assumptions, the modeling methods of 

members and earthquakes, the software used, the assessment criteria for the damage 

potential, and the parameters identified for developing the numerical relationships.  
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Chapter (5) presents the results of the numerical study and their regression analysis for 

developing the displacement prediction equations and charts that can be incorporated 

in the modified HFD design method.  

Chapter (6) sets forth a design case study for validation of the reliability of the proposed 

method as compared to traditional force-based method in achieving performance 

objectives. 

Chapter (7) enumerates the main conclusions from this study identifying any limitations 

and proposing recommendations for future work. 
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PERFORMANCE-BASED SEISMIC DESIGN: STATE-

OF-THE-ART REVIEW  

2.1 INTRODUCTION 

Extensive research effort has been conducted in the past to develop 

performance-based seismic design procedures. This chapter reviews the background 

information related to the philosophy of performance-based earthquake engineering, 

particularly concerning the evolution of standardized procedures for performance-

based seismic design.  It provides insight into the sequential generations of 

performance-based frameworks with emphasis on the future “next-generation” 

procedures and the principal requirements for their success. The suitability of modern 

seismic code methods and various other simple approaches suggested in the literature 

for application in the stage of preliminary building design of the next-generation 

performance-based framework is covered briefly. The objective is not to give a 

comprehensive review of the approaches, but rather to summarize their concept.   A 

detailed literature review is provided for the hybrid force/displacement method and the 

available relations for estimating displacement demands of RC frames as associated 

with variable performance, which provides the basis of the methodology applied in the 

subsequent chapters of this thesis.  

2.2 A PERSPECTIVE OF PERFORMANCE-BASED EARTHQUAKE 

ENGINEERING 

2.2.1 Definition and Advantages 

Performance based earthquake engineering (PBEE) can be defined as design, 

construction and maintenance of engineered structures, whose performance under 

various anticipated earthquake loading levels, meet the diverse expectations and 

objectives of their owners, users and society, with a quantifiable degree of confidence.  

It promises to produce structures with performance predictable enough to allow the 

different stakeholders to make informed decisions based on life-cycle considerations 

(in terms of casualties, cost of repair or replacement, disruption of use, etc.), rather than 
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initial costs alone (Krawinkler and Miranda, 2004). In a Performance-based approach, 

all decisions are directed towards the required performance-in-use. The term 

performance refers to the system ability to fulfil its intended purpose and stakeholders’ 

targets pertaining to its functionality, safety, or costs.  

Implementation of PBEE necessitates radical changes in seismic design codes 

to incorporate more scientifically oriented methodologies, based on realistic prediction 

of structural behavior, rather than prescriptive rules. This is what is termed 

Performance-based Seismic Design (PBSD).   In PBSD the focus of all design steps is 

on demand requirements with required performance placed at the forefront, unlike 

traditional practice that highly depends on heuristic and experience-based conventions. 

The literature has different interpretations of the meaning of PBSD (ATC 1996, 1997; 

SEAOC, 1995). The most applicable definition is that PBSD is a design philosophy in 

which the design criteria are reliably defined in terms of performance targets at various 

levels of seismic hazard.  

Comparing PBSD to conventional design codes, the main differences and 

advantages lies in the vocabulary, the reliability of the intended performance, and the 

range of design events, as follows: 

• While PBSD terminology focuses on the ends which is the performance of the 

designed building taking into account the consequence of its failure to meet its 

objectives, design codes focus on the design process and the minimum acceptable 

consensus standards that have been developed over time as a convenient means to 

achieve safe economical designs (Fardis, 2010).  Ideally, PBSD would have the 

desired performance characteristics stated in terms of rational and measurable 

quantitative indicators, thus providing a meaningful basis understandable by both 

the designer and the client, which can improve interaction for reaching an optimum 

design option.  

• Although the prescriptive criteria in design codes include a performance objective 

which is life-safety at the design event, other performance levels at other levels of 

ground shaking cannot be reliably ensured. Deficiencies in the prescriptive 

provisions in terms of accomplishing other performance objectives have been 

identified following past earthquakes even those not exceeding the design level 
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earthquake. Despite realization of the life-safety objective, some structures sustained 

much more extensive structural and nonstructural damage than anticipated by the 

design. On the other side, PBSD ensures higher reliability in attaining performance 

objectives by having a performance assessment step embedded in the design process 

at presumably all levels of expected hazards. The design is adjusted in an iterative 

process until the assessment results renders a risk of loss, in terms of safety and cost, 

that is considered acceptable by the various stakeholders and decision makers based 

on the specific needs of a project.  

In that sense, PBSD offers society the promise of higher quality of building 

designs that is more efficient and effective in avoiding future earthquake losses. PBSD 

is considered the paramount goal available for seismic design evolution, however its 

implementation still faces many challenges. The high level of uncertainty inherent in 

the seismic loading and structural capacity makes it impossible to reach perfect 

confidence in the reliability of the design performance. Extensive research is required 

to arrive at appropriate analysis procedures for accurate performance assessment that 

encompasses all possible risk factors.  Furthermore, robust implementation of the 

performance-based methodology requires coordination efforts between professionals 

from all disciplines involved in the life cycle of the building.   

2.2.2 Applications of Performance-Based Seismic Design 

Performance-based seismic design can be used for the following purposes: 

• To design buildings with a higher level of confidence in achieving the performance 

intended by present building codes, so it serves like a sort of guarantee.   

• To design buildings with standard performance equivalent to that intended by the 

building codes, but with lower construction costs, thus attracting sharp developers.  

• To design buildings to achieve higher performance (with more reliability) than that 

provided by present building codes, which is an essential requirement for critical 

facilities.  

• To develop innovative designs employing the latest development in technology and 

structural materials that do not fall in the scope of code prescriptions, therefore 

encouraging design creativity.  
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• To select design options based on anticipated performance by identifying better 

performing design alternatives. 

• To assess the seismic performance of existing structures and estimate potential 

losses in case of a seismic event, thus supporting decisions of upgrading and repair. 

• To conduct research on the performance of new designs resulting from current 

prescriptive code requirements and identifying areas of improvements for better 

reliability of the code criteria. 

2.2.3 Evolution of Performance-based Design 

Although performance-based concepts have been applied in many areas of 

engineering like the automotive and nuclear industry, its application to seismic design 

of structures is still more complicated, due to the high variability of the built product in 

general, and due to the increased uncertainty in earthquake engineering in particular. 

Therefore, to-date PBSD has not been a practical substitute to conventional prescriptive 

design codes. With advances in seismic hazard assessment, loss analysis 

methodologies, experimental facilities, and computer applications, it is expected that 

PBEE can become the standard method for design and delivery of earthquake resistant 

structures.        

2.2.3.1 History of performance criteria in major seismic source codes 

In a broad sense, all past seismic codes can be considered partially performance 

oriented, in that they attempt to relate the design criteria to a required performance goal 

usually that of collapse prevention. However, the design criteria themselves are 

prescriptive measures based on empirical rules, and there is lack of quantification of 

the limits of engineering parameters as related to the stated performance objectives. The 

following section summarizes how major source documents, that form the basis for 

seismic codes, first approached performance requirements. 

i. SEAOC Blue Book editions 

The first document to prescribe design guidelines was the Blue Book issued by 

the Seismology Committee of the Structural Engineers Association of California 
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(SEAOC) in 1959, alternatively named SEAOC Recommended Lateral Force 

Requirements and Commentary (SEAOC, 1959). It was later the source of seismic 

provisions in the US Uniform building code (UBC) until 1997 (Krawinkler and 

Miranda, 2004). Its first edition stated some generic performance goals; yet without any 

corresponding quantitative criteria, wherein the design objective is to produce 

structures that should be able to resist 

• A minor level of earthquake ground motion without damage 

• A moderate level of ground motion without structural damage but possibly 

experience some nonstructural damage 

• A major level of ground motion having an intensity equal to the strongest, either 

experienced or forecast for the building site, without collapse, but possibly with 

some structural as well as nonstructural damage.  

The Blue book prescribed empirical approaches for calculation of the seismic 

load for example the well-known base shear equation (SEAOC, 1980) that included 

various coefficients empirically quantified to be used at the allowable stress design 

level with an elastic drift criterion. The ground motions related to the design 

earthquakes were estimated deterministically, initially by heuristic specification of 

ground acceleration, and subsequently using median values from early attenuation 

relationships (Kramer, 2014). This method ignored the uncertainty inherent in ground 

motion estimation, and therefore produced designs with variable margins of safety 

against collapse (Osteraas and Krawinkler, 1990).  The design was also force-based and 

disregarded inelastic behavior that reflects the actual performance of the structures.  

ii. ATC-3-06 

The Tentative Provisions for the Development of Seismic Regulations for 

Buildings, published by the Applied Technology Council (ATC) has contributed to the 

most drastic improvement in seismic design practice (ATC-3-06, 1978). The major 

outcome was the probabilistic description of the seismic input using principles of 

seismic hazard analysis and response spectra. In terms of seismic action design levels, 

ATC-3-06 recommended that design be based on a single level of ground shaking 10/50 

(a 10 percent probability of exceedance in a 50-years period, 475 years return period). 

Design remained force-based but using component strength approach rather than 
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allowable stress design, and introduced the concept of the response modification factor 

yet still empirically defined and with the problem of being period independent. The 

provisions also included a deflection amplification factor that allowed estimation of 

drifts to be compared to allowable story drifts, as a basis for performance measure. The 

allowable drifts were empirically presented for three seismic hazard exposure groups 

differentiated by the building importance to post-earthquake recovery and by the 

number of occupants.  The seismic hazard exposure groups were in turn related to four 

seismic performance categories, depending on a seismicity index. Thus, although 

highly generic in nature, ATC-03-06 laid the foundation for performance-based 

earthquake engineering by introducing the use of deformation-based response as 

metrics of performance, and the idea of adjusting the design to affect the likely 

performance of critical structures through boosting its required strength. Nevertheless, 

the importance factors used to adjust the required strength were still arbitrary, and there 

was no mention of direct procedures for predicting the performance of a particular 

building design.  

iii. NEHRP 2000  

The National Earthquake Hazards Reduction Program (NEHRP) was created 

and funded by the Federal Emergency Management Agency (FEMA) to develop 

seismic provisions that serve as a resource for all US standards and design 

professionals. A major update came in the NEHRP 1997 and NEHRP 2000 

Recommended Provisions (FEMA 368, 2001), which presented a new hazard level 2/50 

(2475 years return period) representative of the maximum considered earthquake 

(MCE) with elaborate hazard mapping for the US. The design earthquake can be 

derived from MCE by dividing by 1.5, thus ensuring uniform design requirement and 

risk of collapse using the same measure of ground motion.  Also, in this update there 

were changes in the terms “seismic hazard exposure group” and “seismic performance 

category” of ATC-3-06 to be “seismic use group” and “seismic design category”, yet 

still signifying the same thing. The adoption of the MCE maps is one of the tools 

required for advancement of PBEE as it improves the reliability of the predicted 

performance of buildings being designed under a uniform hazard. Most current US 

codes, for example ASCE 7, use the seismic loading criteria recommended by NEHRP. 
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iv. Eurocode 

The Eurocode 8 (EN1998-1, 2004) was issued as a result of much research and 

collaboration between countries in the European Union. The design philosophy is 

similar to US code documents; however, there are still some distinctions. Eurocode-8 

explicitly specifies two-level seismic design with the two following performance 

requirements: 

• No-collapse requirement 

The structure shall be designed and constructed to withstand the design seismic 

action without local or global collapse, thus retaining its structural integrity and a 

residual load bearing capacity after the seismic event. 

• Damage limitation requirement 

The structure shall be designed and constructed to withstand a seismic action having 

a larger probability of occurrence than the design seismic action, without the 

occurrence of damage and the associated limitations of use, the costs of which 

would be disproportionately high in comparison with the costs of the structure itself. 

In accordance with the Eurocode framework of limit states, the stipulated “no-

collapse” and “damage limitation” performance requirements are associated with the 

“ultimate” limit state and the “serviceability” limit state, respectively, to be in their turn 

checked against two different hazard levels related to the seismicity of the region, and 

recommended as a 10/50 hazard (475 years return period) for collapse prevention and 

a 10/10 hazard (95 years return period) for damage limitation. The design is performed 

at only one level which is the 10/50 hazard, while a modification factor “υ” is applied 

to the deformation results as an approximation to arriving at the 10/10 hazard for 

checking the compliance criteria at the serviceability limit state.  Both these levels of 

the seismic action are defined for ordinary structures (as a reference seismic action) and 

should be modified by an “importance factor” to differentiate the target reliabilities of 

the performance requirements for different classes of buildings, depending on their 

importance for public safety and the social and economic consequences of collapse.  

“Importance classes” term is used in lieu of “seismic use group” of US codes of 

practice. The hazard level 2/50 (2475 years return period) representative of the MCE, 

is not included. 
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In the strength design process, the Eurocode uses the “behavior factor q” with 

prescribed ductility detailing to reflect inelastic behavior, which is similar to the “R-

factor” employed in US codes of practice; however, it incorporates the overstrength 

into the q factor by explicitly including the ratio of the strength of the structure at 

mechanism to that at first plastic hinge formation. Otherwise, both Eurocode and US 

codes have similar design provisions, which have an essence of performance-based 

design in its objectives and deformation checks. It should be noted that the Egyptian 

seismic code of practice (ECP-201, 2012), used in the current study is largely based on 

the Eurocode and follows the same limit states.  

2.2.3.2 Development of official guidelines for Performance-based seismic design 

Large economic losses from the 1994 M6.7 Northridge earthquake in Los 

Angeles and the 1995 M7.2 Hanshin-Awaji (Kobe) earthquake in Japan, amounting to 

40 and 80 billion dollars, respectively were the main triggers for development of a 

formal process for PBSD (Hamburger and Moehle, 2010).  Although these earthquakes 

did not cause collapse of many structures designed to modern codes, thus demonstrating 

the success of building code procedures in achieving their primary objective of life 

safety, they also evidently demonstrated the shortcomings of code provisions in 

permitting much higher than anticipated damage and economic losses due to loss of use 

and cost of repair.  Therefore, these earthquakes prompted the alert of owners and 

tenants, especially of buildings having critical functions, to the importance of upgrading 

their existing buildings to achieve better performance during earthquakes. Governments 

were also concerned with performance assessment of their building inventory for proper 

mitigation of earthquake risks.  However, engineers could not practically apply code-

based strength and ductility requirements to the evaluation and upgrade of existing 

buildings, thus performance-based seismic design procedures were developed as an 

answer to this need.  

Ideally PBSD should have considered all possible future earthquake events with 

their annual probability of occurrence and their corresponding consequences during the 

structure life-cycle, however, this could have been too complex for practical 

applications. Therefore, PBSD started by replacing the traditional single-tier design 

against collapse, with a multi-tier seismic design, meeting several performance 



 
Chapter 2 

18 

objectives at their corresponding design event in a deterministic approach (first- and 

second -generation procedures). Later, the next-generation of procedures integrated all 

possible design events with their corresponding weighted average based on their 

likelihood of occurrence (probabilistic approach) in order to arrive at a single estimation 

of the performance in terms of total loss as an integral of all possible risks.  

i. First-Generation Procedures 

Three documents are credited for laying the foundation for robust performance-

based seismic design procedures, namely  

1. Vision 2000 Report, Performance-Based Seismic Engineering of Buildings 

(SEAOC, 1995), which describes a performance-based seismic design framework 

for design of new buildings. 

2. The Applied Technology Council report, ATC-40, Seismic Evaluation and Retrofit 

of Concrete Buildings (ATC, 1996), and  

3. FEMA 273 Report, NEHRP Guidelines for the Seismic Rehabilitation of Buildings 

(1997a), and its companion document FEMA 274 NEHRP Commentary on the 

Guidelines for the Seismic Rehabilitation of Buildings (1997b), which addressed 

seismic upgrade of existing buildings. Although they were not intended for use in 

design of new buildings, they can be adapted for checking performance of code 

designed buildings as a final check design step.  

These documents marked a major milestone in the evolution of PBSD by 

introducing several key concepts essential for performance-based engineering practice. 

Some of these concepts are 

1. The concept of performance levels to represent performance with names intended 

to connote the expected/permissible level of post-earthquake damage condition, for 

example: Collapse Prevention, Life Safety, Immediate Occupancy and Operational 

Performance. These levels relate to qualitative measures of the damage of structural 

and nonstructural components, as well as measures of casualties and expected 

property and operational losses. While Vision 2000 included discretely-defined 

building performance levels, the FEMA-273 document defines separate structural 

and nonstructural performance levels as well as a Performance Range to 

encompasses a band of performance between two levels. The three Structural 
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Performance Levels and two Structural Performance Ranges consist of: S-1: 

Immediate Occupancy Performance Level, S-2: Damage Control Performance 

Range (extends between S1 and S3), S-3: Life Safety Performance Level, S-4: 

Limited Safety Performance Range (extends between S3 and S5), S-5: Collapse 

Prevention Performance Level and S-6: structural performance not considered. The 

four Nonstructural Performance Levels are: N-A: Operational Performance Level, 

N-B: Immediate Occupancy Performance Level, N-C: Life Safety Performance 

Level, N-D: Hazards Reduced Performance Level and N-E: nonstructural 

performance not considered. The structural and nonstructural performance levels 

are coupled to form the building performance level as presented for a basic function 

building in Figure 2-1. 

 

Figure 2-1 Building performance level for a basic function building (FEMA, 1997a) 

2. More probabilistic earthquake hazard levels are introduced: the frequent 50%-in-

50-years earthquake event (73 years mean return period), the occasional 30%-in-
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50-years earthquake event (225 years mean return period), the rare 10%-in-50-years 

earthquake event (474 years mean return period), and the very rare 2%-in-50-years 

earthquake event (2,475 years mean return period). 

3. A Performance objective is defined as a combination of one performance level and 

one defined earthquake hazard level (design event) for a particular category of 

building importance. Figure 2-2 illustrates the performance objectives defined by 

Vision 2000. The building importance is expressed as “basic”, “essential” such as 

hospitals and fire stations, “hazardous” containing confined hazardous materials, 

and “safety critical” such as nuclear stations and buildings containing explosives. 

According to Vision 2000 description, a basic function building would be expected 

to suffer more damage if it were subjected to a more severe, less likely earthquake, 

and a safety critical building would be expected to have less damage for the same 

earthquake design level. ATC-40 and FEMA 273 define performance levels a little 

differently but using the same concepts (Krawinkler and Miranda, 2004). 

 

Figure 2-2 Performance objectives for buildings, recommended in SEAOC (1995). 

4. Expression of damage state in terms of engineering limit states (for example drift 

values) corresponding to the various performance level for a particular component, 

for the sake of definition of quantitative performance acceptance criteria. The 

previously defined qualitative performance levels with their corresponding levels 

of damage of FEMA 273/274 are shown in Figure 2-3 superimposed on a global 

force-displacement relationship for a sample building to clarify the various 

displacement limit states.  
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5. The use of nonlinear analysis methods as a design tool rather than just research is 

introduced. 

 

Figure 2-3 Global displacement capacities for various performance levels (Rai, D., 2000) 

ii. Second-Generation Procedures (present procedures) 

1. FEMA 356 and ASCE 41-06  

Based on the information gained from applying the first-generation procedures 

in engineering practice, the FEMA produced an updated series, FEMA 356: 

Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA, 

2000), with just an incremental improvement to include a mandatory language as a basis 

for future standards that can be incorporated into mainstream design. The performance 

levels and descriptions of corresponding physical damage are shown in Table Error! No 

text of specified style in document.-1.  The standard includes many tables for specific 

structural components (e.g., for concrete frames, braced steel frames, metal deck 

diaphragms, etc.) and nonstructural components (e.g., for glazing, piping, cladding, 

etc.) with some engineering limit states (e.g., drift values) that correspond to the various 

performance levels for a particular component. Table 2-2 is one sample for concrete 

frames. The FEMA-356 document was later revised and standardized as the ACSE 41-

06 Standard for Seismic Rehabilitation of Existing Buildings (ASCE/SEI, 2006) for 

adoption in building codes. 
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Table Error! No text of specified style in document.-1 Damage Control and Building 

Performance Levels (FEMA 356, 2000) 

 

Table Error! No text of specified style in document.-2 Structural Performance Levels and 

Damage, Concrete Frames. (FEMA 356, 2000) 

 

2. FEMA 350 and the SAC joint venture guidelines. 

Recognizing the main limitation of the FEMA-356 procedure in the absence of 

reliability measures of achieving the performance objectives and the disregard of 

uncertainty and randomness in demand and capacity, a partnership was enacted 

between FEMA, SEAOC, ATC and California Universities for Research in Earthquake 

Engineering (CUREe), referred to as SAC joint venture, to develop guidelines for 
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seismic design of steel structures employing performance-based procedures. The 

resulting report, FEMA 350, Recommended Seismic Design Criteria for New Steel 

Moment-Frame Buildings (SAC, 2000) was issued almost concurrently with FEMA 

356 and had a basic Limit State Design Format applicable only to steel moment frames. 

Up till present, this is the only FEMA guidelines that specifies a performance-based 

procedure explicitly for new design. Its framework is based on the definition of a 

performance objective as an acceptable probability of exceeding a specified 

performance level with quantitative confidence statements. The performance levels in 

their turn are quantified based on expressions relating generic structural variables 

“demand” and “capacity” with their associated randomness and uncertainty 

characteristics as derived from separate probabilistic analysis. A safety-check following 

the conventional ‘‘load and resistance factor Design LRFD’’ format is developed with 

“load” and “resistance” terms being replaced by the terms ‘‘demand’’ and ‘‘capacity,’’ 

respectively. Based on these assessments, the engineer is provided with a tool to assess 

the confidence with respect to the likelihood of unacceptable behavior (Cornell et al, 

2002). The validity of this procedure is limited to steel design concepts.  

3. ASCE 7-10 revisions to chapter 1 

The 2010 edition of the ACSE 7 standard for Minimum Design Loads for 

Buildings and Other Structures (SEI, 2010) marked a major step in its evolution as a 

comprehensive design standard, by inclusion of performance-based design procedures 

as one of three approaches for design, the other two being the allowable stress and 

strength design methods. Under the performance-based approach, both structural and 

nonstructural components and their connections must be designed and proven to meet 

a target reliability equivalent to that expected when designed using the strength 

procedures. ACSE 7-10 also presents the acceptable procedures used to demonstrate 

compliance, which can be testing, analysis or a combination of these. The Uniform-

hazard ground motion is replaced by risk-targeted ground motion by switching from a 

2% in 50-year hazard level to a 1% in 50-year collapse risk target. The risk-targeted 

maximum considered earthquake (MCE) ground motion is designated MCER ground 

motion (Hamburger, 2011). The performance-based design process, however, is still 

inherently an evaluation stage added at the end of the already developed design.  And 
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despite its pioneering efforts in quantification of performance, the criteria of ASCE 7-

10 still remain insufficient, since it addresses only those risks associated with structural 

failure and collapse, without reference to maintaining operability and function, and 

minimization of repair and replacement costs, which are key considerations in the 

seismic performance of structures. The standard also recognizes that it is economically 

impractical for seismic design to achieve reliability levels comparable with those 

resulting from design procedures for other load types, due to the high uncertainty 

associated with prediction of seismic loading.  

iii. Next-Generation Procedures 

A drive for initiating a new generation of PBSD procedures came from two 

major concerns: 1) the need to express performance in terms that can better relate to the 

decision-making needs of stakeholders and thus encompass economic, social and 

operational impacts, and 2) the necessity of accounting and adequately communicating 

the uncertainty in the whole performance process (Hamburger, 2014). The perception 

of building performance varies for the different entities involved in the building 

process, for example developers, owners, insurance companies, government decision 

makers and engineers. Performance can be characterized as response (for example 

force, displacement, acceleration, etc.), physical damage (structural or nonstructural) or 

losses (economic and social) (Kramer, 2014), where realistically a response results in 

physical damage which results in losses. While first- and second- generation PBSD 

principles define a performance objective as a statement of the acceptable risk of 

incurring specific levels of damages (as related to a structural response) at a specified 

level of seismic hazard, the next-generation principles realize consequential losses, 

such as casualties, direct economic costs (repair or replacement), and downtime (time 

to restore functionality) as more meaningful performance measures directly related to 

the decision-making process.  As described in Section 1.1, a comprehensive assessment 

process is at the heart of the next-generation PBSD guidelines which were first 

described in the FEMA-445 document (FEMA, 2006). This assessment process 

requires a preliminary building design that can be subsequently evaluated in an iterative 

manner. The following discuss the basis of this assessment methodology and its 

associated source documents. 
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1. PEER framework 

The foundation for the assessment stage of the next-generation OBSD was first 

proposed by the Pacific Earthquake Engineering Research Center (PEER) in the form 

of a probabilistic comprehensive framework that has been documented by several 

researchers like Cornell and Krawinkler (2000), Moehle (2003), Moehle and Deierlein 

(2003), Miranda and Aslani (2003), among others. The framework expresses 

performance as the probability of incurring particular values of key performance 

measures including casualties, repair costs and downtime, calculated using a complex 

multi-level integral that integrates the probability of incurring earthquake effects of 

differing intensity, over all intensities; the probability of experiencing structural 

response (drifts, accelerations) of different levels, given an intensity of earthquake; the 

probability of incurring damage of different types, given response; and the probability 

of incurring specific loss consequences given that damage occurs. The integral used for 

expressing the probable value of earthquake loss can be simplified for convenience as 

the following equation (Hamburger, 2014): 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  ∭{𝑃𝑀 𝐷𝑆⁄ }{𝐷𝑆 𝐸𝐷𝑃⁄ }{𝐸𝐷𝑃 𝐼⁄ } 𝑑𝑧………………….(2.1) 

where, PM is the value of a performance measure, e.g. repair cost, given the occurrence 

of a particular damage state DS, EDP (engineering demand parameter) is the value of a 

response quantity given an intensity of ground motion I and the integration occurs over 

the range of seismic hazards, considering uncertainty in hazard, response, damage and 

consequence loss using statistical definitions for each. In that sense the seismic design 

problem is de-constructed into four interim probabilistic models (namely seismic 

hazard, demand, capacity and loss models) as portrayed in Figure 2-4, which are 

combined by integration (based on the total probability theorem) over all levels of 

ground motion, response, and damage with the contributions of each variable weighted 

according to its relative likelihood of occurrence to estimate the probable losses in a 

given event or over the building’s lifetime. The loss estimation, being a weighted 

average of all possible ground motion, response, damage, and loss scenarios, has a 

uniform and consistent probability (Kramer, 2014).  
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Figure Error! No text of specified style in document.-4 Probabilistic framework of the PEER 

methodology (after Moehle, 2003) 

2. ATC P-58 (FEMA P-58) 

The new probabilistic assessment philosophy behind the PEER framework, has 

also stirred FEMA to enter into a cooperative agreement with ATC in 2001 to  develop 

next-generation performance-based seismic design guidelines, employing a mega  

multi-year research plan that closely coordinates with the three national earthquake 

engineering research centers in the US as well as with concurrent efforts in the blast 

and fire engineering field in order to facilitate the exchange of knowledge and to ensure 

compatibility with design and assessment methodologies used for other hazards than 

earthquakes (Hamburger et al., 2004). The project is divided into two phases, that were 

initially planned to last for 5 years but took longer than expected. The first phase was 

completed in 2012 with the publication of FEMA P-58: Seismic Performance 

Assessment of Buildings, Methodology and Implementation series of tools (ATC, 2012a, 

2012b and 2012c) which provide a methodology to enable engineers to perform the 

tedious calculations necessary to compute a building’s probable earthquake 

performance, employing a modified Monte Carlo analysis approach developed by Tony 

Yang, Jack Moehle, Craig Comartin, and Armen Der Kiureghian (Yang et al., 2009) 

for solution of the framework equation (2.1) which was first presented by Moehle and 

Deierlein (2004). The methodology implements the multi-level integration using 

inferred statistical distributions of building response (demand) obtained from a limited 

set of suites of analyses. These demand sets, together with fragility and consequence 
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functions, are used to determine a damage state and compute the associated losses. The 

work also included the development of a companion electronic calculation tool, referred 

to as the Performance Assessment Calculation Tool, or PACT (ATC, 2012c), that 

performs the probabilistic calculations and accumulation of losses described in the 

methodology, with a repository of fragility and consequence data.  

