383 research outputs found

    Autonomous Data Acquisition using the ACTEL 1020 FPGA

    Get PDF
    The Actel 1020 Field Programmable Gate Array (FPGA) is a low power CMOS device equivalent to 2000 logic gates. It is a one-time programmable device utilizing non-volatile PLICETM anti-fuse programming. The 2-micron, two level metal CMOS process has been tested Rad Hard to 400K Rad total dose Si making it suitable for space applications. In the Barnes Dual Cone Scanner Earth Horizon Sensor, it has been used (with an A/D converter) to autonomously sample radiance data and store it in pseudo-dual port memory. The Actel chip is also used to control bus access to the memory. The Barnes implementation replaces many discrete logic components and frees up processor time by putting the data in memory autonomously. This architecture is applicable to any system requiring low power data acquisition in a minimum amount of board space

    A Structured Design Methodology for High Performance VLSI Arrays

    Get PDF
    abstract: The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.Dissertation/ThesisPh.D. Electrical Engineering 201

    Power efficient, event driven data acquisition and processing using asynchronous techniques

    Get PDF
    PhD ThesisData acquisition systems used in remote environmental monitoring equipment and biological sensor nodes rely on limited energy supply soured from either energy harvesters or battery to perform their functions. Among the building blocks of these systems are power hungry Analogue to Digital Converters and Digital Signal Processors which acquire and process samples at predetermined rates regardless of the monitored signal’s behavior. In this work we investigate power efficient event driven data acquisition and processing techniques by implementing an asynchronous ADC and an event driven power gated Finite Impulse Response (FIR) filter. We present an event driven single slope ADC capable of generating asynchronous digital samples based on the input signal’s rate of change. It utilizes a rate of change detection circuit known as the slope detector to determine at what point the input signal is to be sampled. After a sample has been obtained it’s absolute voltage value is time encoded and passed on to a Time to Digital Converter (TDC) as part of a pulse stream. The resulting digital samples generated by the TDC are produced at a rate that exhibits the same rate of change profile as that of the input signal. The ADC is realized in 0.35mm CMOS process, covers a silicon area of 340mm by 218mm and consumes power based on the input signal’s frequency. The samples from the ADC are asynchronous in nature and exhibit random time periods between adjacent samples. In order to process such asynchronous samples we present a FIR filter that is able to successfully operate on the samples and produce the desired result. The filter also poses the ability to turn itself off in-between samples that have longer sample periods in effect saving power in the process

    16-bit Digital Adder Design in 250nm and 64-bit Digital Comparator Design in 90nm CMOS Technologies

    Get PDF
    High speed, low power, and area efficient adders and comparators continue to play a key role in hardware implementation of digital signal processing applications. Adders based on Complimentary Pass Transistor Logic (CPL) are power and area efficient, but are slower compared to Square Root Carry Select (SQRT-CS) based adders. This thesis demonstrates a unique custom designed 16-bit adder in 250-nm CMOS technology to obtain fast and power/area efficient features by combining CPL and CS logic. Comparing the results obtained for proposed 16-bit Linear CPL/CS adder with the BEC (Binary Excess-1 Code) based low power SQRT-CS adder, the delay is reduced by approximately one thirds, power is reduced by 19.2%, and the number of transistors is reduced by 23.4%. Also, new tree-based 64-bit static and dynamic digital comparators are presented in this thesis to perform high speed and low power operations. This tree-based architecture combines a new approach of designing dynamic comparator using a low duty cycle clock to reduce the short circuit power consumption in pre-charge (or pre-discharge) mode. This work also introduces a new sizing strategy and load balancing techniques to improve self-pipelining tendency of a tree based design. A resource sharing technique is also integrated in both static and dynamic comparator designs. At 1.2V power supply in CMOS 90nm technology, worst path delay and worst power are 374ps and 822”W, respectively for low cost static design with 1244 (768+476) transistors in total. 768 transistors are used for resource sharing. The proposed full and partially dynamic designs show superior power efficiency compared to recent state of art designs. The worst power consumptions at 5GHz and 25% (50ps) duty cycle clock for the 64-bit full and partially dynamic comparator designs are 5.00mW and 2.78mW, respectively. 769 (320+449) transistors includes 320 transistors for resource sharing, and 1217 (768+449) includes 768 transistors for resource sharing for full and partial dynamic comparators, respectively

