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Abstract. In this paper, a hybrid genetic programming (GP) with multiple genesplenmented for
developing prediction models of spectral energy demands. A multi-objectategstris used for
maximizing the accuracy and minimizing the complexity of the models. Buoitttal properties and
earthquake characteristics are considered in prediction models afehmand parameters. Here, the
earthquake records are classified based on soil type assuming fbi@ndioil classes have linear
relationships in terms of GP genes. Therefore, linear regression analyssasl ieo connect genes for
different soil types, which results in a total of sixteen prediction tBodehe accuracy and
effectiveness of these models were assessed using different paedemnmetrics and their performance
was compared with several other models. The results indicate thatilpdhe proposed models are
simple, but also they outperform other spectral energy demand models proposed in i literat
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1. Introduction
The approaches currently used for the seismic analysis and design of frnetdleto be improved
through considering appropriate engineering demand parameters that wveprkeksent the
characteristics of a structure and the design earthquake. In curreradmsoeither the structural
members are designed based on satisfying the balance between the fame aledrthe corresponding
strength supply while providing an adequate level of ductility (based on e.g=/&80 2010), or
based on the concept whether they are force- or deformation-contiudieeld(on e.g. FEMA-356
2000. Such approaches disregard the frequency content and duration of earthquake ground motion, as
well as the velocity response and hysteretic behavior (Gupta 1990). The mopoofaconsidering
these factors lies in evidences suggesting that, for instance, dissipateeticysteergy due to repeated
inelastic excursions could result in a certain amount of seismic dgfFajfgr and Vidic 1994). In fact,
in addition to the force and deformation, the energy demand is of grpattance in capturing the
mentioned seismic factors as the inelastic behavior is expected taloedorthe design and maximum
earthquakes. Housner (1956) was first to introduce these factors through defirengriine concept.
This concept requires that the energy dissipation capacitybe less than the input energy demand.
Both structural properties and earthquake characteristics affectethmic energy demand.
Determining the spectral values of energy demand is benefigalo its connectiotothe amount of
structural damage (Fajfar and Vidic 1994, Gharehbaghi 2018). The design cedestaxplicitly
implemented the energy demand parameter in predicting seismic demaridengelver, the priority
of the energy-based design approach compared with the conventional stresagtiidsign approach
needs further studies. Although, previous studies (e.g. Housner 1956, Fajfar and VidiKalkad,
and Kunnath 2007, Akiyama 1985, Bertero and Uang 1988, Decanini and Mollaioli 200tedilan
2001) have stipulated that the seismic energy parameters arabingpertance in seismic design of
structures. It was shown that the hystertic energy demand is directly connectestitoctueal damage
(Fajfar and Vidic 1994, Kalkan and Kunnath 2007, Akiyama 1985, Bertero and Uang 1288jribe
and Mollaioli 2001, Manfredi 2001, Benavent-Climent et al. 2010, Gharehbaghi 2&&8)more than

two decades that the Housner’s proposal was almost neglected, it was received considerable attention



76 among researchers (Akiyama 1985, Kuwamura and Galambos 1989), and beckeyeishae of a
77 conference held in Bled city of Slovenia (Fajfar and Krawinkler 1982yas recognized that input
78 energy and hysteretic energy are the indicators of ground motion and havelatioarwith the
79  structural damage, and the quantity related to cumulative damduehgsteretic energy (Fajfar and
80 Vidic 1994, Bertero and Uang 1988, Decanini and Mollaioli 2001). Most recerdlyiz[2t al. (2017)
81 also found that the most appropriate and reliable intensity meastine fegismic fragility analysis of
82  buildings is the seismic energy demand.
83 Estimation of input and hysteretic energy demands using mathematical caddlbe considered
84  asone of the important steps aligned with the extension of the energysbeseid analysis and design.
85  As previously mentioned, both structural and earthquake characterigitsonbe accounted for the
86 issue. Some earthquake characteristics such as soil type, earthqugkiudea peak ground
87 acceleration (PGA), peak ground velocity (PGV), cumulative enedgxi fault type, distance from
88 the hypocenter, were used by researchers in determining the energy spectra (e.g. Zahra and Hall 1984,
89 Uang and Bertero 1988, Fajfar et al. 1989, Uang and Bertero 1990, Sucuoglu and Nurtug 1995,
90 Khashaee 2004 In addition to the earthquake characteristics, ductility ratio, damaitig, and
91 hysteretic behavior model (e.qg. elastic-perfectly plastic, bilineachpig, Takeda, and Clough models)
92 were the influential structural properties involved in the estimaif@eismic energy demand spectra
93 (e.g.Sucuoglu and Nurtug 1995, Decanini and Mollaioli 2001, Benavent-Climent et al. 201)1Several
94  works have been carried out on the estimation of the seismic energyndigrarameters. Housner
95 (1956) presented a model to determine input energy based on the spéatigl 86 SDOF system.
96 Kuwamura and Galambos (1989) presented energy demand spectra considesail tie and
97 dominant period of the earthquake. Chou and Uang (2000) estimated absorbed ermrgydiastic
98 system by using an attenuation relation. They used nonlinear regression analysigingnisatk
99  structural and earthquake variables. Manfredi (2001) proposed simplerdffita¢hematical models
100 to estimate input and hysteretic energy spectra. A dimensionless swidmicthat is a function of
101 PGA, PGV and cumulative energy was proposed to estimate the semargy epectra. Although the