The second and ongoing phase, which was initiated in 2013 and initially planned 

as a 5-year work, has a general goal of practical implementation of the FEMA P-58 

performance assessment methodology developed in the first phase by developing 

design and stakeholder guidelines. Phase two is envisioned to result in products that 

(Heintz et. al, 2014): 

• Assist stakeholders in selecting appropriate performance objectives based on the 

different occupancies of buildings.  

• Assist design professionals in identifying appropriate structural design methods to 

accomplish specific decision-making needs of stakeholders.  

• Assist design professionals in developing efficient preliminary designs that require 

minimum iteration during the design process.  

• Quantify the performance capability of typical code-conforming buildings utilizing 

next-generation performance metrics.  

• Assist design professionals in developing simplified design of buildings to achieve 

different performance objectives. 

• Augment the assessment methodology by estimates of environmental impacts 

associated with earthquake damage.  

The second phase is approaching completion with major improvements 

including: improving the fragility library; calibration of the P-58 methodology results 

against actual building performance in earthquakes; development of simplified design 

tools for example ATC-114 (2016, 2017) and FEMA P-1091 (2017); employment of a 

module for environmental consequences, improvement of available application 

software; and, development of technical assistance tools for stakeholders to understand 

how to utilize the powerful new tools (Hamburger, 2017). However, as acknowledged 

by FEMA (ATC-58, 2012a), the biggest challenge to the success of the next-generation 

framework still remains which is developing simple and relatively non-iterative 



 
Chapter 2 

28 

preliminary design procedures that have the necessary performance characteristics 

(Hamburger et al., 2004), which are not issued yet. The precision of the results of the 

performance assessment due to the cumulative uncertainties in the different 

components of the process (modelling, hazard, damage and losses) is also expected to 

remain a challenge (Heintz et al., 2014). 

2.3 PROSPECT APPROACHES FOR PRELIMINARY BUILDING DESIGN 

Most existing PBSD approaches and research tend to provide tools for the 

evaluation of the seismic performance of structures that have already been designed or 

even constructed. Much research work is still needed to develop methods for initial 

designs that can be later used in the PBSD assessment stage. In order to provide an 

initial design that is well suited for PBSD, key performance criteria need to be built into 

the design process from the start, and the design should reliably achieve the intended 

performance with minimum iterations possible so that the whole PBSE process can be 

relatively efficient and practical. 

The input criteria for seismic design is normally a response parameter which 

can be force, displacement or acceleration. In the inelastic time history analysis method, 

seismic action is input in their most realistic form which is acceleration, therefore it 

provides the highest reliability in modeling actual structural behavior and performance. 

As a counterpart, this method requires complex computational effort for nonlinear 

modeling as well as special expertise for careful selection of appropriate ground motion 

records. These limitations render this method only suitable for research application 

rather than in the design office, and strength and displacement remain the fundamental 

criteria in seismic design. Energy-based seismic design methods have also been 

advocated – in which a structure is designed by ensuring that its total energy dissipation 

capacity is greater than the input energy of expected ground motions; however, they are 

usually supplementary to other design methods and are likewise still limited to research 

work. 

The following section provides a literature review on the available seismic 

design methods that can be deemed appropriate as an initial design for application in 

PBEE. The methods reviewed are the major approaches adopted by modern codes and 
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some methods developed by other researchers that can fit in the framework of next-

generation PBSD. These procedures are analyzed based on their complexity, amount of 

iterations required, the matching of the seismic demand representation to familiar code 

methods, their incorporation of various performance levels and their reliability in 

achieving the presumed performance.  

2.3.1 Codes and Guidelines Methods 

Notwithstanding the recently increased appreciation of the significant role of 

deformation in describing seismic structural behavior, force-based design remains the 

most practical and primary method adopted by major modern seismic codes, because 

other alternatives are still in the development phase and not highly in accord with the 

norms of design procedures. With respect to code applications, displacement-based 

design is merely prescribed in rehabilitation guidelines for existing structures. Energy 

concepts are also applied in modern codes just in the form of capacity design rules 

which are an indispensable supplement to both force- and displacement-based 

procedures. The various force and displacement-based methods adopted in different 

codes are presented in the following sections.  

2.3.1.1 Force-based design (FBD) approaches 

i. Multi-modal Response Spectrum Method 

The main method of design in modern seismic codes, including US codes, 

Eurocode and similarly the Egyptian code, is the response spectrum method.  This is a 

linear dynamic procedure that permits taking multiple modes of response of a structure 

into account, and uses the elastic acceleration response spectrum modified though 

division of its ordinates by the formerly mentioned force reduction factor (R) to account 

for inelastic actions. The reduction using R is based on the “equal displacement rule”, 

the keystone of most seismic design methods, which was first presented by Veletsos 

and Newmark (1960)¸ and further developed to the well-known Newmark and Hall 

(1973, 1982) design response spectrum. The equal displacement rule states that the 

displacement demand of an inelastic and elastic system undergoing dynamic action are 

approximately equal for long-period SDOF systems. This equivalence permits 
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reduction of the response spectrum and consequently the lateral forces by the force 

reduction factor “R” on the basis that the extra cost resulting from designing for a higher 

force, is not justified from a deformation demand point of view. In other words, it is 

uneconomical to design to resist the complete load due to the design earthquake, when 

a reduction in load would result in the same displacement and thus same damage of the 

system. This reduction also results in dragging the response of the structure into the 

inelastic region which allows favorable energy dissipation and ensures a more 

predictable mode of failure by ductile action. The R chosen depends on the assumed 

ductility of the system, which is in its turn related to the expected maximum 

displacement. 

ii. Equivalent Static Load Method  

The simplest form of response spectrum analysis is that one combined with the 

Equivalent Static Load Method (ESLM) which considers only the fundamental first 

mode of response, and involves a linear static analysis. ESLM is a central concept in 

seismic design and is still the most widely used in all seismic codes and standards, due 

to its efficiency and simplicity. In this method, the earthquake effects are merely 

represented by an equivalent static lateral load distribution all-over the building height. 

The loads applied are defined by the design response spectrum at the fundamental 

period of the building which the method assumes the building to be predominantly 

vibrating with. For this to be true, this simple design method is restricted to buildings 

of relatively low-rise and with no irregularities to avoid rotational modes.  

With respect to damage considerations, the current force-based design 

procedures (response spectrum and ESLM) include displacement criteria as a final 

check after detailing of the structure by checking some drift requirements and 

comparing them to code-specified displacement limits. A displacement amplification 

factor (DAF) is used to convert the displacement resulting from the elastic analysis to 

its inelastic counterpart, which in most codes is set equal to “R” value following the 

equal displacement rule, or may include another multiplied factor that accounts for the 

ratio between inelastic and elastic displacement in case of inequality. If the calculated 

displacements exceed the code limits, redesign is required usually by increasing 

member sizes, until the displacement criteria are met. Therefore, encompassing 



 
Chapter 2 

31 

displacement verification in the force-based method results in adding multiple iterations 

to the design process.  

As for incorporation of various performance criteria, as previously discussed in 

Section 2.2.3.1 (iv), most modern codes state multiple performance objectives of life 

safety, collapse prevention and damage limitation, however the design is only 

performed at a single level of seismic action (the design level earthquake) which is 

chosen in general to have a 10 % probability of being exceeded in 50 years, i.e. a mean 

return period of 475 years, and represents the ultimate limit state in case of a major 

earthquake. The requirement to satisfy the serviceability limit state in case of a more 

frequent minor earthquake is achieved indirectly by employing evaluation checks on 

the displacement response resulting from the ultimate limit state design after its 

reduction using conversion factors such as the “υ” factors specified in the Eurocode 8 

(EN1998-, 2004) and the Egyptian seismic code (ECP-201, 2012) as an approximation 

of the serviceability limit state response. Similarly to account for higher performance 

objectives for more important structures, seismic codes employ importance factors “I” 

that are either used to scale the design response spectrum, as in U.S. codes, in order to 

provide added strength response on the expense of ductility (and hence less damage), 

or to scale the hazard level and ground motion acceleration itself, as in EC8 and 

Egyptian code, in order to design a structure that can withstand a stronger earthquake 

with a higher return period. Therefore, the design itself is done at one performance level 

(life-safety), and other levels are assessed using approximate conversion factors which 

are usually based on consensus, hence the reliability of the design in achieving these 

other performance levels is usually non-uniform.  Also, using FBD as preliminary 

building design tool when targeting several performance levels will result in a long 

iterative process involving the complex PBSD assessment method. FBD is only 

recommended by the FEMA P-1091 (2017) for seismic design of buildings in low 

seismic hazard regions for simplification of the process.  

2.3.1.2 Displacement-based design (DBD) approaches 

Because displacement parameters are better indicators of damage performance, 

different design approaches have been proposed to increase the emphasis on 

displacement as a means of easier implementation of PBSD. In DBD methods, 
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deformation of the structure is the starting point of the design rather than the end result 

as in traditional FBD methods. Despite their competitive edge of adopting the real direct 

effects of an earthquake which is deformation and displacement, better reflecting the 

nature of seismic action as well as achieving more control on damage and performance, 

DBD methods do not fail to have several limitations, as discussed hereinafter. Some 

DBD methods that have been able to find their ways to major seismic guidelines are 

briefly discussed, where they are categorized into: nonlinear analysis and liner analysis 

DBD methods.  

i. Nonlinear Static Analysis DBD methods 

These group of methods have a common basic principle which is combining 

two types of analysis: first, nonlinear static analysis, referred to as pushover analysis, 

that pushes the multi-degree-of-freedom (MDOF) structure to increasing loading levels 

until reaching a predefined target maximum displacement where the resulting pushover 

curve is bilinearly approximated; and second, response spectrum analysis of an 

equivalent single-degree-of-freedom (SDOF) for representation of earthquake demand 

using spectra with different ordinates. The use of the nonlinear static analysis is the 

main disadvantage of these methods where it is cumbersome and time-consuming, and 

involves a lot of approximations that challenge its accuracy in the first place, like using 

a time-independent displacement shape that doesn’t consider the effect of higher modes 

and material degradation. Other limitations individually related to the most common 

methods that fall under this category are discussed herein.  

1. Capacity Spectrum method 

It was first proposed by Freeman (1978, 1998) as a rapid tool for evaluation of 

the seismic vulnerability of buildings. It is the basis of the method used in the ATC-40 

document for seismic evaluation and retrofit of concrete buildings (1996), and is 

proposed as one of the seismic analysis procedures by the FEMA-440 document (2005). 

The method uses a simple graphical manner where the capacity diagram of the structure 

(pushover curve) is superimposed over the earthquake demand spectrum plotted with 

different levels of effective viscous damping, and both diagrams are converted to their 

acceleration-displacement format. The equivalent linear SDOF system used to 
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determine the target displacement is assumed to have larger effective period and 

damping than the original building to account for inelasticity. Despite its rational, the 

capacity spectrum method usually requires a lot of iterations to find the exact point 

where the capacity spectrum intersects the response spectrum having the correct level 

of damping, and therefore is more appropriate for evaluation and retrofit purposes than 

for designing new structures. The method is also subject to several problems, such as 

lack of convergence and multiple solutions (Lin and Miranda, 2004).  

2. N2-method 

The N2-method (Fajfar, 1996) (N stands for nonlinear analysis and 2 for two 

mathematical models), which is advocated by the EC8 code (EN1998- 2004), uses the 

same principle of the capacity spectrum method with a rather more straightforward 

approach in the demand side to minimize iterations.  The capacity diagram is the same, 

while inelastic demand spectra (rather than various elastic spectrum with equivalent 

damping and period) are used by reducing elastic spectra using reduction factors 

obtained from statistical analysis, or directly by time-history analyses of inelastic SDOF 

systems.  The acceleration-displacement format is still used, and the target displacement 

is estimated from the elastic-displacement of an equivalent SDOF system defined by 

the bilinear idealization of the pushover curve imposing that the yield strength is equal 

to the strength of the target point. Less iterations are used because there is no need to 

reach a certain effective damping and effective period like the capacity spectrum 

method, however there are major approximations in developing the inelastic spectra 

themselves. Evaluations of the accuracy of this method has shown that it can lead to 

significant underestimation of inelastic deformation demands in the case of near-fault 

ground motions, for systems with low strength and for soft soil conditions (Bento et al, 

2004) 

3. Displacement Coefficient method 

The displacement coefficient method again uses nonlinear static analysis to 

derive the MDOF structure capacity curve, while it uses displacement versus period 

elastic response spectrum for the demand representation.  For computing the target 

displacement, the displacement of a linearly-elastic SDOF system, having the same 
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period and damping as the fundamental mode of the original building, is extracted from 

the response spectrum, and then modified by a series of empirical coefficients to arrive 

at its MDOF equivalence, without any iteration. The methods implemented in FEMA-

273 (1997a), FEMA-356 (2000), and FEMA-440 (2005) documents belong to this type 

of displacement coefficient method. Because the seismic hazard is essentially measured 

in acceleration terms, converting the acceleration spectrum into displacement ordinates 

involves a lot of approximations, which, in addition to the empirical coefficients, 

represent the main source of limitation in this method.  

ii. Linear Analysis DBD methods 

To overcome the limitation of using complex and not highly accurate nonlinear 

analysis methods, several linear methods that uses displacement as the starting point 

were also developed. Out of these methods, the direct-displacement-based design 

(DDBD) method and the equal displacement-based design (EDBD) have achieved 

some acceptance by the design community, being advocated by the SEAOC for the 

1999 “Blue book” for performance-based design of new structures (SEAOC, 1999), 

and as an alternative seismic design procedure for the New Zealand seismic design code 

(NZS, 1995).  

1. Direct-displacement based design (DDBD 

The direct displacement-based design (DDBD) method proposed by Priestley 

and Kowalsky (2000) is one of the promising DBD methods that had been well 

promoted for its suitability for application in PBSD. In addition to its proved superiority 

in achieving targeted performance as concluded by Varughese et al. (2012) compared 

to other DBD methods, it has the advantage of requiring only static linear analysis with 

minimum iterations to go directly from target displacement to required strength. The 

displacement parameters are used as a design input in a direct manner that can be 

applied for new designs where the displacement demand is estimated without any 

assumption about the member stiffness. A design displacement profile is first 

established using the code drift limits and the drift corresponding to the system’s 

inelastic rotation capacity. Using this displaced shape, the effective mass and target 

displacement of an equivalent single degree of freedom (SDOF) system are determined. 
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The displacement ductility demand is calculated by dividing the target displacement by 

the yield displacement of the structure (based on section dimensions but not strength) 

and is used to calculate an equivalent damping value according to the assumed level of 

energy dissipation capability. A displacement spectrum is then developed at this 

equivalent damping level, and the effective period corresponding to the target 

displacement is read off the displacement spectrum. Using the effective period and 

effective mass, the required effective (or tangent) stiffness is obtained and multiplied 

by the target design displacement to determine the design base shear.  The base shear 

is distributed along the building height and members are designed according to the 

corresponding straining forces, as typical of other FBD procedures. Compared to FBD 

procedures, DDBD ensures more consistent designs that achieve, rather than be bound 

by performance criteria, however it still has some limitations: it is rather complex and 

not familiar to engineers; iterations may still be required if the check for the assumed 

level of damping fails, it employs the displacement response design spectrum which 

lacks acceptance by the profession as well as involves many approximations; and there 

is inaccuracy associated with the equivalent linear SDOF representation of the real 

structure. 

2. Equal-displacement-based design (EDBD) 

This method is based on the familiar equal displacement approximation by 

Newmark and Hall (1982), and is considered just an adaptation of the traditional force-

based design (FBD) procedure by using acceleration-displacement response spectrum 

or displacement spectrum rather the acceleration-period spectrum, thus focusing on 

displacement rather than forces. It differs from the DDBD by using initial stiffness and 

traditional viscous damping value of 5% rather than the secant stiffness and equivalent 

viscous damping at target displacement which is used in DDBD. The target 

displacement is similarly obtained based on the estimated displaced shape of an 

equivalent SDOF system. The main disadvantage of this method lies in its use of 

displacement spectrum which do not have a well-balanced catalogue same as the 

acceleration spectrum. Also, the ordinates of the displacement spectra are much more 

sensitive to the effects of processing and filtering applied on accelerograms than those 

of acceleration spectra (Bommer et al., 2000). Additionally, it was proven that this 
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method can lead to unconservative results for short-period structures due to the equal 

displacement approximation (Calvi et al.,1998). 

2.3.2 Non-iterative Methods Developed by Other Researchers 

In addition to the methods employed by standards and guidelines as discussed 

before, there are many other individual researchers that developed design approaches 

which emphasize displacement as a design factor so that it can fit in the context of 

performance-based engineering. Nevertheless, the majority of available approaches are 

merely intended to develop a preliminary design, coupled with an assessment stage for 

design verification, or require an existing structure or an already designed structure and 

thus is more applicable to performance evaluation (Franchin et. al, 2018).  There is 

limited research suggesting direct design methods for new structures that start with a 

displacement criterion associated with a performance objective to arrive at the structural 

properties with minimum amount of iterations, and therefore can be used as an initial 

design tool in the framework of performance-based design. The following section 

presents a brief literature review about the most influential of these methods which have 

been studied for a considerable period of time by several researchers and are still under 

development till present.  These are the Yield Point Spectra method, Performance-based 

plastic design and the Hybrid force/displacement-based design method, with the latter 

being the focus of the current study. It should be noted that all these approaches are still 

under improvement and development for practical applications.  

2.3.2.1 Yield point spectra method  

In typical seismic design, changes in strengths of components of the lateral force 

resisting system to satisfy lateral force requirements are assumed to have a negligible 

effect on the stiffness and period of the structure, while for displacement control it is 

usually required to adjust the period and stiffness of the structure and thus revise 

member dimensions. Several researchers have observed that it is the yield displacement 

of structures rather than the fundamental period of vibration which is invariant with 

changes in component strengths and stiffness, and hence seismic design could be better 

approached from the perspective of constant yield displacement rather than constant 

period, so that member dimensions can be more accurately estimated early in the design 
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process minimizing the need for iterations (Priestley and Kowalsky, 1998). Based on 

this presumption, Ascheeim (1999, 2000) proposed a displacement-based design 

method that utilizes a graphical representation of the inelastic seismic demands as 

constant ductility curves plotted with the yield strength coefficient, Cy (ratio of the yield 

strength of a system to its weight) as a function of the system's yield displacement. 

These curves are termed “Yield Point Spectra” where they represent the yield points of 

oscillators having constant displacement ductility for a range of oscillator periods 

(Aschheim, 1999). It was further developed by Aschheim and Black (2000). This 

method is considered a variant of the capacity spectrum method in the acceleration-

displacement format at the yield rather than the ultimate state, as shown in Figure 2-5. 

It was later enhanced to take the form of ‘yield frequency spectra’ (YFS) that offer a 

direct probabilistic solution space for the entire range of a system performance in terms 

of the mean annual frequency of exceeding global ductility levels versus the base shear 

strength (Vamatsikos and Aschheim, 2016; Katsanos and Vamvatsikos, 2017). 

 

Figure Error! No text of specified style in document.-5 Yield Point Spectra of the 1940 El-

Centro record (after Aschheim &Black, 2000) 

Beside adopting the appealing graphical form of the Capacity Spectrum 

representation, the Yield Point Spectra method has an added advantage, where it is not 

just limited to estimation of structure’s displacement ductility and ultimate 

displacement when the period and strength are known, but can also be used in the 

reverse process to determine the minimum strength and stiffness required to limit drift 
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and displacement ductility demands to prescribed values. This advantage particularly 

pertains to performance-based design, since target displacement values can be 

associated with a performance level, and accordingly displacement constraints’ 

branches for the various performance objectives can be constructed and superimposed 

on the same graph to generate a permissible design region of combinations of strength 

and stiffness. In this manner, the yield point spectra method offers engineers a practical 

approach to design structures to satisfy various performance objectives simultaneously 

in a single design step by choosing a point within the boundaries of the permissible 

design region.  

This graphical procedure has some disadvantage. The yield acceleration- 

displacement representation of seismic demand is not in common with current practice 

and would make inefficient use of the already established databases of response spectra. 

The authors recommend that the yield point spectra may be determined similar to the 

inelastic response spectrum method first proposed by Priestley and Calvi (1997)  In that 

sense, Yield point spectra can be jagged if they are generated exactly from ground 

motion records using specialized computer programs that compute the largest strength 

required to limit ductility responses to specified values over a range of oscillator 

periods, or smooth if approximately estimated from elastic response spectra using 

established R-µ-T relationships to estimate strengths corresponding to various 

ductilities (Aschheim, 1999),  including those by Newmark and Hall (1973). Another 

approximation is compounded in estimation of the yield displacement, where they are 

obtained from the elastic periods of each oscillator and the inelastic pseudo-acceleration 

values in accordance with initial stiffness assumptions (rather than effective stiffness), 

using the simple relation Δy= (T/2π)2Sa as suggested by Aschheim (1999). It should be 

also noted that after determination of the base shear coefficient, the design work 

continues based on conventional elastic design and capacity rules.  Furthermore, similar 

to the equivalent static load method, this method does not account for higher mode 

effects, and thus is limited to design of regular low-rise structures 

2.3.2.2 Performance Based Plastic Design  

Performance Based Plastic Design method is a design method that directly 

accounts for inelastic structural behavior, by combining displacement-based and 
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energy-based design concepts, producing structures with targeted and predictable 

response. It was developed by Subhash Goel and his associates at the University of 

Michigan Ann Arbor, mainly for steel structures (Leelataviwat et al., 1999, 2007; Lee 

and Goel, 2001; Dasgupta et al., 2004; Chao and Goel, 2006a, 2006b, 2008; Chao et 

al., 2007; Goel and Chao, 2008; Goel et al, 2009a, 2009b,) and later modified for 

reinforced concrete frame structures (Liao and Goel, 2010a, 2010b, 2014). Recently, a 

modified version of the plastic method was proposed for self-centering buckling-

restrained braced frames, whereby Liu, Shuang and Zhao (2018) studied the possibility 

of using the relationship between the strength reduction factor and the nonlinear 

displacement ratio to estimate strength demands rather than using yield displacement 

in order to minimize iterations.  