    Definition and design of a new communication protocol and interfaces for data transmission in High Energy Physics experiments

    Get PDF
    High Energy Physics experiments have very similar architectures with respect to systems for acquisition of data from sensors and for control and management of the detector, and therefore similar requirements about data rate, trigger latency, robustness of critical data against transmission errors, radiation hardness and power dissipation and of hardware components and material budget. The use of common solutions that can be reused in different applicative contexts can reduce costs, risks and time needed for the development of new experiments. In particular, a research and development activity appeared as useful in the field of electrical links that are employed for data transmission to and from Front End circuits inside the detectors to move power-consuming optical converters away from the interaction point. Moving from these considerations, the FF-LYNX (Fast and Flexible links) project was started in January 2009 by a collaboration between INFN-PI (Italian National Institute for Nuclear Physics, division of Pisa) and the Department of Information Engineering (DII_IET) of the University of Pisa, with the aim of defining a new serial communication protocol for integrated distribution of TTC signals and Data Acquisition, satisfying the typical requirements of HEP applications and providing flexibility for its adaptation to different scenarios, and of its implementation in radiation-tolerant, low power interfaces. The work presented in this thesis constituted a phase of the FF-LYNX project working plan and was carried out at the Pisa division of INFN: in particular, it dealt with the definition of a first version of the FF-LYNX protocol and the design of hardware transmitter and receiver interfaces implementing it. In this thesis first of all the purposes of the project are presented and the methodology defined for the project work is outlined; then the FF-LYNX protocol (version 1) is described: the basic issues about trigger and data transmission that were considered in the definition of this version of the protocol are outlined, as well as the solutions that were adopted to address these issues, and the results of simulations in a high-level model of the link, intended to estimate various aspects of the protocol performance, are presented. Subsequently, the architecture that was defined for the interfaces implementing the FF-LYNX protocol version 1 is illustrated, and the VHDL models of the transmitter and receiver blocks that was created in the design phase of the FF-LYNX interfaces is described in detail also reporting results of simulations on a VHDL test bench for the complete transmitter-receiver system. Finally, an FPGA based emulator for the FF-LYNX transmitter-receiver system, foreseen as the final result for the FF-LYNX project first year of activity, is outlined in its functional architecture, the development board chosen for its implementation is briefly described, and the results of preliminary synthesis trials of the designed TX and RX blocks onto the target FPGA are reported

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    Design of 128 Bit Round Robin Priority Encoder

    Get PDF
    Electrical Engineering Technolog

    Time-based, Low-power, Low-offset 5-bit 1 GS/s Flash ADC Design in 65nm CMOS Technology

    Get PDF
    Low-power, medium resolution, high-speed analog-to-digital converters (ADCs) have always been important block which have abundant applications such as digital signal processors (DSP), imaging sensors, environmental and biomedical monitoring devices. This study presents a low power Flash ADC designed in nanometer complementary metal-oxide semiconductors (CMOS) technology. Time analysis on the output delay of the comparators helps to generate one more bit. The proposed technique reduced the power consumption and chip area substantially in comparison to the previous state-of-the-art work. The proposed ADC was developed in TSMC 65nm CMOS technology. The offset cancellation technique was embedded in the proposed comparator to decrement the static offset of the comparator. Moreover, one more bit was generated without using extra comparators. The proposed ADC achieved 4.1 bits ENOB at input Nyquist frequency. The simulated differential and integral non-linearity static tests were equal to +0.26/-0.17 and +0.22/-0.15, respectively. The ADC consumed 7.7 mW at 1 GHz sampling frequency, achieving 415 fJ/Convstep Figure of Merit (FoM)

    Space vehicle Viterbi decoder

    Get PDF
    The design and fabrication of an extremely low-power, constraint-length 7, rate 1/3 Viterbi decoder brassboard capable of operating at information rates of up to 100 kb/s is presented. The brassboard is partitioned to facilitate a later transition to an LSI version requiring even less power. The effect of soft-decision thresholds, path memory lengths, and output selection algorithms on the bit error rate is evaluated. A branch synchronization algorithm is compared with a more conventional approach. The implementation of the decoder and its test set (including all-digital noise source) are described along with the results of various system tests and evaluations. Results and recommendations are presented
    • 

    corecore