102 estimation models were simple and effective, the effect of soiMmhaas not considered, and the
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number of earthquake ground motions was rather limited. Decanini and Mollaioli (2001) proposed the
formulation of elastic seismic energy spectra. They also presented a cengivelstudy to propose
the design inelastic energy spectra by introducing the response madfifieatior for the input energy.
Several structural variables (e.g. ductility ratio and hysteretiaviet) and earthquake characteristics
such as soil type, sourde-site distance, and earthquake magnitude were considered in the proposed
spectra. Arroyo and Ordaz (2007) estimated the hysteretic energy demaralfspecaiastic response
parameters in accordance with the earthquake events recardiéekico City. Their mathematical
models were a function of pseudo-acceleration, velocity and displacement spectadEsigti input
energy spectra based on Iranian earthquakes were also presented by Gtmodrat al. (2008).
Recently, Dindar et al. (2015) proposed two regression-based simple mathematicaltmesdtinate
the input and hysteretic energy spectra. A database of earthquake gpatiordrecords composed of
near- and far-fault ones, PGA, soil types, earthquake magnitude, duatitityand hysteretic behavior
model was included in the proposed models. Using the regression analysis, Quind20da6a also
proposed mathematical models to estimate the seismic energy spengkstid systems located on
the soft soil for Mexico City. They captured the effect of ductilityoraif inelastic systems and
dominant period of the probable earthquakes on the presented models. Mullg, rEbai et al. (2016)
proposed an expression to account for the effect of after-shock on the ingyt spectra using an
equivalent velocityAlict and Sucuoglu (2016) carried out a regression analysis to estimate inelastic
input energy spectrum. The prediction equations for the input energy spectrexyesssed in terms
of an equivalent velocity. Some crucial earthquake characteristbsding soil type, epicentral
distance, moment magnitude, and the fault type were considered in the propmdsld. All the
previously mentioned works use conventional regression methods to estimatedhgyr garameters
of interest.

Based on the capability of soft computing approaches and their recent agviainagorthwhile to
use such efficient approaeh for seismic demand prediction. Computational complexity of the
conventional methods and their limitations has made soft computing techniquess swchutionary

algorithms, artificial neural networks, support vector machines, ang fagic, popular for solving



130 complex engineering problems. A common application of these tools is ircthredanalysis for
131 modeling the nonlinear dependency of the input parameters to the output valhe(s) the
132 conventional approaches (e.g. regression analysis) fail or perform pobdy @€ al. 2003, Gandom
133 and Roke 2015). Despite the success of artificial neural netwAiXBlg) in prediction, they are
134 inappropriate to develop practical intelligible equations. In addition to ANNSs, summorimachines
135 (SVMs) are another primary class of soft computing methods used to disctigarpand approximate
136 relationships when large quantities of data is available. Although both ANNs and SVMeteived
137 significant attention (e.g. Salajegheh and Heidari 2005, Gholizadeh &pebBah 2009, Papadopoulos
138 etal. 2012, Gharehbaghi and Khatibinia 2015, Khatibinia et al. 2015, Yazdar2@16), they require
139 a pre-defined and initial structure for the equation and network astthiéeto be determined by the
140 user. Genetic programming (GP), a learning algorithm originated fromigaihgrithms, is another
141 well-known and successful technique for developing nonlinear mathematcils for the complex
142 problems. GP and its variants have been effectively used for solving variousnpsolsl civil
143 engineering (e.g. Kayadelenet al. 2009, Alavi et al. 2011, Mirzahosseihi 2011, Gandomi et al.
144 2012, Vardhan et al. 2016; Lim et al. 2016). Several variants of GP havprbpesed in the literature,
145 such as gene expression programming (Ferreira 2006) and multi-stage geggimming (Gandomi
146 and Alavi 2011).0One of the robust variants of GP is multi-gene geneticaptogng (MGGP) that
147 adds the capability of conventional regression to the standard GP abp#yameter estimation. The
148 effectiveness of MGGP has been proved in the works reported by Gandon{eaj.aGandomi and
149 Alavi 2012a,b, Gandomi et al. 2013, Babanajad et al. 2013, Gandomi et gl. 2016

150 Structural and earthquake engineering has benefited from the soft amripahniques in different
151 applications. For instance, ANNs and SVMs have been widely used for risknassgsseismic
152 response prediction, control and health monitoring (Tsompanakis and Topping 2011). In this pape
153 MOGP is used for predicting the seismic energy demand spectra congsluteth typical structural and
154 earthquake characteristics. For this purpose, eighteen set of the singlealdggedom (SDOF)
155 systems with the structural properties of different hardening rdtimbr®ar hysteretic behavior model,

156 damping ratios, and ductility ratios are used to determine the energy demand spectra mensoned. Al



157 four different sets of earthquake ground motion records based on their ssi{sgfte firm, stiff and

158 rock) with the sourcée-site distances of more than 17.5 km and the magnitudes of greater than 5.5
159 were used. It was assumed that the different soil classes have linear relationgnips of GP genes
160 which help to find one equation with different coefficients for défe soil types. The records were
161 scaled to two PGA levels 0.5g and 1.0g. Finally, four mathematical mode¢sgonding to the four

162 engineering demand parameters (EDPs) of spectral input and hystaegtig,espectral hysteretic to
163 input energy ratio, and spectral energy modification factor, are proposedM&i&§. Then, the

164 effectiveness of the models is revealed using the performanceswetnpared with those of available
165 in the literature.

166 In this study, section 2 describes the seismic energy concept and its famuddd this section

167 introduces the seismic energy based EDPs which can be useful in sewsigncadénelastic structures.

168 Section 3 express a hybrid computational approach based on genetic prograseding a predictive
169 tool herein. Section 4 describes a framework for prediction of the EDPs. A sethefmagical models

170 are proposed and their accuracy are examined using some performance imsgction 5. Finally,

171 the developed models are discussed and compared with some other methods proposed in the literature
172

173 2. Seismic Energy Concept and Formulation

174 Housner (1956) first proposed the idea of the energy-based seismic dgsigach. When ground
175 motion transmits energy into a structure, some of the energy is dissipedagh the damping and
176 inelastic behavior. The remained energy of the structure is stored fartheof kinetic energy and

177 elastic strain energy. Housner stipulated that the energy supply should be mohe #v@ergy demand
178 during an earthquake in the form of this principle that energy supplgrgedemand for controlling

179 and avoiding the structural collapse (Housner 1956).

180 When a struct@r is subjected to earthquake excitation, its governing equation for the dynamic

181 behavior of an inelastic SDOF system could be written as (Chopra 2012):

ma(t) + cu( 9+ §(uY, UY)=- mig() (1)



182 where m, c and fepresent the mass, damping coefficient and lateral resistingdb&®2OF system,
183 respectively; Gt u(t) and u(t) are acceleration, velocity and displacement relative to the grourtd with
184 representing time in SDOF system, respectively; ayft) i the earthquake ground acceleration.