In Performance-based Plastic design, main performance objectives are defined 

in terms of pre-selected target drift and desired yield mechanism that are related to the 

degree and distribution of accepted structural damage respectively (Liao and Goel, 

2014).  In order to determine the design base shear for a specified earthquake hazard 

level, the authors presented an approach that applies an energy balance concept similar 

to the basic energy approach first used by Housner (1956, 1960), whereby the amount 

of work needed to push the structure monotonically up to the design target drift is 

equated to the input energy required by an equivalent elasto-plastic single degree of 

freedom (EP-SDOF) system to reach the same drift state, as derived using suitable 

inelastic response spectra such as the idealized Newmark-Hall inelastic response 

spectrum (Newmark and Hall, 1982). Figure 2-6 illustrates the energy concept of the 

Performance-based Plastic Design together with an example selected yield mechanism 

of a typical moment frame. 

As shown in Figure 2-6, all inelastic deformations are controlled to be formed 

in intended yielding points, based on the chosen yield mechanism, for example near the 

end of beams and at the base column for moment frames. Plastic analysis is then used 

for design and detailing of the yielding members with consideration of equilibrium and 

plastic strength conditions, while design of non-yielding members is performed 

applying the capacity design approach to ensure formation of the selected yield 

mechanism.   
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Figure Error! No text of specified style in document.-6 (a) selected yield mechanism for 

desirable response in a typical moment frame (b)energy equating concept for deriving design 

base shear of PBPD method (after Liao and Goel, 2014) 

The method has the advantage that drift control and definition of the desired 

yield mechanism is directly integrated in the start of the design process, thus 

minimizing the need of iterations while at the same time ensuring more enhanced 

structural behavior in accord with targeted performance. Another advantage is that by 

selection of yielding members at the appropriate locations, innovative structural 

schemes can be employed. However, this method still has some disadvantages and 

limitations. First of all, the approach requires a major shift from the norms of seismic 

design practice. Also, the method has some approximations, like assuming the inelastic 

spectra by Newmark and Hall still valid for multi-degree of freedom systems, and 

ignoring the effect of the structural period on energy dissipation capacity and over-

strength, which can render designs not uniformly conservative for structures of variable 

periods. The plastic analysis approach is more suitable for highly ductile systems such 

as steel and its application for reinforced concrete may not be justified.  

2.3.2.3 Hybrid force/displacement method 

A seismic design method has been developed over the past 15 years specifically 

for performance-based engineering applications for steel frames, where it combines the 

advantages of the familiar force-based and displacement-based seismic design methods 

in a partial force/displacement-based design format. The method, referred to by its 

authors as “Hybrid force/displacement-based design”, was first proposed roughly for 

seismic design of framed structures by Bazeos N. and Beskos D.E. (2003), then it was 

further detailed as a comprehensive design method for plane steel frames based on the 
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EC8 (Karavasili, T.L. et al., 2006a, 2006b, 2006c, 2007a, 2007b and 2008a). It was 

presented as a novel performance-based design procedure in some books for example 

“Engineering Against Fracture” (Pantelakis, S. and Rodopoulos, C., 2009) and 

“Advances in Performance-Based Earthquake Engineering” (Fardis, M.N., 2010).  

The main idea of this methodology is that starts by transforming target values 

of the inter-story drift ratio (indicator of nonstructural damage) and local ductility 

(indicator of structural damage) to a target roof displacement using relations that are 

developed as a factor of the building geometrical attributes, and then calculates the 

appropriate strength reduction factor required for limiting ductility demands to those of 

the estimated target roof displacement ductility. The design criteria are repeatedly 

defined as associated with three basic performance levels, i.e. immediate occupancy, 

life safety and collapse prevention, and in this way the design ensures control of both 

strength and drift performance for several seismic events (Tzimas A.S. et al, 2013). In 

addition to the benefit of using both drift and ductility demands as input variables for 

the initiation of the design process, the hybrid force/displacement approach has the 

major advantage of avoiding the use of a substitute single degree of freedom system as 

done by DDBD while retaining the use of conventional elastic response spectrum 

analysis and design in line with current seismic codes and common practice. Also, the 

proposed method considers the influence of the number of stories and the type of the 

lateral load resisting system.  

The superiority of this proposed method over other displacement-based and 

force-based methods has been proven for Moment-resisting steel frames (MRF) 

(Bazeos, 2009; Karavasilis et al., 2009), and intricately evaluated against nonlinear 

time-history analysis results (Karavasilis et al., 2010b). Modifications for two types of 

concentrically braced frames (CBF) have been developed namely x-bracing 

(Karavasilis et al.,2007a) and chevron bracing (Stamatopoulos and Bazeos, 2011). 

Some factors were added to the method, for example, to account for setbacks 

(Karavasilis et al. 2008c) and for vertical mass irregularities (Karavasilis et al. 2008d).  

Extension of the method to the case of pulse-like earthquake ground motions has been 

also studied (Karavasilis et al., 2010a). The most refined form of the hybrid 

force/displacement methodology has been presented in the work by Tzimas, 

Karavasilis, Bazeos and Beskos (2013) that combines all the aforementioned factors in 
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one comprehensive design guide and demonstrates the validity and consistency of the 

method in identifying the performance level which truly controls the design. Those 

same researchers have extended the use of the hybrid method to space moment-resisting 

steel frames and proposed new empirical expressions which includes accidental 

eccentricity to account for torsional effects that were neglected in planar frames 

(Tzimas et al., 2017).  Research on the hybrid force/displacement method is still 

ongoing for broadening its range of applicability to eccentrically-braced frames and 

buckling restrained frames.  

While all the aforementioned studies remain on steel structures, latterly there 

has been an initiative on the application of the same procedure to the case of composite 

steel/concrete structures. Skalomenos et al. (2015) studied the extension of the hybrid 

methodology for composite plane moment-resisting frames (MRFs) consisting of I steel 

beams and concrete filled steel tube (CFT) with refined modeling than in Tzimas et al. 

(2013), and, by comparing realistic design examples using FBD and HFD methods on 

the basis of nonlinear time-history analysis of the designed structures, proved that the 

advantages of the hybrid method over the force-based method in terms of better 

rational, efficiency and accuracy in achieving intended performance remains valid for 

composite structures, as well.  

The current study represents one of the first initiatives in applying the HFD 

method to reinforced concrete structures. Concurrently, a group of researchers have 

been working in the same line where, very recently, they proposed the hybrid 

force/displacement design method for reinforced concrete moment resisting frames 

(Piana et al., 2018).  They used a frame-element software called Ruaumoko (Carr, 2006) 

for nonlinear analysis combined with MATLAB (2009) routines to automate the post-

processing of results. All beams and columns were modeled by frame elements with 

concentrated hinges at their two ends, to account for inelastic behavior. The simplicity 

and efficiency of such nonlinear modeling technique allowed studying 38 frames with 

varying dynamic and mechanical characteristics. On the other side, the work presented 

in this thesis involves less but much more intricate number of nonlinear analysis, where 

fiber-element modeling is used which monitors nonlinear behavior across the cross-

sections as well as along the whole length of the elements, and also accounts for 

geometrical nonlinearity which is quite important in large displacement analysis. This 
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extension is by no means trivial because due to the complex behavior of concrete 

compared to steel, detailed and rigorous modeling of the nonlinear material behavior 

along the whole member depth and length can substantially affect the displacement 

results.  

2.4 RELATIONSHIP BETWEEN PERFORMANCE AND DISPLACEMENT 

DEMAND 

A relationship between the displacement demand of structures and specified 

performance objectives would allow bringing displacement to the initial steps of design 

as advocated by the HFD design described in Section 2.3.2.3. Extension of the HFD 

method to concrete moment-resisting frames requires the use of relationships that has 

been specifically formulated for this lateral load resisting system and that covers 

various damage levels. Research efforts in this direction are limited in the literature and 

are discussed herein. It should be noted that all the presented equations define the 

damage of concrete frames (and thus performance) in terms of one response parameter 

which is the inter-story drift ratio, and which is also the damage metric chosen in the 

current study as will be discussed subsequently in Chapter 4 (Section 4.4.2).  

2.4.1 Relations Valid Only in the Elastic Range of Behavior 

One of the first relations are those that have been developed by Loeding et al. 

(1998) to define the characteristics displacement profiles of plane concrete frames at 

maximum response in terms of maximum inter-story drift ratio and the number of 

stories. Employing linear multi-modal dynamic analyses of RC frames, and relating 

maximum displacement at each floor with the inter-story drift at the same floor, they 

developed the following equation which they proposed for design purposes: 

For   n < 4:      𝑖 = 𝑑ℎ𝑖 

  4<n<20:  𝑖 = 𝑑ℎ𝑖 (1 −
0.5(𝑛−4)ℎ𝑖

16ℎ𝑛
)                ………………………....(2.2) 

  n> 20:     𝑖 = 𝑑ℎ𝑖(1 − 0.5 ℎ𝑖 ℎ𝑛⁄ ) 

where i is the design displacement at story (i),  𝑑 is the design drift ratio, n is the 

number of stories, ℎ𝑖 is height of story (i) from the base, hn is the total height of the 
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building. The researchers proved that these approximate relations are adequate for 

design purposes specifically DBD. However, since they do not cover the nonlinear 

response of structures, these equations cannot be applied for various limit states and 

performance-based design. Also using such type of equations to estimate the global 

maximum displacement at the roof level in terms of the global maximum damage will 

be inaccurate because the maximum story displacements are generally asynchronous 

and the story of the maximum inter-story drift is not the same as that of the maximum 

absolute displacement.  

Miranda (1999) developed another displacement predictive model with the 

objective of providing an approximate estimate of lateral displacement demands and 

maximum inter-story drifts in multistory frame buildings. The relation was developed 

mathematically using a fourth-order differential equation based on the continuum 

model of Heidebrecht and Stafford Smith (1973) It modifies the SDOF response 

(spectral displacement) through four parameters in order to arrive at the MDOF 

behavior, where it is given in the general form of: 

𝐼𝐷𝑅𝑚𝑎𝑥 =  𝛽1𝛽2𝛽3𝛽4
𝑆𝑑

𝐻
……………………………….…………….…….(2.3) 

where IDRmax is the maximum inter-story drift ratio, Sd is the elastic spectral 

displacement (for a SDOF); H is the total building height; and βs are modification 

factors defined as: 

β1: factor that represents the approximate modal participation factor  

β2: the ratio between elastic maximum IDR and elastic maximum roof drift ratio  

β3: empirical factor for modification of elastic demands to inelastic demands.  

β4: factor that accounts for the combined effects of inelasticity, number of stories and 

mechanisms in the post-elastic range. 

While Miranda’s proposed equation is not aimed directly at relating maximum 

displacement and maximum inter-story drift of MDOF systems, one of the factors 

included in the predictive model (β2) serves to amplify the roof drift ratio to reach the 

maximum inter-story drift, which is basically the ratio of roof drift and inter-story drift. 

Focus herein is on this factor, which is only provided in the model for the elastic range, 

while inelasticity is handled by another factor to arrive at the inelastic displacement. 
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The derivation of this factor is based on the continuum model that approximates the 

displacement profiles of buildings that deform under combined flexural and shear 

behavior. This factor is specific for each model building and can be calculated as the 

product of the derivative of the lateral deformation profile, u(z) with respect to height, 

i.e. (du(z)/dz), and the total height to top displacement ratio of the continuum model, 

i.e. H/u(H), as given in the following equation: 

𝛽2 = 𝑚𝑎𝑥 [
𝑑𝑢(𝑧)

𝑑𝑧

𝐻

𝑢(𝐻)
]……………………………………………….……..(2.4) 

Thus, 𝛽2-factor is considered more as a representation of the distribution and 

concentration of inter-story drifts along the height of the building. There are several 

limitations for using this equation in directly relating maximum displacement to IDR. 

It is only applicable in the linear range; it is based on several approximations related to 

the continuum model like having uniform stiffness and mass distribution, and it requires 

an existing design to pre-develop an approximate shape function.  

Adopting the forms proposed by Miranda (1999), another group of researchers 

(Gaetani d’Aragona et al., 2018) provided simplified formulae for the β2 factor that can 

be used rapidly for relating lateral displacement and inter-story drift ratios of RC frame 

buildings, based on few geometrical parameters which are the number of floors and the 

infill opening configuration (measured by the closure percentage in each floor). By 

performing elastic time-history analysis, all scaled to the same intensity level, on 

equivalent cantilever models of the prototype buildings varying in height and infill 

distribution, then analyzing the response data, the following equation was developed: 

𝛽2 = 𝑓2(𝛼1. 𝛼2−𝑛 𝛼1⁄ ). 𝐻𝑔2(𝛼1𝛼2−𝑛 𝛼1⁄ ) + ℎ2(𝛼1. 𝛼2−𝑛 𝛼1⁄ ) ………………(2.5) 

where H is the building height (in meters); αi is the closure percentage at floor (i), n is 

the number of floors and f2, g2 and h2 are functions which are linearly dependent on the 

closure percentage of the first floor (α1) and on the ratio between the closure percentage 

of the upper floor and that of the first floor (α2-n/ α1) as follows: 

𝑓2 = 0.37 + 1.20𝛼1 − 2.69 𝛼2−𝑛 𝛼1⁄ ………………………..……...…….(2.6) 

𝑔2 = 1.04 − 0.49𝛼1 − 0.76 𝛼2−𝑛 𝛼1⁄ …………………………….……....(2.7) 

ℎ2 = 3.13 − 2.22𝛼1 + 1.21 𝛼2−𝑛 𝛼1⁄ …………………………….…...….(2.8) 
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Despite being a novel contribution in considering the effect of infill walls distribution 

that greatly affects the stiffness distribution and damage potential, the presented 

equations are only developed for the linear range of behavior, and are thus 

recommended by the authors for use when inter-story drift ratios do not exceed 1%, 

which represents only the serviceability limit state. There is also a lot of approximations 

involved in adopting the equivalent cantilever models that can affect the accuracy of 

the developed relations.  

2.4.2 Relations Valid Up to the Inelastic Range of Behavior 

Attempting to include the effect of nonlinear behavior on the lateral 

displacement profiles of RC frames, Jiang, Lu and Kubo (2009) proposed new 

expressions that relate the maximum displacement of regular RC frames to the inter-

story drift ratio at three discrete damage levels, as a function of some structural 

characteristics of the frame which are the fundamental period (by varying the number 

of floors from 3 to 15 in three-floor increments), and the column-to-beam strength ratio. 

They conducted nonlinear time-history analysis on two-dimensional full frame models 

employing lumped plasticity for capturing the nonlinear behavior of the frames by using 

zero-length plastic hinge models at specified member-end locations. Separate equations 

are generated for each damage level, which took the form of:  

𝐷𝑗 = (𝑃1𝑥𝑗 + 𝑃2𝑥𝑗
2 + 𝑃3𝑥𝑗

3)𝐻𝑠,𝑚𝑎𝑥………………………………….…...(2.9) 

where Dj is the maximum floor displacement at floor (j); xj is the relative height of floor 

(j) normalized by the total height, i.e. xj =Hj/H, in which Hj is the height of floor (j) 

measured from ground level; s,max is the maximum inter-story drift ratio along the 

height; and P1, P2 and P3 are parameters that depend on the damage level and include 

higher mode effects, and which were defined as follows:  

For slight damage 

𝑃1 = 0.851 − 0.175 𝑇1 

𝑃2 = 0.528 + 0.077 𝑇1     ………...………………………………………(2.10) 

𝑃3 = −0.513 

 



 
Chapter 2 

47 

For moderate damage 

𝑃1 = 1.563 − 0.456
𝑐

+ (0.246 −
1.155


𝐶

+ 1.162
) 𝑇1 

𝑃2 = −0.888 + 0.853
𝑐

+ (0.414 − 0.217
𝑐
)𝑇1        ……………..…..(2.11)  

𝑃3 = 0.066 − 0.322
𝑐
 

For severe damage,  

𝑃1 = 1.698 − 0.449
𝑐

+ (−0.203 −
0.060


𝐶

− 0.553
) 𝑇1 

𝑃2 = −1.678 + 1.224
𝑐

+ (0.493 − 0.249
𝑐
)𝑇1           ……………........(2.12) 

𝑃3 = 0.489 − 0.548
𝑐
 

where T1 is the elastic fundamental period of the frame in seconds, and c is the column-

to-beam strength ratio. Using the above formulations in the context of the next-

generation performance-based design is rather delimited because they are specified for 

discrete damage levels, while the future guidelines are directed towards the concept of 

continuity in performance levels. Also, using the factor of column-to-beam strength 

ratio requires knowledge about the reinforcement of the structural elements and thus 

cannot be directly used in preliminary designs without iterations and is thus more 

applicable for existing designs. Besides, nonlinearity can be better modeled as 

distributed for better capturing of the complex behavior of reinforced concrete 

structures.  

Along with the development of a predictive model for maximum inter-story 

drift ratios, Azak (2013) and Azak and Akkar (2014) provided an approximate 

correlation between the maximum roof displacement ratio (MRDR) and maximum 

inter-story drift ratio (MIDR) for RC frames using just constants independent of the 

ground motion or structural characteristics like building height or fundamental period. 

The proposed relation is based on the results of hundreds nonlinear time-history 

anlayses of two-dimensional frame models, with varying height from 3 to 9 in one-floor 

increment, and subjected to a range of ground motions with variable characteristics and 

scaled to different intensities. The nonlinear structural behaviour was modeled quite 

accurately using the fiber-based element approach employed in OPENSEES (2006) 

software. A linear fit was established on the logarithmic MRDR and MIDR values as 
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presented in Equation (2.13). It is evident that the provided fit is quite approximate and 

becomes weaker with smaller values of MIDR and MRDR, which implies the need to 

improve the regression by using more variables.  

𝑙𝑜𝑔10(𝑀𝑅𝐷𝑅) = 0.995 𝑙𝑜𝑔10𝑀𝐼𝐷𝑅−0.135………………………………..….....(2.13) 

In the context of applying the HFD performance-based design method to RC 

frames, Pian et al. (2018) recently provided relations that associate the maximum roof 

displacement ur,max to different damage levels as represented by the inter-story-drift 

ratio (IDRmax) based on nonlinear time-history analysis of RC frames of different 

heights. The development of the relationship followed the same format and 

methodology presented by Karavasilis, Bazeos and Beskos (2008a, 2008b, 2008c) for 

HFD design of steel MRFs, which adopts the notation provided by Miranda (1999), 

given as  β=ur,max/(H*IDRmax), where H is the height of the frame from its base. The 

following predictive equation for the ratio β was provided: 

𝛽 = 1 − 0.17. (𝑛𝑠 − 1)0.75. 𝜌0.07. 𝛼−0.4……………………………….…(2.14) 

where ns is the number of floors; ρ is the column-to-beam strength ratio; and α is the 

beam-to-column stiffness ratio. The authors concluded that the β factor had a strong 

dependence on the number of floors, with less dependence on the column-to-beam 

strength ratio, and minor dependence on the beam-to-column stiffness ratio. This 

proposed relation has some limitations.  Similar to the comments about the method 

developed by Jiang et al. (2009), there is a need for better modeling of concrete 

nonlinear behavior by capturing plasticity along the member cross section and length. 

Likewise, the use of a variable that represents column-to-beam strength ratio requires 

knowledge about the reinforcement of the structural elements and thus requires an 

existing design as a prerequisite. Additionally, in the author’s opinion, there is 

multicollinearity in the regression when involving both beam-to-column stiffness ratio 

and column-to-beam strength ratio as variables, which affect the stability of the 

prediction equation.  

 
 



 

Chapter 3 

49 

PROPOSED FORCE/DISPLACEMENT-BASED DESIGN 

3.1 INTRODUCTION 

According to PBD philosophy, it is necessary to determine drift and 

displacement demands with sufficient accuracy during the seismic design process. 

Potential economic, social and human life losses and decisions of repair or replacement 

are related to the damage of buildings during earthquakes, which is in its turn directly 

related to displacement response. Therefore, for a truly performance-based design 

process to be implemented with success, displacement has to be associated to the design 

criteria at the input stage, in a multiple-level format, while at the same time retain the 

simplicity of force-based procedures which are a mainstream in seismic design. This 

chapter presents the proposed application of the hybrid force/displacement-based 

design method to RC moment-resisting frames, which modifies the force-based 

procedure by correlating estimates of the maximum roof displacement (based on the 

predefined performance objectives) to the seismic strength requirements. First, the 

objective of the proposed methodology is discussed with the intended advantages, then 

the theoretical basis of relating displacement to the strength reduction concept used in 

the force-based design is briefly presented, and finally, the steps of the procedure are 

elaborated and the research methodology for developing the required displacement 

estimate relationships is outlined.  

3.2 MODIFICATION ENVISAGED 

The outlook of the proposed modification is to shift the performance-based 

criteria to the beginning of the seismic design process, so that design can be based on 

performance, and the structures can be designed to achieve – rather than be bound by – 

multiple performance objectives. Figure 3-1 depicts the current method of force-based 

design as compared to the proposed procedure. In a sense, the prospect method can be 

considered a mix between the displacement-based and force-based methods described 

in Section 2.3.1.1, where the design starts with a displacement estimate, yet continues 

with calculation and distribution of forces. The scope of application is RC moment-
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resisting frames (MRF’s) with limited ductility and the method is in line with the hybrid 

force/displacement based (HFD) design developed earlier for several types of steel 

structures as discussed in Section 2.3.2.3. The intended properties of the envisaged 

design method are that 

1. it can be directly used in conjunction with the conventional elastic pseudo-

acceleration design spectra with 5% damping for seismic design of RC MRFs.  

2. it involves only an elastic analysis scheme. 

3. it can automatically account for displacement demands at several performance 

levels without requiring displacement checks at the end of the design process. 

4. it includes simplified displacement formulas that can be used with limited 

knowledge of the building characteristics, and depending on few geometrical 

parameters, so that they can be used at the design input stage. 

 

Figure 3-1 Sequence of code force-based method (left) and proposed modification (right) 
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Development of such modified procedure for seismic design can have the 

following advantages: 

1. The design is more rational than the force-based procedures because displacement 

better represents actual earthquake physical behavior.  

2. The limitation of the force-based methods in using empirically stipulated force 

reduction factors is avoided 

3. The approximation of the displacement-based methods in using equivalent linear 

SDOF idealizations is also avoided, and thus the proposed method can be easily 

applied for the design of new buildings.   

4. The design method has higher prospect of being integrated into the future 

performance-based design framework, where there is possibility to design for 

multiple performance levels, and the design has higher reliability in achieving the 

targeted displacement values and performance.  

5. The design steps and iterations are reduced where the displacement check is already 

accounted for during the strength design, and therefore more efficient designs are 

achieved. 

3.3 THEORETICAL BASIS 

The theoretical basis behind the proposed design method can be explained by 

understanding the global load-displacement curve of a structure from the point of view 

of both traditional design and performance-based design. The concept of the force-

based procedure is based on the reduction of the elastic demand (as obtained from the 

elastic design spectrum) by the force reduction factor (R) which is based on typical 

inelastic response of different structural systems. This reduction is conceptually based 

on the equal displacement rule (Newmark and Hall, 1982), as previously discussed in 

Section 2.3.1.1; it is justified by the expected system ductility, overstrength and 

redundancy. For simplification of the concept, only the ductility component is 

considered herein while the overstrength and redundancy are assumed to be inevitably 

included later in the design due to the inherent strength in the materials used, the design 

equations, and the specified lateral force resisting system. 

 Figure 3-2 illustrates the concept of typical earthquake design. Based on the 

equal-displacement assumption that the displacement of an elastic and an elasto-plastic 
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SDOF’s are equal, the actual inelastic displacement of the structure is assumed 

approximately equal to the displacement of the structure if it is to be designed to behave 

completely elastic in case of the design level earthquake, i.e. inelastic displacement (u) 

 elastic displacement (e). Also understanding that earthquake-resistant structures are 

intentionally designed to yield under earthquake loading (damage is allowed), whereby 

the analysis domain is brought down to the linear stage, it can be assumed that the yield 

point is hypothetically the design ultimate point in the analysis domain, i.e. design 

displacement (d)  yield displacement (y) and design base shear (Vd)  yield base 

shear (Vy). Consequently, it can be concluded that the R-factor that reduces the elastic 

forces (Ve) (as calculated from codes of practice elastic response spectrum) to the 

design force level (Vd  Vy) can be calculated from the displacement coordinates as 

equivalent to the system ductility () as follows: 

R   =u/ y……………………………………………………….……...(3.1) 

 

Figure 3-2 Design concept of the traditional force-based method 
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A similar load-displacement curve can be used to describe the various 

performance levels of a structure, as previously presented in Figure 2-3, in Section 

2.3.3.2.  However, absolute roof displacement values are not a direct and efficient 

measure of the global damage within a structure because structures in reality do not 

deform uniformly and concentered damages may occur in certain stories depending on 

the structural properties and modes of vibration. Therefore, damage states are better 

related to the intensity of the seismic load by using other structural response quantities 

(engineering demand parameters) that have already established relations with damage. 

