

Università di Pisa

Facoltà di Ingegneria

Corso di Laurea Specialistica in
Ingegneria Elettronica

Tesi di Laurea

Definition and design
of a new communication protocol and interfaces

for data transmission
in High Energy Physics experiments

Relatori

Prof. Luca Fanucci

Ing. Sergio Saponara

Ing. Guido Magazzù

Candidato

Claudio Tongiani

Table of Contents

INTRODUCTION ...4

1 THE FF-LYNX PROJECT ..6

1.1 Genesis of the project...6
1.1.1 High Energy Physics experiments ... 6
1.1.2 The Large Hadron Collider at CERN and its experiments .. 10

1.1.2.1 CMS ... 11
1.1.2.2 ATLAS... 14

1.1.3 Requirements of DAQ/TTC systems for HEP experiments .. 15

1.2 Purposes of the project...18

1.3 Methodology and design flow ...20

2 THE FF-LYNX PROTOCOL..23

2.1 General characteristics ...23

2.2 The THS channel ...25
2.2.1 TRG and HDR scheduling... 26
2.2.2 Synchronization ... 27
2.2.3 The THS encoding... 29

2.2.3.1 Elements of coding theory ... 29
2.2.3.2 TRG/HDR/SYN encoding ... 34
2.2.3.3 TRG/HDR balanced encoding ... 37

2.3 The FF-LYNX frame ...38
2.3.1 The Frame Descriptor .. 40

2.3.1.1 The H(12,7) encoding .. 40
2.3.2 Payload and label... 46
2.3.3 Trigger data frames.. 47

2.4 Future protocol versions...48

2.5 Protocol validation ...50
2.5.1 Synchronization algorithm selection ... 52

3 FF-LYNX INTERFACES..56

3.1 FF_TX..56
3.1.1 External specifications... 56
3.1.2 Internal architecture... 59

3.2 FF_RX..61
3.2.1 External specifications... 61
3.2.2 Internal architecture... 65

4 VHDL MODELING AND SIMULATION...67

4.1 General description of the model ...68
4.1.1 FIFO_N_D... 69

4.1.2 Counter_N ... 70
4.1.3 ffd .. 70
4.1.4 Register_N... 71
4.1.5 Shift Registers ... 72

4.2 FF_TX..73
4.2.1 TX Buffer .. 73
4.2.2 sel_THS Generator TX.. 74
4.2.3 Frame Builder .. 76

4.2.3.1 FB_Control1 .. 78
4.2.3.2 FB_Control2 .. 82
4.2.3.3 FD Encoder .. 86

4.2.4 THS Scheduler... 86
4.2.5 Serializer.. 90

4.2.5.1 THS load controller.. 93
4.2.5.2 THS command selector .. 95
4.2.5.3 Pulse Shrinker .. 95
4.2.5.4 Ser_Control .. 97

4.3 FF_RX..104
4.3.1 Deserializer.. 104

4.3.1.1 Des_control .. 108
4.3.2 THS Detector... 111
4.3.3 Synchronizer.. 112

4.3.3.1 Clock Splitter ... 115
4.3.3.2 Sync Counter.. 115

4.3.4 Frame Analyser.. 118
4.3.4.1 FA_Control1 .. 120
4.3.4.2 FA_Control2 .. 124
4.3.4.3 FD Decoder .. 126

4.3.5 sel_THS Generator RX.. 127
4.3.6 TRG stretcher .. 128
4.3.7 RX Buffer .. 130

4.4 Test bench ..131
4.4.1 TX Host Emulator ... 132
4.4.2 RX Host Emulator ... 134
4.4.3 Comparison of files ... 135
4.4.4 Test results... 136

5 FPGA PROTOTYPING...138

5.1 FF-LYNX Emulator...138

5.2 Development board..139

5.3 FPGA synthesis of FF-LYNX interfaces ...140

CONCLUSIONS AND FUTURE DEVELOPMENTS...142

BIBLIOGRAPHY..146

 3

Introduction

Particle physics, often referred to as High Energy Physics (HEP), is the branch of physics that
studies the most basic constituents of matter, i.e. subatomic particles, and their interactions in order
to answer key questions about nature and origin of the Universe and improve the understanding of
the fundamental laws that regulate it. The main instruments for High Energy Physics are particle
accelerators, complex machines that produce beams of particles and provide them with the high
energies needed by High Energy Physics experiments, that consist in colliding particle beams and
studying the results of the collisions using particle detectors that surround the interaction point.
Most of the attention, in the world of particle physics, is nowadays focused on the Large Hadron
Collider (LHC) at CERN (the European Organization for Nuclear Research) that is now the world’s
largest and most powerful particle accelerator and promises, by means of collision energies never
reached before, to make new particle events observable that could answer fundamental questions of
nowadays physics, such as the existence of the Higgs boson, that could explain the origin of mass,
and supersymmetric particles, related to dark matter and dark energy.

Current HEP experiments have very similar architectures with respect to systems for acquisition
of data from sensors and for control and management of the detector. Signals generated by sensors
in particle detection are handled by Front-End (FE) electronics embedded in the detectors and
transferred to remote data acquisition (DAQ) systems, that are placed far away from the
experiment’s area to keep them in an environment that is free from the intensive levels of radiation
that is present in the proximities of the interaction point: typically the transfer is carried out by
means of electrical links for a first stretch inside the detector, and then through optical links that
allow to cover the long distances (hundred of meters) from the experiment’s area to the remote
DAQ system, and provide the large bandwidth needed (up to tens of Gbit/s). The DAQ systems
constantly receive a stream of data from a subset of the sensors which is used to detect significant
events: if such an event is detected the DAQ system sends a trigger to the Front-End electronics
which commands the start of a full-scale DAQ process from all the detectors: this way the very
large amount of data generated in the detector is reduced to rates that can be handled by the readout
system (a typical order of magnitude is hundreds of MB/s from each FE device), and only the
interesting events are selected. A remote control system, also called TTC (Timing, Trigger and
Control) system, manages trigger distribution and the configuration and monitoring processes in the
Front-End electronics.

Also in future HEP experiment, such as the ones for the two-phase upgrade (in 2013 and 2018) of
LHC that will lead to the so-called Super LHC, DAQ and TTC systems will have similar
architectures, and therefore they will still share most of the requirements with respect to data rate,
trigger latency, robustness against transmission errors and component failures, radiation hardness
and power dissipation of hardware components; hence, common solutions for data transmission
systems that can be shared and reused in several applicative contexts can minimize time, risks and
effort for the development of new experiments. In particular, electrical serial links between Front-
End electronics and Electrical to Optical Converters (EOCs) will be required; these links will have
to cover a wide range of data rates from tenths of Mbit/s from each FE through intermediate stages
of data concentration to one Gbit/s. The literature on electrical links is mostly about
communications below one Mbit/s for configuration/control tasks, and standard protocols used in
telecommunications, consumer electronics and automotive industry are not suitable for this field of
application, failing to satisfy the stringent requirements above mentioned especially about radiation
hardness and trigger latency.

Moving from these considerations, the FF-LYNX (Fast and Flexible links) project was started in
January 2009 by a collaboration between INFN-PI (Italian National Institute for Nuclear Physics,
division of Pisa) and the Department of Information Engineering (DII_IET) of the University of
Pisa, with the aim of defining a new serial communication protocol for integrated distribution of
TTC signals and Data Acquisition, satisfying the typical requirements of HEP applications and

Introduction

providing flexibility for its adaptation to different scenarios, and of its implementation in radiation-
tolerant, low power interfaces. The work presented in this thesis constituted a phase of the FF-
LYNX project working plan and was carried out at the Pisa division of INFN: in particular, it dealt
with the definition of a first version of the FF-LYNX protocol and the design of hardware
transmitter and receiver interfaces implementing it. A description of the contents of this thesis
follows.

In chapter 1 the FF-LYNX project is presented: after a brief description of High Energy Physics
experiments and typical requirements of data transmission systems for this field of application, the
purposes of the project are presented and the methodology defined for the project work is outlined.

Chapter 2 describes the FF-LYNX protocol, and in particular the version 1 that was defined and
implemented in this thesis work: the basic issues about trigger and data transmission that were
considered in the definition of this version of the protocol are outlined, as well as the solutions that
were adopted to address these issues. Also, new features that are foreseen to be included in future
versions of the protocol are briefly described, and finally the results of simulations in a high-level
model of the link, intended to estimate various aspects of the protocol performance, are presented.

Chapter 3 illustrates the architecture that was defined for the interfaces implementing the FF-
LYNX protocol version 1: a functional description of input and output ports of the FF-LYNX
Transmitter and Receiver is given first, and then their internal functional architecture is outlined.

Chapter 4 presents the VHDL models of the transmitter and receiver blocks that was created in
the design phase of the FF-LYNX interfaces implementing the protocol version 1.The functionality
of each component is described in detail also showing the results of VHDL simulations on it.
Finally, the structure and the operation of the VHDL test bench built to test the functionality of the
complete transmitter-receiver system are described, and results of simulations on it are reported.

In chapter 5 an FPGA based emulator for the FF-LYNX transmitter-receiver system, foreseen as
the final result for the FF-LYNX project first year of activity, is outlined in its functional
architecture, and the development board chosen for its implementation is briefly described. Finally,
the results of preliminary synthesis trials of the designed TX and RX blocks onto the target FPGA
are reported.

This thesis ends with the exposition of conclusions about the work that has been done, and the
outlining of next developments that are foreseen in the future activity for the FF-LYNX project.

 5

1 The FF-LYNX project

In this chapter the FF-LYNX project is presented. The FF-LYNX project, approved and funded
by INFN V Commission, started in January 2009 and, in a three-year foreseen activity, aims at the
design of an integrated and scalable system for data acquisition and control in High Energy Physics
experiments. To this end, the definition of a novel communication protocol is foreseen, as well as
its implementation in radiation tolerant and low power interfaces to be provided to ASIC designers
for inclusion in their systems.

The project genesis is outlined first in section 1.1, with a brief introduction to the field of High
Energy Physics experiments and the description of the requirement for data transmission systems in
this area of application; then the goals of the project are illustrated in section 1.2, and finally section
1.3 presents the methodology that was settled for the project activities and the design flow.

1.1 Genesis of the project

The FF-LYNX project was born from the experience of INFN in the field of High Energy Physics
(HEP) experiments and collaborations with the most important research centers for particle physics
(such as CERN, Fermilab, etc.) and in particular from considerations about the opportunity of a
research and development activity focused on the definition of an innovative data transmission
system that could meet the typical requirements of HEP scenarios, intended to become a new
flexible standard for application to different experiments thus minimizing development costs and
efforts. With this aim, the FF-LYNX project was started as a collaboration between the experience
of INFN in design and development of Silicon and Gas detectors and radiation tolerant Integrated
Circuits, and the experience of DII-IET in communication protocols and radiation tolerant
interfaces for space applications.

1.1.1 High Energy Physics experiments

Particle physics is the branch of physics that studies the most basic constituents of matter and
their interactions. Modern particle physics research is focused on subatomic particles, i.e. particles
with dimensions and mass smaller than atoms, including atomic constituents such as electrons,
protons and neutrons and particles produced by radiative and scattering processes, such as photons,
neutrinos and muons. Since many elementary particles do not occur under normal circumstances in
nature, to allow their study they are created and detected by means of high energy collisions of
other particles in particle accelerators: therefore, particle physics is often referred to as High Energy
Physics (HEP). The purpose of particle physics is to investigate the fundamentals of matter in order
to address unanswered key questions about nature and origin of the Universe, such as symmetries in
physical laws, the origin of mass, the nature of dark matter and dark energy, possible existence of
extra dimensions and so on; the final, ambitious objective would be the creation of a general
theoretical model that is able to describe and explain all physical phenomena in an unified and
coherent vision.

The main instruments for High Energy Physics are therefore particle accelerators, large and
complex machines that produce beams of particles and provide them with the high energies needed
for HEP experiments. Accelerators typically employ electric fields to increase kinetic energy of
particles and magnetic fields to bend and focus the beam, which is then collided against a fixed
target or with another particle beam: the high energy collision produces the new particles and events
that must be detected and studied. Beside the use in particle physics, the applications of accelerators
nowadays span from industry (e.g. ion implantation in electronic circuits) to medicine

1 The FF-LYNX project

(radiotherapy), with different ranges of energy for the different fields application. Current
accelerators for High Energy Physics work in the GeV and TeV energy range (referring to the
energy provided to particle beams) and typically treat beams of electrons, hadrons1 and heavy
atomic nuclei; the structure can be linear (LINAC, LINear ACcelerator), with the particle beam
traveling from one end to the other and colliding against a fixed target, or circular (cyclotrons,
synchrotrons), with the beams traveling repeatedly around a ring, gaining more energy at every loop
and colliding with other beams running in opposite direction (Fig. 1.1).

The major research centers for High Energy Physics nowadays include, among the others:
- The European Organization for Nuclear Research (CERN), located near Geneva, Switzerland:

its main facilities included LEP (Large Electron Positron collider), which was dismantled in
2001 and substituted with LHC (Large Hadron Collider) that is now the world’s most
energetic accelerator;

- DESY (Deutsches Elektronen Synchrotron), located in Hamburg, Germany: its main structure
is HERA, which collides electrons or positrons and protons;

- the Fermi National Accelerator Laboratory (Fermilab), located near Chicago, USA: its main
facility is the Tevatron, which collides protons and antiprotons;

Fig. 1.1 – Aerial view of two particle accelerators for HEP experiments: (a) the Stanford Linear Accelerator Center
(SLAC), an example of LINAC; (b) the Tevatron at Fermilab, that is an example of circular accelerator.