185 Governing equation of energy equilibrium is obtained by the integration of Eqitfiljespecto u

186 (Uang and Bertero 1990, Chopra 2012):
Jmutydu+ [ ei(y du [ 1), €Y du=— gt d 2)
187 In fact, Eq. (2) expresses the energy balance for a structural sistieg an earthquake while Eq.

188 (1) explains the force balance. Substituting displacement unit (du) bytyeten and integrating it

189 over the time of the earthquake ground motion t, Eg. (2) is expressed as:
[maa(yde+ [ ey Uy di [ £0@), €N €Y de-[ mg(r et ¢ 3)

190 where tis the time of interest across the earthquake ground mBtjo(3) can also be written in a

191 general form as follows:

E.()+E,()+E()=E (1), 4)
192 where Kt), Ex(t) and B(t) are the input energy demand, kinetic energy, and damping energy,
193 respectively; &(t) is encompassed the recoverable elastic strain enefyyaldd the irrecoverable
194 plastic hysteretic energynf). The amount of Et) is equal to zero in the elastic systems and is

195 appeared in the inelastic systems. Therefore, Eq. (4) can be expressed as:

E.()+E,()+E(M)+E,()=E(Y, (5)
196 where K(t) and E(t) are cumulative during the earthquake ground motion and are vanished at the end
197 of motion of the inelastic systems. In effect, these two termseayesmall in comparison withdg)
198 and E(t). Since the most portion of energy demand is dissipated through the dampigyg @mer

199 hysteretic energy, the Eq. (5) can be approximately wits§lang and Bertero 1990):
E,()+E, (D)= E(1). (6)

200 According to Eq. (6), the main portion of input energy demand is converted to the dangrigyg e

201 and hysteretic energy. Besides, if the structural system remains inagte @ange during an
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earthquake, Et) is trivial, and the energy-based analysis is not useful for sedmsign (Uang and
Bertero 1990).As mentioned before, for design basis earthquakes, it iseelxfietta structure will
experience inelastic cyclic deformations resulting in hysteretic endiggjpation. As previously
mentioned, the hysteretic energy dissipation) (E directly attributed to the structural damage where
the B4 /E ratio has been introduced as a good indicator of expected damage dRdjiidic 1994,
Sucuoglu and Nurtug 1995, Decanini and Mollaioli 2001, Manfredi 2001). For a given ductility ratio

(1), En/E ratio is defined as follow:

_ St ©
H EI B

HI

where the E and ki are the input and hysteretic energy corresponding to the ductility ragio of
Another parameter that is of crucial importance for earthquakeams#sign based on the energy
concept could be the response modification factor of the input energy that can be exgrésked a
_B
REW B Elu : (8)

The literature suggests that to have a practical energy based seismic design, thatioonapthe
input and hysteretic energy (and Ei.), hysteretic energy to input energy ratidl ), response
modification factor of input energyRE,), and energy dissipation capacity is useful. Since the design
method requires inelastic dynamic analyses resulting in the expensive computéfiotsaltiee use of
soft computing technigues is of great importance in predicting the ptactathematical models
(formulations). Except for the energy dissipation capacity that needgsemengive experimental and
theoretical studies, the spectral values of the mentioned energy-bag&sdwele predicted using
MOGP. The next section describes MWOGP.

3. Genetic Programming

There are two groups of models which can be used for modeling the complereapelngineering
systems: phenomenological and behavioral (Gandomi et al. 2016). Phenomenologalalmaed a
predefined structure obtained from the physical laws requiring a previous andérgt about the

system. Concerning the complex systems, sometimi&shiard to find such models. Unlike the



225 phenomenological models, behavioral models can be simply generated by findéagomable
226 approximate relation between input variables and the output value(s) folleation of data
227 (experimental or theoretical) irrespective of their governing physidatiples. Although one of the
228 main advantages of behavioral modeling techniques is their independence dmgnitedge about
229 the governing physical relationships of input and outputs (Walter and Pronzato 199%d&@04)
230 most of these models need the user to pre-assign a formulation patterimgegjtimization of its
231 unknown coefficients. Concerning the complex engineering systems, the use of icoavent
232 techniques such as regression analysis cannot be guaranteed to find an accuragblenueteivioral
233 model (Gandomi et al. 2016). It has been well recognized that most eftrthetural earthquake
234 engineering problems such as determining earthquake response of inetastiorest could be
235 considered as such complex problems.

236 Genetic programming (GP) (Koza 1990) is a novel behavioral modelingodwogy with
237 completely new characteristics. GP is an extension of the genetic algoaiahle of functionalizing
238 data using tree structures. In fact, unlike classic regression modelsNs, &P is capable of
239 generatinga prediction equation irrespective of a predefined structure. The succaggfigation of
240 GP and its variants have been reported in solving the various real-worldrpsofd.g. Gandomi and
241 Alavi 2012a,b, Gandomi et al. 201Babanajad et al. 2013, Gandomi et al. 2016). One of the robust
242  variants of GP is MGGP that adds the capability of conventional regresshmstandard GP ability
243 in parameter estimation, which has been proposed recently (Seardo2@7).The initial MGGP
244  studies show that it can outperform other GP variants (Gandomi and Alavi,R01REGGP is
245  described in the next subsection.

246  3.1.Multi-Gene Symbolic Regression

247 GPcangenerally be defined as a supervised machine learning technique that searchesna gpace
248 instead of a parameter space. One of the useful variants of GP iggbhdt genetic programming
249 (MGGP) (Searson et al. 2007, Gandomi and Alavi2012a). MGGP is used to design rtiattienoael
250 predictions which are inherently multi-gene, i.e., those models consistingaf combinations of low

251 order nonlinear transformations of the input variables. Unlike conventiodah& is based on an



252  evaluation of single tree expression, MGGP uses a single GP particle swaehsgledtion program
253 constructed from a number of genes where each gene has a treei@xg&sarson et al. 2010). In
254  effect, the model development procedure is decomposed by MGGP consisteé oflstively simple,
255 fixed-depth sub-models.

256 To develop a population of trees, GP typically uses symbolic regression. Comptrdtew
257 conventional GP, a weighted linear combination of outputs from a number of GP trees is edrasder
258 a symbolic model in which each of these trees could be consiglesegene” (Searson et al. 2010)
259 The number of genes and tree depth of any gene can be specified by twhickeheir maximum
260 values depend on the complexity of the models developed by MGGP. The evolved molietaare
261 combinations of low-order nonlinear transformations of the predictor vesidBlearson et al. 2010)
262 The ordinary least squares method is used to estimate the linearieo&fffor each of the evolved
263 genes of anindividual. A more detailed explanation of M@z®ailable in Refs. (Searson et al. 2007,
264  Searson et al. 2010).