Inter-story Drift Ratio (IDR) is the chosen response parameter to be included in the 

proposed method because there is consensus in the literature that it best correlates to 

damage at the global level (Algan, 1982; Moehle, 1984; Gulkan and Sozen, 1999; and 

Aslani and Miranda 2005). IDR is defined as the relative lateral displacement between 

two successive floors normalized by the height between the floors. Figure 3-3 displays 

a typical performance curve using the inter-story drift as the response quantity that 

defines damage and performance levels. 

 
Figure 3-3 Typical performance levels of an RC structure with associated damage states 

(after Ghobarah, A., 2004) 

The proposed design method aims to superimpose the concepts described by 

Figures 2-2 and 2-3, by developing a relationship between the maximum roof 

IDR 
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displacement and the IDR at various performance levels, that can be used to calculated 

more rational values of the R-factor associated with different target performance levels 

employing Equation (3.1).  

3.4 PROCEDURAL STEPS OF THE PROPOSED HFD METHOD  

This section presents the steps of the proposed HFD design method. They are 

based on the procedure described by Tzimas et al. (2013) for steel frames after being 

appropriately adjusted for extension to the present case of RC MRFs, and are 

summarized as follows: 

1.  Definition of building attributes 

Some building characteristics such as the number of stories, nF, and the number 

of bays, nB, are identified. Code’s criteria for application of the FBD method are 

checked, for example, regularity in plan and elevation. 

2. Selection of performance levels 

Based on the stakeholders’ requirements and the building functional use, the 

designer selects the appropriate design performance levels. According to the PBD 

philosophy, a performance level is defined by a pair of a post-earthquake damage and 

functional state objective and a level of seismic action. For example, a common 

multiple performance objective is Immediate Occupancy (IO) under the frequently 

occurring earthquake (FOE), Life Safety (LS) under the design basis earthquake (DBE) 

and Collapse Prevention (CP) when the building is subjected to the maximum 

considered earthquake (MCE). The spectral acceleration associated with the DBE 

(Sa)DBE is the one given in seismic codes’ elastic response spectrum, while those 

corresponding to the FOE and MCE, (Sa)FOE and (Sa)MCE respectively, can be estimated 

from (Sa)DBE based on hazard studies.  

3. Definition of performance criteria 

Limiting values of the response parameter involved, i.e. IDRmax i, associated 

with each damage level are identified (i). These limits can be based on performance-

based guidelines for example FEMA-273 (1997a) or FEMA-356 (2000). 
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4.  Estimation of the maximum roof displacement  

Using the limiting values of IDR, the maximum roof displacement, r,max, is 

estimated for each performance level “i”, using a relationship that will be developed in 

the subsequent chapters, given as: 

 (r,max)i= f(IDRmax i, nF, nB, H)………………………….…………….……(3.2) 

where H is the total height of the building; IDRmax is the maximum inter-story drift ratio 

along the height of the building (for design purpose, it is set equal to the limiting values 

obtained in step 3); and nF and nB are defined in Step 1.  

5. Elastic design under the FOE 

Perform an elastic design of the frame with a force-reduction factor (R) = 1 only 

for strength requirement under the FOE, in order to obtain the resulting roof 

displacement as an estimate of the global yield displacement r,y. Gravity load 

combination, capacity design rules, and code stipulations for stiffness reduction to 

account for cracking should be accounted for. Alternatively, empirical equations for 

estimating IDR associated with first yield of RC frames can be used, such as those 

developed by Priestley (2000) based on beams dimensions. 

6. Calculation of the force reduction factor, R 

Based on equation (3.1), the R- factor is calculated for each performance level 

“i”, using input from steps 4 and 5, as follows: 

Ri = (r,max)i / r,y…………………………………………………….….….(3.3) 

where Ri represents the force reduction factor that will bring the elastic level spectral 

forces corresponding to the defined performance “i” to the design level forces. The most 

critical case will be the Ri resulting in the highest design level forces. In order to select 

the most critical (smallest) R-factor for various performance levels, one should convert 

the R-factor to its DBE equivalent, by multiplying it by the ratio of the spectral 

acceleration corresponding to the DBE, (Sa)DBE, to the spectral acceleration 

corresponding to the concerned performance level. For example, in case of the 3-level 

performance objective stated in Step 2, the most critical R-factor (to be applied to the 
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code elastic response spectrum corresponding to the DBE) will be 

𝑅𝑐𝑟 = The smallest of (𝑅𝐿𝑆, 𝑅𝐼𝑂
(𝑆𝑎)𝐷𝐵𝐸

(𝑆𝑎)𝐹𝑂𝐸
 , 𝑅𝐶𝑃

(𝑆𝑎)𝐷𝐵𝐸

(𝑆𝑎)𝑀𝐶𝐸
 ) …………….…….(3.4) 

where Rcr is the most critical force reduction factor to be applied to the DBE; RIO is the 

force reduction to be applied to the FOE to satisfy the IO performance level; RLS is the 

force reduction factor to be applied to the DBE to satisfy the LS performance level; and 

RCP is the force reduction factor to be applied to the MCE to satisfy the CP performance 

level.  

7. Design of the structure 

The chosen Rcr-factor is used to derive the design spectrum from the 5% 

damping elastic acceleration response spectrum provided in the code, then the base 

shear forces are calculated and distributed following the conventional force-based 

method and employing the same capacity and design rules.  

3.5 DEVELOPMENT METHODOLOGY 

The extension of the HFD design method to RC MRFS relies principally on the 

derivation of the relationship between maximum roof displacement and inter-story drift 

ratio (damage metric) in terms of some structural attributes as described by equation 

(3.2).  This relationship should be based on appropriate modeling of the nonlinear 

behavior of concrete structures, in order to properly account for inelastic displacement 

behavior. Figure 3-4 summarizes the methodology undertaken in the subsequent 

chapters to develop such equations. First, prototype RC frame buildings with varying 

geometrical properties are selected for the study. Nonlinear time-history analysis is 

chosen to simulate the performance of these buildings under increasing levels of 

earthquakes. Based on limiting values of the damage metric chosen (IDR) which can 

be obtained from performance-based guidelines, the scale factor corresponding to the 

selected study performance levels are identified. The displacement response of the 

structures at the identified performance levels are post-processed and analyzed. The 

parameters affecting the maximum roof displacement relation to IDR are studied. 

Finally, nonlinear regression is performed, using the identified parameters as variables, 

in order to develop an estimate equation for the maximum roof displacement at various 



 
Chapter 3 

57 

performance levels. The estimate equation is converted to prediction charts that can be 

used in the context of the HFD design method, at Step 4 of the procedure described in 

the previous section.  

 

Figure 3-4 Flowchart for the methodology of development of displacement prediction 

equations for RC MRFs to be used in the context of the HFD design method. 
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 NONLINEAR TIME HISTORY ANALYSIS 

4.1 INTRODUCTION 

In order to be able to use the maximum roof displacement as a starting design 

variable in the context of the proposed HFD methodology, there is a need for 

development of relationships between roof displacement and damage potential for 

variable geometrical attributes and performance levels. Such relations should be 

independent of the frame sections to be used at the initial design stage.  Analytical 

models are more suited for this purpose because otherwise full-scale models with 

varying parameters would be needed which would render experimental work 

prohibitively expensive. Also, simulation testing usually involves errors in estimating 

displacement because acceleration signals are measured and processed to arrive at 

displacement equivalents. Therefore, nonlinear time-history analysis remains the best 

approximation of reality when examining seismic displacement response.  This chapter 

describes the methodology undertaken for numerical analysis. First, the prototype 

buildings chosen for study are defined with their geometry, structural system and design 

assumptions. Then, the analysis program used for time history analysis is presented 

with details of nonlinear modeling and assumptions, followed by the selection and 

scaling of ground motion records. Finally, the incremental dynamic analysis procedure 

is explained together with the output of this stage.  

4.2 DESCRIPTION OF PROTOTYPE BUILDINGS 

4.2.1 General Description and Geometrical Configuration 

Nine prototype buildings, representative of the range of mid-rise building stock 

in Egypt, are selected to generate the displacement relations needed for application of 

the HFD method for RC structures. The buildings are assumed to have a constant floor 

height of 3.0 m and bay width of 6.0 m, with the number of floors and bays being varied 

as 4, 7 and 10 floors, and 3, 5 and 7 bays, respectively. The structural system chosen is 

moment-resisting frames (MRFs) since it reflects the type of concrete construction 

commonly used in Egypt, and as its design is generally more controlled by drift 
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limitations than shear wall systems or combined systems, and as discussed earlier, drift 

ratio is the response of interest in the proposed method. Office use and symmetrical 

square layouts are assumed to maintain generality in the developed findings. The 

prototype buildings’ configurations and notations are summarized in Table 4-1, and 

their elevations are presented in Figure 4-1.  

Table 4-1 Prototype Buildings’ description and notation 

Structure reference Number of stories Number of bays 

F04B3 4 3 

F04B5 4 5 

F04B7 4 7 

F07B3 7 3 

F07B5 7 5 

F07B7 7 7 

F10B3 10 3 

F10B5 10 5 

F10B7 10 7 

 

Figure 4-1 Elevations of the prototype frames 
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4.2.2 Design Details and Assumptions 

The buildings are designed and detailed to resist combination of gravity and 

seismic loads, according to the Egyptian Code of Practice ECP-203 (2007), and ECP-

201 (2012), which is fundamentally in line with the regulations of Eurocode 8 (EN 

1998-1, 2004), a typical modern seismic code applicable to many countries with 

different seismicity, soil conditions, and construction practice. The buildings are 

assumed to reside in the highest seismic zone in Egypt (Zone 5B), with a peak ground 

acceleration (PGA) of 0.3g.  The reason for the selection of this design peak ground 

acceleration, despite Zone 5B just covering secluded areas of the country, is to provide 

some generality in the results. This value would correspond to merely a medium seismic 

hazard in other highly seismic locations in the world like California in the United States 

Also, choosing this high seismicity serves to magnify the seismic effects in order to 

attain significant difference between nonlinear and linear behavior.  

For gravity loading, the considered dead load comprises the self-weight of the 

concrete structural elements, a typical floor finishing of 1.5 kN/m2, and weight of 

masonry infill panels of 120- and 250-mm thickness on interior and exterior beams, 

respectively with a density of 18 kN/m3. A live load of 3.0 kN/m2 is also included. For 

seismic design, the lateral load resisting system is chosen as a space frame. The 

acceleration elastic response spectrum for shallow crustal earthquakes in non-

Mediterranean areas is adopted known as Type 1 in ECP-201 (2012), and as Type 2 in 

EC8 (EN1998-1, 2004), for a "Soil Class C" which is soft soil, or dense or medium-

dense sand, gravel or stiff clay as given in ECP-201(2012) and EC8 (EN1998-1, 2004). 

The design spectrum is scaled by an “Importance factor” of 1.2 to reflect the added 

conservatism for public office buildings. Based on the norm and know-how of 

reinforcement detailing in Egypt and many other countries with similar low-to-

moderate seismicity, limited ductility frames are chosen and thus, a FRF with a value 

of 5 is used in the design. Characteristic material properties are utilized, and they are 

presented in Table 4-2 using units consistent with those that will be used in the program 

for nonlinear time-history analysis, as noted in Section 4.3.2.4.  



 
Chapter 4 

61 

Gravity and seismic loading are combined using the appropriate coefficients 

from ECP-203 (2007), so the buildings are designed to satisfy both of the following 

code’s combinations: 

U1 = 1.4D + 1.6L ……………………………………………………….….(4.1) 

U2 = 1.12D + αL + S …………………………………………………….....(4.2) 

Where  

U : ultimate load  

D: dead load  

L : live load  

S : Seismic load  

α: live load factor representing the live load percentage existing during 

earthquakes and taken as 0.5 for public and office buildings. 

The only capacity design rule applied is that resulting from the prescribed 

reduction in effective flexural stiffness of members where the stiffness reduction for 

beams (50%) is higher than that for columns (30%). All floors are assumed to have a 

solid rigid slab with a constant thickness of 150 mm, and columns are selected to have 

a square cross-section and to be symmetrically reinforced on the four sides, in order to 

have equal resistance to the changing direction of earthquake loading. The 

reinforcement is selected minimally according to the structural analysis and code 

requirements, to avoid overstrength and unnecessary margins reflecting personal 

designers’ choices. Member cross-section sizes and reinforcements are summarized in 

Table 4-3,  

 Table 4-2 Properties of materials employed in design and time-history analysis 

 Material parameter Values used 

C
o

n
cr

et
e 

28d compressive cube strength, fcu 25 N/mm2 

Modulus of elasticity, Ec 22 kN/mm2 

Poisson’s ratio 0.2 

S
te

el
 

(3
6

/5
2

) 

Yield strength, Fy 360 N/mm2 

Ultimate strength, Fu 520 N/mm2 

Modulus of elasticity, Es 206 kN/mm2 
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Table 4-3 Member dimensions and reinforcement of the prototype frames 

Building 
Floor 

# 

Outer Columns  Inner Columns  Beams (width =250mm)  

Size 

(mm) 

Rein-

forcement  

 Size 

(mm) 

Rein-

forcement 

 Depth 

(mm) 

Top    

Rein-

forcement 

Bottom      

Rein-

forcement 

 

4-story 1-4 450 8 22  600 16 20  750 8 18 4 18  

7-story 
1-4 550 12 20  650 16 22  750 7 20 3 20  

5-7 450 8 22  450 8 22  650 7 18 5 16  

10-story 

1-4 650 20 22  750 20 22  750 7 20 3 20  

5-7 550 12 22  650 16 22  650 6 20 3 20  

8-10 450 8 22  400 8 20  600 7 16 3 18  

The following are the assumptions considered in this design stage: 

1. Floor diaphragms are sufficiently rigid relative to the lateral force resisting system, 

so they distribute the seismic load among the MRFs without significant 

deformation. 

2. A change in sections of beams and columns every three stories has been adopted as 

a representative choice of concrete design practice. 

3. Due to symmetry, only MRFs in the X-direction are studied and vertical 

accelerations are ignored. 

4. Columns are designed for combinations of axial compression and moments due to 

the framing action, using the interaction diagrams.  

5. Beam-column joint shear deformations are neglected. 

6. Only torsion due to accidental eccentricity is considered due to symmetry.   

7. Combined shear and torsion effect is neglected. 

8. Lateral loads due to wind are not considered in the design. 

9. Masses are distributed on structural elements following the dead load distribution.  

10. Non-structural elements are fixed so as not to interfere with structural response. 

11. No-second order effects (P-delta effects) are taken into consideration at the design 

stage (however they are considered in the nonlinear time history analysis presented 

in the sequel) 
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4.3 NONLINEAR TIME-HISTORY ANALYSIS  

4.3.1 Theoretical Basis  

Time history analysis (THA) is chosen for the numerical study because it uses 

real-representation of earthquakes in the form of ground motion time-history 

acceleration records as the applied loading, and therefore is considered the closest 

simulation of reality and actual structural loading. In THA, elements can be modelled 

as elastic (linear time-history analysis) or inelastic (nonlinear time-history analysis), 

with the latter being more rigorous, especially when employing materials of nonlinear 

nature like RC.  Despite having the prospect of providing the most accurate results due 

to the realistic modeling of loading, the response (displacement or force) is typically 

sensitive to the choice of ground motion record applied and therefore several time-

history runs are mandated for each structural analysis case, using different earthquake 

records. Also, because the procedure is considerably lengthy and complex, substantial 

effort and special precaution is required in the processing of input and output data.  

Numerical-wise, THA provides the solution to the fundamental equation of 

motion, which defines the dynamic response of structures, at selected time steps for a 

defined duration, as given by 

[𝑀]{𝑎𝑡} + [𝐶]{𝑣𝑡} + [𝐾]{𝑢𝑡} = −[𝑀]{1}𝑎𝑔𝑡
 …………………………….(4.3) 

where all variables containing the “t” subscript are time-dependent and are defined as: 

[M] = Mass matrix 

{𝑎} = Acceleration vector 

[C] = Viscous damping matrix 

{v} = Velocity vector 

[K] = Structural stiffness matrix 

{u} = Displacement vector relative to the ground 

agt = Ground acceleration 

The solution is incrementally repeated in an iterative process until equilibrium 

is achieved and then a step-wise numerical integration scheme is employed to solve the 

system of equations of motion at each time step (Chopra, 1995). The analysis time-step 
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is usually initially specified as the same time-step of the applied acceleration loading 

(ag), and if convergence is not realized, the analysis time-step is repeatedly reduced. In 

case of nonlinear analysis, the stiffness matrix is revised at each solution time-step (so 

it becomes also time-dependent) to reflect any variation in stiffness at the material, 

section, member or structure level.  

4.3.2 Analysis Program 

In this study, the analysis and simulation platform of the Mid-America 

Earthquake Center (MAE), called “ZEUS-NL”, is selected for nonlinear THA. ZEUS-

NL was developed at the Newmark Laboratories of the University of Illinois at Urbana- 

Champaign (Elnashai et al., 2003) specifically for earthquake engineering applications, 

and it was based on the analysis packages ADAPTIC (Izzuldin and Elnashai, 1989) and 

INDYAS (Elnashai et al., 2000) that were earlier developed at Imperial College in 

London.  The stability and robustness of ZEUS-NL in its present or previous forms 

have been extensively tested by many researchers during the past 20 years, including 

among others the work by Izzudin (1991), Madas and Elnashai, (1992), Elnashai and 

Elghazouli (1993), Broderick and Elnashai (1994), Martinez-Rueda (1997) and 

Lee(1999) The finite element code has been further validated against full-scale test 

results (Jeong and Elnashai, 2005), and against SAP2000 (Elnashai et al., 2004). It has 

been also formerly validated by the author (Elkassas, 2010).  

4.3.2.1 Pertinent features and advantages 

Because the current study requires analytical models capable of capturing the 

nonlinearity of the structure under extreme dynamic reversed cyclic loading, the use of 

ZEUS-NL is deemed quite applicable since it is specially developed for large 

displacement analysis of complex frames considering the effects of both geometric and 

material nonlinearities.  ZEUS-NL has the following relevant features:  

1. Ability to apply constant or variable loading as forces, displacements or 

accelerations, at supports or at nodes, and varying proportionally or independently 

in the time domain.   
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2. Ability to represent the spread of inelasticity within the member cross-section and 

along the member length through utilizing the fiber approach, which is described in 

Section 4.3.2.2.   

3. Ability to impose equilibrium in the deformed state of the structure and thus 

represent geometrical nonlinearity and P-delta effects. 

4. Several analysis options including constant static loading, conventional pushover, 

adaptive pushover, eigen-value, linear and nonlinear time-history and incremental 

dynamic analysis, of two-dimensional and three-dimensional structures. 

5. Ability to model really large structures, with thousands of nodes and elements.  

6. Completely visual and efficient user-interface including model templates and 

views, tables, plots, animation of modes, deformed geometry display as well as 

cross-platform support with Microsoft Excel for database editing.   

7. Expansive library of RC, steel and composite sections, and variety of well-tested 

material constitutive models, some of which used in the present work are discussed 

in Sections 4.3.4.1 and 4.3.4.2.  

4.3.2.2 Nonlinear modeling approach 

As mentioned earlier, ZEUS-NL uses the fiber analysis approach in modeling 

nonlinear behavior. This type of models, usually referred to as the distributed plasticity 

models, is  considered a middle ground  between the computationally efficient lumped 

plasticity models which represent inelasticity as a zero-length hinge with hysteretic 

properties, only at defined locations  at ends of elements (for example SAP2000 and 

ETABS) and continuum analysis which monitors stress-strain behavior through every 

single point of the entire structure (for example ABACUS and ANSYS). The latter is 

unquestionably the most accurate and powerful modeling method; however, because of 

its excessive computational demand, and difficulty in applying time-varying loads, it is 

more suitable for modeling individual members or sub-assemblages or at the maximum 

overly simple structures (El Tawil and Deierlin, 1996). The fiber modeling approach is 

often the method of choice for research about large displacement analysis of frame 

structures in the inelastic range. Its reliability in predicting response that compares well 
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to experimental and full-scale tests has been reported by several researchers (e.g. 

Broderick, 1994; Pinho, 2000; Casarotti and Pinho, 2006). 

In distributed plasticity models, cross-sections at specific integration points 

along the element length are divided into fibers where each fiber is associated with a 

uniaxial stress-strain relationship (constitutive model) for one material. The number of 

section fibers needs to be defined by the user and they usually range between 100 and 

200. During the entire multi-step analysis, making use of the Euler-Bernoulli 

assumption that plane sections remain plane after bending, fiber stresses are calculated 

from the fiber strains considering the migration of the position of the section neutral 

axis during the loading history. Then, sectional stress-strain state in the form of 

moment-curvature relationship is obtained through the integration of the nonlinear 

response of the individual material fibers over the cross-sectional area, thus fully 

accounting for the spread of inelasticity across the whole section depth. This is followed 

by integrating the section’s moment-curvature relationship along the length to obtain 

the moment-rotation response, thus simulating the distributed inelasticity along the 

member length. This discretization process is illustrated for an RC frame in Figure 4-2.  

Some of the advantages of the fiber element method are that: it directly 

simulates interaction between axial force and bending moment; it does not need any 

prior moment-curvature analysis of members; and it automatically accounts for 

concrete cracking and growth in crack length, as well as gradual progression of steel 

yielding through the member cross sections and lengths. However, cracking is only 

considered to be smeared and normal to the member axis, due to the plane section 

assumption. Also, local buckling of steel reinforcing bars or steel webs and flanges can 

be reasonably modeled by using a steel constitutive model that degrades the structural 

properties of the steel elements when they reach a certain critical buckling stress.  
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Figure 4-2 Fiber-element modeling of a reinforced concrete frame (after ATC, 2016) 

4.3.2.3 The solver 

This section briefly lists the algorithms used by ZEUS-NL for solution. For 

more information regarding the numerical details, the reader can be referred to the 

manual of the software (Elnashai et al., 2003). 

1. Equilibrium solution iterative strategy can be full or modified Newton-Raphson 

iterative procedures, where convergence can be defined either based on force-

moment or displacement-rotation criteria. 

2. In time-history analysis, integration of the nonlinear equations of motions is 

performed either using the unconditionally stable Newmark time integration 

method or the Hilber-Hughes-Taylor algorithm (Broderick et al., 1994). The more 

common Newmark integration algorithm was employed in the present study.  

3. Eigen-value analysis employing Lanczos algorithm for determination of natural 

frequencies and modes of vibration. 
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4.3.2.4 Limitations 

The following are some limitations of ZEUS-NL, and the corresponding 

adjustments in modeling when applicable: 

1. The program limits the user to only using the SI units of N-mm-sec.  

2. Analysis may result in extremely large output files, sometimes more than 500MB, 

and may take up to 20 hours of runtime. Initial run time-step is usually specified the 

same as the ground motion record time-step, however if convergence is not 

achieved, the time-step must be reduced and thus results in long processing time.  

3. Material constitutive models provided are based on the United States standard 

specimens for testing. Therefore, for example, the concrete compressive strength fcu 

assumed in the study based on the cube tests (as of common practice in Egypt) had 

to be converted to its cylindrical counterpart, where the cylinder strength was 

considered 20% less than the cube strength following the specifications of the  

ECP- 203 (2007), resulting in cylindrical compressive strength (fc) of 20 N/mm
2
. 

This same value was used in the calculation of confinement factors in Table 4.5 for 

input to the confined concrete model.  

4. The program uses only the classic displacement-based finite-element formulation 

(Hellesland and Scordelis, 1981; Mari and Scordelis, 1984) for fiber modeling, 

while it does not include the more recent force-based formulations (Spacone et al., 

1996; Neuenhofer and Filippou, 1997). In a force-based frame element, beam 

section forces are expressed in terms of the nodal forces through force shape 

functions, without restraining the displacement field of the element and therefore 

this formulation is exact within the small-deformation Euler-Bernoulli beam theory. 

While in displacement-based elements, beam displacements are expressed as 

functions of the nodal displacements using imposed shape functions (usually cubic), 

which consequently means linear curvatures that is not quite accurate because in 

case of nonlinear materials the curvature can be highly nonlinear. This limitation is 

solved by using high discretization in the modeling of each structural element, thus 

increasing the number of global degrees of freedom, to be able to accept the 

assumption of linear curvature inside each sub-element.  
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5. The program does not have the option of applying distributed load. To overcome 

this, distributed gravity loads are converted to concentrated loads at several loading 

points on a beam. Employing the concentrated load equivalents factors presented in 

Table 5-16 of the LRFD of AISC (2001), three nodes are defined dividing each 

beam element into quarters and then equivalent point loads are calculated as shown 

in Figure 4-3 (Bai and Heuste, 2007). However, in case of masses definition, the 

number of masses is further lumped to be placed only at beam-column connections, 

in order to reduce the size of the mass matrix and thus save computational demand 

in dynamic analysis.  

                 0.103 wL     0.265 wL    0.265 wL     0.265 wL     0.103 wL 

 

Figure 4-3 Equivalent point loads applied on beams

 
4.3.3 Modeling Assumptions 

The following are the assumptions considered in conducting nonlinear THA: 

1. Due to the symmetry of the buildings, only a two-dimensional frame for each 

prototype building is modelled to reduce the run time and simplify the post-

processing of results. 