1 Hadrons are the subnuclear particles that are subject to the strong force, and are constituted by quarks. The family of
hadrons is then divided in two subsets: baryons, comprising neutrons and protons, and mesons, including pions and
kaons.

 7

1 The FF-LYNX project

- the Stanford Linear Accelerator Center (SLAC), located near Palo Alto, USA: it hosts the

longest linear accelerator in the world, colliding electrons and positrons;
- the INFN (Istituto Nazionale di Fisica Nuleare) center in Frascati, Italy, that hosts DAΦNE

(Double Annular ring for Nice Experiments) a circular accelerator for the collision of
electrons and positrons.

High Energy Physics experiments thus consist in colliding particle beams in accelerators and

studying the results of the collisions by means of particle detectors that surround the interaction
point. Particle detectors are devices used to track and identify high-energy particles produced in
collisions, also measuring their attributes like momentum, charge and mass. A particle detector is
typically made up of different layers of sub-detectors, each specialized in revealing and measuring
different particles and properties of particles: normally the innermost layer (i.e. the nearest to the
interaction point) is the tracking device, that has the task of revealing the paths of electrically
charged particles through the trails they leave behind; in the outer layers calorimeters are typically
placed, that measure the energy lost by particles that go through them. To help identify the particles
produced in the collisions, the detector usually includes a magnetic field that bends the path of
charged particles: from the curvature of the path, it is possible to calculate the particle momentum
which helps in identifying its type. Particles with very high momentum travel in almost straight
lines, whereas those with low momentum move forward in tight spirals.

To record and analyze events produced by collisions in an experiment, information about particles
detected by sensors in the detector are converted into electric signals, which are then collected by
dedicated electronic components embedded in the detector and located in close contact with the
sensors themselves: these devices, usually called Front-End (FE) electronics, deal with the proper
conditioning of signals (e.g. amplification, shaping, buffering, analog to digital conversion) and
their transmission to remote data acquisition systems that perform data analysis and storage.
However, some means is needed to reduce the amount of data that must be transferred from the
detector to the remote system, that is extremely large in every HEP experiment. In fact, to increase
the probability of occurrence of rare, interesting events, the number of interactions per second is
made very high (a typical order of magnitude is billions of particle interactions per second); a
measure of collision rate is the so-called luminosity, which is usually expressed in cm-2 s-1 and for a
two-beam collider is defined as the number of particles per second in one beam multiplied by the
number of collisions per unit area in the other beam at the crossing point. Collision rates of this
order of magnitude produce amounts of raw data that range from tens of terabyte to a petabyte per
second, which is beyond the possibility of any data acquisition and storage system. Therefore, since
the interesting events are a very small fraction of the total, the total amount of data is filtered by
means of a trigger system: raw data are temporarily buffered in the FE electronics while a small
amount of key information is used by trigger processors (located at various hierarchical level inside
the detector and in the remote elaboration center) to perform a fast, approximate calculation and
identify significant events: the result of this processing is a trigger signal that is sent back to FE
electronics to command a data readout, i.e. the transferring of a selection of the buffered data
towards the remote system. This way, the amount of data to be transferred is reduced to rates that
can be handled by the readout system (a typical order of magnitude is hundreds of MB/s from each
FE device), and only the interesting events are selected.

 A typical control and readout system for a HEP experiment can be schematized as in Fig. 1.2:

 8

1 The FF-LYNX project

Fig. 1.2 – Typical architecture of the control and readout system for a HEP experiment.

Signals generated by the interaction with sensors of particles produced in the beam collisions are

handled by Front-End electronics embedded in the detectors and transferred to remote data
acquisition (DAQ) systems, that are placed far away from the experiment area to keep them in an
environment that is free from the intensive levels of radiation that are present in the proximities of
the interaction point: typically the transfer is carried out by means of electrical links for a first
stretch inside the detector, and then through optical links that allow to cover the long distances
(hundred of meters) from the experiment area to the remote DAQ system, and provide the large
bandwidth needed (up to tens of Gbit/s). A subset of the transferred data is used to perform trigger
calculation, and the generated trigger command is sent back to FE electronics along with timing
(clock) and control signals by a remote control system, also called TTC (Timing, Trigger and
Control) system, that manages the configuration and monitoring processes in the Front-End
electronics.

High Energy Physics experiments constitute a very challenging application for electronics, since
the equipment must deal with large amounts of data and high data rates, with tight timing and data
integrity constraints and operate in an environment that is intrinsically hostile due to the high levels
of radiation. Typical requirements for detector electronics and data transmission links in a HEP
experiment are:

- radiation hardness: electronic devices and systems must tolerate high levels of ionizing
radiations and the associated Total Dose Effects (e.g. threshold voltage drift and sub-threshold
current increase in MOS devices) and Single Event Effects (e.g. Single Event Upset in flip-
flops and SRAM cells);

- small size: the space available for devices and cabling inside a particle detector is usually very
limited due to the large amount of different components (readout and control systems, cooling
systems, mechanical structures and so on) that must be integrated in a small area around the
interaction point; additionally, bulky equipments are undesired because any non-sensor
material interferes with the measure by deflecting and absorbing the particles that must be
detected (the amount of material surrounding the interaction point, characterized with the
radiation thickness of each component/layer, is usually referred to as material budget);

 9

1 The FF-LYNX project

- low power dissipation: due to the high concentration of electronic equipment inside the
detector, power density is a major issue because it dictates the cooling requirements; cooling
system is a critical aspect in HEP experiments because it complicates the material budget and
the mechanical requirements;

- constant trigger latency: the trigger signal must be delivered to all Front-End devices with a
fixed and known latency, to command the readout of selected data thus allowing precise
reconstruction of significant events;

- capability of handling high data rates: readout electronics must be able to elaborate and
transfer large amount of data in a limited time to allow a continuous data flow during the
running of the experiment, with minimal loss of information; for the same reason, adequately
high bandwidth in electrical and optical links are required;

- data integrity: appropriate methods must be employed in transmission links to protect data
against transmission errors, and in storage elements to deal with data corruption due to
radiation.

1.1.2 The Large Hadron Collider at CERN and its experiments

The Large Hadron Collider (LHC) at CERN is the world’s largest and most powerful particle
accelerator. It is a circular structure of 27 km of circumference, located in an underground tunnel
(100 m of average depth) near Geneva, Switzerland. It is constituted by two beam pipes, kept at
ultrahigh vacuum, carrying two separate particle beams that travel in opposite directions. They are
guided around the accelerator ring by a strong magnetic field, achieved using over 1600
superconducting electromagnets operating at a temperature of ‑271°C, that generate a magnetic
field of about 8 Tesla.

LHC accelerates beams of protons and heavy ions (lead nuclei) and make them collide in four
points of the accelerator ring, where large cavities are built around the tunnel to house the detectors
of the LHC experiments; the rate of collisions is 40 millions per second, and hence 40 MHz is the
frequency of the LHC master clock that synchronizes all the detectors. The energy of proton beams
is 7 TeV for each particle, leading to a collision energy of 14 TeV which is the highest level ever
reached in a laboratory; lead nuclei are accelerated to an energy of 2.7 TeV per nucleon. The design
luminosity is 1034 cm-2 s-1 for protons.

The goal of LHC is to observe, by means of collision energies never reached before, new particle
events that could answer most of the key questions of nowadays physics: in particular, experimental
evidences are expected for the existence of the Higgs boson, that is theorized as the explanation to
the origin of mass, and supersymmetric particles, that could clarify the nature of dark matter and
dark energy.

LHC hosts six experiments: A Large Ion Collider Experiment (ALICE), A Toroidal LHC
ApparatuS (ATLAS), the Compact Muon Solenoid (CMS), the Large Hadron Collider beauty
(LHCb), the Large Hadron Collider forward (LHCf) and the TOTal cross section, elastic scattering
and diffraction dissociation Measurement (TOTEM). The two larger experiments, ATLAS and
CMS, are based on general-purpose detectors and are designed to investigate the largest range of
physics possible. Two medium-size experiments, ALICE and LHCb, have specialized detectors for
analyzing the LHC collisions in relation to specific phenomena. ATLAS, CMS, ALICE and LHCb
detectors are installed in four huge underground caverns located around the beam crossing points of
the LHC (Fig. 1.3). TOTEM and LHCf experiments are smaller in size, and are positioned near the
CMS detector and the ATLAS detector, respectively.

 10

1 The FF-LYNX project

Fig. 1.3 – The LHC complex and its four main experimental points. Pb and p denote the linear accelerators that generate
the ion and proton beams, which are then injected into the preaccelerators PS and SPS and finally into the main ring.

LHC operation was started for a first test beam circulation on 10 September 2008, but was then

stopped few days later due to a severe fault in a superconducting magnet; after repairs and addition
of supplementary safety features, the new turn-on is scheduled for November 2009. However, a
two-phase luminosity upgrade for the accelerator is already planned, to increase the probability of
observing rare events and improve the measurement precision: the upgraded accelerator will be
called Super LHC (SLHC) and will have a luminosity increase by a factor of 2-3 for phase I,
planned for 2013, and by a factor of 10 for phase II in 2018, reaching the value of 1035 cm-2 s-1 [1].
The consequently larger rate of events to be detected and the resulting larger amount of data to be
handled will impact the detectors, which will have to be upgraded as well.

The work of requirement analysis inside the FF-LYNX project focused on the two main
experiments at LHC: CMS and ATLAS, that are briefly described in the following sections.

1.1.2.1 CMS

The Compact Muon Solenoid (CMS) experiment uses a general-purpose detector to investigate a
wide range of physics, including the search for the Higgs boson, extra dimensions, and
supersymmetric particles. It is located in an underground cavern at Cessy in France, close to the
Swiss border and Geneva.

The experimental apparatus is 21 m long, 15 m wide and 15 m high, and comprises different kinds
of detectors laid out in concentric layers around the beam pipe, where the collision point is located
(Fig. 1.4). From the interaction point to the outside, these detectors are:

- the tracker, a silicon detector that reveals the trajectories of charged particles;
- the electromagnetic calorimeter (ECAL), made up of lead tungstate sensors that measure the

energies of electrons and photons;
- the hadronic calorimeter (HCAL), that has the task of measuring the energy of hadrons

produced in each event: it is composed of alternating layers of absorbing materials and
fluorescent “scintillator” materials;

- the muon chambers, for the detection of muons.
The detecting devices are enclosed inside a huge solenoid magnet that has the form of a

cylindrical coil of superconducting cable and generates a magnetic field of 4 Tesla. The magnetic
field is confined by a steel 'yoke' that forms the bulk of the detector weight of 12500 tons. As in
most HEP experiment, the magnet is an essential part of the experimental apparatus, since the
bending of the particle trajectory in the magnetic field allows to measure the momentum of a
particle by tracing of its path.

 11

1 The FF-LYNX project

Fig. 1.4 – The experimental apparatus of CMS.

At full operation, about one billion proton-proton interactions will take place every second inside

the CMS detector. To allow data storage and processing, the event rate must be drastically reduced
selecting only the potentially interesting events: this task is performed by the trigger system, that
carries out the reduction in two steps called Level-1 Trigger (L1T) and High-Level Trigger (HLT).
The Level-1 Trigger consists of custom-designed electronics that use coarsely segmented data from
the calorimeters and the muon system, while holding the high-resolution data in pipelined memories
in the Front-End electronics; the L1T calculation is carried out in about 1 μs, and reduces the event
rate from the original 1 GHz to some tens of kHz: the design output rate limit of the L1 trigger is
100 kHz. The readout data of events that pass the L1T filter are sent is sent over fiber-optic links to
the High Level Trigger, which is a software system implemented in a farm of commercial
processors. The HLT has access to the complete read-out data and can therefore perform complex
calculations to select specially interesting events, thus reducing the event rate to the final value of
about 100 per second.

For requirement analysis our attention focused on the CMS tracker system, that is the detector

with highest data flow rates being the innermost layer of the CMS apparatus. The tracker is made up
of two sub-systems: a pixel detector, with three cylindrical layers located in the central section of
the CMS detector around the beam pipe (the so called barrel), at radii between 4.4 cm and 10.2 cm;
and a silicon strip tracker with 10 barrel detection layers extending outwards to a radius of 1.1 m.
Each system is completed by endcaps which consist of 2 disks in the pixel detector and 3 plus 9
disks in the strip tracker on each side of the barrel.

The pixel detector is composed of several silicon sensor plates, segmented in 150 μm x 150 μm
sensitive elements (the pixels): each pixel consists in a reverse-biased p-n junction, that reveals the
passage of charged particles by generating an electric current. The sensor signal is collected and
handled by a silicon Read-Out Chip (ROC), bump-bonded to the pixel sensor (Fig. 1.5).

 12

1 The FF-LYNX project

Fig. 1.5 – Structure of a CMS Pixel Detector.

Each sensor plate is mounted on a module, together with ROCs and a printed board that hosts

circuits for monitoring voltage, current and temperature, for clock synchronization and trigger
decoding, for concentrating data to be sent to the remote DAQ system. Data transmission is made
on electrical links from each module to electro-optic conversion units (EOC) that are located at the
end of the barrel, and on optical links from EOCs to the remote data gathering system. The central
TTC system sends trigger and clock through optical links to distribution devices, that in turn deliver
them to Front End modules through electrical links.