265 A fixed linear illustration associated with binary encoding of all petars is used in GA, which
266 results in a string of numbers as output. In GP however, the optimizatateqms are solved
267 irrespective of a pre-defined solution structure. Depending on the problem doméiiist theneration
268 consisting of a population of possible solutions is randomly created by GP, @atibnaoperators
269 generate new candidate solutions then. During the evolutionary process, crossover selects a node from
270 the parental individuals and exchanges the subtrees under the selected mimte$/rand creates a
271 new individual. Mutation truncates and replaces one node of a treenaitiea randomly generated
272 node from the same set, and then creates a new individual from an existingiee@opulation. The
273 individuals with higher fitness values have higher survival likelihood in theeseve generation. To
274  find the best fitting solution, the individual solution of a population is updstedexecuting a number
275 of runs in each generation, and the parental individuals are selemtedhie population based on a
276 good fitness function. To develop a population of genes, symbolic regression methdak ca
277 implemented using standard GP in which a symbolic mathematical exprissdicgctly encoded by

278 each of the genes. Based on Figure 1 showing a typical multi-gene model, &sommlti-gene
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symbolic regression, three input variables ¥x and %) are used to predict the response. As shown in
the figure, although the nonlinear terms such as “sin” and “log” are used, the overall model is a weighted
linear combination of each gene utilizing the coefficiertsgg and g. Mathematically, the gendra

formulation of the multi-gene symbolic regression model can be written as (Gandon2iGst&!

§(x.9.0)=0,+> (3G 6 x) ©)
i=1

where g is a bias term; gs the gene weight, andi(@x) is the outputs vector from théhigene
encompassing a multi-gene individu@lis the vector of the unknown parameters for each gene; and n
is the number of genes. It should be noted that the algorithmic structure of MGGP, andi skdhdar

the same, except for crossover and mutation of multi-gene individuals. MG&sFhot necessitate any
simplifying assumption in the model development process, and it is moratacand efficient than

the standard GP for modeling complex nonlinear problems (Gandomi and®B2a,b). To construct

an initial population in MGGP, random individuals are created by using diffieostinear functions,
input variables, and a range of random constants and each individual includes Ja,amar®er of
genes. The algorithm attempts to maximize diversity by ensuring that n@irals contain duplicate
genes. The genes are randomly selected and the least squares nornwal equsdid to estimate the
vector of unknown coefficientg as follows (Searson et al. 2007, Searson et al. 2010, Hii et al. 2011,

Searson 2014):
-1
g=(G'G) Gy (10)

whereG = [1 G;...Gy] is the gene response matrix. Since the columns of n@&iren be collinear, the
Moore-Penrose pseudo-inversg'G)* can be computed by means of the singular value decomposition
instead of the standard matrix inverse’@)1.Genes can be employed or eliminated using a tree
crossover operator (high-level crossover) during the MGGP run which is iflbaddithe standard GP
sub-tree crossover (a low-level crossover). The low-level crossover claogses randomly from each
parent individual. Next, the standard sub-tree crossover is employed aetdnatgd trees replace the

parent trees in the otherwise unaltered individual in the next generatiomghklevel crossover allows
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the exchange of one or more genes with another selected individual subject ta«iten&raint. The
maximum number of genes of an individual is limited i@ any individual contains more genes,
the additional genes are randomly selected and deleted (Searson et al. 2007, Searson et ae2010, Hi
al. 2011, Searson 2014).

3.2. Multi-Objective Genetic Programming (M OGP)

Generally, both tree-based GP and MGGP deal with a single objectirezagibn problem for each
individual considering the defined fithess function in which, for symbolic regression, the gooéiness-
fit to the training data is considered as the only objective to bdémizzed. Although MGGP yields
more compacted models compared with standard GP (Searson 2014)tiueedfeces may be acquired

by multi-gene models and the single objective optimization problem restits &volution of overly
complex, impractical and non-robust models (Gandomi et al. 2016). The simplest solution tdeslimina
such shortcoming can be provided by limiting G in a modelt@¥hich isahard{o-determine unique
value for any given problem (Searson 2014). One good solution is the use eflijadtive concepts

into symbolic regression which is commonly referred to as multi-objegtarestic programming
(MOGP). Using this methodology, both the goodness-of-fit and the complexity ofvitle ped models

can be optimized simultaneously by searching the so-called Pareto fromtomimated solutions) set.
Herein, the GPTIPS 2 toolbox (Searson 2014) associated with the reidiezlitines coded in
MATLAB (2013 is used to solve the MOGP by using a non-dominated sorting technique (Deb et al.
2002). To sort the non-dominant solutions by their complexity and precision, the non-ddreoréitey
method is applied at the end of each generation of the MGGP higo#tt first, the individuals are
classified from both the new and old population based on their position Bargte front. Pareto front

of each level encompasses a set of Pareto optimal solutions whiclsatiie®ns do not dominate. In
addition, the solutions that include Pareto front of each level are nohal@uiby any other solution,
apart from those of in its previous Pareto front level. After thatr@vding factor” (i.e., the average
distance of a solution from the nearest solutions (either side) on the same Pareto fromyiiedéon
separately all individual to increase population diversity, giving lower priority to the@wdutiat are

crowded together during the ranking process. Finally, the position of solutions isousetdk them
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(those on level 1 are ranked above those on level 2, and so cay@veding factor of each solution
is used to rank those within the same level. The top 50% of the population is remainéidipafzain
the next generation, whilst the rest are eliminated (Searson 2014).
3.3. Accelerating GP Process
Typically, the data sets used in engineering studies are complex and do notanadngdarge number
of records patrticularly for experimental studies (Gani et al. 20¥/8)le the successful application of
GP in modeling engineering systems has been reported in the litq@tyrgSajjadi et al. 2016)), it
can be difficult to model the systems with big data using GP. The ey approaches are often
slower than statistical data mining. Since GP is usually used tderstriucture of solution(s), it is one
of the slowest evolutionary algorithms. In addition, the extra process of nanatechsorting of a
multi-objective GP magnifies the problem. To improve this weaknedsisipaper, two strategies are
used in the prediction process:

o 60% of data (2160 samples) were randomly selected and used for training process,estd the r

(1440 samples) used as training set for each run;

¢ The final Pareto front was determined from merging the Pareto fronts for all runs.