2. The frames are assumed to be fixed at the foundation top level, therefore no soil-

structure interaction is considered. 

3. There is no history of nonlinear deformation where at initial conditions, 

displacement and velocities are zero. 

4. Accidental torsional effects are ignored in THA 
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5. Masses are assumed to be lumped at beam-column intersections. 

6. P-delta effects are included. 

7. Beam-column connection is modeled without rigid links or shear joints.  A study 

by Jeong and Elnashai (2004) validates this assumption, where they compared the 

results  of  ZEUS-NL numerical models  of a moment-resisting RC frame having   

different combinations of rigid links and shear joints or none at all, to those from a 

full-scale experimental model, and proved the viability of the models with no rigid 

links in  closely estimating actual experimental displacement results. 

8. Shear deformation of members are ignored. This assumption is supported by a 

comparative study between experimental results and numerical models on the older 

form of ZEUS-NL, ADAPTIC, which proved that the effect of inclusion of shear 

modeling on the displacement results is quite minor for members controlled by 

flexure such as those employed in the present study, and therefore they can be 

ignored (Elnashai et al., 1999; Lee, 1999).  

9. Modeling infill walls is not included in the nonlinear dynamic analysis, except for 

their masses considered. This decision is based on the following reasons:  infill 

walls usually get damaged at low drift values and thus their contribution to stiffness 

stops at relatively low seismic action (Bertero et al., 1988); when  infill walls alter 

the response of frames, it is usually in a quite unpredictable way that needs to be 

studied on a case-by-case basis based on their actual distribution; and  the effect of 

infill walls is not as critical on the displacement behavior, which is the core of this 

study, as it is on the stress behavior, where they create stresses by acting as 

compression struts that impart loads to the frame.  

4.3.4 Description of Nonlinear Model Input 

The following sections describe the input data and details of creating the 

nonlinear model. A detailed description of available elements and material models in 

ZEUS-NL is beyond the scope of this study. Only the element formulations and 

material models pertinent to the present work are briefly presented when applicable.  
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4.3.4.1 Material models 

i. Concrete model 

In this study, it is chosen to use the uniaxial nonlinear concrete model (program 

reference name: con2) presented in Figure 4-4 due its balance of simplicity and 

accuracy. The model was implemented by Madas and Elnashai (1992) adopting the 

constitutive relationship formulated by Mander et al. (1988) which has been validated 

against experimental values and recommended by several researchers (Kappos et al., 

1998); Rossetto, 2002). Additionally, it incorporates the improved cyclic rules 

proposed by Martinez-Rueda and Elnashai (1997) to predict the continuing cyclic 

degradation of strength and stiffness, and to achieve better numerical stability in case 

of large displacements analysis.  

 

Figure 4-4 Uni-axial constant-confinement concrete material model  

 

In the current study, each cross-section is defined by two separate concrete 

material models for the core concrete (confined) and cover concrete (unconfined). This 

model is valid for both confined and unconfined concrete, and for various cross-section 

shapes where it considers the increase in strength and ductility due to confinement. It 

assumes constant active confinement pressure throughout the entire stress-strain range, 

usually considered as the maximum confining pressure that occurs at yielding of 

transverse reinforcement.  Four calibrating parameters are required: compressive 



 
Chapter 4 

72 

strength, tensile strength, crushing strain and a confinement factor that is introduced to 

scale up the whole stress-strain curve. The associated values used in this work to fully 

describe the concrete material model are tabulated as follows (Table 4-4).  

Table 4-4 Input parameters for concrete uniaxial constant confinement model 

Parameter  Description       Values used 

fc  Unconfined 28d compressive strength            20 N/mm
2

 

ft  Tensile strength 2.2 N/mm
2

 

co  Strain at peak stress     0.002 (mm/mm) 

K  Confinement factor 
        1 (unconfined) 

        Table 4-5 (confined) 

The difference in stress-strain behavior between unconfined and confined 

concrete as described by Mander et al.  (1989) is represented in Figure 4-5. The main 

effect of increasing confinement, as attained by providing closer-spaced transverse 

reinforcement, is increasing the strain capacity of members. This is attributed to 

delaying the buckling of longitudinal reinforcement and restricting the lateral expansion 

of concrete, which thus allow sustaining more compression stresses (Mwafy, 2001).  

 

 
 

Figure 4-5 Unconfined and confined concrete monotonic stress-strain behavior (after 

Mander et al, 1989) 

The confinement factor is defined as the ratio of confined concrete strength (fcc) 

to unconfined concrete strength (fc), and its calculation based on the arrangement of 
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lateral and longitudinal reinforcement is described hereinafter. Confinement factors are 

calculated for all columns according to the following steps, and the results are presented 

in Table 4-5 where they ranged between 1.19 and 1.44. Beams are assumed unconfined 

in all cases (confinement factor =1) due to the limited effect of transverse reinforcement 

of beams in improving flexural deformation.  

STEP 1: The effective lateral confining stress (f1) that can be developed at yield of the 

transverse reinforcement is calculated by:  

f’lx=ke.x.fyh…………………………………............……………………...(4.4)  

f’ly= ke. y.fyh…………………………………………………...….……….(4.5)  

in the x and y directions respectively, where:  

x and y: are effective section area ratios of transverse reinforcement to core 

concrete cut by planes perpendicular to the x and y directions, respectively.  

ke: is a confinement effectiveness coefficient relating the minimum area of 

effectively confined core to the nominal core area bounded by the centerline 

of the peripheral hoops. This factor depends on the distribution of 

longitudinal steel and the resulting tie configuration and spacing. A typical 

value is provided by Pauley and Priestley (1992) as 0.75 for rectangular 

sections, which is used in this study. 

fyh : is yield stress of the stirrups. 

STEP 2: When the concrete core is confined by equal lateral confining stresses (i.e. 

f’lx= f’ly) as is the case for the symmetrically reinforced square columns employed in 

this study, Equations (4.4) and (4.5) make one equation that defines f’l, and the confined 

compressive strength of concrete is calculated as: 

𝑓𝑐𝑐 = 𝑓𝑐 (−1.254 + 2.254√1 +
7.94𝑓′𝑙

𝑓𝑐
− 2

𝑓′𝑙

𝑓𝑐
)…………………………...(4.6) 

Therefore, the confinement factor is given by: 

𝐾 = (−1.254 + 2.254√1 +
7.94𝑓′𝑙

𝑓𝑐
− 2

𝑓′𝑙

𝑓𝑐
)……………………………....(4.7) 
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where: 

fcc: confined concrete strength 

fc: unconfined concrete strength 

Table 4-5 Calculations of confinement factors of columns for model input 

Building 

Reference 

Floor Column 

location 

Column 

section 

Dimension 

(mm) 

Core 

Dimension 

(mm) 

Spacing 

between 

stirrups 

(mm) 

No. of 

stirrup 

legs 

Transverse 

RNF area 

(mm2) 

 

(10-3) 

ke f’1 K 

F04B3 

F04B5 

F04B7 

1-4 

Outer 
Middle 450 392 200.0 8.00 402.1 5.1 0.75 0.92 1.29 

End 450 392 142.9 8.00 402.1 7.2 0.75 1.29 1.39 

Inner 
Middle 600 542 200.0 8.00 402.1 3.7 0.75 0.67 1.21 

End 600 542 142.9 8.00 402.1 5.2 0.75 0.93 1.29 

F07B3 

F07B5 

F07B7 

1-4 

Outer 
Middle 550 492 200.0 9.33 469.1 4.8 0.75 0.86 1.27 

End 550 492 142.9 9.33 469.1 6.7 0.75 1.20 1.37 

Inner 
Middle 650 592 200.0 8.00 402.1 3.4 0.75 0.61 1.20 

End 650 592 142.9 8.00 402.1 4.8 0.75 0.86 1.27 

5-7 
Outer 

&Inner 

Middle 450 392 200.0 8.00 402.1 5.1 0.75 0.92 1.29 

End 450 392 142.9 8.00 402.1 7.2 0.75 1.29 1.39 

F10B3 

F10B5 

F10B7 

1-4 

Outer 
Middle 650 592 200.0 8.80 442.3 3.7 0.75 0.67 1.22 

End 650 592 142.9 8.80 442.3 5.2 0.75 0.94 1.29 

Inner 
Middle 750 692 200.0 8.80 442.3 3.2 0.75 0.58 1.19 

End 750 692 142.9 8.80 442.3 4.5 0.75 0.81 1.25 

5-7 

Outer 
Middle 550 492 200.0 9.33 469.1 4.8 0.75 0.86 1.27 

End 550 492 142.9 9.33 469.1 6.7 0.75 1.20 1.37 

Inner 
Middle 650 592 200.0 8.00 402.1 3.4 0.75 0.61 1.20 

End 650 592 142.9 8.00 402.1 4.8 0.75 0.86 1.27 

8-10 

Outer 
Middle 450 392 200.0 8.00 402.1 5.1 0.75 0.92 1.29 

End 450 392 142.9 8.00 402.1 7.2 0.75 1.29 1.39 

Inner 
Middle 400 342 200.0 8.00 402.1 5.9 0.75 1.06 1.33 

End 400 342 142.9 8.00 402.1 8.2 0.75 1.48 1.44 

 

 

ii. Steel model 

A bilinear (elasto-plastic) model with kinematic strain-hardening (program 

reference name: stl1) is employed in the current study to model the inelastic response 

of steel longitudinal bars of the RC beam-column elements. Using this simple bilinear 

uniaxial relationship have been demonstrated to correlate well with experimental results 

as verified by many researchers, for example Bursi and Ballerini (1996) and Salari et 

al. (1998).  As depicted in the model in Figure 4-6, a linear function expresses the elastic 

range and unloading phase and is defined by a constant value which is the Young’s 

modulus of steel. In the post-elastic range, a kinematic hardening rule for the yield 

surface is assumed and represented by a linear function of the initial stiffness (Elnashai 

and Elghazouli, 1993; Elnashai and Izzudin, 1993). Three input parameters are required 

to define this model and the associated values utilized in the present work are presented 

in Table 4-6. 
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Figure 4-6 Uniaxial elasto-plastic steel model with kinematic strain-hardening  

 

 

Table 4-6 Input parameters for uniaxial bilinear steel model with kinematic strain hardening     
 

 

 

 

 

 

 

4.3.4.2 Cross-sections  

The cross-sections of each element are defined based on their design details and the 

material models chosen, where confined concrete is used for the concrete core, 

unconfined concrete for the concrete cover, and steel for the reinforcing bars. In order 

to account for the slab contribution to beam stiffness and strength, all beam sections 

are modeled as T-section with effective flange width equals to threefold the slab 

thickness on each side, corresponding to the specifications of ECP-203 (2007) in case 

of seismic loading and amounting to 1.15m. Columns are modeled using square 

section. ZEUS-NL built-in section models rcts (RC T-section) and rcrs (RC 

Rectangular section) are used to model beams and columns respectively as shown in 

Figure 4-7. Each structural member is modeled using several elements having different 

cross sections to reflect the change in reinforcement detailing along the member length, 

as previously presented in section 4.2.2. The cross-section definition covers the actual 

Parameter Description Values used 

E Young’s modulus 205900 N/mm2 

y Yield strength 360 N/mm2 

 Strain hardening parameter 0.005 

4.1.1.1  
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arrangement of longitudinal reinforcement while the arrangement of transverse 

reinforcement is approximated through the confinement factor in the constitutive 

material model as discussed earlier. Figure 4-7 also illustrates the discretization of the 

cross-section into fibers at the material level. The accuracy of the model increases as 

the number of fibers discretization increases; thus, it was chosen to use 200 monitoring 

points per section to monitor nonlinear behavior.  

 

Figure 4-7 Cross sections used in modeling beams and columns 

 

4.3.4.3 Element formulations 

ZEUS-NL requires definition of three classes of elements for model building in 

case of THA. These are: 

▪ Beam-column elasto-plastic element, to model frame elements 

▪ Rayleigh damping element, to model viscous damping of the structure 

▪ Lumped mass element, to model masses at beam-column joints 

 

i. Beam-column elasto-plastic element 

A 3-D cubic elasto-plastic element formulation is applied to model the spatial 

behavior of both column and beam elements accounting for inelasticity across element 

depth and length (Izzudin and Elnashai, 1993). As the name implies, this elasto-plastic 
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element utilizes a cubic shape function to provide the transverse displacement as shown 

in Figure 4-8, where this function is given by: 

…………………………………......(4.8) 

 

Figure 4-8 Forces and displacements of the cubic formulation for the beam-column element 

 

For evaluation of the element forces and displacement, numerical integration of 

the cubic formulation equation is performed at two Gauss integration points whose 

location is depicted in Figure 4-9. The cross-section at each Gauss point is divided into 

a number of monitoring areas as discussed earlier, where the appropriate material 

constitutive model is applied, and strains and stresses are monitored and then integrated 

to model the response of the whole element cross-section and length employing the 

fiber approach as discussed in Section 4.3.2.2. Due to the limitation of the element 

having a displacement-based formulation as aforementioned in section 4.3.2.4, and also 

having just two integration points, short length elements are used in order to ensure 

reasonable accuracy in inelastic modeling.  

 

Figure 4-9 Locations of the two Gaussian sections 

ii. Rayleigh damping element 

Rayleigh damping elements are selected to model equivalent viscous damping 

in the structure which can result from friction in concrete opened micro-cracks and 

interaction of nonstructural elements. Although, this damping part is rather small 
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compared to the more important hysteretic damping due to inelastic behavior and 

yielding (which is already implicitly accounted for within the nonlinear material models 

which allows energy dissipation though cyclic loading), it is chosen to still employ 

some viscous damping in order to provide numerical stability, where the damping 

matrix results in stabilizing the system of equations of motion. It is chosen to model 

Rayleigh damping as only stiffness proportional, and without mass-proportional 

damping. This decision is supported by the work of Pegon (1996), Wilson (2001), 

Abbasi et al. (2004) and Hall (2006), which argued that mass-proportional damping 

generally causes excessively unrealistic energy dissipation when a structure is not 

sensitive to rigid body motion. Additionally, because the support of the building is not 

restrained in the direction of loading of earthquake, using mass proportional damping 

will lead to wrong results because it will be applied to the absolute velocity rather than 

the relative velocity.   

For this end, stiffness-proportional Rayleigh damping coefficient is calculated 

based on the periods of the structure in the first two modes of significant mass 

participation (Chopra, 1995). Although the Egyptian Code of Practice ECP-201 (2012) 

provides the design spectrum based on 5% first mode critical damping, this percentage 

also indirectly comprises the effect of inelastic behavior, which is covered in the 

material models in nonlinear analysis. Smyro, Priestly and Carr (2012) has proposed 

using reduced damping ratio for the first-mode of vibration than the rest of the modes 

in order to avoid excessive unrealistic damping in the post-yield phase. A popular fiber 

-element THA program, Seismostruct (Seismsoft, 2013), recommends using values of 

4% and 6% in the first and second mode respectively. However, in the present study, 

for added conservatism, only 2% critical damping in the first mode is considered 

following the code provisions for wind load analysis in which structures are assumed 

to behave completely elastically, while 5% of critical damping is assumed in the second 

mode,  

The Rayleigh damping element in ZEUS-NL requires input of two parameters: mass-

proportional (α) and stiffness-proportional () damping coefficients. Since mass-

proportional damping is ignored, its coefficient is input as zero, while the coefficient of 

stiffness-proportional damping is calculated following equation (4.9) (Clough and 
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Penzien,1993), and as presented in Table 4-7. It should be noted that the periods used 

in calculating the stiffness-proportional damping coefficient are based on un-cracked 

sections, because cracking and stiffness reduction is considered in the nonlinear 

analysis itself and thus only the initial stiffness is used in the damping parameters 

calculations 

 =
2𝑖𝑖−2𝑗𝑗

𝑖
2−𝑗

2 ……………………………………………………….……(4.9) 

Table 4-7 Stiffness-proportional damping coefficients used in the prototype buildings 

Building 

Reference 

T1 (s) T2 (s) 1  

 (rad/s) 

2  

(rad/s) 

1 2  

F04B3 0.451 0.147 13.93 42.68 0.02 0.05 0.00228 

F04B5 0.442 0.143 14.22 43.86 0.02 0.05 0.00222 

F04B7 0.438 0.142 14.35 44.11 0.02 0.05 0.00221 

F07B3 0.749 0.292 8.39 21.49 0.02 0.05 0.00463 

F07B5 0.745 0.295 8.44 21.32 0.02 0.05 0.00478 

F07B7 0.744 0.295 8.45 21.26 0.02 0.05 0.0047 

F10B3 1.015 0.392 6.19 16.05 0.02 0.05 0.00619 

F10B5 1.005 0.396 6.25 15.86 0.02 0.05 0.00629 

F10B7 1.001 0.399 6.28 15.76 0.02 0.05 0.00634 

 

iii. Lumped mass element 

Since the current work focuses on estimating structural global responses (like 

roof drift) rather than local stress state of members, masses are represented by lumped 

2D mass elements at beam-column intersections in dynamic analysis, in order to reduce 

computational demand.  

4.3.4.4 Nodes and mesh configuration 

After defining the element classes, the mesh configuration of the model is 

addressed. Apart from the nodes required to define the geometry of the buildings, where 

each structural node is restrained out-of-plane and support nodes are fully fixed except 

in the direction of acceleration loading, additional nodes are required as follows:  
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▪ To allow application of equivalent gravity point loads, as discussed in Section 

4.3.2.4 (point 5) 

▪ To reflect changes in cross-section reinforcement along the member length 

▪ To ensure proper discretization of each member into several short elements for 

accurate capturing of inelastic action by providing more elements near member 

edges where dissipative zones are expected, as explained earlier in Section 4.3.2.4 

(point 4) and Section 4.3.4.3 (i).  

• To define the orientation of local axis of elements, using one extra non-structural 

node for each element, therefore each element is designated using two structural 

nodes at its two ends, and one nonstructural node.  

These meshing criteria resulted in modeling beams and columns employing 10 and 7 

elements, respectively. Figure 4-10 presents the discretization in the F04B3 building as 

an example. 

 

Figure 4-10 Meshing of the elements  
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4.3.5 Eigenvalue Analysis 

Before conducting THA, eigenvalue analysis is performed to determine the 

periods and mode shapes of vibration of the prototype buildings. The analysis is done 

using the same model input files and element discretization (except for employing 

linear material models) so that it can additionally serve as a first insight into the validity 

of the analytical models before executing the rigorous nonlinear analyses, by showing 

their deflected shapes under free vibration.  Two sets of modal analyses are performed, 

as follows: 

1. Using cracked section properties, pursuant to the provisions of the Egyptian design 

code, ECP-201 (2012), where the stiffness of beams and columns is reduced by 

50% and 30% respectively. The results are used for validation purposes and for 

comparing to the fundamental period values using the empirical formulae provided 

in the code.   

2. Using uncracked section properties. The results are used for calculation of the 

parameters of the Rayleigh damping element as formerly explained in section 

4.3.4.3 and presented in Table 4-7.   

Cubic elastic elements (program reference name: stl0) with a cubic shape 

function for estimating transverse displacement is used which requires a single 

parameter input, the modulus of elasticity. This formulation accounts for geometric 

nonlinearities but doesn’t account for material inelasticity. Code stipulated member 

stiffness reduction to account for cracking is accomplished by reducing the moduli of 

elasticity for each member with their respective factor, using the base concrete modulus 

of elasticity “Ec” predefined in Table 4-2. T-sections (symmetrical I or T section: sits) 

are used to model beams and square section “Rectangular solid sections: rss) to model 

columns, where the slabs contribution to beam stiffness and strength is reflected by the 

T-section effective flange width. The cross-sections and material properties employed 

are shown in Figure 4-11.  
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(a) (b) 

Figure 4-11 Elastic model cross sections and materials for (a)beams ;(b) columns 

 

From the modal analysis, it is verified that all prototype buildings satisfy the 

regularity criteria provided by ECP-201 (2012) for application of the equivalent static 

load method for analysis, where they are regular in plan and elevation, and vibrate 

predominantly in the first mode with a period of less than any of 4.0 Tc (where Tc= 0.25 

for soil Type C) and 2.0 seconds. A summary of the outcome of this modal analysis is 

shown in Table 4-8. Although the behavior of the frames is dominated by the first 

translational mode, there is some contribution of higher modes that increases with 

increasing height as indicated by the modal mass participation factor. It is clear that the 

periods are directly related to the height of the structure, where the longest period is for 

the tallest 10-story buildings while the shortest period is for the stiffest and shortest 4-

story 7-bays building. The effect of the number of bays is quite insignificant. The 

periods resulting from the modal analysis are in general longer than that calculated 

using the code empirical equation (ECP-201, 2012) because cracked sections are used, 

and the effect of infill walls are ignored which results in overestimated periods.  
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Table 4-8 Modal Analysis Results 

Building  

(T=0.075H0.75) 

Modal Period (sec) / Mass Participation Factor(%) 

Mode Shape 

1st mode 2nd mode 3rd mode 

F04B3 

 
0.582/ 95 

 

0.186/ 4.25 

 

0.106/ 0.79 

 
F04B5 0.57/ 95 

 

0.182/ 4.08

 

0.103/ 0.74 

 
F04B7 0.565/ 95 

 

0.18/ 3.99 

 

0.102/ 0.71 

 
F07B3 0.969/ 92 

 

0.374/ 5.99 

 

0.204/1.29 

 
F07B5 0.965/ 92 

 

0.377/ 5.83 

 

0.207/ 1.23 

 
F07B7 0.964/ 92 

 

0.378/ 5.76 

 

0.209/ 1.2 
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Table 4-8 Modal Analysis Results (continued) 

Building  

(T=0.075H0.75) 

Modal Period (sec) / Mass Participation Factor(%) 

Mode Shape 

1st mode 2nd mode 3rd mode 

F10B3 1.325/ 90 

 

0.503/ 7.25 

 

0.3/ 1.67 

 
F10B5 1.311/ 90 

 

0.509/ 7.06 

 

0.305/ 1.62 

 

F10B7 1.306/ 90 

 

0.512/ 6.97 

 

0.307/ 1.59 

 
 

4.3.6 Seismic Input and Selection of Ground Motion Records 

The accuracy of the results of inelastic THA relies mostly on the competence of 

the employed earthquake representation. In order to properly benefit from the rigorous 

refined modelling approach endorsed in the present study, the seismic input must be 
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carefully selected. It is well established that structural response is highly sensitive to 

individual earthquake characteristics, therefore several ground motion records must be 

used for each prototype building model for effective assessment of seismic response. 

With interest in response induced from general earthquake loading for future code 

applications, the adopted approach for specifying seismic input for THA does not need 

to be strictly site-specific, and thus it is selected to use an ensemble of artificial 

accelerograms (acceleration time history ground motion  records), with a single 

criterion which is compatibility of their 5% damped elastic spectra with the code 

spectrum used in the seismic design of the buildings over the period range of 

significance. Using artificial records provide the advantage of best fit to target spectrum 

as well as limiting the variability in results. In this study, it is opted to use a suite of 

seven ground motion records, and then to average the results pertinent to the provisions 

of ECP-201 (2012) for THA. The code also permits using only three ground motion 

records while considering the maximum of their results, nevertheless many researchers 

have pointed to the bias created when relying on the maximum response because it still 

reflects a single earthquake action. 

Seven 20-seconds artificial accelerograms are generated using the program 

SIMQKE (Gasparini and Vanmarcke, 1976) such that their average matches the ECP-

201 (2012) “Type 1” elastic response spectrum for soft soil class “Type C”.  This 

software code constructs a time history record from a given spectrum by smoothing the 

spectrum and building a power spectral density function for it and then creating 

sinusoidal signals of random amplitudes and phase angles. The records are selected to 

have reasonable variability of frequency and energy content to reduce the bias in 

response. The software SEISMOSIGNAL (Seismosoft, 2008) is used to evaluate some 

of the characteristics of the generated records, where maximum acceleration to 

maximum velocity (A/V) ratio serves as an energy content indicator, and the earthquake 

predominant period, Tp, as a frequency content indicator.  Characteristics of the records 

that have been used with their reference notation are given in Table 4-9, while their 

acceleration response spectra for 5% damping as matched to the code spectrum (Type 

(1) for zone 5B and soil type C) are shown in Figure 4-12.  Figure A.1 in Appendix A 

depicts each separate unscaled artificial ground motion time-history record, with its 

corresponding 5% damped elastic spectrum as compared to the code spectrum. 
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Table 4-9 Characteristics of selected artificial ground motion records 

Earthquake reference Predominant period (Tp) Amax/Vmax 

EQ1 0.26 11.2 

EQ2 0.12 8.6 

EQ3 0.2 13.9 

EQ4 0.28 9.4 

EQ5 0.18 11.8 

EQ6 0.16 14.1 

EQ7 0.22 10.5 

 
Figure 4-12 5% damped spectra of the selected artificial ground motion (GM) records 

compared with the target spectrum 

 

For input in ZEUS-NL, the records are scaled by 9810 (g × 1000) to be 

consistent with the program system of units and by 1.2 reflecting the importance factor 

(1=1.2) used in design of buildings category III of public use. This approach follows 

the recommendations of ECP-201 (2012) and EC8 (EN1998-1, 2004 in including the 

importance factor in scaling the records themselves rather than the elastic response 

spectrum used in generating the records. It should be noted that the records scaled by 

the importance factor are considered the base case i.e. Scale factor=1, when performing 

incremental dynamic analysis described hereinafter.  
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4.4 INCREMENTAL DYNAMIC ANALYSIS 

In order to derive maximum displacement expressions for RC frames 

corresponding to different levels of performance, it is required to study each prototype 

structure under various levels of seismic actions to investigate the factors that influence 

its maximum displacement pattern. This type of parametric analysis involving the 

extension of a single nonlinear THA into an incremental one by progressively scaling 

the seismic load is generally referred to as “Incremental Dynamic Analysis” (IDA). The 

scaling interval and limit is selected to adequately push the structure through the entire 

range of behavior under study, from elastic to inelastic and finally to collapse (or close 

to collapse). IDA concept has been first mentioned by Bertero (1977), and then has 

been developed in different ways by many researchers including among others, the 

work of Bazurro and Cornell (1994), Mehanny and Deierlein (2000), Nassar and 

Krawinkler (1991), and Psycharis et al. (2000). Lately, it has been established by the 

U.S. FEMA guidelines as the state-of-the-art method to determine global collapse 

capacity and nowadays for studying the change in nature of structural response as the 

intensity of ground motion increases. Appropriate postprocessing can present the 

structural response results as IDA curves, for each ground motion record, of the 

structural response parametrized by a seismic intensity level. According to the 

terminology used in next-generation Performance-based Earthquake Engineering 

guidelines, as depicted in the PEER framework in Figure 2-5 in Section 2.2.32. of 

Chapter 2, the structural response is measured by an engineering demand parameter 

(EDP), while the seismic intensity level is represented by an Intensity Measure (IM). 