The strip detector has a structure that is similar to the pixel detector, but the silicon sensor plates
are here segmented in thin strips (10 cm x 180 μm in the inner four layers, and 25 cm x 180 μm in
the remaining six layers). The charge on each microstrip is read out and amplified by an Analogue
Pipeline Voltage (APV25) chip. Four or six such chips are housed within a “hybrid”, which also
contains electronics to monitor key sensor information, such as temperature, and provide timing
information in order to match “hits” with collisions. The APV25 stores the signals in a memory for
several microseconds and then processes them before sending to a EOC unit, from which data are
sent to the remote DAQ system through optical fibers.

In both pixel and strip detectors, when a Front-End circuit receives a trigger signal from the
centralized control system, the stored samples corresponding to the triggered event are serialized
and sent to the concentrator, and from here to the optical transmitter. Currently this readout process
is partially analog: readout data are stored in Front-End chips, concentrated and transmitted to a first
stage of collection systems in analog form, and only subsequently they are digitized, processed and
transmitted to the remote elaboration center. Analog readout data transmission is serial and
synchronous with the 40 MHz LHC clock. For example, a ROC in the pixel detector transmits the
data relative to a single “hit” (i.e. a pixel being hit by a particle), comprising the pixel address and
the hit amplitude, in six successive 40 MHz clock cycles with an analog signal that can assume one
of 6 different levels at each cycle. When digitized, the data for a pixel hit in a ROC correspond to
23 bits [5][6]. Considering then the occupancy, i.e. the probability for a channel to generate a
significant event in correspondence to a trigger command, that is currently about 5.4 hits/ROC at
each trigger event [6], we can estimate the readout data rate from each ROC in 23 bit x 5.4 x 100
kHz = 12.42 Mbit/s. Considering then the occupancy for a 16-ROC module, that is around 6.5 hit
ROCs per module [6], we have a data rate from each module that is estimable as 6.5 x 12.42 Mbit/s
= 80.73 Mbit/s.

The analog readout scheme was chosen mainly for resolution reasons, since the availability of an
analog measure of hit amplitudes in pixel and strips permits, in case of charge sharing between
adjacent sensor elements, interpolation techniques that in turn increase position resolution [9]; also,
material budget is reduced as the analogue to digital conversion and its power needs are shifted out

 13

1 The FF-LYNX project

of the tracker volume. However, in real operation the analog readout proved to have unsatisfactory
performance mainly due to signal degradation in the readout chain and temperature sensitiveness of
analog to optical converters [10]. This fact, together with the need for higher transmission speed to
handle the larger data rate that will result from luminosity increase, dictates the switch to a fully
digital readout scheme for the LHC upgrade, already in phase I. Considering again the case of the
CMS pixel detector, for the phase I upgrade an increase factor of about 3 is foreseen for data rates
from ROCs and from modules [6], leading to foresee a 160 Mbit/s digital link from each ROC to
the data concentrator in the module, and a 320 Mbit/s digital link from each module to the EOC unit
[6]. Similar requirements will show up for the strip detector.

1.1.2.2 ATLAS

ATLAS is the other general-purpose detector at the LHC; it is located in an underground cavern at
Meyrn, near Geneva. It has the same physics goals as CMS, recording similar sets of measurements
on the particles created in the collisions: their paths, energies, and their identities; however, the two
experiments have adopted different technical solutions and designs for their detectors' magnet
systems. The comparison of the results of the two experiments will be important for cross-
confirmation of new discoveries.

The experimental apparatus is 46 m long, 25 m high and 25 m wide and is based, similarly to
CMS, on a large superconductive magnet generating a magnetic field of 2 Tesla. Integrated with the
magnet, the following concentric layers of detectors are displaced around the beam pipe (Fig. 1.6),
listed here from the interaction point to the outside:

- the inner tracker, that measures the momentum of each charged particle;
- the electromagnetic and hadronic calorimeters, that measure the energies carried by the

particles;
- the muon spectrometer, that identifies and measures muons.

Fig. 1.6 – The ATLAS detector.

The inner tracker is made up of three parts: the Pixel Detector, the Semi-Conductor Tracker

(SCT) and the Transition Radiation Tracker (TRT). The Pixel Detector is the innermost part of the
detector, and consists of 250 µm thick silicon sensors divided in 50 μm x 400 μm pixels and
distributed in modules; each module contains 16 readout chips and other electronic components.
The SCT is the middle component of the inner detector: it is similar in concept and function to the
Pixel Detector but with long, narrow silicon strips (80 μm x 12.6 cm) rather than small pixels,

 14

1 The FF-LYNX project

making coverage of a larger area practical. The TRT, the outermost component of the inner
detector, is a combination of a straw tracker and a transition radiation detector. The detecting
elements are drift tubes (straws), filled with gas that becomes ionized when a charged particle
passes through. Between the straws, materials with widely varying indices of refraction cause ultra-
relativistic charged particles to produce transition radiation and leave much stronger signals in some
straws.

The detector generates about 25 Mbytes of raw data per event, that multiplied for 40 million beam
crossings per second give a total of 1 petabyte/s of raw data. The trigger system, structured in two
levels, uses simple information to identify, in real time, the most interesting events to retain for
detailed analysis. The first-level (LVL1) trigger works on a subset of information from the
calorimeter and muon detectors. It requires about 2 μs to reach its decision, including the
propagation delays on cables between the detector and the underground counting room where the
trigger logic is housed. All of the information from the detector must be stored in pipeline memories
until the LVL1 decision is available.. After the first-level trigger, about 100,000 events per second
have been selected. The LVL2 trigger refines the selection of candidate objects, using full-
granularity information from all detectors, including the inner tracker which is not used at LVL1. In
this way, the rate can be reduced to about 1kHz.

The collection and readout of sensor data and the distribution of TTC signals are done with
modalities and features that are similar to the ones in the CMS detector, and therefore also the
requirements of data transmission systems about speed, radiation hardness, material budget and so
on are similar, and will be similar for the LHC upgrade.

1.1.3 Requirements of DAQ/TTC systems for HEP experiments

From the scenario depicted in the preceding sections clearly appears that most High Energy
Physics experiments, although different for the adopted technologic solution and implementative
choices, share basic architectures and operating principles, and have similar requirements for the
Data Acquisition and TTC systems; and the same will be in the near future. These requirements can
be summarized in the following way, analyzing the different aspects of data readout and control
processes.

- Data readout. Data collected from sensors by Front-End electronics must be transferred to
the remote acquisition and elaboration system in response to trigger signals, that command
data readout; this direction of data transfer is usually called uplink. The links that operate the
transmission of readout data must provide a bandwidth that is adequate to the expected data
rate, in order to minimize data losses due to buffer overflows and situations of busy data
transfer systems. Usually data from different readout circuits are then gathered by a data
concentrator inside a module, to allow their multiplexing to only one or two high-bandwidth
links per module thus reducing the total number and length of cablings. The values required
for link speed commonly range from 40 Mbit/s to 160 Mbit/s for the links between single
readout chips to the data concentrator inside a module, and from 160 Mbit/s to about one
Gbit/s for the links departing from each module. Packets of readout data must also be
characterized with timing specifications in order to make their association to specific events
possible by the elaboration system: typically a “time stamp” (i.e. a binary word whose value
specifies a timing information) is attached to each data packet to associate it to a specific
trigger command, and later in the readout chain the so called event building process is
performed by grouping together all the data with a same time stamp thus reconstructing the
physics event sensed by the detector.

- Trigger system. Trigger commands have to be transmitted from the central elaboration
system to the Front-End circuits (downlink direction) with two fundamental requisites: the
number of triggers that are lost due to transmission errors or other malfunctions must be
minimum (possibly zero), and the latency of each trigger command from the central system to

 15

1 The FF-LYNX project

each Front-End circuit must be fixed and known, in order to allow the correct time stamping
of readout data and thus the correct reconstruction of events. These constraints must be
fulfilled through a trigger transmission scheme that guarantees particular properties of high
priority and error protection to the trigger signal; at the same time, however, this scheme must
allow the transmission of triggers that are close in time up to a limit foreseen by the
experiment: for example, the minimum interval between two consecutive triggers in the CMS
and ATLAS experiment is respectively 3 and 5 cycles of the 40 MHz clock [11][13].
In the uplink, trigger data (i.e. the information from a subset of sensors that is used for trigger
calculation) must be transmitted; the requirements here are again fixed latency and high
bandwidth: for example, in the CMS upgrade it is foreseen that data from the microstip tracker
will participate to the L1 trigger generation, with data rates that are foreseen to be in the range
40-120 Mbit/s from each FE ASIC and up to about one Gbit/s from each module [14].

- Timing and control system. The master clock of the experiment (e.g. the 40 MHz accelerator
clock for the LHC experiments) must be delivered to all Front End circuits with controlled
skew, in order to synchronize the detectors with the beam crossings. The downlink has also to
transmit so called “slow control” commands to control and configure Front End devices; here
the link speed requirements are more relaxed, with 40 Mbit/s being an adequate value for most
cases. Currently, slow control is performed on dedicated links with custom or commercial
protocols such as I2C [5], and a dedicated uplink is used for monitoring and response data
from FE to the central control system.

- Error control. Critical data must be protected against transmission errors, that can arise from
noise in the transmission lines and from Single Event Effects affecting the decision devices
(e.g. photodiodes at the end of optical links): the environment of HEP experiment is
particularly critical under this point of view. Transmission errors can occur in single events or
in bursts, due to jets of particles hitting the lines. Error control coding scheme therefore must
be adopted to limit data losses. The most critical signal under this point of view is the trigger,
because a trigger command not reaching a FE circuit due to corruption means the loss of
readout data that is associated to a potentially interesting event.

- Radiation hardness. Having to operate for years in an extremely radiation-full environment,
all the electronic components must tolerate high levels of ionizing radiations (up to tens of
Mrad [11]) and the associated Total Dose Effects and Single Event Effects without major
malfunctions. Electronic systems hence must be designed and realized with proper rad-hard
techniques and technologies, and submitted to irradiation tests.

- Material budget. The amount of non-sensor material (mechanical structures, cablings,
cooling systems, etc.) inside the detector is a major concern in any HEP experiment, because
it absorbs and deflects particles interfering with the measurement. The material budget is
usually analyzed in detail for each component of the system, and for each part it is expressed
as X/X0, i.e. the thickness of the material in units of its radiation length2 X0. For data
transmission systems the desirable thing is to reduce the number of physical links as much as
possible, thus alleviating also the problem of fitting the required cabling in the limited space
available inside the detector. Some ways to achieve this are the integration of more services
(timing and trigger distribution, data transmission, etc.) on the same links, the use of serial
transmission schemes rather than parallel ones, and the concentration of data streams from
more sources (FE circuits) into few, high-bandwidth physical links. In some cases, the number
of available cables is strictly limited due to available space constraints, and this poses the most
stringent requirement for data transmission systems: for example, in the CMS upgrade for
2013 the number of pixel modules will be increased from 784 to1216 but only the existing
fibers can be used due to space limitation [6]; therefore, just one fiber per module will be
employed (currently there are 2 fibers from each module in the first two barrel layers of the

2 The radiation length of a material is the mean path length required to reduce the energy of relativistic charged
particles by the factor 1/e as they pass through matter.

 16

1 The FF-LYNX project

pixel detector) and the bandwidth of the link departing from each module must be increased to
320 MHz.

- Power dissipation. Power dissipation of electronics inside the detector is closely related to
material budget, and it must be minimized mainly to relieve the requirements for power
distribution and cooling system, that typically contributes to the overall material budget for
the most part. In general, high-power consuming parts should be placed as farther as possible
from the interaction point in order to minimize the cooling cabling in the center of the
detector. As for data transmission systems, in current experiments typical values of power
dissipation range from some mW to 10 mW per channel for electrical links from FE circuits to
EOCs, and up to some watts per channel for optical links [15].

The FF-LYNX project moved from the analysis of these requirements, performed in close

collaboration with physicists and engineers involved in the design of future detectors and Front-End
electronics, and aims at the definition and implementation of innovative data transmission systems
that could meet the common requirements of DAQ and TTC systems for HEP experiments, offering
at the same time the necessary degree of flexibility to make the system adaptable to the specific
needs and conditions of the different applications. Indeed, common solutions that can be shared and
reused in several applicative contexts can maximize performance (allowing the observation of new
physical phenomena) and minimize time, risks and effort for the development of new experiments.
Besides, it was noted in the previous sections that most HEP experiments, for example ATLAS and
CMS at LHC, and different components of the detector inside a single experiment (e.g. the pixel
tracker and the microstrip tracker) share basic requirements and architectures; nevertheless, the
groups of physicists and engineers that carried out the development of each experiment and are
involved in the design of future upgrades appear in most cases as separate communities with little
coordination, multiplying efforts while working on similar issues. Instead, a key lesson from the
past ten years of activity in the design and construction of the large experiments for the LHC is that
the use of common solutions for different detectors and experiments reduces efforts, resources and
risks.