In general, there are two classes of machine learning algorithchsding trajectory based
algorithms and population-based algorithms. ANNs and regression analysis aveeliwkmown
examples of trajectory algorithms. In contrast, GP is one of the mostly pegmdation-based
algorithms which it deals with a set of the solution in each generation. This feature makdslét fitexi
adopt with parallel processing, therefore, the paralleled computations can be usetcratecMOGP
procedure using a distributed computing machine in order to deal witBighBata issue in GP.
Although only twelve cores were used to evolve and evaluate new models herein, the number of cores
can be increased up to the population size using this framework. The scha#matiallel processing
in the GP process is shown in Figure 2.

4. Predicting Seismic Energy Demand Spectra Using MOGP

4.1. Preparing Exact Data



355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

Since the inelastic responses of an SDOF system highly depend on bdilradtared earthquake
ground motion variables, the most influential ones are contributed in fingdipectral seismic energy
demand. The input variables are described in the next subsections in detail.

4.1.1. Inelastic SDOF Systems

The structural variables used in this study are the hardening ratio of bilinear hysteraticrbabdel

(7)), damping ratio §), and the displacement ductility ratie) (which are the structural properties used

to determine the energy demand spectra mentioned. The values assumeeri®0.0, corresponding

to the elastic-perfectly plastic model, and 0.1 indicating bilinear model. Three values of 0.05d0.10 a
0.15 were also used fdrof the inelastic SDOF systems. In addition, three common values of 2, 4 and
6 were taken into account for The periods range studied for the prediction of the energy spectra was
between 0.01 to 5.0 second for every 0.05 second. These considered vayiahlandy) resulted in

18 inelastic SDOF systems used for the prediction.

4.1.2. Earthquake Ground Motions

Three factors of the site class, soutossite distance, and PGA are the three variables considered for
the earthquake ground motion records used. Based on the shear wave vettémgsonding to the

30 m in depth (Y39 of more than 750, 360 to 750, 180 to 360 and less than 180 m/s, four soil types of
S1, S2S3 and S4 were assumed for the records used. Site types of SB, &2d S4 are respectively
representing the soft, firm, stiff and rock soil types. To consider the stmisite-distance, the records
having the Joyne-Boor distance§Rn the range of more than 17.5km and less than 150km were used
(known as far-fault records). In addition, two values of 0.5g and 1.0g were arsétk fPGA of the
records. All records are non-pulse-like and have the magnitude (M) of greaies.5. All the records
were downloaded from NGA-West-Il project of PEER ground motion datgB84&). The diversity

of M, Risand \ 3 and the number of records are shown in Figure 3. As shown in this figuregdtdsre

are selected in a way that they have a large variety of the pesp@entioned. The individual pseudo-
spectral acceleration of each record of each soil type and thair gpectra are also shown in Figure

4.
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Four main seismic energy-based EDPs were chosen to be predicEHdP{i) spectral &'m; (ii)
EDP2: spectral f/m; (iii) EDP3: spectraHIl,; and (iv) EDP4: spectr&E,. For this purpose, based
on the values assumed for the structural variables, the 18 SDOF systemmadeted and subjected
to the mentioned earthquake records. A large number of inelastic time history ciameatyses (more
than 1 million) were carried out, and the exact EDPs were detedml he entire process was simulated
in MATLAB platform (2013).

For each EDP, individual spectral energy responses of the SDOF systemsacideset of
earthquake records were obtained. Then, based on the normal distribution, the mean plus ode standa
deviation (meand) for each EDP under each set of the earthquake records wereidetetmbe
predicted.

4.2. Model Development Using MOGP

To develop powerful models, the suitable parameters ought to be utilizzgas of the MOGP
predictive algorithm. To obtain the optimum MOGP models, basic arithmetiatope (+, -, %, /) and
mathematical functions (e.g. tanh) were used. The models are formed by randomly combining the
components from the functional set and the terminal set. The number ofnpso@@lutions) in the
population is determined by the population size, and the number of levels teatdhlation would
apply before the run ends are resolved as per the number of generationsufbehttedata set,
problem complexity, and the number of variables are the three deitegrfactors for the population
size and the number of generations. Note that, the upper bounds of an indivigiplaf@ the
maximum tree depth (R, need to be defined in order to restrict the complexity. To conduate-

off between the running time and the complexity of the evolved solutions, bptioes of 3 and 5
were respectively assumed forpnds and Dnax The parameter settings used for the MOGP
implementation listed in Table 1 are based on the previously suggested vahgsliténature (Searson
et al. 2007, Searson et al. 2010, Hii et al. 2011, Searson 2014) and employsegdemandent trial-
and-error process.

In order to generate new genes for individuals as well as to decheaseerall number of genes for

one model and increase the total number of genes for the other, a “rate-based higHevel crossover”
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through the use of a crossover rate parameter (CR) is employen. Bereniform random number
between 0 and 1 with a default value of 0.5 is generated sdpdoateach gene in the parents.rif
isless tharCR, the corresponding gene is moved to the other individual. In case the exchapgess
results in offspring that contain more genes than thg e gene is randomly eliminated such that the
constraint is no longer violated (Searson 2014). Two data sets are neeithedaioalyses. Therefore,
data are randomly dividedtmtwo subsets for training and validation. The training dataset is used for
learning and the validation set for determining the quality of the evgivegirams on unseen data
Several combinations of training and validation sets were considered tmidete consistent data
division. To evaluate the evolved expressions and finding the best-encodedeoméithum of the

root mean square error (RMSE used as the fitness function. RMSE can be expressed as follows:

RMSE = /%zi";e— R (11)

where pand eare the predicted, and exact output values for the ith output, reshectind n is the
number of samples. Two objectives of maximizing the correlation coeitifi® and minimizing the
model complexity are used in MOGP approach in order to select the best final model.