Therefore, the resulting IDA curves are representation of IM versus EDP. The selected 

IM and EDP are discussed in the following sections.  

4.4.1 Intensity Measure and Scaling 

In Incremental dynamic analysis, possible choices for the Intensity Measure are 

the peak ground acceleration (PGA), peak ground velocity (PGV) and the 5%-damped 

spectral acceleration at the first-mode period of the structure (Sa(T1)). The latter is the 

most widely used IM measure used to scale the ground motion by multiplying its 

amplitude by a constant scalar factor necessary to reach a target spectral acceleration 

https://en.wikipedia.org/wiki/Peak_ground_acceleration
https://en.wikipedia.org/wiki/Peak_ground_velocity
https://en.wikipedia.org/wiki/Spectral_acceleration
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level at the fundamental natural period of the structure (Shome et al., 1998; Bradley et 

al., 2008). However, Sa(T1) has a major deficiency when used in analysis involving high 

excursion into the inelastic response range, where it does not consider the elongation 

of the first modal period of vibration as a result of nonlinear behavior. Also, it has been 

proved by Shome et al. (1998) that the use of Sa (T1; 5%) as IM is only more consistent 

than other IMs when used in analysis of simple structures represented by a single-

degree-of-freedom system.   

Due to the aforementioned reasons and additionally because relative spectral 

matching at all periods is closely achieved during the generation of the spectrum-

compatible records which eliminates the needs to provide separate scaling factors for 

each different height building depending on its fundamental period, it is chosen to use 

the peak ground acceleration (PGA) as the IM in the present study in order to scale the 

accelerograms for IDA. Peak ground acceleration (PGA) is considered the most 

important IM from a structural point of view because the resulting inertia forces in a 

structure are directly proportional to the acceleration, according to Newton's Second 

Law. And till present PGA is the key aspect of definition of seismic hazard in most 

seismic design standards including the ECP-201 (2012), where it represents the first 

point on the elastic design response spectrum. 

PGA is measured as the maximum absolute amplitude on a recorded or synthetic 

accelerogram. In order to be used for scaling, at each incremental step i of analysis, each 

record is simply multiplied by a scale factor SFi = ai / a1, where ai is the PGA of ground 

motion record used in the analysis, and a1 is the PGA of the original unscaled 

earthquake record.  Therefore, a SF= 1 means the analysis is using the unscaled 

accelerogram, 0< SF <1 a scaled-down accelerogram, and SF > 1 a scaled up 

accelerogram.  

4.4.2 Engineering Demand Parameter 

An Engineering Demand Parameter (EDP) can be either “direct” responses, that 

are extracted straight from analysis such as the maximum inter-story drift, peak story 

displacement, and peak floor accelerations, or “processed” using several response 

values from analysis like many damage indices available in the literature as reviewed 
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by Whittaker et al. (2004). EDP can also categorized into local parameters, for example, 

strain, moment, curvature, and global parameters, again like maximum inter-story drift 

and base shear. Global damage criteria and EDP are considered in the current work 

because the force reduction concept used in design is based on response at the structural 

level. The Inter-story Drift Ratio (IDR) is the damage metric that is chosen to be 

included in the proposed design method and thus is the response parameter used in IDA. 

The computed maximum IDR at each IM scale factor can be plotted together with the 

associated IM in order to develop IDA curves. This EDP can also be checked against 

established acceptance criteria related to performance as explained in the next section.  

4.4.3 Definition of Seismic Performance Levels 

In order to identify the factors that affect the maximum displacement at various 

levels of seismic action, certain levels of performance must be preselected and defined 

for studying their associated response. Three discrete structural performance levels 

corresponding to three major damage and functional states are investigated in the 

present work, following the definition of the guidelines of FEMA-356 (2000) 

previously discussed in Section 2.2.3.2 under the second-generation procedures, and 

reiterated herein: 

1. Immediate Occupancy (IO) level, at which the structure is safe to be occupied 

immediately after the associated seismic event and repairs are minor, i.e. negligible 

damage.   

2. Life Safety (LS) level, at which the structure remains stable and has significant 

reserve capacity at the associated seismic event, and hazardous nonstructural 

damage is also controlled to ensure life safety.  

3. Collapse-Prevention (CP) level, at which the structure is barely standing after the 

associated seismic event, i.e. most severe damage before collapse.   

Although this categorization of performance levels is based on the currently 

prevailing procedures of PBSD procedures (second-generation), it can be easily 

extrapolated for application in the next-generation procedures, where the performance 

measures advocated such as casualties, repair and replacement costs can be quantified 



 
Chapter 4 

90 

based on damage using loss models (FEMA, 2006). Limiting values for the chosen 

EDP, which is IDR, can be assumed, following the acceptance criteria specified in the 

FEMA-356 document (2000), and presented in Table 2-2. Therefore, the upper limits 

of IDR used for definition of the IO and LS performance levels are selected as 1% and 

2%, respectively.  The IDR for the CP level is chosen as 3% (less than the 4% stipulated 

by FEMA 356) for added conservatism in the global failure criteria as proved by several 

previous studies (Broderick and Elnashai, 1995; Kappos, 1997).  

4.4.4 IDA Analysis Procedure and Results 

For the purpose of IDAs performed herein, the following procedure is repeated 

for each pair of one structure and one accelerogram, in order to develop IDA curves 

and create a response databank with the post-processed results at the study performance 

levels. 

1. Multiply the accelerogram with the initial SF1, which is taken as the reciprocal of 

the FRF used in design (FRF =5); therefore SF1= 0.2. 

2. Run nonlinear dynamic analysis with the ground motion record acceleration set as 

ai = SFi x PGAdesign (0.3g), where i represents the run number.  

3. Extract nodal displacements and calculate at each time increment of the 

accelerogram: 

▪  The instantaneous story drift ratio (SDRin)j calculated as the maximum 

absolute difference between the lateral displacements of the two column 

ends, divided by the story height, for each story level (j). 

▪ The instantaneous roof displacement (r,in) calculated as the maximum 

absolute difference between the lateral displacement of the roof and the base.   

4. Over the entire length of the ground motion record, calculate: 

▪  The maximum story drift ratio (SDRmax)j for each story (j) at any instance of 

all (SDRin)j. 

▪ The maximum inter-story drift ratio (IDRmax) as the maximum of all 

(SDRmax)j for j =1 till nF, where nF is the number of stories. 

▪ The maximum roof displacement (r,max) at any instance of all (r,in) 
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5. A reasonably small increment of 0.2 is chosen for progressively increasing the 

scale factors. Therefore, the new scale factor is computed as: SFi+1= SFi + 0.2. This 

is equivalent to having a PGA increment of 0.06g (0.2x 0.3g).1 

6. Repeat steps 2 to 4 until the (IDRmax) is greater than or equal 3%.  

7. Plot the SFi versus (IDRmax)i and by linear interpolation, determine the scale factors 

SFIO, SFLS, SFCP corresponding to the three following predefined performance 

levels (respectively):  

▪ IO when IDRmax equals to 1% 

▪ LS when IDRmax equals to 2%  

▪ CP when IDRmax equals to 3% 

8. Re-run the model using SFIO, SFLS and SFCP and check that the IDRmax properly 

corresponds to the selected performance levels. If the target IDRmax is not achieved, 

interpolation is repeated, and scale factors are corrected until reaching the specified 

limits of IDRmax for the three study performance levels. In other words, for each 

pair of structure and accelerogram, three scale factors are identified for running the 

models.  

The resulting IDA curves for all prototype frames are presented in Figures 4-13 

to 4-152. It should be noted that the number of dynamic analyses for each frame (as 

depicted on each graph bordered title) differs based on the number of runs required in 

the interpolation for reaching the exact IDR limiting values associated with the 

objective performance levels. The whole computational volume is in the order of 1750 

nonlinear THA runs. The resulting scale factors serve only to provide separate values 

of the earthquake intensity associated with the study performance level for each 

structure-accelerogram pair. The subsequent chapter will make use of statistical 

analysis of the THA results at those specific performance levels, in order to develop the 

relationship between displacement and the target performance.  

                                                 
1 In some cases, for added efficiency, a smaller or larger increment than 0.2g is used when it can be predicted that it 

will be closer to reaching the IDR associated with the defined performance level. 
2 IDA curves are presented in terms of the SF rather than the intensity measure (PGA) for simplicity and because 

the only objective is determining the scale factors corresponding to the study performance levels, and no hazard 

matching is performed. 
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Figure 4-13 Incremental dynamic analysis results for the 4-story frames relating the 

maximum IDR (damage level) with the scale factor (SF) of each earthquake record 
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Figure 4-14 Incremental dynamic analysis results for the 7-story frames relating the 

maximum IDR (damage level) with the scale factor (SF) of each earthquake record 
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Figure 4-15 Incremental dynamic analysis results for the 10-story frames relating the 

maximum IDR (damage level) with the scale factor (SF) of each earthquake record 
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 PERFORMANCE-BASED DISPLACEMENT ESTIMATE 

5.1  INTRODUCTION 

Based on the methodology of numerical analysis previously discussed and the 

determined ground motion intensity corresponding to the limits of the predefined study 

performance objectives, this chapter serves to present and analyze the displacement 

results specifically at these performance levels. The height-wise distribution and 

amplitude of deformation demands at the various damage levels of the frames are 

studied. Then, the factors that most affect the roof displacement values are determined. 

Using nonlinear multiple regression analysis, prediction equations are developed for 

the maximum roof displacement in terms of the determined governing factors and its 

incorporation into the HFD design method is briefly discussed.  

5.2 DISPLACEMENT PROFILES AT THE STUDIED PERFORMANCE LEVELS 

In addition to the post-processed results from Section 4.4.4, all story absolute 

displacements are monitored at the occurrence of each damage limiting value, in order 

to study the frames’ displacement patterns. The story drift profiles and deformed shapes 

of each prototype frame are shown in Figures 5-1 to 5-3, where the individual records 

responses are presented as markers, and the mean value (averaged over the 7 ground 

motion record cases) are indicated only as lines for clarity. For the 4-story frames in 

Figure 5-1, a pure shear-type deformation behavior can be clearly observed. Because 

the design of those shorter buildings is controlled by gravity rather than seismic loading, 

the flexural stiffness of the beams compared to that of columns are large enough to 

result in pure shear-deformation, in which columns’ deformation in each floor is mainly 

in double curvature bending and the lower floors’ deformation contributes highly to the 

overall top displacement. However, as the building height increases for the 7-story and 

10-story frames in Figures 5-2 and 5-3, flexural-type behavior (like a cantilever’s 

deformation) can be depicted near the lower stories due to the significant axial 

deformation of the columns carrying the whole building, then the lateral deformation 

changes back to overall shear-type behavior at higher floor levels, when the axial load 
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levels out. These observations are typical of well-designed low- to medium- height 

moment frame buildings. The number of bays does not have any effect on the 

displacement shape, while only slightly diminishing the amplitude of displacement 

demand with increasing number of bays. The contribution of higher modes of vibration 

is particularly evident in the displacement shapes of higher buildings, due to the larger 

mass vibrating in these modes as evidenced by the participation ratios formerly 

presented in Table 4-8. 

 

  

 

 

Figure 5-1 Displacement profiles of the 4-story prototype frames 
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Figure 5-2 Displacement profiles of the 7-story prototype frames 
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Figure 5-3 Displacement profiles of the 10-story prototype frames 
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5.3 ROOF DISPLACEMENT RESULTS 

Seismic codes, including ECP-201 (2012) and EC8 (EN1998-1, 2004) allow 

considering the expected response values from THA as the average of responses from 

7 ground motion accelerations; accordingly, the expected values of the maximum roof 

displacement given a certain IDR, (E[r,max|IDR]), are calculated as the mean for the 7 

records.  Similarly the associated conditional dispersion values, ([r,max|IDR]), are 

computed as the standard deviation from the mean. Table 5-1 summarizes the expected 

maximum displacement results at the roof level of all structures at the identified study 

performance levels (IO: Immediate Occupancy; LS: Life-safety and CP: Collapse 

Prevention), while details of the maximum roof displacement for every subjected 

ground motion are given in Table 5-2, together with the floor at which the associated 

damage level (as measured by IDR) was first achieved.  

Table 5-1 Summary of conditional mean E[r,max|IDR] and conditional dispersion 

[r,max|IDR] of displacement results for all frames 

Structure 

Reference 

IDR = 1% IDR = 2% IDR = 3% 

E[r,max|IDR] [r,max|IDR] E[r,max|IDR] [r,max|IDR] E[r,max|IDR] [r,max|IDR] 

F04B3 83.6 2.8 148.6 9.6 196.4 19.0 

F04B5 79.1 2.9 137.0 10.5 185.4 19.1 

F04B7 74.1 6.1 130.5 12.5 176.8 19.0 

F07B3 134.4 10.2 221.4 16.1 359.6 36.6 

F07B5 122.0 9.1 195.5 11.2 311.0 32.9 

F07B7 114.4 10.3 184.1 10.4 286.3 25.8 

F10B3 206.3 8.3 383.1 34.4 525.8 50.7 

F10B5 195.4 10.9 347.6 45.8 516.1 67.1 

F10B7 189.8 9.9 330.4 51.3 483.3 71.1 

It is evident from the tabulated results that average values of the roof 

displacements are correlated positively to the number of floors and negatively to the 

number of bays for all investigated IDR levels. This is intuitively expected due to the 

increase in stiffness for shorter and wider structures, respectively.  Moreover, 

conditional dispersion for all cases increases with the increase of IDR and with the 

increase in height.  A similar dispersion pattern can be visualized in the displacement  
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profiles formerly depicted in Figures 5-1 to 5-3, for the response of the individual 

records, which fortifies these statistical results. The variation in displacement response 

with each ground motion record can be explained by the sensitivity to the characteristics 

of ground motions, some of which are given in Table 4-9. The A/V ratio is well 

correlated to the magnitude-epicentral-distance relationship and is an indication of the 

relative frequency content (Garg et al., 2019), therefore, accelerograms with high A/V 

ratio (for example EQ3 and EQ6) impose greater demand on stiffer structures while 

those possessing low A/V ratio (for example EQ2 and EQ4) result in higher response 

for more flexible structures. It is not within the scope of this research to study the exact 

effect of ground motion characteristics on the displacement response but this remark is 

rather included for explanation of the variability of the results. It follows that the 

dispersion becomes more prominent for higher structures due to the higher domination 

of seismic loads (which are sensitive to the ground motions) over the gravitational 

loads, and also the variation increases with increase in damage level due to the 

associated higher earthquake amplitudes. It may, however, generally be observed that 

there is no specific trend for the conditional dispersion with the change in number of 

bays, due to the insignificance of the number of bays on the fundamental period (as 

previously discussed in Section 4.3.5 and tabulated in Table 4-8) and accordingly on 

the sensitivity to the ground motion dynamic properties. Lastly, it should be noted that 

having this range of response variance and then averaging over seven records has been 

proven to be quite satisfactory for providing unbiased expected results (Iervolino et al., 

2008), which is essential for the purpose of the current study. 

Another observation from Table 5-2 concerns the location of the limiting values 

of the maximum IDR along the height of each buildings, where it is achieved at different 

floor levels for each input ground motion. It is clear that, there is no possibility to take 

averages of the inter-story drift distribution for the set of records and accordingly only 

the top displacement profiles are determined for each record separately and then 

averaged as shown in Figures 5-1 to 5-3. Limiting values of the IDR generally occur at 

the lower floors for the 4-story buildings, then they shift to stories near the mid-height 

of the frame for the 7-story buildings, and further to the upper stories for the 10-story 

buildings. This behavior is consistent with the finding of other researchers, for example 

Azak (2013).  The shifting of damage to mid-floor levels with increasing height is 
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expected due to the contribution of higher mode effects, and then the further shift 

towards the top floors can be attributed to the dominance of the second-order P- effects. 

Table 5-2 Maximum roof displacement values (r,max) for all structure-accelerogram pairs at 

the three study performance levels, and the floor at which the associated limiting value of 

Inter-story drift ratio (IDR) first occurred 
Structure 

Reference 

EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 

r,max 

(mm) 

Floor r,max 

(mm) 

Floor r,max 

(mm) 

Floor r,max 

(mm) 

Floor r,max 

(mm) 

Floor r,max 

(mm) 

Floor r,max 

(mm) 

Floor 

 
 

              

R
es

u
lt

s 
a

t 
IO

 l
ev

el
 (

ID
R

 =
1
%

) 

F04B3 84.5 1 83.1 1 82.2 2 88.8 1 84.6 1 79.9 2 82.1 2 

F04B5 77.1 1 75.8 1 76.8 1 78.5 1 81.1 1 80.8 2 84.0 2 

F04B7 73.0 1 71.2 1 74.1 1 67.2 1 73.8 1 72.7 1 87.0 1 

F07B3 131.6 5 115.4 5 134.0 5 147.6 5 132.5 5 142.8 5 136.9 5 

F07B5 121.4 5 110.5 5 120.3 5 139.7 5 125.6 5 116.7 5 119.4 5 

F07B7 110.9 5 109.1 5 112.8 5 137.1 5 112.7 5 112.6 5 105.9 5 

F10B3 191.4 9 207.3 5 209.4 9 213.2 9 209.8 9 199.0 3 214.2 5 

F10B5 182.4 9 210.7 5 198.2 9 195.9 9 179.9 9 202.1 3 198.8 9 

F10B7 177.4 9 204.3 5 190.0 9 189.6 9 184.0 9 201.0 9 182.2 9 
                

R
es

u
lt

s 
a

t 
L

S
 l

ev
el

 (
ID

R
 =

2
%

) 

F04B3 146.4 1 154.6 1 156.2 1 144.0 1 155.8 2 129.7 1 153.5 2 

F04B5 134.8 1 140.8 1 142.0 1 136.0 1 123.2 1 126.9 1 154.9 2 

F04B7 124.0 1 131.1 1 132.5 1 128.3 1 117.9 1 123.3 1 156.5 2 

F07B3 240.6 5 228.5 5 200.3 5 242.2 5 212.7 5 216.7 5 209.0 5 

F07B5 215.6 5 201.7 5 179.1 5 194.2 5 191.8 5 191.0 5 194.9 5 

F07B7 204.6 5 188.7 5 171.2 5 182.6 5 179.6 5 179.7 5 182.3 5 

F10B3 365.7 3 411.3 9 360.7 3 364.8 3 432.5 9 409.0 5 337.9 9 

F10B5 366.5 4 388.2 9 331.0 9 310.3 9 304.6 9 422.6 4 309.9 9 

F10B7 348.7 9 365.0 9 305.8 9 292.2 9 283.3 9 423.5 3 294.2 9 
                

R
es

u
lt

s 
a

t 
C

P
 l

ev
el

 (
ID

R
 =

3
%

) 

F04B3 172.0 1 191.1 1 213.8 1 209.8 1 220.7 1 174.8 1 192.5 1 

F04B5 161.0 1 189.7 1 203.0 1 186.5 1 213.7 1 165.3 1 178.4 1 

F04B7 161.3 1 187.1 1 190.5 1 165.7 1 208.8 1 156.7 1 167.4 1 

F07B3 390.4 5 336.5 5 354.4 5 351.3 5 416.0 1 366.1 1 302.7 5 

F07B5 339.1 5 311.5 5 292.8 5 328.1 5 352.9 5 254.8 5 297.4 5 

F07B7 303.5 5 301.3 5 264.8 5 312.8 5 289.8 5 238.9 5 292.8 5 

F10B3 493.6 3 500.7 2 585.1 4 470.8 3 602.5 4 536.9 3 490.9 3 

F10B5 503.2 4 483.7 2 594.7 5 463.7 3 606.5 3 535.8 3 425.1 9 

F10B7 453.1 9 441.6 9 594.4 5 455.6 9 527.8 9 529.7 3 381.0 9 
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5.4 FACTORS AFFECTING ROOF DISPLACEMENT 

Using the expected displacement results presented in the previous section, 

parametric study is performed to evaluate the contribution of the different variables to 

the roof displacement. Simplified bar charts are used in Figure 5-4 to graphically 

present the general trend of roof displacement in relation to the three factors considered 

for this study, namely the number of floors, the number of bays and the damage level 

in terms of the IDR. 

 

 

 

Figure 5-4 Relationship between maximum rood displacement (r,max) and number of floors 

for different number of bays at fixed values of IDR (based on the average of the results 

given the acceptance criteria of the three studied performance levels). 
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5.4.1 Effect of the Number of Floors on Roof Displacement Response 

First the effect of the number of floors is analyzed, by calculating the average 

percentage change in displacement per one-floor increase, for fixed values of the other 

two variables. The following is observed and is tabulated in Table 5-3 and graphically 

represented in Figure 5-5: 

 

Figure 5-5 Change of the roof displacement with the number of floors 

Table 5-3 Percentage change in displacement per one-floor increase for the different 

combinations of number of bays and inter-story drift ratio 

Number 

of Bays 

Inter-story-drift Ratio 

1% 2% 3% 

3 19 20.3 21.3 

5 19 20.1 22.3 

7 20 20.1 21.8 

▪ For the 3-Bays structures, at the IO level, change in the number of floors from 4 to 

7 results in 60.7% increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 53.5 %, therefore on average a one-

floor increase results in 19% increase in displacement.  

▪ For the 3-Bays structures, at the LS level, change in the number of floors from 4 to 

7 results in 49% increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 73 %, therefore on average a one-floor 

increase results in 20.3 % increase in displacement.  
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▪ For the 3-Bays structures, at the CP level, change in the number of floors from 4 to 

7 results in 74% increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 54 %, therefore on average a one-floor 

increase results in 21.3% increase in displacement.  

▪ For the 5-Bays structures, at the IO level, change in the number of floors from 4 to 

7 results in 54.1 % increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 60.3 %, therefore on average a one-

floor increase results in 19% increase in displacement.  

▪ For the 5-Bays structures, at the LS level, change in the number of floors from 4 to 

7 results in 42.7 % increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 77.8 %, therefore on average a one-

floor increase results in 20.1 % increase in displacement.  

▪ For the 5-Bays structures, at the CP level, change in the number of floors from 4 to 

7 results in 67.8 % increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 66 %, therefore on average a one-floor 

increase results in 20.1 % increase in displacement.  

▪ For the 7-Bays structures, at the IO level, change in the number of floors from 4 to 

7 results in 54.4 % increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 65.8 %, therefore on average a one-

floor increase results in 20 % increase in displacement.  

▪ For the 7-Bays structures, at the LS level, change in the number of floors from 4 to 

7 results in 41.1 % increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 79.5 %, therefore on average a one-

floor increase results in 20.1 % increase in displacement.  

▪ For the 7-Bays structures, at the CP level, change in the number of floors from 4 to 

7 results in 61.9 % increase in the maximum displacement response, while that from 

7 floors to 10 floors results in an increase of 68.8 %, therefore on average a one-

floor increase results in 20.1 % increase in displacement.  

From the summary of results in Table 5-3, it can be concluded that the number 

of floors is a significant factor in estimating the displacement response, where a one-

floor increase on average results in 20 percent increase in displacement. One could 

observe that the percentage increases are higher when the inter-story drift increases, 
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which proves the interaction of these two variables in their influence on displacement 

response.  This can be explained by the second-order effects which better manifest with 

a combination of increasing structure’s heights and large displacement into the inelastic 

range.  

5.4.2 Effect of the Number of Bays on Roof Displacement Response 

The effect of the number of bays is analyzed for fixed values of the other two 

variables. The top story displacement decreases with the increase of number of bays. 