In particular, our attention focused on flexible electrical links, possibly integrating DAQ and TTC
functions in a single protocol and relative communication interfaces: the availability of electrical
serial links, with a scalable bandwidth from tens to hundreds of Mbit/s, low power consumption
(<10mW/channel) and high rad-tolerance (tens of Mrad) would allow to reduce the number of
interconnections within the detectors to move power-consuming EOC units away from the active
regions. At the present moment, several research activities are ongoing about Gbit/s transmissions
over optical fiber between EOC unit and the remote DAQ system: e.g. Gigabit Bi-directional
Transceiver (GBT) by CERN and SpaceFiber by ESA [18][19]. On the contrary, for the electrical
communication between sensors and the EOCs (from tens to hundreds of Mbit/s) custom solutions
exist for the specific experiments and there is not an approach that allows for scalability of
bandwidth, power consumption, fault- and rad- tolerance, interoperability of future experiments.
The literature on electrical links is mostly about communications below one Mbit/s for
configuration/control tasks, such as I2C and CAN; on the other hand, protocols for consumer
electronics, telecommunications, industrial automation, avionics, automotive, space craft
applications (e.g. Ethernet, Firewire, Fiberchannel, SpaceWire) are little suitable for the stringent
requirements of high rad-tolerance, low power consumption and low material budget: for instance,
SpaceWire uses 8 wires for each bidirectional channel; a basic requirement that these protocols fail
to satisfy is the possibility of transmitting high priority commands, such as the trigger, with fixed
latency and robustness against errors.

 17

1 The FF-LYNX project

1.2 Purposes of the project

Moving from the considerations about requisites outlined in the previous sections, the FF-LYNX
project aims at the definition of a serial communication protocol that could integrate the distribution
of TTC signals and Data Acquisition, satisfying the typical requirements of HEP applications and
providing at the same time a degree of flexibility that allows its adaptation to different scenarios,
and its implementation in radiation-tolerant interfaces designed and developed in a standard CMOS
technology. The intended application for this protocol is the field of future HEP experiments, but
the tailoring of the protocol features to match the constraints of this field will make it suitable for
possible applications also in the area of astrophysics and space remote sensing, where the increasing
use of CCD and CMOS-pixel image sensors in detectors poses similar requirements to data
acquisition systems.

The proposed protocol is intended to offer the following key features:
- Integrated distribution of TTC signals and DAQ data. The FF-LYNX protocol is designed

to allow the management of both these fundamental functionalities of data transmission in
HEP experiments, applying the same interfaces to both the downlink and the uplink. In the
downlink the fundamental functionality is the transmission of clock, triggers and control
commands. The basic function of the uplink is the transmission of data from the Front-End
systems (readout data in response to triggers or monitoring data in response to commands),
but the availability of a high-priority command such as the trigger could be useful to allow the
constant-latency transmission of special, fixed-length frames that carry data to be used for the
generation of the Level 1 trigger. Furthermore, the protocol is intended to be applicable also to
ring architectures (see later on) where there is no distinction between down-link and up-link,
and triggers have to be propagated from one FE circuit to another along with readout data.
Hence, the FF-LYNX protocol proposes common features to meet the requirements of the two
transmission directions: the transmission on a single serial link of clock and triggers for the
FE circuits, and user data (that can be configuration/control commands or readout data); user
data are transmitted by encapsulating them into data frames.

- Availability of a high-priority command. The trigger command transmission is integrated
on the same link with generic data transmission, but the protocol gives highest priority to the
trigger in order to ensure its delivery to the receiver with fixed and known latency between
transmission and receiving in all the conditions of traffic on the link.

- Robustness of critical signals/commands against transmission errors. The trigger and
other signals that are critical for the protocol operation, that as will be explained in the
following are frame headers and frame descriptors, are protected against transmission errors
by means of an appropriate encoding that must allow the correct recognition of the transmitted
command and the reconstruction of its timing.

- Flexibility. The FF-LYNX protocol is intended to offer a high degree of flexibility with
respect to various parameters and aspects of transmission systems, such as data rate, data
format, system architecture. Regarding data rate, the protocol is proposed in different versions
with different values of the data transmission speed, chosen as multiples of the master clock
frequency of the application (e.g. the 40 MHz clock for LHC experiments) to facilitate the
generation of the transmission clock and the distribution of the master clock through the link
itself. As for data format, the chosen approach is that of transparency towards the user data
transported by the link, i.e. the protocol transfers user information from the transmitter to the
receiver without any structuring of the transported payload, thus accepting any kind of data
format. As for system architecture, finally, the protocol is designed for a basic point-to-point
application, but with the possibility of applying the interfaces to different architectures of the
readout and control system, being the “ring” and the ”star” topologies the most common in the
detectors for HEP experiments (Fig. 1.7 and Fig. 1.8). To that end, beside transmitter and
receiver interfaces implementing the protocol, the development is foreseen of dedicated units

 18

1 The FF-LYNX project

to concentrate data coming from different sources over a single, high-speed uplink and to
transmit the TTC signals of a single downlink to several destinations; the concentrator could
also have the function of organizing readout data on the basis of some characterization (e.g.
time stamp), thus performing a first stage of event building inside the detector. Furthermore,
for a given architecture the bandwidth requirement for each branch of the topology can be
fulfilled by selecting the FF-LYNX link with the appropriate speed, or by grouping more low-
speed links to reach the required total speed.

Fig. 1.7 – “Star” architecture: Front-End circuits are connected to a Data Concentrator Module (DCM) that merges data
streams, optionally performing event building (i.e. aggregating data identified by the same time stamp), and distribute
TTC signals to the connected Front-End circuits.

Fig. 1.8 – “Ring” architecture: Front-End circuits are daisy chained with redundant connections to provide robustness
against component failures. TTC signals and data will propagate along the chain and the data merging will be
distributed among the nodes of the chain (i.e.: each node will merge its own data with the data received from the
previous nodes).

 19

1 The FF-LYNX project

- Compatibility with different link technologies. The FF-LYNX protocol is defined at the
data-link layer of the ISO/OSI protocol stack ,and is intended to be compatible with different
technologies for the implementation of the physical layer, such as standard or “low power”
LVDS (Low Voltage Differential Signaling)..

As for the protocol implementation, the goal is to design and develop low-power, radiation-

tolerant interfaces, targeted to a standard CMOS technology and make them available to the
designers of the integrated circuits for future HEP experiments as fully characterized and tested
Intellectual Property (IP) cores, that will be parametric and partially configurable to ensure
flexibility. The required tolerance to Total Ionization Dose (TID) and Single Event Effects (SEE)
will be obtained by using CMOS standard technologies below 180 nm (that proved to be
intrinsically robust to some TID effects, such as threshold voltage drift because of the reduced
thickness of the oxide) and applying appropriate solutions at architectural, circuital and layout level
(e.g. triple redundancy, hardened flip-flops). With respect to the use of custom rad-hard
technologies, this approach offers the possibility to benefit from the high performance of standard
processes (logic density, power consumption, speed, availability of pre-designed library cells) and
yet to achieve the required radiation tolerance.

1.3 Methodology and design flow

As a first phase in the FF-LYNX project, a methodology was established dividing the design
activity in successive phases with various intermediate verification steps, in order to validate the
results obtained in each stage. A particular characteristic of this methodology is the use of a high-
level software model of the link as a first stage of evaluation of the defined protocol, allowing the
comparison of different choices about the various aspects of the protocol itself on the basis of
conveniently chosen cost functions and figures of merit (e.g. bandwidth efficiency, robustness to
errors, etc.). A diagram illustrating the project work flow is reported in Fig. 1.9; the main phases of
the flow are here described:

- Protocol definition. Moving from the requirement analysis outlined in section 1.1, the first

stage of the activity is the definition of the FF-LYNX protocol in a first, tentative version to
be submitted to successive verification, and open to refinements following suggestions and
requests from FF-LYNX collaborators in the field of HEP experiments (physicists and
engineers involved in the design of detectors). This first version of the protocol is defined
trying to meet the requirements about data rate, trigger latency and error robustness by means
of a mix of custom and standard solutions typical of the data-link layer of the ISO/OSI model.

- Validation in a high-level simulation environment. A high-level software simulation
environment is created that models the transmitter and receiver interfaces, implementing the
defined protocol, and a surrounding test bench providing the expected stimuli and measuring
various aspects of the link performance. This environment is realized in SystemC [20] and
offers a highly configurable model of the link in order to allow the test, during the phases of
protocol definition and refinements, of different versions of the protocol. To validate the
protocol and allow comparisons between different versions, the basic task of the high-level
simulator is the evaluation of specific cost functions and figures of merit (e.g. bandwidth
efficiency, data loss rate, data latency) that has been defined on the basis of system
requirements; furthermore, by evaluating these parameters the high-level simulator also gives
valuable information about hardware aspects of the interfaces, such as optimum size of
buffers.

- Definition of the interfaces architecture. After the phase of protocol validation, the
architecture of the hardware interfaces implementing the first version of the protocol is

 20

1 The FF-LYNX project

defined, following indications from the high-level simulation phase. The operation of the
transmitter and receiver interfaces is divided into functional blocks (e.g. buffer, encoder,
serializer and so on) in order to simplify the implementation and to allow the separate
verification, in the successive HDL simulation phase, of the correctness of each sub-function.

- VHDL modeling and simulation. Once defined their architecture, a model of the interfaces
using a Hardware Description Language (HDL) is created for functional simulation and
successive synthesis. This model is built in a highly-parameterized form in order to allow
quick changes to follow indications coming from the high-level simulator. Each block of the
architecture is separately modeled and tested in a specific test bench through functional
simulation to verify its functionality, so to progressively build an overall model that was
verified in all its parts. Finally, the complete transmitter-receiver model is tested in a test
bench including emulators of the transmitting and receiving hosts to verify the overall
functionality of the system.

- FPGA prototyping. Next, a phase of FPGA-based emulation is foreseen, to provide
additional verification of the system functionality (especially about the aspects that are
difficult to assess in the software simulator, due to excessive simulation time: for example, the
evaluation of the effect of transmission errors on data integrity with realistic bit error rates – in
the order of 10-9 or less – requires some days of simulation) and to evaluate different solutions
for the physical layer. The HDL models of the interfaces are synthesized on an FPGA together
with the model of a surrounding test system that provides test vectors to the interfaces model
and records the test results. The FPGA is mounted on a development board chosen so as to
contain all the resources required for the test, such as memories, connectors, network
interfaces etc. Furthermore, by choosing an FPGA with I/O ports in different standards
(LVDS, LVCMOS, etc.), the operation of the protocol with different link technologies can be
tested.

- Test chip. As a final phase, the design and realization of a test chip is foreseen to complete
the verification and the characterization of the FF-LYNX interfaces. The chip will contain the
transmitter and receiver interfaces (in all the different versions in terms of transmission speed)
and the test bench architecture that has been already synthesized on the FPGA emulator, and
will be realized in a commercial CMOS technology, below 180 nm, accessible to INFN
through CMP, MOSIS or Europractice programs. The chip will be then tested in order to
characterize the interfaces about electrical and thermal properties, and also radiation tests will
be performed to evaluate tolerance to TID and SEE: the final goal is the creation of IP
hardware macrocells, fully characterized and tested, to be made available to designers of
ASICs for future High Energy Physics experiments for integration in their systems.

 21

1 The FF-LYNX project

Fig. 1.9 – Project work flow diagram.

 22

2 The FF-LYNX protocol

This chapter describes in detail the first version of the FF-LYNX protocol, called version 1 or v.1,
i.e. the one that was tested in the high-level software simulator and was implemented in the VHDL
model of the interfaces, which is the main subject of the present thesis work. The procedure of
validation in the high-level simulator is then described and the results are reported, and finally the
foreseen successive versions of the FF-LYNX protocol are outlined.

2.1 General characteristics

The first version of the FF-LYNX protocol (protocol v.1) was defined, as anticipated before, at
the data-link layer of the ISO/OSI model, dealing therefore with three basic issues:

- stream multiplexing and synchronization: as will be explained in the following, two channels
are multiplexed into the transmitted serial data stream by means of a Time Division
Multiplexing (TDM) technique: the protocol must then define the way this multiplexing is
performed by the transmitter and the demultiplexing is carried out by the receiver, acquiring
the synchronization on the two channels of the received stream;

- framing: the transfer of user data (called payload) is carried out by means of information units
called frames, that are sequences of bits in the stream with defined limits (start and end): the
protocol has to specify how frames are built by the transmitter and how their beginning and
ending in the stream are recognized by the receiver;

- error control: the protocol must define a way to detect and possibly correct transmission errors
that affect critical data.

The FF-LYNX protocol v.1 was defined trying to satisfy some of the most basic requirements of
TTC and DAQ systems for HEP experiments, starting from requisites about clock and trigger
transmission.

First of all, a serial transmission was chosen to minimize the number of required wires, and a
separate clock transmission scheme was preferred for the moment to simplify the receiver circuits.
Therefore, in protocol v.1 the FF-LYNX physical link comprises two wires: a CLK line, carrying
the transmission clock, and a DAT line that delivers serial data. The values foreseen for the
transmission speed are 4, 8 and 16 times the frequency F of the reference clock in the FE
electronics: considering for example the LHC scenario, where the master clock frequency F is 40
MHz, the transmission speed will be then 160, 320 or 640 Mbit/s: the CLK line hence will carry a
160, 320 or 640 MHz clock. These values are chosen to allow an easy reconstruction, in the
receiver, of the reference clock (frequency F) from transmission clock received on the CLK line, as
will be explained later. For ease of exposition, in the following the LHC value of 40 MHz is
considered for the master clock frequency F, although it’s understood that the protocol (and all the
following considerations) is applicable to any value of F.