5. Resultsand Discussion

Using MOGP, all EDPs (EDP1, EDP2, EDP3, and EDP4) were predicted, andogtianal
mathematical models (formulations) were determined. Four cases &) based on different soil
types of the earthquake records were considered in the prediction. Although it is quiitk: ploasthe
obtained model formulations be different for different soil types, it i€rmaactical to develop a unique
mathematical model for an EDP with different coefficients. &fwe, in this paper, the complete
database (which includes four soil types of S1 to S4) is employed to deveiapa prediction model
for each EDP. The final mathematical model is selected basedampmomise between the prediction
accuracy (as measured by the correlation coefficient R) and the model complexitggsured by the
number of input variables). After that, the complete database is divittetbiir groups based on the
four soil types. Using each group of data, the predicted coefficients dintienodel (¢) are re-

evaluated by conducting the regression analysis to reflect the infloétive soil type. Finally, four



433 mathematical models including structural variables (and PGA of eakibgeeords) with four different
434  groups of coefficients corresponding to the four cases mentioned above (S1 dabt&8ded are
435 presented herein. The contribution of each input variable in the mathaipagidiction models and the
436 Pareto front obtained by using a nondominated sorting method at the end of an MCGEPpresented.
437 The results of all EDP models developed by MOGP for EDP1 to EDP4 havstimen in Figures
438 5(a)-(d). The Pareto front sets are shown in green circles anelsthef the models are shown in solid
439 blue circles. As mentioned earlier, the Pareto front set is obtained by using a non-dominagedfsort
440 populations at the end of all MOGP runs. This process simultaneously optimizesutezyend the
441 complexity of all developed models. The final model in each Pareto frastssdécted and highlighted

442 in aredcircle.

443 In order to benchmark the MOGP models, they were compared with gene exppesgramming

444  (GEP) models as a well-known and widely used GP algorithm. The GEP nemlakak multiple gene
445  structure, which makes it similar to the MGGP in this respect. @fires 10 times more generations
446 to converge. It is because the MOGP algorithm converges quickly since it gsessien analysis
447  beside the evolutionary proce§iP’s parameter setting is similar to that of MOGP (shown in Table
448 1). The final results of GEP are presented in Figure 5. The results shawleabf the models found
449 by GEP are among the Pareto front sets for any of the EDP1 to EDP4 problems.

450 The contribution of each input variable in the mathematical predictamels can be investigated
451 through their frequencies where a frequency value of 1.0 for a vaindidates that it has the maximum
452  contribution within the best-generated models (Gandomi et al. 201(slagsumed that the models
453 with R?> 0.8 are the best-generated models. The frequency histograms of the imglesdor all
454  predicted EDPs are shown in Fig. 6. As shown, for the selected datab&faPdf PGA and
455  nrespectively show the most and the least statistically significant lootidns in the best-geneeat
456 MOGP models. For the collected database of EDP2, although all the input esridinlost have
457  significant contributions in the best generated MOGP models, Téaaré the most and the least
458 influential variables on the EDP2 prediction model. According to the tliterge.g. Kuwamura and

459 Galambos 1989, Manfredi 2001, Dindar et al. 2015), there is no report about the role of PGAon EDP3
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(hysteretic to input energy ratio). Moreover, based on the physics of the praiiemthe damping
ratio is increased, the portion of hysteretic energy dissipation omgh@rted seismic input energy is
decreased. These issues have been confirmed by the frequentisdoP GAor EDP3 where they
have the largest and smallest statistically significant contributiespectively. Moreover, as can be
seen in the figure, for the collected database relevant to EDdt] PGAhave the largest and smallest
statistically significant contributions in the best-generated MOGP models, respectivel

5.1. Mathematical Model for EDP1

The mathematical model obtained for EDP1 is expressed as follows:

EI,u
—e=(BpraXtaX) s (12-9)

X, =PGA.tanh(tanH[ )%/? ) (12-b)

« £ (T-1)PGA
2 0 ,

(12¢)
where @, is the bias term,iaand a are the gene weight for the EDP1 prediction model. These
coefficients are listed in Table 2, 8 the spectral velocity of the elastic SDOF system.

5.2. Mathematical model for EDP2

The mathematical model derived for EDP2 is expressed as follows:

EH,u

™ (b +BY,+b,Y,) S (13-a)
Y, =PGA, (13-b)

Y, =-e" (PGA+2y)¢ - 1), (13<)

where B, is the bias termkand b are the gene weight for EDP2. These coefficients are listEabie
3. S is the spectral displacement of the elastic SDOF system.
5.3. Mathematical model for EDP3

The mathematical model derived for EDP3 is expressed as follows:
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En,

| u
25 +0.15T—¢-
Z,=€"¢ s (14-b)
Z,= Iog(g(T +7.75) tanhg 3 (14<)

where g is the bias term,;@nd ¢ are the gene weight for EDP3. These coefficients are listed in Table
4.
5.4. Mathematical model for EDP4

The mathematical model obtained for EDP4 is expressed as follows:

RE”,=E—=d0+ du + d,U,, (15-a)

lu
U,=(n+pu+e’ +ul—0422)T¢ - 1.4074) tan( (15-b)
u, :%In(n+Ty2+\/;), (15<)

where d is the bias term,;cand d are the gene weight for EDP4. These coefficients are listed in Table
5.

It should be noted that EDP2 can also be determined by the following relationship:
EH,u :F Hl# (16)

In fact, there are two ways to compute EDP2: one is by using Eq. (13) directly (callB&2sl), and
another is by using Eq. (L€called EDP2-2).

