Recent trends in the field of neural network accelerators investigate weight
quantization as a means to increase the resource- and power-efficiency of
hardware devices. As full on-chip weight storage is necessary to avoid the high
energy cost of off-chip memory accesses, memory reduction requirements for
weight storage pushed toward the use of binary weights, which were demonstrated
to have a limited accuracy reduction on many applications when
quantization-aware training techniques are used. In parallel, spiking neural
network (SNN) architectures are explored to further reduce power when
processing sparse event-based data streams, while on-chip spike-based online
learning appears as a key feature for applications constrained in power and
resources during the training phase. However, designing power- and
area-efficient spiking neural networks still requires the development of
specific techniques in order to leverage on-chip online learning on binary
weights without compromising the synapse density. In this work, we demonstrate
MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a
stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning
rule and a hierarchical routing fabric for large-scale chip interconnection.
The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF)
neurons and more than two million plastic synapses for an active silicon area
of 2.86mm2 in 65nm CMOS, achieving a high density of 738k synapses/mm2.
MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy
tradeoff on the MNIST classification task compared to previously-proposed SNNs,
while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE
Transactions on Biomedical Circuits and Systems journal (2019), the
fully-edited paper is available at
https://ieeexplore.ieee.org/document/876400