To transmit the trigger command onto the serial DAT stream, it must be encoded as a bit sequence
of some length, and this must be done respecting the two fundamental requisites about trigger:
robustness to transmission errors and constant latency between transmission and reception.
Transmission errors due to noise or radiation can affect the digital stream altering one or more of
the transmitted bits so that a transmitted logic ‘0’ is received as a logic ‘1’ or vice-versa (bit-flip):
these errors on the link can occur as single events (i.e. bit errors occur “fairly distanced” one from
the other, so that the probability of having more than an error in each sequence of consecutive bits
of a certain length is negligible) or as bursts, i.e. more consecutive bits are corrupted: however, not
to complicate things too much, in protocol v.1 only single bit-flips are considered, while the

2 The FF-LYNX protocol

protection against bursts will be addressed in successive versions of the protocol by means of
interleaving techniques, as will be explained later on. Therefore, just one bit-flip is considered to
possibly happen on each sequence of bits with which a trigger command is encoded. As for the
constant latency requirement, this means that the sequence of bits encoding the trigger must be
transmitted with highest priority, i.e. without waiting, every time a trigger command arrives to the
transmitter interface: this can happen at every cycle of the 40 MHz master clock. Furthermore, the
receiver must recognize the trigger sequence in the received serial stream with exact reconstruction
of timing, i.e. the 40 MHz clock cycle of occurrence. If the trigger sequence is transmitted into the
serial bit stream “embedded” with normal data, a possibility for addressing these requirements is to
adopt a character-oriented protocol, that is a protocol in which data is transmitted as divided in
fixed-length groups of bits called “characters”: examples of this kind of protocol are Bisync (Binary
Synchronous Communication) by IBM and PPP (Point-to-Point Protocol) [21]. In this approach, the
trigger could be sent as a special character, providing that it can never occur in “normal” data.
However, it must be guaranteed at the same time that the “trigger character” is recognized by the
receiver even in case of bit-flip: this complicates this approach very much, since some mechanism
must be foreseen to exclude the possibility of presentation in the normal data not only of the trigger
sequence, but also of the sequences that results from the trigger one after the flipping of a bit.

To overcome these problems, the idea was that of reserving to trigger sequences a dedicated time-
division channel, inside the DAT serial stream, that is free from other data transmission so that
triggers can be encoded as bit sequences in a way that allows to satisfy the requirements about
latency and error robustness. This reserved channel is obtained through time division multiplexing:
as said before, considering a transmission speed of 160, 320 or 640 Mbit/s, 4, 8 or 16 bits are
transmitted in the DAT line in each 40 MHz clock cycle. This way the line can be regarded as a 40
MHz parallel link and conveniently split into two logical channels: the THS channel, so called
because it is reserved, as will be explained later, to the transmission of Triggers, frame Headers and
Synchronization patterns, and the FRM channel that carries data frames.

The next step is to decide the number of bits that are reserved to the THS channel (here and in the
following, “in each 40 MHz clock cycle” is understood) and, related to this, the length of the bit
sequence that represents the trigger. To this end, the following considerations/constraints must be
kept in mind:

- to minimize the bandwidth fraction that is subtracted to data transmission, it would be
preferable to have a “narrow” THS channel. i.e. the number of bits for the THS channel
should be as small as possible;

- the trigger sequence must last not more than three 40 MHz clock cycle, since this is the
minimum interval between two consecutive trigger commands; this condition was chosen
considering the CMS requirements, that appears to be the most restrictive regarding this
aspect [14];

- even in case of (single) bit-flip, the trigger sequence must be always recognized by the
receiver with correct timing: that is, if a corrupted trigger sequence arrives to the receiver at
the 40 MHz clock cycle number i, the receiver must not detect a trigger sequence at the 40
MHz clock cycle number i−1 or i+1.

To satisfy at best the first requirement, one could think to assign just one bit to the THS channel:
however this would imply, for the second constraint, that the sequence representing the trigger is
just 3 bits long. But this is not sufficient to fulfill the last requirement: supposing for example that
all zeroes are transmitted onto the THS channel in absence of triggers, and that the trigger sequence
is 111, if ...0000110000... is received because of a bit-flip then it is not possible to say with
certainty where is the beginning of the sequence (it could be ...0000110000... or ...0000110000...
depending on whether the bit preceding the two 1s or the bit following them is considered to be
corrupted); the same problem arise with all the other possible choices of the 3-bit sequence
encoding the trigger. Therefore, it was decided to assign 2 bits to the THS channel, and
consequently to encode the trigger as a 6-bit sequence: this allows to fulfill all the previously

 24

2 The FF-LYNX protocol

mentioned requisites, as will be shown later on. Consequently, the FRM channel has 2, 6 or 14 bits
in each 40 MHz clock cycle for a transmission speed of 160, 320 or 640 Mbit/s, respectively: this is
schematically illustrated in Fig. 2.1 for the cases 160 and 320 Mbit/s:

Fig. 2.1 – The division of the serial DAT stream in the THS channel and the FRM channel, in the cases of transmission
speed equal to 160 and 320 Mbit/s.

The FRM channel is used instead for the transmission of frames, that carry general, low priority

user data and whose beginning is marked by a header, that is a special sequence of bits. As will be
explained in section 2.2.3, the 6-bit encoding used for trigger allows to represent up to three
different patterns (in addition to the “no operation” sequence, i.e. the one that is transmitted when
the channel is idle) with the desired properties of robustness to bit-flip: therefore, beside the trigger,
also the frame header is encoded as one of these patterns and transmitted in the THS channel as
well, thus reducing the framing overhead in the FRM channel; the third available sequence can be
used to encode “sync” patterns, i.e. sequences that are transmitted to maintain synchronization of
the receiver on the THS channel of the received stream. The THS channel indeed gets its name from
the names of the patterns that are transmitted on it: Trigger, Header and Sync.

The operation of the THS channel, the synchronization mechanism and the structure of FF-LYNX
frames are described in more detail in the following sections.

2.2 The THS channel

The THS channel is therefore a 2-bit wide sub-stream in the DAT serial bit stream, reserved for
the transmission of trigger and header 6-bit sequences, that will be called in the following TRG and
HDR; this is the basic function of the THS channel although, as will be explained in the following,
in a preliminary version of the protocol also a third sequence, denoted as SYN, was foreseen to be
transmitted into the THS channel, and used as a synchronization pattern for the receiver.

Two main issues arise about the function of the THS channel: TRG and HDR scheduling, i.e. the
timing organization of the transmission of these two sequences so that the TRG has always a fixed
latency between transmission and reception, and synchronization of the receiver, that is the
mechanism by which the receiver interface is able to distinguish, in each 40 MHz clock cycle, the 2
bits that belong to the THS channel from the bits of the FRM channel. These two issues are treated

 25

2 The FF-LYNX protocol

in the next two sections; after which, the encoding scheme chosen for THS sequences is described
in section 2.2.3.

2.2.1 TRG and HDR scheduling

Since TRG and HDR sequences are both transmitted onto the THS channel, a method must be
provided to avoid the overlapping of their transmissions. In fact, the commands for the transmission
of TRG and HDR arrive from different sources (the trigger command arrives to the transmitter
interface as an input from the host, while the beginning of a header transmission is decided by the
interface itself when a data frame is ready to be sent) and a 6-bit TRG or HDR sequence occupies
the channel for three consecutive 40 MHz clock cycles: therefore, if no further control is foreseen
the possibility exists that TRG and HDR transmissions overlap in time. In addition, the method to
avoid this must guarantee that TRG always has higher priority with respect to HDR, so that a trigger
transmission command never has to wait the ending of the transmission of a HDR: this way, fixed
latency for triggers is assured.

To guarantee the minimum interval of three 40 MHz clock cycles between consecutive TRG and
HDR commands, respecting at the same time the fundamental requisite of constant latency for the
TRG commands, the FF-LYNX transmitter employs the following strategy: a delay of three 40
MHz cycles is introduced between every input TRG command and the start of its transmission into
the THS channel, thus creating a temporal “observation window” that can be used to determine the
intervals in which the starting of the transmission of a HDR sequence is not allowed, because it
would overlap with an upcoming TRG sequence or with a past TRG transmission that hasn’t been
completed yet. More in detail, given the (40 MHz) clock cycle of starting of a TRG sequence and
considering that TRG and HDR sequences occupy 3 clock cycles, there is a “forbidden interval” of
5 clock cycles in which the beginning of a HDR sequence’s transmission would cause a “collision”,
as illustrated in Fig. 2.2:

Fig. 2.2 – TRG and HDR scheduling: the transmission of a TRG sequence (shown in red) creates a 5-clock-cycles
“forbidden interval” during which the starting of a HDR transmission can’t be allowed, because it would cause the two
sequences to overlap (as represented by crossed blocks).

Therefore, when a trigger command arrives, the transmitter must schedule the TRG transmission

for three (40 MHz) clock cycles later and start a forbidden window of 5 clock cycles, delaying the
transmission of any possible HDR until the end of this window. More details about the hardware
implementation of this scheduling mechanism will be given in section 4.2.4.

 26

2 The FF-LYNX protocol

2.2.2 Synchronization

To properly receive the transmitted triggers and data, and also to reconstruct correctly the 40 MHz
clock from the transmission clock, the receiver has to synchronize on the THS channel, i.e. to
distinguish, in the received serial bit stream, the bits that belong to the THS channel from the ones
that belong to the FRM channel. The receiver has to acquire this synchronization at the beginning of
the transmissions (sync lock); but then, during transmission, it is possible that sync is lost due to
transmission errors on the CLK line (that cause the non-recognition by the receiver of one or more
edges of the transmission clock, or the detection of spurious edges) so that the receiver is no more
correctly aligned on the THS channel, thus generating a reconstructed 40 MHz clock that is not in
phase with the 40 MHz master clock feeding the transmitter and not being able to correctly detect
THS sequences and deserialize data. In such a case, the sync mechanism must detect the loss of
synchronization, abandon the previous alignment (sync unlock) and acquire the new sync lock.

The mechanism that was chosen for synchronization is based on THS sequences recognition, and
works as follows. In the received serial bit stream all the possible 2-bit channels are considered;
these are 4, 8 or 16 in case of transmission speed equal to 160, 320 or 640 Mbit/s respectively, and
are distinguished one from the other on the basis of the position of the two considered bits among
the 4, 8 or 16 bits that are transmitted in each 40 MHz clock cycle: this is illustrated in Fig. 2.3 for
the example of 320 Mbit/s:

Fig. 2.3 – The eight 2-bits channels that can be identified in the 320 Mbit/s serial stream.

For each of this channel, the receiver looks for transmitted THS sequences (TRG or HDR) and

counts them: every time a THS sequence is detected in a channel, the count for that channel is
incremented. When the count for one of the channels, say channel i, reaches a threshold Nlock, the
sync is declared as acquired (sync lock) and channel i is considered to be the THS channel (let’s say
that channel i has become the channel “in charge”); the count for all the other channels is reset, and
the reconstructed 40 MHz clock is generated by the receiver with a phase that is aligned with
channel i. From the moment of sync lock, the counting of THS sequences goes on in all the
channels, but every new THS sequence detected on the channel in charge resets the count for all the
other channels. If instead the count for a channel that is not in charge reaches a second threshold

 27

2 The FF-LYNX protocol

Nunlock, the sync is declared lost, and a new sync lock is done on the first channel that reaches the
locking threshold Nlock. The synchronization algorithm state diagram is reported in Fig. 2.4.

Fig. 2.4 – Synchronization algorithm.

Obviously, even when the receiver is correctly synchronized on the THS channel, it is possible

that “fake” THS sequences appear in other channels, but statistically they will appear less
frequently than real THS sequences in the real THS channel, and so this mechanism allows the
receiver to maintain the correct sync. However, to this end it must be provided that THS sequences
are sent into the real THS channel with sufficient frequency, since otherwise the receiver will lock
on some other channel due to spurious THS sequences detected on it. For this reason SYN patterns
were introduced: they are sent by the transmitter into the THS channel when no TRG or HDR
transmission has occurred for a certain period, so that the THS channel is never free from
transmissions for a too long time. Of course, SYN transmissions are scheduled by the transmitter
interface with lowest priority with respect to TRG and HDR.

If instead during transmission the receiver goes out of sync, THS sequences will begin to be
counted in the channel that is now the THS one, and so this mechanism allows the receiver to
recover the correct synchronization.

In conclusion, the receiver uses TRG, HDR and SYN sequences as synchronization patterns. As
will be explained in the next section, once synchronization is acquired the receiver detects TRG and
HDR sequences in the THS channel also if they are corrupted by a single bit-flip; for
synchronization, instead, only “pure” (i.e. not corrupted by bit-flips) TRG, HDR and SYN
sequences are considered, in order to limit the number of spurious sequences that are detected in
other channels.

 28

2 The FF-LYNX protocol

2.2.3 The THS encoding

A custom encoding scheme, called THS encoding, was chosen to represent THS commands
(TRG, HDR and SYN) as 6-bit sequences to be transmitted on the THS channel with desired
characteristics of robustness to transmission errors (bit-flip). It is here described after a brief
introduction on error control coding theory.

2.2.3.1 Elements of coding theory

Error control coding is a branch of information theory that deals with methods of delivering
information from a source to a destination reducing at a minimum the errors that are introduced by
noise on the channel. A communication channel can be schematized as in Fig. 2.5:

Fig. 2.5 – Model of a communication channel.