5.5. Accuracy of the Models

It should be noted that all the models are only valid in the rangeuafl aettabase (discussed in section
4.1). In orderto investigate the effectiveness and accuracy of the EDP models rarifpe of our
database, the common performance metrics, including the mean absaleteguer error (MAPE), the
relative root mean square error (RRMSE), the linear correlatidficest (R), the performance index

(P1), coefficient of determination 3y, coefficient of efficiency (E), and the index of agreement (d)
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corresponding to the predicted formulation of each EDP are obtained. NMNESE, RPI, 1%, E, and

d are expressed as follows:

1
MAPE :HZH

n

(16)

ei_ﬂ‘
e |

n PRY
RRMSE= %/M;nm , (17)

> Ee-8)(p-P

ST 225" 2 (18)
\/Zi:l(q - e) Zi:l( P- p)
Pl — RRMSE, 19)
R+1

n n\2

|’2 :1_Zi:1n(ei—nz) (20)
Zi:]_(pi )

n PRV

: zl_Zinl(Ei—[—q)z' (21)
Zizl(ei _Q)

n _ 2

=1— Zizl(ei n) 2

>ile -8l+p-B)*
whereg and p, are the average values of the exact and predicted outputs, respeatidety;e and
pi were defined before. Lower MAPE and RRMSE, higher R @yrrR E and d indicate the accuracy
and effectiveness of the prediction model used. Based on Eq. (19), higHaefRarmrd lower RRMSE
values result in lowelP| and, subsequently, indicate a more precise model. It should be notéd that
varies from 0 to o and its values close to O indicate the model fits very well to the exetttgh values.
It is worth noting that two sources of complexity affect the accurattyeafnodels. First, the structures
used are inelastic which leads to high nonlinearity, and second, the earthaquaickgotion records
have some influential characteristics, such as frequency content, which make a stustpegience
different cyclic excursions associated with complex behavior. These poblenaccentuated when

PGA is increased.
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The abovementioned performance metrics of the predicted EDP1, BR&lifhg EDP2-1 and
EDP2-2), EDP3 and EDP4 models using MOGP are listed in Table 6. As can be gasrtable,
EDP1 and EDP2-2 have MAPE values respectively less than almostritb% %, and it is less than
33.1% for EDP2-1 all of which are in an acceptable/reasonable ddrilge performance metric for
inelastic and complex systems. The MAPE values are very low for botl3 BB& EDP4. Lower
RRMSE values (near-zero usually less than 50%) also confirno¢lieagy of the mathematical models.
According to Table 6, except for EDP2-1 with soil type of S4 which hagpproximate RRMSE of
54%, EDP1, EDP2-1 and EDP2-2 respectively have RRMSE values less than 36@3%nd42.1%
and the remaining EDPs have RRMSE values less than 6.4%, indicatinguinecsiof the predicted
models. The higher accuracy of predicted EDP3 and EDP4 is evident? TledRand ¥ values near
1.0 (e.g. more than 0.8) indicate a good correlation, efficiency and agneefribe predicted values
with the exact ones. Based on Table 6, theERd, and f values are more than 0.8 for EDP1, EDP2-

2, EDP3, and EDP4. The minimum valué$4 E, d, and ¥ of EDP2-1are almost equal to 0.68, 0.55,
0.83 and 0.65 which belong to the soil type S4 whilst for other soil types allinostreem are more

than 0.8. Regarding thel, that is a combination of R and RRMSE, the values less than 0.3 and 0.2
indicate a good and an excellent prediction, respectivelyPThelues are less than 0.2 for EDP1, less
than 0.3 for EDP2-1, and less than 0.22 for EDP2-2 which indicate a goodiprecipability of their
corresponding proposed MOGP models. This index is less than 0.04 for both EDP3 and EDP4
confirming the excellent prediction capability of the proposed MOGP models.

To make a more informative and general evaluation of the proposed MOGPsnthdeaverage
values of the performance metrics of all soil types, for eadtD#s, are presented in Table 6. The
average results of EDP2 demonstrate that EDP2-2 has a better pec@riinan EDP2-1. In fact,
MAPE, RRMSE, andP| of EDP2-2 model have about 39%, 34,5%nd 37% smaller values as well as
R?, E, d and thave almost 17%, 21%, 5.6%, and 13% larger values as compared to those of EDP2-1.
Finally, considering the stochastic nature of earthquake engineering probieinthiea nonlinear

relations governing the inelastic SDOFs behavior, the results indicag@ddecapability of MOGP



529 prediction models for EDP1, EDP2-1 and EDP2-2, and excellent capabiltyO&P prediction

530 models for EDP3 and EDP4.

531 5.6. Comparative study

532 5.6.1. Assumptions

533 In the previous section, it was shown that all the mathematical modeisglyepredict each EDP of
534 interest. In this section, the accuracy of the proposed mathemadidelsof all EDPs (EDP1 to EDP4)
535 is compared with those of some available models from the releteaatlire. The works presented by
536 Housner (1956), Kuwamura and Galambos (1989), Fajfar and Vidic (1994), Manfredi, akid3hi

537 and Tavallali (2006), and Dindar et al. (2015) are selected te rtek comparison. All the works
538 selected herein have dealt with the inelastic SDOF systems leastgplastic behavior mode} € 0)

539 and damping ratio&) of 0.05. The PGAs of 0.5 and 1.0g and displacement ductility rafjasf @, 4

540 and 6, are considered for the comparison. The well-known performandesnmetiuding MAPE

541 RRMSE, R, PI, E, d, and ¥ are used for comparison. To make an informative comparison, all the
542 performance metrics are listed in separated Tables for EDP1, EDP2, (including EDP2-1 2r2) EDP
543 EDP3 and EDP4 (Tables 7-10 respectively).

544 In order to show the varying trend of the predicted models using MOGP andstiradatel from

545 literature compared with the exact results, a graphical comparistsvimmade. As mentioned in the
546 Introduction section and as can be concluded in the above comparison, Manfredin{@d6Djs one

547 of the best models presented in the literature. Therefore, this is the aidy selected to make a more
548 clear comparison for EDP1, EDP2 (including EDP2-1 and EDP2-2) and BRP&over, Bakhshi and
549 Tavallali (2006) modek also used for making a comparison for EDP4. In addition, the inelastic SDOF
550 systems having =0, =6 and5=0.05 are used and are subjected to earthquake records corresponding
551 to all soil types S1 to S4 with PGAs of 0.5 and 1.0g. The exact and predietgy-$ased spectrum
552  using MOGP anarmother selected model from the literature are shown in Figures 7-10 treslyefor