Figure 5-6 shows that the decrease in the top story displacement is almost linear for all 

damage levels. The calculated average percentage change in displacement per one-bay 

increase is tabulated in Table 5-4.  

 
Figure 5-6 Change of the roof displacement with the number of bays 

Table 5-4 Percentage change in displacement per one-bay increase for the different 

combinations of number of floors and inter-story drift ratio 

Number 

of Floors 

Inter-story-drift Ratio 

1% 2% 3% 

4 -2.9 -3.1 -2.6 

7 -3.9 -4.4 -5.4 

10 -2.1 -3.6 -2.1 

The following is observed:: 

▪ For the 4-stories structures, at the IO level, change in the number of bays from 3 to 

5 results in 5.3 % decrease in the maximum displacement response, while that from 
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5 bays to 7 bays results in a decrease of 6.3 %, therefore on average a one-bay 

increase results in 2.9 % decrease in displacement.  

▪ For the 4-stories structures, at the LS level, change in the number of bays from 3 to 

5 results in 7.8 % decrease in the maximum displacement response, while that from 

5 bays to 7 bays results in a decrease of 4.7 %, therefore on average a one-bay 

increase results in 3.1 % decrease in displacement.  

▪ For the 4-stories structures, at the CP level, change in the number of bays from 3 to 

5 results in 5.6 % decrease in the maximum displacement response, while that from 

5 bays to 7 bays results in a decrease of 4.6 %, therefore on average a one-bay 

increase results in 2.6 % decrease in displacement.  

▪ For the 7-stories structures, at the IO level, change in the number of bays from 3 to 

5 results in 9.2 % decrease in the maximum displacement response, while that from 

5 bays to 7 bays results in a decrease of 6.2 %, therefore on average a one-bay 

increase results in 20.1 3.9 % decrease in displacement.  

▪ For the 7-stories structures, at the LS level, change in the number of bays from 3 to 

5 results in 11.7 % decrease in the maximum displacement response, while that 

from 5 bays to 7 bays results in a decrease of 5.8 %, therefore on average a one-bay 

increase results in 4.4 % decrease in displacement.  

▪ For the 7-stories structures, at the CP level, change in the number of bays from 3 to 

5 results in 13.5 % decrease in the maximum displacement response, while that 

from 5 bays to 7 bays results in a decrease of 7.9 %, therefore on average a one-bay 

increase results in 5.4 % decrease in displacement.  

▪ For the 10-stories structures, at the IO level, change in the number of bays from 3 

to 5 results in 5.3 % decrease in the maximum displacement response, while that 

from 5 bays to 7 bays results in a decrease of 2.9 %, therefore on average a one-bay 

increase results in 2.1 % decrease in displacement.  

▪ For the 10-stories structures, at the LS level, change in the number of bays from 3 

to 5 results in 9.3 % decrease in the maximum displacement response, while that 

from 5 bays to 7 bays results in a decrease of 4.9 %, therefore on average a one-bay 

increase results in 3.6 % decrease in displacement.  

▪ For the 10-stories structures, at the CP level, change in the number of bays from 3 

to 5 results in 1.8 % decrease in the maximum displacement response, while that 
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from 5 bays to 7 bays results in a decrease of 6.4 %, therefore on average a one-bay 

increase results in 2.1 % decrease in displacement. 

From the summary of results in Table 5-4, it can be concluded that the number 

of bays is much less significant than the number of stories in estimating the 

displacement response, where a one-bay increase on average results in 3.4 percent 

decrease in displacement. However, it is elected to still include this factor as a variable 

for estimating roof displacement because of the negative correlation. The displacement 

estimate will be used for calculation of the force-reduction factor (R), so a higher than 

actual displacement will result in higher reduction of forces and less conservative 

results. The percentage decrease does not seem to have any coherent pattern associated 

with the other two factors, and thus is assumed a completely independent variable in 

the development of the estimate equation later in this Chapter.   

5.4.3 Effect of Damage Level on Roof Displacement Response 

The effect of the damage level is analyzed, by calculating the average 

percentage change in displacement per unit increase in IDR ratio (as a measure of 

damage) for fixed values of the other two variables. Figure 5-7 shows the variation of 

displacement with change in IDR for all studied structures. The following is observed 

and tabulated in Table 5-5: 

 

Figure 5-7 Change in the roof displacement with damage level (in terms of IDR) 
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Table 5-5 Percentage change in displacement per unit increase of IDR for the 

different combinations of number of floors and bays 

Number 

of Floors 

Number of Bays 

3 5 7 

4 54.9 54.2 55.7 

7 60.6 59.7 58.2 

10 61.5 63.2 60.2 

▪ For the 4-Floor 3-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 77.7 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 32.2 %, therefore on 

average a unit increase in IDR results in 54.9 % increase in displacement. 

▪ For the 4-Floor 5-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 73 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 35.3 %, therefore on 

average a unit increase in IDR results in 54.2 % increase in displacement. 

▪ For the 4-Floor 7-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 76 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 35.5 %, therefore on 

average a unit increase in IDR results in 55.7 % increase in displacement. 

▪ For the 7-Floor 3-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 64.8 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 56.4 %, therefore on 

average a unit increase in IDR results in 60.6 % increase in displacement. 

▪ For the 7-Floor 5-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 60.3 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 59.1 %, therefore on 

average a unit increase in IDR results in 59.7 % increase in displacement. 

▪ For the 7-Floor 7-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 60.9 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 55.5 %, therefore on 

average a unit increase in IDR results in 58.2 % increase in displacement. 

▪ For the 10-Floor 3-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 85.7 % increase in the maximum displacement response, while 
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the change of IDR from 2 to 3 percent results in an increase of 37.2 %, therefore on 

average a unit increase in IDR results in 61.5 % increase in displacement. 

▪ For the 10-Floor 5-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 77.8 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 48.5 %, therefore on 

average a unit increase in IDR results in 63.2 % increase in displacement. 

▪ For the 10-Floor 7-Bay structure, change in performance level and IDR percentage 

from 1 to 2 results in 74.1 % increase in the maximum displacement response, while 

the change of IDR from 2 to 3 percent results in an increase of 46.3 %, therefore on 

average a unit increase in IDR results in 60.2 % increase in displacement. 

From the summary of results in Table 5-5, it can be concluded that the inter-

story drift ratio as an indication of the damage level has the highest weight in 

influencing the maximum roof displacement response, where a unit increase in the IDR 

percentage results approximately in 59.5 percent increase in displacement. A similar 

observation regarding the interrelation between the inter-story drift ratio and the 

number of floors can be drawn, where the percentage increases due to increase in IDR 

are higher when the number of floors increases, which proves the interaction of these 

two factors. There is no consistent relation between the number of bays factor and the 

effect of the IDR, confirming its independence assumption. The significance of IDR in 

estimating the roof displacement can be intuitively explained, because more damage of 

a building is associated with higher amplitudes of earthquake loading and consequently 

larger displacements.  

It is worth noting that this parametric analysis is highly simplified for the 

purpose of studying the general influence of the various factors on the displacement 

response only. The values used in expression of the percentage change in displacement 

with change in the different parameters are computed after several averaging steps. 

Thus, the results cannot be stated as absolute nor be used directly for development of a 

prediction model. It is essential to develop relations for estimating displacement that 

are based on realistic data, and that would embed the interaction of several factors like 

the second order P-delta effects, the contribution of higher modes of vibration, the 

relative dominance of the seismic loading compared to gravitational loads and inelastic 

effects. 
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5.5 PREDICTION OF DISPLACEMENT DEMAND  

After analysis of the displacement response database and identifying the 

structural features that influence the lateral drift, it is required to develop a formula for 

estimating the roof displacement to be used for HFD design of RC frame structures (as 

previously discussed in Chapter 3). For that purpose, regression analysis is adopted to 

find the most suitable fit for the displacement results that can serve as a prediction 

model. The displacement is considered to be the dependent variable, while IDR, number 

of floors (nF) and number of bays (nB) are the three predictors.  

5.5.1 Definition of the Expected Relation 

In order to visualize the expected trend for the relationship between the 

displacement and the three predictors, it is elected to observe the results on a continuous 

scale for the IDR, in order to have a more accurate model that can be applicable to 

various performance levels, not just the ones under study. Thus, the results of the IDA 

presented in Chapter 4 are used to plot the roof displacement versus IDR for all the 

study frames together as shown in Figure 5-8. It can be inferred from the scatter plots 

for the 4-story buildings that a power rule with an exponent inferior to unity explains 

the relationship between roof displacement and IDR, while this exponent clearly 

increases with the increase of building height to reach almost unity and a linear 

relationship for the 10-story building. The number of bays does not seem to have any 

effect on the slope of the scatter and likewise the exponent. Therefore, it is concluded 

that a power rule with an exponent that is a function of the number of floors will best 

explain the relationship. This trend of increasing slope for higher buildings can be 

attributed to the redistribution of forces and deformations in a structural system, which 

becomes more effective as the number of structural members increase as is the case for 

taller buildings. In other words, shorter buildings reach damage (a specific IDR) faster 

(with a flatter slope) due to having less redundancy that can redistribute the responses 

with excursion into the inelastic behavior. 

 

 



 
Chapter 5 

111 

 

Figure 5-8 Relationship between maximum roof displacement (r,max) and IDR for all frames 

based on all results of the seven ground motion records 
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5.5.2 Regression Analysis 

The expected power-rule function cannot be expressed by linear regression, and 

also more than one explanatory variable is involved, therefore multi-variable nonlinear 

regression is employed in the present study.  The analyses are performed using “LAB 

Fit” curve fitting software (Silva and Silva, 2011), which is a tool for treatment and 

analysis of data. LAB Fit performance has been validated using the Statistical 

Reference Datasets Project (SRD) of the National Institute of Standards and 

Technology (NIST). It uses the Levenberg-Marquardt algorithm to solve nonlinear 

regression of up to 6 independent variables with a library of almost 500 functions, in 

addition to the option of providing user-defined functions. In order to improve the 

ability of the model to realistically reflect the physical behavior, it is chosen to postulate 

own fitting function based on the expected relation discussed in Section 5.5.1. In order 

to draw reliable limits for the developed function, a physical constraint is taken into 

consideration, which is that the roof displacement should be equal to the IDR multiplied 

by the floor height, for the case of one-story buildings; in other words, when nF =1, top 

drift and story drift are the same. 

5.5.3 Proposed Prediction Equation  

The proposed equation for estimating the maximum roof displacement demand 

(∆r) at the various performance levels is selected to have the following functional form: 

∆𝑟= (𝑃1𝐻 + 𝑃2𝐼𝐷𝑅𝑃3)IDR…..……………………………………………(5.1)

      

 where, ∆r is the roof displacement in m, H is the building height in m, IDR is the target 

story drift ratio associated with the objective performance levels; and P1 and P2 are 

empirical parameters that depends on the geometry of the buildings, which are found 

based on the regression analysis of the response data of the study cases to be as follows: 

𝑃1 = 1/𝑛𝐹 

𝑃2 = 0.17 (𝑛𝐹 − 1)2𝑛𝐵
−0.3 ………………………………………...……..(5.2) 

𝑃3 = −1.3 𝑛𝐹⁄   

 where nF and nB are the number of floors and bays of the buildings respectively. 
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 The goodness of fit of the developed equation is expressed through the 

correlation coefficient (R) between the training data set used for regression analysis (the 

displacement values obtained by THA for all the earthquake records) and the 

corresponding fitted values calculated from the formulation. As illustrated graphically 

in Figure 5-9, the correlation coefficient is calculated to be 0.98 which indicates that the 

actual data are well replicated by the model. To avoid the overfitting errors introduced 

by having a large number of data points and variables, the adjusted correlation 

coefficient is also computed as 0.97 which confirms the goodness of fit. On another note, 

it can be recognized that the resulting equation satisfies the boundary constraint where 

r= H.IDR for nF=1, and the signs of the coefficients agree with the theoretical 

observations where the number of floors are positively correlated and the number of 

bays are negatively correlated to the maximum roof displacement, respectively.  

 
Figure 5-9 Goodness-of-fit of the regression line for estimating maximum roof displacement (r) 
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The quality of prediction is additionally measured by assuming the expected 

average values of the displacement demand shown in Table 5-1 (which can be 

considered as the closest approximation of real response) as a test data set, and 

computing the corresponding correlation coefficient, which is found to be 0.99 meaning 

that 99% of the observed variance is accounted for by the prediction model. Figure 5-10 

shows how closely the expected values fall in with respect to the fitted regression line. 

The mean absolute percentage error (MAPE) is also checked to be just 5.1% which 

proves the accuracy of the predictive model.  It should be noted that only one value of 

correlation coefficient and MAPE is presented for all the curves because they are based 

on one set of model equations (5.1) and (5.2). The relatively high correlation coefficient 

can be attributed to the collinearity between the predictor variables, especially the 

number of floors and the inter-story drift ratio, which can be expected by intuition. 

Nevertheless, multicollinearity is statistically accepted when the purpose of data fitting 

is merely providing a prediction model with reasonable accuracy, which is already 

proved by the goodness-of-fit tests (Kutner et al., 2005). 
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Figure 5-10 Comparison of the expected roof displacement response from THA with those 

resulting from the proposed relation for the three study performance levels. 
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5.5.4 Incorporation of Displacement Prediction into the HFD Design  

The developed global roof displacement prediction equation can serve as a 

benchmark for creation of graphical charts for prediction of displacement, that can be 

incorporated in the HFD performance-based seismic design method. Subject to further 

modification using more structural models, types of ground motion records, types of 

soil, and damage limiting criteria, these prediction charts can obtain more degree of 

generality. Figure 5-11 represents a sample vision for such charts that is created from 

the displacement formula proposed by this study, with interpolation to cover more cases 

than the prototype ones used for development of the equation. This chart can be directly 

and simply used by the designer, at the start of the preliminary design stage, to predict 

a structure’s maximum displacement at a predefined performance level, using only its 

geometric properties, and represents a valid contribution to the procedural step 4 of the 

HFD design method as described in Section 3.4. Then, by estimating the yield 

displacement using the design elastic model, a more rational value of force-reduction 

factor (R) can be calculated and design can proceed in the conventional way. The 

advantages of the proposed equation and prediction charts is that they incorporate IDR 

values rather than levels as a variable, therefore they can be still utilized with any 

improvement in the limiting values for performance levels and also with the future 

possibility of continuum between the discrete performance levels as advocated by the 

P-58 report. 
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Figure 5-11 Top displacement estimation chart for incorporation in the HFD design method 
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 DESIGN CASE STUDY 

 

6.1 INTRODUCTION 

The use of the developed displacement prediction equation is tested in the 

context of the envisaged modified design, in line with the hybrid force displacement 

method. A prototype RC frame is chosen as a design case study and is designed using 

the traditional force-based code method and using the modified design procedure. The 

two designs are compared based on the number of iterations required, and the expected 

performance as compared to the results of nonlinear time-history analysis.  

6.2 DESCRIPTION OF BUILDING AND DESIGN ASSUMPTIONS 

The building shown in Figure 6-1 is selected for testing the modified design 

method. It has 8 floors and 3 bays and therefore lies in the range of applicability of the 

developed equations.  Assuming a symmetrical layout, one internal lateral load resisting 

frame is designed employing two-dimensional analysis. The floor heights and the bay 

widths are equal to 3 m and 6 m. Assumptions, materials, load combinations, and 

loading are the same as those described in Section 4.2.2, except for assuming a live load 

of 2.0 kN/m2  and adopting an earthquake loading with a peak ground acceleration 

(PGA) of 0.35g. The design procedure is accomplished with the aid of ETABS v.17 

(CSI, 2013), following the guidelines of the Egyptian Codes, ECP-201 (2012) and ECP-

203(2007). For simplicity and due to the symmetry of the example building, the 

equivalent static load method is used. The building’s members are proportioned 

according to the straining actions from the gravity load combinations (Appendix B), 

then the two seismic design models are developed. The frame designed using the code-

stipulated R factors is referred to as the “Baseline frame (BL-frame).” While the frame 

designed using the proposed hybrid force/displacement method (employing the 

developed displacement relations for estimating a performance-related R factor) is 

given the name “Modified-design frame (MD-frame).” 
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Figure 6-1 A representative layout of the design example frame, together with the notation 

used for numbering the columns and beam reinforcement 

6.3 PERFORMANCE LEVELS CONSIDERED 

The BL-frame is designed for the ultimate limit state for which the code of 

practice provides the elastic design response spectrum, and which corresponds to an 

earthquake with probability of exceedance of 10% in 50 years (475 years return period), 

referred to as the design-basis earthquake (DBE) as discussed in Chapter 3. The damage 

limitation state is checked as a post-design step, by conversion of the response values 

to correspond to the more frequent earthquake (FOE) with probability of exceedance of 

50% in 50 years (72 years return period).  

For the case of the MD-frame, the same performance levels are used in order to 

have a common basis of comparison, which are the Life-safety (LS) performance level 

and the Immediate Occupancy (IO) performance level, equivalent to the ultimate limit 

state and the damage state, respectively.  Furthermore, one more performance level is 
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specified to be able to evaluate the ability of the proposed modification in mapping the 

traditional design procedure to the multi-performance-based design framework, which 

is the Collapse Prevention (CP) performance level. Design performance objectives are 

developed by linking each performance level to a specified earthquake level and a 

limiting value of IDR, as summarized in Table 6-1. The performance limiting criteria 

chosen are based on the guidelines of FEMA-356 (2000). The same spectral shape is 

assumed for all the seismic action levels, adopting a single multiplicative factor which 

reflect regional seismotectonic environment, as shown in Figure 6-2.  Based on a hazard 

study of Egypt (Dorra, 2011), it is assumed that the peak ground acceleration 

corresponding to the FOE equals one third of that of the DBE, i.e. PGAFOE= 0.3 x 

PGADBE, while the peak ground acceleration for the maximum considered earthquake 

(MCE) equals one-and-a-half that of the DBE i.e. PGAMCE= 1.5 x PGADBE. 

Table 6-1 Definition of the performance levels used in the design case study 

Performance 

Level 
Earthquake Intensity 

Limiting 

value of IDR 

Immediate 

Occupancy (IO) 

FOE with 50% probability of occurrence in 50 years (72 

years return period) 

0.1 

Life Safety (LS) DBE with 10% probability of occurrence in 50 years 

(475 years return period)  

0.2 

Collapse 

Prevention (CP) 

MCE with 2% probability of occurrence in 50 years 

(2475 years return period) 

0.3 

 

 
Figure 6-2 Elastic Pseudo-acceleration design spectrum associated with the three study 

performance levels 
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6.4 COMPARISON BETWEEN CODE DESIGN AND MODIFIED DESIGN  

6.4.1 Efficiency and Iterations 

In order to compare the efficiency of the proposed modified design method to 

normal design, the steps and results of the design of the BL-frame and MD-frame are 

presented. In both designs, all columns have square dimensions and the same beam is 

used in all floors for simplification. The columns’ and beams’ stiffness are reduced by 

30% and 50%, respectively, in order to account for cracking. And the mass source 

includes the gravity loads with 50% of the live load.  

6.4.1.1 Baseline (BL) frame  

1. According to the requirements of the ECP-201 code (2012), the design seismic 

action for the ultimate limit state at the DBE are determined and applied to the BL-

frame model. It is calculated using the elastic response spectrum for ag=0.35g 

reduced by a force-reduction factor (R) of 5 as prescribed for moment-resisting 

frames of limited ductility.  

2. The resulting straining actions (presented in Figure B-1 in Appendix B) are used to 

determine the minimum required cross-sections and reinforcement ratios based on 

the strength and capacity design rules. The results are summarized in Table 6-2, 

based on the notation illustrated in Figure 6-1.   

Table 6-2 Baseline-frame’s member dimensions and reinforcement for the strength design step 

Member Dimension (mm) Reinforcement ratio (%) 

C1 400 x 400 1.90 

C2 450 x 450 1.94 

C3 400 x 400 0.85 

C4 400 x 400 1.90 

C5 400 x 400 1.90 

C6 400 x 400 0.85 

C7 300 x 300 2.18 

C8 300 x 300 2.18 

B-RB1 200 x 450 1.05 

B-RB2 200 x 450 1.27 

B-RB3 200 x 450 2.1 

B-RB4 200 x 450 0.85 
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3. The designed frame is checked for deformation (second design step) for the damage 

limitation state at the FOE. The code uses a factor, , to convert the displacement 

response resulting from design at the DBE to its corresponding value at the FOE. 

This factor is specified as 0.4 for ordinary buildings. In order to convert the 

displacement values from the elastic design to its inelastic counterpart, the code 

uses a displacement amplification factor equals to 0.7R. Therefore, the maximum 

interstorey drift at the DBE, IDRDBE, is calculated, using the IDR output from 

analysis as shown in Figure C-2 in Appendix C, as follows: IDRDBE = 0.7 R 

IDRanalysis =0.7 x 5 x 0.0074 =0.026. The corresponding IDR at the FOE, IDRFOE = 

 x IDRDBE = 0.4 x 0.026 =0. 011, which is greater than the code-specified limit of 

1% for damage limitation in the case of no interaction of non-structural elements, 

therefore, design iteration is required.  

4. Several iterations of changing member dimensions are performed, based on trial 

and error, until the IDRFOE satisfies the limit of 1% for the damage limitation state. 

The final straining actions, story shear and displacement output results are presented 

in Appendix D, and the designed BL-frame member dimensions and reinforcement 

are given in Table 6-3.  

Table 6-3 Baseline-frame’s member dimensions and reinforcement, final after all iterations 

Member Dimension (mm) Reinforcement ratio (%) 

C1 450 x 450 1.01 

C2 450 x 450 1.01 

C3 450 x 450 0.85 

C4 400 x 400 1.90 

C5 400 x 400 0.85 

C6 400 x 400 0.85 

C7 300 x 300 1.4 

C8 300 x 300 1.01 

B-RB1 200 x 450 1.05 

B-RB2 200 x 450 1.27 

B-RB3 200 x 450 2.1 

B-RB4 200 x 450 0.85 
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5. The designed BL-frame maximum values of IDR (at the FOE) is calculated to be 

0.98% which satisfies the above limit values of IDR for the damage limitation state. 

The expected maximum roof displacement is also found to be 0.45m (0.7R x 

0.1287m from Figure D-4 in Appendix D). 

6.4.1.2 Modified-design (MD) frame  

1. For the modified hybrid force/displacement procedure, the design seismic action is 

also obtained from the elastic response spectrum described in ECP-201code (2012) 

but using a force-reduction factor (R) that is calculated based on the most critical 

performance level that governs the design as previously described in Chapter 3. The 

first step involves estimating the maximum target roof displacement associated with 

each performance objective using Equations (5.1) and (5.2) or the prediction chart 

provided in Figure 5.11. For the number of floors (nF) equals 8, and the number of 

bays (nB) equals 3, the resulting roof displacement is: 

• For the IO performance level, IDRmax=0.01, therefore r,IO= 0.108 m 

• For the LS performance level, IDRmax=0.02, therefore r,LS= 0.286 m 

• For the CP performance level, IDRmax=0.03, therefore r,CP= 0.408 m 

2. The global yield displacement is estimated either using the empirical equation 

provided by Priestley (2000) for the yield drift (θy), which is θy=0.0004lb/hb, where 

lb and hb are the bay length and beam height respectively, or alternatively by 

applying the seismic load corresponding to the FOE with R=1. It is selected to use 

the latter method because it accounts for the overall stiffness properties of the 

chosen frame, therefore the elastic response spectrum with ag=0.105g, is applied 

corresponding to the PGAFOE. The resulting roof displacement (r,y )is found to be 

0.075m, as shown in Figure E-3. It is also verified from the drift plot in Figure E-2 

that the maximum IDR is 0.004084, which is less than the limiting value for the IO 

performance level (0.01) associated with the FOE seismic action applied on the 

model.  

3. Based on the results of Step 1 and Step 2, the force-reduction factors (Ri) associated 

with each performance level (i) are calculated using Equation (3.3) in Chapter 3, 

and their equivalent at the DBE are also computed as tabulated in the Table 6.4.  

https://www-sciencedirect-com.libproxy.aucegypt.edu/topics/engineering/beam-height
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Table 6-4 Calculation of performance level-dependent force reduction factors(R) 

Performance 

level (i) PGAi r,i (m) 𝑹𝒊 =
𝒓,𝒊

𝒓,𝒚

 𝑹𝑫𝑩𝑬 = 𝑹𝒊𝒙
𝑷𝑮𝑨𝑫𝑩𝑬

𝑷𝑮𝑨𝒊
 

IO PGAFOE=0.3 x PGADBE= 0.105 g 0.156 2.1 6.9 

LS PGADBE=0.35g 0.286 3.8 3.8 

CP PGAFOE=1.5x PGADBE= 0.525g 0.408 5.4 3.6 

4. The most critical force reduction factor Rcr is the smallest one, which corresponds 

to the CP performance level, and is equal to 3.6. This shows that the collapse 

prevention performance level governs the design.  

5. The seismic loads are applied based on the elastic response spectrum with ag=0.35g 

reduced with R=3.6, and the building is designed accordingly. The straining actions 

and drift results are given in Appendix F. The resulting member dimensions and 

reinforcing ratios are presented in Table 6-5.  