The source (transmitter) has to send a message x, i.e. a sequence of symbols x1, ... , xk. If no

modification is made to the message and it is transmitted directly over the channel, any noise would
make the message unrecoverable by altering some of its symbols. The basic idea of error control
coding is to add some redundancy to the message so that hopefully the received message is the
original message that was sent. The redundancy is added by the encoder and the modified message,
called a codeword (c in the figure), is sent over the channel where noise in the form of an error
vector e distorts the codeword producing a received vector y. The received vector is then sent to the
decoder that removes errors and strips off the redundancy, and produces an estimate x̂ of the
original message: if the error control scheme has worked well, it will be ˆ =x x .

Definition of code. Let q be a finite field of q elements, for example the binary field 2 = {0, 1},

and let q with n > 0 be the vector space of all n-tuples over the finite field q q is also called a

finite alphabet of q letters (or symbols), and each vector of q , i.e. a n-tuple of letters of q , is

called a word over the alphabet qF . A code C over qF (q-ary code) is any non-empty subset of qF ;

more precisely, a (n, M) cod

F F
nF

F

e is a subset of of size M, i.e. containing M elements
(v

its. In the binary

fi addition (+) and multiplica n (·) are defined by the following tables:

F . F
n F

n

C over qF n
qF

ectors) called codewords.
A binary code is thus a code over 2F , and its codewords are sequences of n b

d 2F tioel

 29

2 The FF-LYNX protocol

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

the 2F addition is thus a modulo-2 addition, or XOR operation.

Definition of distance and weight. Consider the set n

qF of all the words of n letters over the

alphabet qF . The Hamming distance (or distance tout court) d(x, y) between two words x, y n
q∈F is

defined as the number of position in which x = (x1, x2, ... , xn) and y = (y , y , ... , y) have different
letters:

1 2 n

 () { }d , : ;1i ii x y i n= ≠ ≤ ≤x y (2.1)

where | . | denotes the number of elements of the set inside. It can be easily verified that d(x, y) is

a metric on the vector space n
qF .

The smallest distance between two distinc rds of a code is called the minimum dist wo tance of the
c

) weight wt(x) of a word x

ode; a (n, M) code over qF with minimum distance d is called a (n, M, d) code over qF .

he (HammingT n
q∈F is the number of nonzero letters in x.

w

efinition of sphere

From the definitions of distance and weight it follows immediately that d(x, y) = wt(x – y) and
t(x) = d(x, 0).

D . Given a x and a positive integer r,

is defined to be the set
 n

q∈F the sphere of radius r centered at x

 () { }: (,)n
r qS d r= ∈ ≤x y x y F (2.2)

Linear codes. If C is a k-dimensional subspace of n

qF , then C is said to be a linear code of length n

and dimension k (with k ≤ n) over F , and is denoted s aq

is qk. From the definition it follows immediately that a linear code always comprises the zero word,
i.

 a [n, k] code; the number of its codewords

 d is called a [n, k, d] code. Since d(x, y) = wt(x – y), in a
li

G, the corresponding set of
c r = n − k coordinates are called a
redundancy set and r is called the redundancy of C. For example, in a [n, k] binary code each
codeword will have k information bits and r = n − k red

A generator matrix G is said to be in standard form if

e. the word whose each letter is the zero element of qF .
A [n, k] code with minimum distance
near code C the minimum distance is the minimum weight of the non-zero codewords of C.
Given a [n, k] code C, any k × n matrix G whose rows are a basis of the vector subspace C is

called a generator matrix for the code.
For any set of k independent columns of a generator matrix

oordinates forms an information set for C; the remaining

undancy bits.

 30

2 The FF-LYNX protocol

 kG I A= ⎡ ⎤⎣ ⎦ (2.3)

where Ik is the k × k identity matrix and A is a k × (n − k) matrix. Therefore, if G is in standard
fo m, an information set of the code is formed by the r

T
first k coordinates.

words;
multiplication of all the symbols in a given position of the codewords for a non-zero element

C1 and C2 are equivalent codes, then a
ained from a generator matrix G1 of C1 through a finite number

permutation of the columns;
n for a non-zero element of ;

hese three last operations simply correspond to a change of the basis of the subspace.

in matrix that generates a code C’ equivalent
to .

n, k] code C, a (n − k) × n matrix H defined by

wo [n, k] codes C1 and C2 are said to be equivalent if one can be obtained from the other through
a finite number of operations of the following kind:

- permutation of the coordinates, i.e. a given permutation of the n coordinates is applied to all

the code
-

of qF .

Passing from a code C1 to an equivalent code C2 many properties of are maintained, in particular
the weights of the codewords and hence the minimum distance. In this sense, two equivalent codes
are essentially the same code.

It easily follows from the definition of equivalence that, if
generator matrix G2 of C2 can be obt
of operations of the following kind:

-

qF- multiplication of a colum

and also of the following kind:

- permutation of the rows;
- multiplication of a row for a non-zero element of qF ;
- sum of a row with a scalar multiple of another row;

since t
From these considerations, it also follows that any generator matrix of a code C can be brought
to standard form, i.e. transformed into a standard form
 C

For a [

 { }: 0n

qC H= ∈ =Tx x F (2.4)

is called a parity check matrix for C (note that here, as will be in the following, the vectors are

intended as row vectors). In other words, a parity check matrix
m el of H. Since from linear algebra it is known that, for every
m

 for a linear code C is a (n − k) × n
m × n atrix H such that C is the kern

atrix A,
{ }dim ker() ranA k()n= − A (2.5)

then it follows that
 rank()H n k= − (2.6)

at is, the rows of H are independent. From the definit
for any generator matrix G and for any parity check matrix H of a code,

th ion of H it also follows immediately that,

 31

2 The FF-LYNX protocol

 0GH HG= =T T (2.7)

because the rows of G are codewords; and using this result, if kG I A= ⎡ ⎤⎣ ⎦ is a generator matrix in
standard form of a code C, it can be easily verified that a parity check matrix H for C is

 n kH A I −

⎡ ⎤= −⎣ ⎦

T (2.8)

Encoding and decoding. Given a [n, k] code C, the transformation of each k-letter vector x of k , qF
called message, into a n-letter codeword c of C is called encoding. For linear codes, the usual
encoding method is to encode a message x as the code

word

 G=c x (2.9)

 particular, if G is in standard form it will result that:

In

 () ()1 1 1,..., ,..., , ,...,n k k k nc c G I A A x x c c+= = = ⎡ ⎤ = ⎡ ⎤ =⎣ ⎦ ⎣ ⎦c x x x x (2.10)

that is, the message x appears unchanged in the first k coordinates of c, while the remaining n − k
c

code ord c, and then c is sent over the communication channel. The
noise in the channel has the effect of changing some symbols of the sent codeword
receiver gets an altered word y

oordinates ck+1, ... , cn are the redundancy symbols added by the code.

When using an error control method to transmit information from a sender to a receiver, a

message x is first encoded as a w
c, so that the

n
q∈F

 () ()1 1,..., ' ,..., 'n ny y c c= =y (2.11)

where c’i denotes the i-th symbol of c possibly altered by an error. This received vector can be

seen as y = c + e where e is an error vector, with non-zero elements in the coordinates
corresponding to the altered symbols. The decoding process is that of reconstructing the transmitted
c

ing the codeword c that has the minimum
H

b
the received vector as c.

ince it can be easily proved [23] that for a code C with

odeword c, and hence the message x, from the received y: the task of the decoder is thus to find the
error vector e so that it can find c by performing c = y − e.

A common way to perform the decoding process (because it can be proved that, under certain
hypotheses [23], it maximizes the probability of reconstructing the correct message) is the so called
nearest neighbor decoding, which consists in find

amming distance from the received vector y; equivalently, an error vector e must be found with
minimum weight such that y − e belongs to the code.

Let’s now consider the spheres of a given radius t centered at the codewords of the code. If t or
less errors occur in the transmitted codeword c (i.e. the error vector e has t or less non-zero
components) then the received word y will belong to the sphere of radius t centered at c; and if in
addition all the spheres are pair-wise disjoint, i.e. no vector of n

qF belongs to more than a sphere,
then a single codeword exists with minimum distance from y: that is the center of the sphere that y
elongs to. This means that under these conditions nearest neighbor decoding will correctly decode

S minimum distance d the spheres of radius

 ()1 / 2t d= −⎢ ⎥⎣ ⎦ (2.12)

 32

2 The FF-LYNX protocol

centered at the codewords of C are pair-wise disjoint, then we can conclude that a code C with
minimum distance d can correct (through nearest neighbor decoding) up to t errors in each received
word, with ()1 / 2t d= −⎢ ⎥⎣ ⎦ : the code is said to be a t-error-correcting code. If on the contrary more
th

thod to implement nearest neighbor decoding is the so called syndrome decoding. If H
is a parity check matrix for a code C, then the syndrom

an t errors hit a transmitted codeword c, then a t-error-correcting code can fail in reconstructing
the correct c, since the received vector y can fall out of the sphere of radius t centered at c.

When a vector y is received, to realize nearest neighbor decoding with a t-error-correcting code
the most obvious way would be to examine all codewords until one is found with distance t or less
from y: however, this method is clearly impractical if the number of codewords is large. A more
efficient me

e s of a vector y n
q∈F with respect to H is

defined as
 (2.13)

in calculating t
rs in the transmission so that y is equal to the transmitted codeword c, then it will be

 from the definition of H. If instead an error
b

() H= Ts y y

hence, s is a vector of n k

q
−F .

Supposing that a codeword c is transmitted, and a vector y = c + e possibly affected by a number
of errors comprised in the correcting capability of the code is received, syndrome decoding consists

he syndrome of the received vector y: if y belongs to the code C, i.e. there were no
erro
() vector e ≠ 0 has affected y, then it will 0H= =Ts y y
e

() () ()= + =s y s c e s e (2.14)

that is, a syndrome will result that depends only on the error vector. It can be proved [23] that if y

∉C the syndrome s(y) is always non-zero, and that from s(y) it is possible to find e as the
minimum weight error vector such that y − e belongs to the code, thus performing nearest neighbor
decoding and reconstructing correctly the transmitted codeword as c = y − e.

The advantage of syndrome decoding over the straightforward method of examining all the
codewords is that only qn-k possible values of the syndrome must be scanned to find the
corresponding e: this could be done for example with a table of n − k entries, that would instead
require n entries if one would have to find the codeword at minimum distance from the knowledge
of y.

Hamming codes. For the sake of simplicity, in the following the focus will be restricted to binary

codes, although the result can be extended to the general case of codes over F . q

Let r be an integer ≥ 2, and let n = 2r − 1. Then let H be the r × n matrix whose columns are the
numbers 1, 2, ... , 2r − 1 in binary representation: for example, if

H

r = 3 and hence n = 7, H will be

1 0 1 0 1 0 1
0 1 1 0 0 1 1
⎡ ⎤
⎢
0 0 0 1 1 1 1

⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A matrix H constructed in this way will have rank equal to r, and so it is the parity check matrix

of a [n = 2r − 1, k = n − r] binary code. Any permutation of the columns of H produces an
equivalent code, and therefore any of these codes is called the binary Hamming code of length n =
2r − 1, and i ks denoted as Hr or H(n,k). A H(n,k) binary code is thus made up of 2 n-bit codewords,
e or example, the H matrix shown ach carrying k bits of information and r bits of redundancy. F

 33

2 The FF-LYNX protocol

above gives the H(7,4) binary Hamming code, that encodes 4 bits of information into a 7-bit

 such a way that the
minimum distance of the code is increased from 3 to 4, thus providing the extended code with the

not correcting) also double errors in each word. Such a code
 called a SECDED (Single Error Correction, Double Error Detection) code.

HS sequences (TRG,
H

be encoded in 6
its, belonging to 3 successive cycles of the 40 MHz clock; these commands are transmitted in the

THS channel, which carries all ‘0’ when no command is being transmitted. Hence the data stream,
for example in the case of transmission speed = 160 Mbit/s, appears as in Fig. 2.6:

codeword.
Two important facts about Hamming codes can be proved [23]:

- the minimum distance of a Hamming code, regardless of the length n, is equal to 3;
- any [2r – 1, 2r – 1 – r, 3] binary code is equivalent to the binary Hamming code Hr.

The fact that d = 3 implies, referring to equation (2.12), that Hamming codes are 1-error-
correcting codes. Hamming codes have thus a limited correction capability, but have the advantage
of a relatively simple hardware implementation and are therefore employed in many application
where hardware complexity is an important issue, such as error protection in RAM memories.
Anyway, as will be shown in the following, Hamming codes can be extended (as every other code)
by adding an extra symbol (a bit in the binary case) to every codeword in

additional capability of detecting (but
is

2.2.3.2 TRG/HDR/SYN encoding

In the approach that was initially adopted for the THS encoding, an encoding with the
abovementioned characteristics of error robustness was sought for three T

DR and SYN) under the hypothesis that the NOP (no operation) sequence was an all-zero
sequence: i.e. all zeroes are transmitted into the THS channel when neither TRG nor HDR are being
transmitted. The procedure for finding such an encoding was the following.

Two commands (TRG and HDR) or possibly three (TRG, HDR and SYN) must
b

Fig. 2.6 – Transmission of a THS command in the THS channel.