553 EDP1 to EDPA4.

554 5.6.2. Comparison
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The mathematical model of Eq. (12), proposed for prediction of EDP1 using MOGP, is comiplared w
the seismic input energy equation presented by Housner (1956), Kuwamuralantb& (1989),
Manfredi (2000), and Dindar et al. (2015). As shown in Table 7, Eq. (12) and Kuwamu@alantbos
(1989) models almost have similar performance for the soil type of Shwatadbetter than the other
models. Although Eqg. (12) works very well for the soil type of S2, perforenametric values of
Manfredi (2000) model, excepting MAPE, show that it works better tha(lEpand the other models.
Concerning the soil types of S3 and S4, Eq. (12) has an outperformance cowitlatiee other models
in total. Based on the average values of performance métteasdih Table 7, Eq. (12) has lower MAPE,
RRMSE andP|, higher Rand E compared with the other models (and slightly lower d%sahipared
with Manfredi (2000) model), indicating that the predicted model using MOGR/totaperforms the
other models available in the literature. The varying trend of th€12yand Manfredi (2000) model
compared with the exact results is also shown in Figure 7. As shown, the veeyid@t Eq. (12)s
almost conform to the exact results trend excepting a difference foymmiof S1 at medium-periods
(see Fig. 7(a)) which is not considerable. This is also true for Manfredi (20| except for the
long-periods of soil types of S2 and S4 shown in Fig. 7(d).

The mathematical models of Eq. (13) and Eqg. (16), proposed for prediction ofSDB2MOGP,
are compared with the presented models by Kuwamura and Galambos (198%9¢dM@®00), and
Dindar et al. (2015). The results of the comparison are listed in TafdesBown in this table, MOGP-
2 model (Eqg. (16)) significantly outperforms MOGP-1 model (Eg. (13)). Eq.i¢I@sulted to lower
MAPE, RRMSE andP|, and higher R E, d and ¥ compared with those of for other models with the
exception of RRMSERI, R, E and f of soil type of S2 anc?rof soil type of S3 for Manfredi (2000)
model and soil type of S1 for Kuwamura and Galambos (1989) which are sligiély that those of
for Eq.(16). To make an overall comparison, the average values of the performarics are listed
in Table 8. These results confirm the superiority of the EDP2 prediction modelM&iG®-2 (Eq.
(16)) as compared to those from the literature. The varying trend &ijth@ 3), Eq. (16) and Manfredi
(2000) models compared with the exact results is also shown in Figure 8. As sHomodels

relatively have a consistent varying trend to the exact results except for Egt ifiJium- and long-
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periods and for Manfredi model at long-periods of soil types of S1 and S4oworas shown in Figs.
7 and 8, the effect of PGA on both EDP1 and EDP2 is obvious as it is confignbdir frequencies
in MOGP models depicted in Fig. 6(a) and Fig.6 (b).

A similar comparison was also carried out for EDP3 prediction modetjof14) using MOGP.
The predicting equations presented in the works by Kuwamura and Galambos (1989), Fajfdrcand Vi
(1994), Manfredi (2000), and Dindar et al. (2015) were selected for comparisorestitis of this
comparison are shown in Table 9. According to the table, although some of the ntewtioke show
relatively appropriate results, the performance metrics of the predictidalinased on Eq. (14) show
lower MAPE, RRMSE andPl, and higher R E, d and ¥ as comparetb the other presented models
except for Rfor soil type S1 of the model used in Manfredi (2000). This indicates the novel capability
of MOGP for accurate prediction of the EDP3 as compared with those pcegeitte literature. To
make a general comparison on the performance of the MOGP predictiohah&fl#3, the average
values of the performance metrics are listed in Table 9. The resdig that Eq. (14) highly
outperforms the other presented models in the literature. Figure 9 also shaasythg trend of Eq.
(14) and Manfredi (2000) model as compared to exact values. As depitkedfigure, the varying
trend of Eq. (14is in good agreement with exact values except for soil type S1 whichdusiderable
differences. Despite the exact values and Eq. (14), the Manfredi (2000) hasdal constant trend
which has significant differences in the majority of periods. It should be notedditspizted in Fig.
9, EDP3 is not affected by PGA as evidenceddyery low frequency in MOGP prediction model for
EDP3 shown in Fig. 6jc

EDP4 prediction model of Eq. (15) using MOGP was also compared with the BakhshialfidliTa
(2006) model. The comparative results are shown in Table 10. According to théaablesoil types,
lower MAPE, RRMSE andPl, and higher R E, d and ¥is obtained for Eq. (15) with respect to the
Bakhshi and Tavallali (2006) model. As shown in the table, averagerparfoe metrics are computed
for making a general comparison, demonstrating the superiority of Eq. (15)M&iG# in order to
predict EDP4 rather than the Bakhshi and Tavallali (2006) model. Fil§usdows the varying trend

of Eq. (15) and Bakhshi and Tavallali (2006) model compared with exesvalhe shown graphs



609 confirm the considerable differences between the Bahshi and Tavalali (200@) and the exact
610 values. In contrast, the MOGP model of Eq. (15) has the closastHi exact results. In addition, as
611 shown in this figure, EDP4 is not influenced by PGA as evidenced by its veryequehcy in MOGP
612 prediction model for EDP4 shown in Fig. §(d

613 It should be noted that most models in the literature are developed folem sygh a limited
614 number of SDOF and a low number of earthquake ground motion records. Howevagpbsed
615 MOGP-based models can deal with SDOF systems with a wide rangeatfistt features subjected
616 to moderatde-severe earthquake ground motions..

617 6. Summary and Conclusion

618 Formulation of the seismic energy demand of inelastic SDOF systeame isf the main steps of
619 extending the energy-based seismic analysis and design approach. A comprehensive studgdvas carri
620 outto propose accurate and simple mathematical models for predicsimicsenergy demand spectra.
621 Multi-objective genetic programming (MOGP) was employed to formulate soane energy-based
622 EDPs, i.e., spectral input and hysteretic energy, spectral hysteretfutoenergy ratio, and spectral
623 energy modification factor. Maximizing the accuracy and minimizing the complexibegiredictive
624 models were considered as two objectives of the multi-objective optioniz procedure. Both
625 structural and earthquake characteristics were included in the propusé@matical models.
626 Regarding each EDP, one equation with different coefficients was profmsedrious soil types
627 assuming that different soil types have linear relationships. The frequency of each gl Wa the
628 best-generated models was also presented to measure the importance of the variable.

629 Finally, the capability of the proposed models was examined using seweraion performance
630 metrics. The results indicate the accuracy and effectiveness pfapesed mathematical models in
631 predicting the seismic energy demand spectra compared with some robtleds presented in the
632 literature.

633
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