Table 6-5 Modified design-frame’s member dimensions and reinforcement 

Member Dimension (mm) Reinforcement ratio (%) 

C1 450 x 450 0.8 

C2 450 x 450 0.8 

C3 400 x 400 0.85 

C4 450 x 450 0.8 

C5 400 x 400 0.85 

C6 400 x 400 0.85 

C7 300 x 300 1.6 

C8 300 x 300 1.8 

B-RB1 200 x 500 0.94 

B-RB2 200 x 500 1.85 

B-RB3 200 x 500 2.7 

B-RB4 200 x 500 0.85 

6.4.1.3 Commentary 

It should be noted that for the modified design, there is no need to check the 

drift requirements because they are embedded in the design process from the beginning. 

However, for the sake of testing, the code of practice method of checking drift is used. 

The collapse prevention force reduction factor is excluded (because it is not covered by 

the code of practice), and the smallest R factor is taken as 3.8, as given in Table 6-4. 
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The elastic response spectrum reduced by R=3.8 is applied to the designed structure 

and the resulting displacement results are monitored, as shown in Figure F-3 in 

Appendix F. The drift resulting from analysis is 0.0064, which is then multiplied by the 

displacement modification factor of 0.7R, to get at its inelastic counterpart, and then by 

the  factor (0.4) to arrive at the IDR corresponding to the serviceability earthquake. 

The resulting maximum IDR at the FOE is then equals to 0.0064 x 0.7 x 3.8 x 0.4= 

0.0068 (0.68%), which satisfies the code of practice limiting value of 1%. Therefore, 

the modified design is proved to be more efficient since it is performed in one step 

taking into account the strength and displacement demands simultaneously, unlike the 

code of practice method in which the second deformation check step may turn out 

highly iterative. Moreover, the proposed modification allows considering multiple 

performance levels, while identifying the performance objective that governs the 

design. 

Regarding the value of R-factors achieved using the proposed design method, it 

is interesting to note that the Eurocode 8 (EN1998-1, 2004) provides a close value of 

3.9 for designing MRF’s with limited ductility for the ultimate and serviceability limit 

states, as compared to the value of 3.8 calculated in the modified design method for the 

life-safety performance objective. A study on the Egyptian seismic code (ECP-201, 

2012) has also proposed changing the R-value specified as 5 for framed structures with 

low ductility to 60% of this value, which is almost 3 (Abd El Basset,Y., 2017). By 

performing nonlinear static analysis using the commercial software ETABS (CSI, 

2013), the study proved that the proposed value of 3 is more conservative for a range 

of regular RC frames with different heights and located in different seismic zones (Abd 

El Basset, Y., 2017).  This value is quite comparable to the critical R-factor of 3.6 found 

in this case study. Other research on the Egyptian seismic code has also advocated using 

a reduced value than 5 for the R-factor of framed structures (Mansour, A., 2015; and 

Ramadan, M., 2016). All these studies demonstrate the potential of the proposed 

modified method in achieving more accurate and reliable designs, in addition to the 

added advantage of efficiency.  
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6.4.2 Performance of the Designed Frames 

In order to evaluate the reliability of the MD-frame design as compared to BL-

frame design in achieving the intended performance objectives, nonlinear time history 

analysis (THA) is employed to provide a benchmark solution that reflects the closest 

approximation of actual behavior. ZEUS-NL is used for performing THA, using the 

same methodology, assumptions, material models, ground motion records and post-

processing procedure described in Chapter 4.  

6.4.2.1 Drift at the hazard levels associated with the performance levels 

The final design MD-frame and BL-frame are modelled on ZEUS-NL, and are 

subjected to the seven ground motion records, described in Section 4.3.6. Three 

different scales, 0.3, 1 and 1.5 are applied on the PGA to match the elastic response 

spectrum for the FOE, DBE and MCE respectively, as illustrated in Figure 6-2. The 

resulting IDR values are calculated based on average and standard deviation. The 

average IDR values are compared to the limiting values associated with the 

corresponding performance levels, i.e. IO, LS and CP. Margins against reaching 

different performance levels are calculated by dividing the IDR limit specified for each 

performance level by the IDRmax reached at the associated hazard level, for example 

the margin against the IO level is calculated as 0.01 divided by the IDRmax achieved 

under the 50% in 50 years hazard level, which corresponds to PGA scale factor of 0.3. 

These results are summarized in Table 6-6. It is observed that the results of the BL-

frame and the MD-frame are quite comparable at all hazard levels, with minimal 

reduced values for the MD-frame indicating more economical designs. Both designs 

satisfy the target drift values of the three performance levels with a considerable 

margin. This can be attributed to the overstrength resulting from the factors of safety 

employed in design, and also from the use of the equivalent static load method which 

results in relatively large base shear values, and accordingly overestimated 

displacement results.  
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Table 6-6 IDR response at the different hazards corresponding to the performance levels 

 IDRaverage IDR 
 

(dispersion due to record 

to record variability) 

𝑴𝒂𝒓𝒈𝒊𝒏 

 

=
𝐼𝐷𝑅𝑙𝑖𝑚𝑖𝑡−ℎ𝑎𝑧𝑎𝑟𝑑 𝑙𝑒𝑣𝑒𝑙

𝐼𝐷𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒

 

Frame/design 

procedure 
BL-frame MD-frame BL-frame MD-frame BL-frame MD-frame 

50% in 50 years 

hazard, i.e. FOE 

(PGAFOE=0.3 

PGADBE) 

0.27 0.30 0.03 0.04 3.67 3.39 

10% in 50 years 

hazard, i.e. DBE 

 
1.01 1.03 0.18 0.11 1.98 1.95 

2% in 50 years 

hazard, i.e. MCE 

(PGAMCE=1.5 

PGADBE) 

1.46 1.59 0.26 0.29 2.06 1.89 

6.4.2.2 Accuracy in estimating roof displacement 

The roof displacement results from the THA at the limit of the LS performance 

level are post-processed for the BL-frame and the MD-frame, and their average 

compared to those estimated by the respective design method. Table 6-7 presents the 

THA results. The average roof displacement for the MD-frame when the IDR reaches 

0.02 is 0.255m, which is quite close to the value estimated by the proposed design 

method which is 0.286m, as shown in Table 6-4. The modified design overestimates 

the roof displacement by only 12%. While the roof displacement of the BL-frame can 

be calculated by multiplying the displacement analysis results in Figure D-4 in 

Appendix D by the displacement amplification factor of 0.7R, thus amounting to 0.7x5x 

0.1287 =0.45m, which is 71% higher than the THA result of 0.264m. Thus, the code of 

practice method highly overestimates displacement response which should be 

accurately appraised to account for pounding and separation distances. This conclusion 

about the exaggeration of the code displacement estimate is consistent with the findings 

of many other researchers, for example El Howary, H. (2009) among others.  

Table 6-7 THA results for the roof displacement at IDR=2% 

 EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 Average 

BL-frame 0.277 0.267 0.255 0.295 0.220 0.285 0.246 0.264 

MD-frame 0.248 0.228 0.241 0.301 0.270 0.287 0.212 0.255 
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6.4.2.3 Fragility analysis 

In order to understand the performance and damage potential of the two 

designed frames in a probabilistic manner, fragility curves are developed for both the 

BL-frame and the MD-frame, by employing Incremental Dynamic Analysis as 

described in Chapter 4. The fragility curves provide the probability of exceeding a 

certain damage state versus the different intensities of earthquake. Because only 7 

ground motion records are used in the fragility analysis, the results are considered quite 

approximate, yet appropriate for the purpose of the comparative study between the two-

design method.  The damage state is expressed as the limiting value of the IDR, and the 

earthquake intensity used in simply the PGA. The probability values are calculated by 

dividing the number of records whose responses reached the limiting state by the total 

number of records, as presented in Table 6-8 and Table 6-9 for the BL-frame and the 

MD-frame respectively. It can be observed from Figures 6-3 to 6-5 that the fragility 

curves for both frames are approximately the same, except for the collapse prevention 

level, where the consideration of this performance level in the design of the MD-frame 

results in it having a lower probability of exceedance given a certain seismic intensity, 

compared to the BL-frame. Nevertheless, such observation needs to be substantiated 

with more comprehensive fragility analysis employing a higher number of ground 

motion records. It should be noted that the IDR at the hazard (FOE, DBE and MCE) 

associated with each performance level (IO, LS and CP) is still way less than the target 

IDR limiting values, due to the inherent overstrength. From the results, it can be 

concluded that the use of the modified hybrid force/displacement method can result in 

structures that have higher reliability of achieving the targeted performance objectives, 

which, in addition to the advantage of considering multiple performance targets in a  

less iterative process, proves its suitability for performance-based design applications.  
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Table 6-8 Probability of exceedance of the three performance levels given an earthquake 

intensity, for the BL-frame 

PGA/g 

IDR for the seven ground motion records 

(%) given an earthquake intensity PGA/g 
Probability of IDR greater than IDRPerformance-Level 

EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 P(IDR>IDR=1%) P(IDR>IDR=2%) P(IDR>IDR=3%) 

0.28 0.72 0.69 0.89 0.91 0.90 0.73 0.74 0.00 0.00 0.00 

0.35 0.88 0.84 0.99 1.08 1.38 0.93 0.97 0.29 0.00 0.00 

0.39 0.95 0.94 1.01 1.00 1.00 1.04 1.10 0.71 0.00 0.00 

0.42 1.04 1.03 1.01 1.41 1.85 1.13 1.22 1.00 0.00 0.00 

0.49 1.26 1.19 1.17 1.76 1.81 1.30 1.23 1.00 0.00 0.00 

0.56 1.46 1.27 1.46 2.04 1.64 1.40 1.46 1.00 0.14 0.00 

0.63 1.54 1.32 1.91 2.02 1.73 1.47 1.74 1.00 0.14 0.00 

0.70 1.59 1.48 2.37 1.92 2.03 1.59 1.99 1.00 0.29 0.00 

0.77 1.70 2.20 2.32 2.59 2.24 1.85 2.16 1.00 0.71 0.00 

0.84 1.80 2.95 2.22 4.30 2.31 2.05 3.19 1.00 0.86 0.29 

0.91 1.88 3.63 3.27 6.53 2.28 2.17 4.86 1.00 0.86 0.57 

0.98 2.01 4.39 5.19 - 2.45 2.29 7.12 1.00 1.00 0.57 

1.02 2.00 4.70 8.46 - 3.18 2.34 8.37 1.00 1.00 0.71 

1.05 2.29 4.98 - - 4.40 2.40 9.12 1.00 1.00 0.71 

1.09 2.50 5.16 - - 5.63 2.46 - 1.00 1.00 0.71 

1.19 3.40 5.51 - - - 2.86 - 1.00 1.00 0.86 

1.26 - - - - - 3.34 - 1.00 1.00 1.00 

 

Table 6-9 Probability of exceedance of the three performance levels given an earthquake 

intensity, for the MD-frame 

PGA/g 
IDR for the seven ground motion records 

(%) given an earthquake intensity PGA/g 
Probability of IDR greater than IDRPerformance-Level 

EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 P(IDR>IDR=1%) P(IDR>IDR=2%) P(IDR>IDR=3%) 

0.28 0.79 0.72 0.83 0.86 0.83 0.68 0.76 0.00 0.00 0.00 

0.32 0.00 0.00 0.99 1.00 0.91 0.00 0.86 0.14 0.00 0.00 

0.35 0.95 0.94 1.15 1.18 1.04 0.90 1.03 0.57 0.00 0.00 

0.42 0.96 1.19 1.37 1.49 1.45 1.11 1.42 0.86 0.00 0.00 

0.49 1.13 1.45 1.36 1.51 1.90 1.36 1.68 1.00 0.00 0.00 

0.56 1.29 1.68 1.30 1.76 2.24 1.55 1.76 1.00 0.14 0.00 

0.63 1.47 1.84 1.48 1.95 2.21 1.65 1.73 1.00 0.14 0.00 

0.70 1.78 1.94 1.73 2.12 2.02 1.70 1.82 1.00 0.29 0.00 

0.77 2.10 1.98 1.96 2.30 2.23 1.74 2.12 1.00 0.57 0.00 

0.84 2.32 2.00 2.28 2.52 2.50 1.79 2.40 1.00 0.71 0.00 

0.91 2.44 2.08 2.54 2.70 2.67 1.86 2.66 1.00 0.86 0.00 

0.98 2.66 2.63 2.81 2.82 2.88 1.97 2.85 1.00 0.86 0.00 

1.02 2.76 2.86 2.90 3.47 3.03 2.03 2.93 1.00 1.00 0.29 

1.05 2.84 3.15 2.96 4.13 3.15 2.11 2.99 1.00 1.00 0.43 

1.09 2.90 3.53 3.55 4.90 3.22 2.19 3.05 1.00 1.00 0.71 

1.19 3.00 4.89 - - 3.31 2.45 4.15 1.00 1.00 0.86 

1.26 - - - - - 2.63 - 1.00 1.00 0.86 

1.33 - - - - - 2.83 - 1.00 1.00 0.86 
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Figure 6-3 Fragility curves for the BL-frame and the MD-frame showing conditional 

probability of exceeding the IO performance level target IDR of 1% 

 

 

 

 

 

 

Figure 6-4 Fragility curves for the BL-frame and the MD-frame showing conditional 

probability of exceeding the LS performance level target IDR of 2% 
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Figure 6-5 Fragility curves for the BL-frame and the MD-frame showing conditional 

probability of exceeding the CP performance level target IDR of 3% 
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 CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 INTRODUCTION 

The present study is analytical/numerical in nature aiming to develop relations 

for estimating lateral displacement demand of low-to-medium RC moment-resisting 

frames that can be used for extension of a refined hybrid force-displacement (HFD) 

design methodology to RC structures. This chapter presents a summary of the research 

with the main conclusions and contribution. The limitations and the recommendations 

for future study are also discussed.   

7.2 SUMMARY 

The HFD method is a simple and direct seismic design procedure developed 

specifically for the purpose of performance-based design.  The methodology uses 

preselected target inter-story drift values as key performance objectives to estimate the 

displacement demand which is then used as a design input parameter to determine a 

more realistic and performance-dependent reduction of elastic forces. This method 

eliminates the iterative steps required to satisfy the drift limiting criteria in traditional 

code design procedure. It additionally serves as a promising preliminary design method 

in the framework of the next-generation performance-based design, since it can design 

structures for various limit states associated with different levels of seismic input, and 

thus has better reliability of success in the subsequent performance assessment stage. 

The design parameters used for estimation of the displacement demand are simply the 

structural geometrical attributes; for example, the number of stories, the number of bays 

and the building height as well as the performance target objectives. The procedure 

involves formats common to design practitioners like the elastic pseudo-acceleration 

response spectrum and the force reduction factor. The HFD method has been well 

established and validated during the past 12 years for a variety of steel structures 

(Karavasilis et al., 2006-2008; Tzimas et al., 2013, 2017; Skalomenos et al., 2015; 

among others). This research serves as an initiative for extension of the HFD to concrete 

structures by proposing displacement estimating relations that can be used in the early 
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stage of design. Employing rigorous nonlinear modelling of RC moment-resisting 

frames, incremental dynamic analysis is performed to determine the earthquake 

intensity at which certain predefined damage levels are reached. Then, damage-window 

time-history analysis is conducted to monitor the displacement response at the 

determined loading levels associated with the pre-selected performance targets. The 

displacement response values are post-processed and analyzed. By utilizing nonlinear 

regression, equations are developed for estimation of the maximum roof displacement, 

and presented as displacement prediction charts. A design example (a case study) helps 

to prove the efficiency and higher reliability of the proposed HFD in achieving targeted 

performance of RC frames.  

7.3 CONCLUSIONS AND CONTRIBUTIONS 

The main conclusions drawn from this research are given below.  

1. The HFD design method has been extended from steel structures to RC plane MRF’s 

by developing a practical formula for estimating global displacement demand in 

terms of a performance measure which is the Inter-story drift ratio (IDR). The IDR 

is a major Engineering Demand Parameter (EDP) and a damage metric.  

2. The proposed prediction equation has the following advantages: 

• It directly estimates displacement from the structure’s geometrical properties 

(number of floors and number of bays) independent of any section dimensions so 

that it can be used at the beginning of design.  

• Performance is directly implemented into the predictive model, through the 

selected EDP, the IDR. 

• The equation is developed using a continuous scale of IDR’s, and provides the 

IDR variable as values rather than levels. Therefore, it can be utilized with any 

improvement in the limiting values for performance levels and also with the future 

possibility of continuum between the discrete performance levels as advocated by 

the next-generation performance-based design guidelines.  

• The interaction of the different factors used in the equation and their relative 

contribution is well studied and captured by the prediction model. From the time-

history analysis (THA) results, and the corresponding coefficients of the 
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regression equation, it is concluded that the IDR, followed by the number of 

floors, has the most significant effect on the displacement estimate (positively 

correlated factors, with interaction between them). The number of bays has a less 

significant, but negative correlation,   

• The response data used for developing the formula are based on rigorous 

nonlinear time-history analysis that addresses material and geometrical 

nonlinearity (effect of P-delta), as well as stiffness degradation and strength 

deterioration which are typical characteristics of actual RC hysteretic behavior 

• The displacement estimate inherently includes the inelastic displacement effects 

as well as the response of the multi-degree-of freedom structure.  

• To an extent, the proposed predictive model can be considered as producing 

unbiased results with respect to the uncertainty associated with the earthquake 

loading, since it is based on averaging response to several ground motion records 

that have reasonable variability in their frequency and energy content. Still, 

interaction between the earthquake and structure characteristics affect the 

dispersion of the results. 

• The calculated correlation coefficient of 0.98 and maximum absolute percentage 

error of 5.1% proves the accuracy of the proposed equation in estimating 

displacement demand.  

• The developed displacement prediction equation, based on the parameters 

selected for study, fills a gap in the literature and can be readily used for 

performance-based seismic design combined with any other design method.  

3. From the results of the case study design example, it is proved that 

• THA results showed that the maximum roof drift (at the LS performance level) 

of the Modified-design (MD) structure, which is designed following the HFD 

method, is quite close to the values calculated by the proposed equation and 

assumed in the design. It also showed that the resulting inter-storey drift values 

fall below the target limiting values associated with each performance level. 

Therefore, the use of the proposed equation in combination with the HFD design 

method, can lead to structures that meet predefined performance objectives in 

terms of target inter-story drift, without the need for iteration or explicit drift 

check.  
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• The baseline (BL) frame designed in accordance with the ECP-201 (2007) 

excessively overestimated the maximum displacement, which can lead to 

cumbersome and unnecessary iterations, with no uniform indication of the real 

performance.  

• The MD-frame, designed according the HFD method, responded as intended in 

design with much improved performance over those of the corresponding BL-

frame, for the added CP performance level, as indicated by the comparison of the 

fragility curves of the MD-frame and the BL-frame. 

• From the procedural viewpoint, the case study proves that the HFD method can 

complete the design directly in one step by considering the strength and 

deformation demands at the same time, while the code of practice method 

required many iterations after the deformation check step to reach the final design. 

• It is concluded that the HFD method can be successfully used for design of RC 

MRF’s.  

4. The HFD design method is a direct method, which requires no performance 

evaluation after the strength design step because the nonlinear behavior and 

performance criteria are built into the design process from the start i.e. the drift check 

is automatically accounted for.  Compared to fore-based methods, it minimizes the 

design iterations and avoids the oversimplified constant values of the force reduction 

factor. While compared to displacement-based procedures, it eliminates the errors 

introduced by the substitute SDOF approximation, and maintains the elastic domain 

of analysis with the conventional representation of earthquake action in terms of the 

pseudo-acceleration spectrum. Therefore, the HFD combines the advantages of both 

the force-based and displacement-based procedures.  

5. The HFD design procedure is easy to follow and can identify the performance level 

which truly controls the design, and accordingly results in a structure with higher 

reliability in meeting the predefined performance levels. Therefore, the proposed 

method can be readily incorporated as a preliminary design method in the context of 

the broader next-generation performance-based design framework given in FEMA-

445. This is especially advantageous for zones of low-to-medium seismicity where 

the added complexity of more complicated design methods cannot be justified.  
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7.4 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE STUDY 

1. The conclusions of the current research are confined to the assumptions and 

properties of the frame models utilized in development of the displacement 

prediction equation, which are 

a. Code-compliant RC buildings with number of stories 4 to 10, number of bays 3 

to 7, and fundamental period range of 0.5s< T1< 1.3s 

b. Moment-resisting frames with limited ductility as the main lateral load-resisting 

system.  

c. Symmetrical geometries, where eccentricities and the associated torsional 

effects are neglected.   

d. Equal floor heights along the building amounting to 3m. 

e. Concrete has 28 days compressive cube strength of 25 MPa and steel of the 

reinforcing bars has 360 MPa yield strength.  

f. Ground motions limited to normal far-source earthquakes with A/V ratio 

between 8 and 14 s-1.  Near-source earthquakes have rather distinctive 

characteristic which are not covered by this study.  

g. Site conditions restricted to soils with deep deposits of dense or medium-dense 

sand, gravel or stiff clay, having an average shear wave velocity of the top 30m 

of the soil profile between 180 and 360 m/s and plasticity index between 70 and 

250 kPa, which are the properties of soil class C, as described in the code.   

Application of the proposed methodology to other structural systems, higher heights, 

and different site conditions needs further verification employing similar studies.  

2. The numerical accuracy of the nonlinear model used in THA can be improved by 

a. Using a greater number of ground motions with different characteristics. 

b. Modeling soil-foundation-structure interaction. 

c. Using more precise hysteretic characteristics, and modeling variations of 

confinement effect through the history of loading.  

d. Including panel zone and bond slip effects. 

e. Conducting correlation studies to calibrate the properties of the modelled 

structure against field results.   

f. Including a parameter that reflect the initial stiffness assumed in the design. 
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3. The accuracy and applicability of the proposed displacement prediction equation can 

be enhanced by: 

a. Incorporating a seismological estimator parameter that are regionally 

dependent. 

b. Adding a parameter that reflects the different masonry-infill opening 

configuration.  

c. Employing independent factors that reflect higher mode and p-delta effects 

depending on the number of floors.  

4. As a compromise for the simplicity advantage, the HFD also adopts from the FBD 

method its limitation associated with the assumptions that the spectra for SDOF 

systems are valid for MDOF. 

5. The author’s recommendations for future study are 

a. Extension of the HFD methodology to space frames, irregular frames and other 

RC structural systems such as shear wall buildings.  

b. Including other damage and performance metrics in the HFD method for 

example, target yield mechanism, peak floor acceleration, and local curvature 

limits, for controlling structural and non-structural damage.  

c. Developing more accurate story shear distribution relations for the different 

performance levels based on the results of THA, to be used in the HFD method. 

d. Employing correction factors for the period of vibration of the structure (used 

for obtaining the spectral acceleration from the response spectrum) for 

performance levels associated with earthquakes of very high return period, in 

order to account for the considerable softening effects at this response level.  

e. Converting the deterministic design format to a probabilistic one, for example 

designing with the aim that the odds of achieving a certain performance level 

can be reduced to an acceptable minimum (with the desired level of confidence). 

This probabilistic definition would be more rational given the uncertainties 

inherent to earthquake engineering and would follow the pathway of the next-

generation performance-assessment framework. 
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Figure A-1: Artificial ground motion records accelerograms and pseudo-acceleration spectra 
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APPENDIX B 

 

B1 

 

 

Figure B-1 Bending moment diagram (up) and axial force diagram (down) for the case study 

frame under the gravity load combination (Etabs output) 
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C1 

 

 

Figure C-1 Bending moment diagram (up) and axial force diagram (down)  for the case study 

BL-frame for the strength design stage, iteration 1 (Etabs output) 
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C2 

 

 

Figure C-2 Inter-story drift diagram for the case study BL-frame after the strength design 

stage, iteration 1 (Etabs output) 

 

 

 

Figure C-3 Displacement profile for the case study BL-frame after the strength design stage, 

iteration 1 (Etabs output) 
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D1 

 

 

Figure D-1 Bending moment diagram (up) and axial force diagram (down) for the case study 

BL-frame final design (Etabs output) 
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D2 

 

 

Figure D-2 Story shear diagram for the case study BL-frame final design (Etabs output) 

 

 

 

 

Figure D-3 Inter-story drift diagram for the case study BL-frame final design (Etabs output) 
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D3 

 

 

Figure D-4 Displacement profile for the case study BL-frame final design (Etabs output) 
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E1 

 

 

 

Figure E-1 Bending moment diagram (up) and axial force diagram (down) for the case study 

MD-frame, with the FOE seismic loading (Etabs output) 
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E2 

 

 

 

Figure E-2 Inter-story drift diagram for the case study MD-frame with the FOE seismic 

loading (Etabs output) 

 

 

 

Figure E-3 Displacement profile for the case study MD-frame with the FOE seismic loading 

(Etabs output) 
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F1 

 

 

 

Figure F-1 Bending moment diagram (up) and axial force diagram (down) for the case study 

MD-frame, final design (Etabs output) 
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F2 

 
 

 

Figure F-2 Story shear, drift and displacement for the case study MD-frame final design 

(including CP performance level) (Etabs output) 
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F3 

 

 

 

Figure F-3 Story shear, drift and displacement for the case study MD-frame final design 

(excluding CP performance level) (Etabs output) 