Supposing that we will be able to encode 3 commands with the desired requirements, let’s
s associated to these commands with the following notation:

odeword 1 : α β γ1

odeword 3 : α β γ

here each α , β , γ is a 2-bit “character” of the set {00, 01, 10, 11}.

represent the codeword

C 1 1
Codeword 2 : α2 β2 γ2
C 3 3 3

w i i i

The command encoding must satisfy the following requirements:

- Condition 1 : the commands must not be confused one with another and must be distinguishable

from the “zero” sequence 000000 (i.e. absence of command) if a (single) bit-flip occur in the 6-

 34

2 The FF-LYNX protocol

bit sequence received. In other words, each sent command (including the sequence 000000
meaning “no command”) must be exactly recognized by the receiver even if one of its 6 bits is

verted.
ns that, given a certain command cmd1 encoded for example as 100101, the receiver

ognize as cmd1 all the 6-bit sequences that differ from cmd1 by 1 bit at most, i.e.:

01101

isjoint, i.e. a word
elonging to two or more different spheres does not exist: this guarantees that if a single bit-flip

occurs in a transmitted c rpreted as the
original codeword. This condition can thus be summarized as the following:

 this case), but
 double bit-flip in a codeword can move the resulting received word in the sphere of another

in
This mea
must rec

100101
100100
100111
100001
1
110101
000101

Thus, using the coding theory terminology, the receiver recognizes as cmd1 all the 6-bits words
that have a distance of 1 or less from the cmd1 word 100101. The same will happen with the
other codewords: the receiver detects as codeword x all the words falling into the sphere of
radius r = 1 centered at x. This in turn requires that the chosen code (i.e. the set of the two or
three commands/codewords and the zero codeword 000000) has a minimum distance of 3, so
that all the spheres of radius 1 centered at each codeword are pair wise d
b

codeword, the received word is always corre tly inte

Condition 1: d(αi βi γi , αj βj γj) ≥ 3 with i, j ∈ [0,3]

where α0 β0 γ0 is the zero codeword 00 00 00.
Note that with this approach the words at distance 2 from all the codewords are ignored by the
receiver (that is, the double bit error in a codeword is detected but not corrected in
a
codeword, leading to a wrong interpretation of the received sequence: therefore, it must be
guaranteed that a maximum of one bit-flip can occur in each 6-bit received word.

- Condition 2 and 3 : a possible bit-flip in the stream of 00 characters (in the THS channel)
preceding a command must not cause the detection of a command in a wrong position of the
THS stream. That is, referring to Fig. 2.7: if a bit-flip occurs in the green 00 characters
preceding the command CC CC CC, the sequences 00 00 CC (seq 2) and 00 CC CC (seq 3)
must never be recognized as valid codewords because this would cause the receiving of a
command that differs from the transmitted one in type and/or timing (i.e. the 40 MHz clock
cycle at which the command must have effect).

Fig. 2.7 – Sequences that could be recognized as THS commands.

The conditions 2 and 3 ar

Condition 2: d(00 00 αi , αj βj γj) ≥ 3 with i, j [0,3]

e therefore:

∈

 35

2 The FF-LYNX protocol

Condition 3: d(00 αi βi , αj βj γj) ≥ 3 with i, j ∈ [0,3]

The sequences CC CC 00 and CC 00 00 following a command are not an issue because when
e receiver detects a codeword it is then insensitive to other commands for the next three 40

o that end, the coding theory offers a number of upper bounds
 the quantity Aq(n, d), defined as the maximum number of codewords that a q-ary code of length n

and minimum distance d can have:

th
MHz clock cycles, since commands cannot overlap.

When beginning to search for a code that meet these requirement, starting from condition 1, we
might first of all wonder how many codewords can be represented with a 6-bit code, satisfying the
condition of minimum distance 3. T
to

() { }, max : an (, ,) code over existsq qA n d M n M d= F

with the disadvantage that all these bounds represent only necessary conditions to the feasibility of
a code with desired parameters n, M, d, without guaranteeing its actual existence; nevertheless, it’s
worth to check one or more of these bounds to verify that we are not looking for an impossible

sult. A bound that in most cases proves more stringent (and hence precise) than others is the
Plotkin bound, which for the case q = 2, d odd and n < 2d + 1 (as in the present case) states that

re

()2 , 2
2 1

A n d
d n
d +1⎢ ⎥≤ ⎢ ⎥+ −⎣ ⎦

therefore, for the present case n = 6 and d = 3, the condition is A (6, 3) ≤ 8, that leaves an open

osing r = 3, while with r = 2 we have a [3, 1 ,3] code
ith only two codewords), that is constructed by adding 3 parity bits (p1 , p2 , p3) to 4 information

4) with the following rule:

 = d + d + d

e that is obtained from the 7-bit Hamming code by removing
n f a mation bits (d1 , d2 , d3) and 3 parity

3) following the rule

2
possibility to represent 4 codewords (the zero sequence + 3 commands) using a 6-bit code with d =
3.
A way to satisfy easily the condition of minimum distance d = 3 (condition 1) is to choose a 6-bit
binary “shortened” Hamming code. Since we need (possibly) 4 codewords, we can consider the [7,
4, 3] binary Hamming code (obtained by cho
w
bits (d1 , d2 , d3 , d

p1 = d1 + d2 + d4
p2 1 3 4
p3 = d2 + d3 + d4

(where “+” indicates the 2F addition, i.e. the modulo-2 addition or XOR operation); thus obtaining
24 = 16 codewords that have with minimum distance 3 between each other, being a Hamming code.
As we must use only 6 bits, we can shorten the 7-bit Hamming code now described. Shortening of
codes will be described in more detail in section 2.3.1.1: here it suffices to say that the 6-bit binary
shortened Hamming code is the cod
o e in orm tion bit from the codewords, thus leaving 3 infor
bits (p1 , p , p2

p1 = d1 + d2
p2 = d1 + d3
p3 = d2 + d3

It can be proved (see section 2.3.1.1) that this code has minimum distance equal to 3, as the
original H(7,4) code.

 36

2 The FF-LYNX protocol

As the condition 1 can be satisfied with this choice, the next step is to find, among the eight words
of the 6-bit shortened Hamming code, one or more set of four codewords (including the zero word
000000) that satisfy the conditions 2 and 3. Since no practicable analytical solution to this problem
appears readily (the required conditions lead to a system of 18 non-linear equations in the variables
α1 β1 γ1 , α2 β2 γ2 , α3 β3 γ3) the remaining solution is to try the conditions 2 and 3 on every
c

tion to the
H

it words.
Therefore, a simple program in C language has been written to find the desired code; the

 of th progr the following two threesomes of codewords:

1 01 11 11 10 11
1

e (false command detections, difficulty of synchronization, …) between these
tw

e
conditions, but it produced no result: we can therefore conclude that the maximum number of

mplying with the above conditions 1, 2 and 3 is three.

2

ures. However, in the FF-LYNX protocol v.1 a
m

e difference between the total number of 0s and 1s that has
b

ision of the stream into two channels; however, the THS encoding can be
m

ombination of 3 non-zero words out of the above code: furthermore, every permutation of this
code should be tried.

The resulting enormous number of trials that must be done dictates the use of a calculator, and in
this point of view it is preferable to try generic 6-bit sequences, abandoning the limita

amming code to explore also the possibility of non-linear codes: this means of course that the
condition 1 on d = 3 must be verified again for every examined set of three 6-b

execution e am returns

01 10 10 10 01 01
1
1 11 00 11 11 00

It can be easily verified that both satisfy all the requirements illustrated above. Any possible

performance differenc
o codes, that are equally valid regarding the robustness against single bit-flip, must be examined

through simulations.
The above program was also modified to seek possible sets of 4 words satisfying the thre

commands that can be encoded in 6 bits co

.2.3.3 TRG/HDR balanced encoding

The one just described was the very first version of the THS encoding, that turned out as a first
attempt of finding an encoding with the desired feat

odification of this encoding has been adopted, with better synchronization performance and
properties of balancing and frequent bit transitions.

The starting point for this modification was the consideration that, in the foreseen “single wire”
version of the protocol (i.e. clock and data are transmitted on a single wire, instead than the two
wires CLK and DAT of the current version v.1), a clock recovery circuit will be needed in the
receiver to extract the bit timing from the received stream. For reliable operation of this clock
recovery circuit, a minimum frequency of transitions 0 → 1 or 1 → 0 in the received bit stream
must be guaranteed, that is, the number of consecutive equal bits (0s or 1s) in the stream must be
limited. Another desirable property, since it avoids baseline wander problems in AC-coupled
receivers, would be DC balancing, that is the property of having an equal number of transmitted 0s
and 1s in each portion of the stream of given length. For example, a popular line code that addresses
these two requirements is 8b/10b [24], that maps 8-bit symbols to 10-bit symbols in such a way that
the so called running disparity (that is th
een transmitted) is always bounded between -1 and +1 and the maximum number of consecutive

0s or 1s in the stream is limited to five.
The 8b/10b code (or similar block codes) cannot be employed directly in the FF-LYNX protocol

because of the div
odified to provide a bounded running disparity and a minimum frequency of transitions at least in

the THS channel.
To this end, the first thing that can be done is to change the NOP sequence: instead of transmitting

all zeroes into the THS channel when no THS command is being sent, which causes a constant

 37

2 The FF-LYNX protocol

increase of the running disparity, the 2-bit pattern “01” is continuously transmitted, thus introducing
frequent transitions and keeping the running disparity constant. This corresponds to consider
“010101” as the 6-bit NOP sequence, instead than “000000” (note however that also “101010”
could be considered as the NOP sequence, with the same effects on DC balancing and transitions;
this choice would lead to TRG and HDR sequences that are complementary to the ones that will be
found in the following, but obviously with the same balancing properties). Then, new sequences can
be sought to represent TRG and HDR commands, with the requirement that they are balanced, i.e.
have the same number of 0s and 1s. For this purpose, a modified version of the C program used for
th

ore) 6-bit sequences that satisfy the three conditions exposed in section 2.2.3.2.
The execution of this program returns the following two pairs of sequences, in the hypothesis of

0101

0 10 11 10 00 11
1

nel is free from TRG or HDR, thus
sp rrect
channel when spurious THS sequences occur on other channels.

the FF-LYNX protocol v.1 the following THS encoding was implemented:

TRG = 10 00 11
HDR = 10 11 00

2

toring data
in ger data in the uplink (to be

plemented in a successive version of the protocol), will be introduced in section2.3.3.
The structure of the basic FF-LYNX frame is illustrated in Fig. 2.8:

e first THS encoding was employed, considering “010101” as the NOP sequence and looking for
two (or possibly m

NOP = 01 :

0
1 10 00 10 11 00

that are of course equivalent as for balancing. The program wasn’t able to find a third balanced

sequence with the desired properties, so the SYN command can’t be encoded with this scheme:
however, the NOP sequence itself can be used as a synchronization pattern by the receiver, with the
advantage that it is continuously transmitted when the THS chan

eeding up the sync locking process and aiding the maintenance of sync lock on the co

In conclusion, in

NOP = 01 01 01

.3 The FF-LYNX frame

As in any other data-link layer protocol, in the FF-LYNX protocol the frame is the data unit
employed to carry user information from transmitter to receiver. In protocol v.1 only a basic kind of
frame is implemented, used to transfer generic low-priority data: that is, commands and
configuration data in the downlink, and readout data or responses to commands or moni

 the uplink. Trigger data frames, used to transport high-priority trig
im

g. 2.8 – Basic FF-LYNX frame structure; the dashed-line field is optional. Fi

This very simple frame structure comprises the following fields:
- Header: marks the beginning of the frame;

 38

2 The FF-LYNX protocol

- Frame Descriptor (FD): contains information about the frame such as the frame length,
 the “label” field following

any particular
st

uch as a timing information.
The beginning of the frame is marked by the header, that is transmitted as a HDR sequence in the

THS channel beginning in the same 40 MHz clock cycle in which the transmission of the frame
itself begins in the FRM channel, as shown in Fig. 2.9:

expressed in number of 16-bit words, and the optional presence of
the frame descriptor itself;

- Label: optional field can carrying additional information associated to the payload.
- Payload: carries user data, and is divided in words of 16 bits each.
A fundamental concept underlying to this frame structure, common to protocol stack models in

networking, is encapsulation of user data: to obtain maximum flexibility, the frames can transport in
their payload any type of information, with its own structure, that is simply unpacked from the
frame by the receiver interface and delivered as it is to the receiver host; in other terms, the link is
transparent to the user hosts with respect to the carried information, not imposing

ructure to it. The only characterization given to the data contained in the payload is the label, that
as will be explained in the following is intended to contain additional qualification that the user
wants to associate to the data transported by the frame, s

Fig. 2.9 – A HDR sequence in the THS channel marking the beginning of a frame transmission in the FRM channel.

To allow the receiver to locate the end of the frame, a trailer (or end-of-frame flag) could have

been used, i.e. a special bit sequence transmitted after the last bit of the payload. With this
approach, though, it must be guaranteed that the trailer sequence can never appear in the payload,
since otherwise the receiver would suppose the end of the frame by detecting it. This issue is
typically resolved in character-oriented protocols through character stuffing, i.e. if the end-of-frame
sequence occurs in the payload, an “escape” character is added before it in the stream, so that the
receiver understands that the following character is just data and not the real trailer, marking the end
of the frame; furthermore, if the escape character occurs inside the payload, another escape is added
before it, and so on. In the FF-LYNX protocol, however, this solution is impractical, since the
possibility of bit-flips would oblige to let the receiver to detect as the trailer not only the “pure”
trailer sequence but also bit-flip-corrupted trailer sequences: this in turn would mean that character
stuffing should be done for all the bit-flip-corrupted trailer sequences occurring inside the payload,
and also for all the bit-flip-corrupted escape sequences, with the result that most of the transmitted
b Therefore, information

mitted instead: the payload is structured in 16-bit words, and its
riptor as the number of words constituting the payload.

The fields of the FF-LYNX frame are described hereafter in more detail.

its would be character-stuffing overhead instead than real information.
about the length of the frame is trans
length is specified in the Frame Desc

 39

2 The FF-LYNX protocol

2

h event building has to be performed.
- Last Frame (LF), bit: it is used in case of fragmentation of a data packet into multiple frames,

as will be explained in section 2.3.2.

.3.1 The Frame Descriptor

The first field of the frame after the header, called Frame Descriptor (FD), specifies some
important characteristics of the frame itself and the payload. In protocol v.1, the FD consists of 7
bits of information, divided into the following sub-fields (Fig. 2.10):

- Frame Length (FL), 4 bits: indicates the length of the frame expressed in number of 16-bit
words, including the label if it’s present; more precisely, the number of words in the frame is
obtained as FL + 1: the minimum length of a frame is therefore 1 word (FL = 0) and the
maximum length is 16 words (FL = 15).

- Label On (LO): 1 bit: indicates whether the label is present or not; if a data packet is
fragmented in multiple frames (see later on), only the first has the label.

- Data Type (DT), 1 bit: specifies the type of data carried in the payload; it is intended to
discriminate between DAQ data (e.g.: raw data or trigger data) and responses to commands
(e.g.: configuration or monitoring data) in the uplink, so that a possible data concentrator
system can identify the frame on whic

inst transmission errors: this is done by means of a
mming code capable of detecting and correcting

le bit-flips.

2

 of the Frame Descriptor because of its simple

ing r = 4 and
therefore n = 15 and k = 11. A standard form parity check matrix for this code, constructed in
accordance to the definition of binary Hamming code, is the following 4 × 15 matrix:

Fig. 2.10 – Frame Descriptor structure.

Since it carries the frame length information, that is crucial for the correct reception of the frame,

the Frame Descriptor must be protected aga
H(12,7) code, that is a shortened and extended Ha
single bit-flip and detecting doub

.3.1.1 The H(12,7) encoding

A Hamming code was chosen for error protection
implementation. More precisely, a H(12,7) code was chosen, that is a modified version of a
H(15,11) Hamming code with SECDED capability.

To derive the H(12,7) code and define the architecture of its encoder and decoder, one has to start
from a standard Hamming code. Since the bits to be encoded in the Frame Descriptor are 7, a
Hamming code with k ≥ 7 must be considered first: this is H(15,11), obtained by sett

(15,11) 4

1 1 0 1 1 0 1 0 1 0 1 1 0 0 0
1 0 1 1 0 1 1 0 0 1 1 0 1 0 0
0 1 1 1 0 0 0 1 1 1 1 0 0 1 0
0 0 0 0 1 1 1 0 0 1⎢ ⎥
⎣ ⎦1 1 1 1 0

H A I

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= = −⎣ ⎦⎢ ⎥

T

and a corresponding generator matrix will be (15,11) 11G I A= ⎡ ⎤⎣ ⎦ , which is a 11 × 15 matrix.

 40

2 The FF-LYNX protocol

(15,11)G=c xhe encoding of 11-bit messages x through the operation T will then produce 15-bit
codewords c containing k = 11 information bits and r = 4 redundancy bits:

 () ()1 15 1 11 1 4,..., ,..., , ,...,c c x x p p= =c

The redundancy bits pi are also called parity bits since each of them can considered as the even

parity bit of a group of information bits, being the result of the modulo-2 sum of the information
bits of that group: for example, p1 is obtained as the multiplication of x for the 12th column of G and
so it is:

g⎛ ⎞

shortening of
f the redundancy bits the

oval of information bits
[25]:

 distance of 3 at least.
eps above

removing for example the information bits in
position 8, 9, 10 and 11 from each codeword, and hence canceling the same rows and columns from
G(15,11) thus obtaining the following generator matrix:

 ()1 12 1 11 1 2 4 5 7 9 11

11,12

,...,p c x x x x x x x x x
g

⎜ ⎟
= = = + + + + + +⎜ ⎟

⎜ ⎟
⎝ ⎠

Since we need only 7 bits of information, this H(15,11) code can be shortened. The

1,12

a code is the removal of some information bits, keeping the number o
de is thus reduced by the same amount. The remsame: the length n of the co

om a code can be regarded as the result of two steps fr

1. set those bits to 0 in all the codewords and recalculate the parity bits;
2. remove these zero bits;

(also, duplicate codewords that possibly originated from the previous steps must be obviously
eliminated). Now, since the first step changes the original codeword into another codeword of the
same code, the minimum distance is not reduced, nor it is decreased by the removal of zero bits in
the same position from all the codewords. Hence, we can conclude that the minimum distance of a
binary code is not reduced by shortening (while it could be even increased); this guarantees that a
hortened Hamming code has minimums
To find the H’ and G’ matrices of the shortened code, we observe that the two st

respectively correspond to the following operations on the H and G matrices (supposed to be in
standard form) of the original code:

1. remove the rows of G corresponding to the positions of the bits that were set to zero;
2. remove the columns of G corresponding to the same positions, since after step 1 these columns

contain now only zeroes.

We can therefore shorten the H(15,11) code by

 (11,7) 7

1 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

G I A ⎢ ⎥⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎢

0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 1 1 0 1

⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 41

2 The FF-LYNX protocol

where Ã is the 7 × 4 matrix resulting from the elimination of the last four rows of the matrix A in
G 11). This G(11,7) generates a H(11,7) code that, for what has been said, has minimum distance of
3 at least; however, it can be verified that d is exactly equal to 3 as in the original Hamming code.

(11,7) code a message x = (x1, ... , x7) gets encoded as

(15,

In the H

 () ()1 11 (11,7) 1 7 1,..., ,..., , ,...,c c G x x p p= = =c x 4
where

7

1 1 2 4 5 7

2 1 3 4 6

p x x x x x= + + + +
p

3 2 3 4

4 5 6 7

x x x x x
p x x x
p x x x

= + + + +
 (2.15)

hese formulas therefore specify the operations that must be performed to find the four parity bits
that must be appended to the message in the H(11,7) encoding.

The parity check matrix associated to G(11,7) is

= + +
= + +

T

(11,7) 4

1 1 0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 1 0 1 0 0
⎡ ⎤

0 1 1 1 0 0 0 0 0 1 0
0 0 0 0 1 1 1 0 0 0 1

H A I
⎢ ⎥
⎢ ⎥⎡ ⎤= − =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

T

s knowledge allows us to derive the formulas for calculating the syndromes for the decoding
of a received word y:

and it

()(11,7) 1 2 3 4() , , ,H s s s= =Ts y y s
with

8

9

s y y y y y y
s y y y y y y
= + + + + +
= + + + + +

 (2.16)

ed in the transmitted codeword, i.e. y = c, then all the syndrome bits will be zero.
If instead a single bit error in position i has affected the transmitted codeword, then we can write y

= + ei where ei is the n-bit vector with a 1 in position i and z
have

ih⎛ ⎞
⎜ ⎟

1 1 2 4 5 7

2 1 3 4 6 7
3 2 3 4 10

4 5 6 7 11

s y y y y
s y y y y
= + + +
= + + +

Each syndrome bit si is therefore calculated as the even parity of the group of bits that includes the

message bits that originated pi, and pi itself: it can be thus verified again that if no error has
occurr

c eroes elsewhere, and therefore we

1,

,

() () ()i i

n k ih −

= + = = ⎜ ⎟
⎜ ⎟
⎝ ⎠

s y s c e s e (2.17)

that is, the syndrome is equal to the i-th column of H. This is a property of all Hamming codes,

and allows us to identify the position of the single bit error that has occurred: indeed, being the
columns of H all different by construction, each possible value of the syndrome is associated to one

 42

2 The FF-LYNX protocol

and only one error vector ei : the correct codeword can thus be reconstructed by performing c = y −
ei, i.e. by flipping the i-th bit of the received word y. To carry out the decoding, the receiver has
thus to hold a table that associates each possible value of the syndrome to the corresponding error
position: this table has a number ual to t he columns of H, and for the
H(11,7) code is the following:

Syndrome Error on

of entries eq he number of t

positi
0000 n o error
1100 1st bit
1010 2nd bit
0110 3rd bit
1110 4th bit
1001 5th bit
0101 6th bit
1101 7th bit
1000 8th bit
0100 9 bit th

0010 10th bit
0001 11th bit

Table 2.1 – Correspondence between syndrome value and error position.

rror, different from the two that actually occurred; it is
a

inst double bit-flips by extending
it

 codeword: hence,
1 2 11 1,

 c2 + ... + c11. When a linear binary code C is extended with this

- has only even-weight vectors, i.e. vectors whose weight is an even number;

 from the received vector y; if instead c is corrupted by a double bit

Note that a syndrome equal to a power of 2 (1000, 0100, 0010, 0001 in this case) means that the

erroneous bit is one of the parity bits.

If instead more than one error occur in a single word, this decoding method will fail: in fact,

considering for example two errors, if y = c + ei + ej (j ≠ i) then the syndrome calculated on y will
be recognized as one resulting from a single e
lso possible that s(y) falls out of the set of the recognized syndromes (i.e. the ones listed in Table

2.1), since H(11,7) is a shortened code and so the recognized syndromes are not all the possible
binary numbers of r bits (r = 4 in this case).

Besides, the H(11,7) code has minimum distance equal to 3, and hence its error correction
capability is limited to single bit errors in each word. However, as it has been anticipated in section
2.2.3.1, H(11,7) can be provided with an additional protection aga

 to a H(12,7) code, that is a SECDED code: the extension is made by adding an extra parity bit to
each codeword of H(11,7), so that the length n of the code is increased by one (from 11 to 12) while
the number k of the information bits remains unchanged (k = 7).

The additional redundancy bit is calculated as the overall even parity bit of the
 c = (c , c , ... , c) is a codeword of H(11,7), the corresponding codeword of H(12,7) will be (cif

c2, ... , c11, c12) with c12 = c1 +
method to create an extended code Ĉ , the following facts can be easily realized:

- Ĉ is still a linear code;
Ĉ

- if the minimum distance d of C is odd, then the minimum distance of Ĉ is d + 1.

We can therefore conclude that H(12,7) has minimum distance equal to 4, and so it is a SECDED
code: if a single bit error affects a transmitted codeword c, the receiver can correctly reconstruct c
as the codeword at distance 1

 43

2 The FF-LYNX protocol

e

 sum of the elements of each row of is zero.
Therefore, a generator matrix for the H(12,7) code will be

1

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

 (2.18)

mula

rror then y will be at distance 2 from all the codewords, and so the double error can be detected,
although not corrected.

If G is a generator matrix for a linear code C then a generator matrix Ĝ for the code Ĉ , that is
the extension of C according to the method of adding an overall parity check, can be obtained from
G by adding to it an extra column so that the Ĝ

(12,7)

1 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1 1 1 0 0
0 0 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0 1 0⎢ ⎥⎣ ⎦

and so, according to the usual encoding for G=c x , the parity bits that in this code must be

appended to the messages (x1, x2 , ... , x7) are the p1, p2, p3, p4 of the H(11,7) code (formulas (2.15))
plus the additional parity bit p5 calculated as

 5 1 2 3 5 6p x x x x x= + + + + (2.19)

From its definition, this additional parity bit can be obviously calculated also as p = x + ... + x +

p
m the message.

The resulting codeword c = (c1, ... , c12) is then transmitted, and a vector y is received which is
e transmitted c possibly corrupted by errors:

5 1 7

1 + ... + p4, but this would require to calculate p1, ... , p4 first, and so the way offered by (2.19) is
faster because it allows to obtain p5 directly fro

th

() () ()1 12 1 12 1 7 1 5,..., ' ,..., ' ' ,..., ' , ' ,..., 'y y c c x x p p= = =y (2.20)

For the decoding, a 4-bit syndrome (s1, ... , s4) is calculated on the received vector y in the same
way as in the H(11,7) code (formulas (2.16)), and also an additional bit s5 is calculated as the overall
parity bit on the whole received vector:

 5
1

i
i

s y
=

=
12

∑ (2.21)

If no error has occurred in the transmitted codeword, then both the syndrome (s1, ... , s4) and the

overall parity bit s5 will be zero. In case of a single bit error, there are two sub-cases: if the error is
in the message bits x’1, ... , x’7 or in the first 4 parity bits p’1, ... , p’4 then the syndrome (s1, ... , s4)
will be non-zero and s5 will be 1, and the decoder can use the H(11,7) table to find the error position
from the syndrome value; if instead the error is in the overall parity bit y12 = p’5 then the syndrome
(s1, ... , s4) will be zero and s5 will be 1, and in this case the decoder can deliver the received
m ssage (x’1, ... , x’7) unchanged. Finally, if the received word is corrupted by a doue ble bit error
then the syndrome (s1, ... , s4) will be non-zero but the overall parity bit s5 will be zero: in this case
the decoder must declare the detection of the double error, although it can’t correct it.

 44

2 The FF-LYNX protocol

To sum up, the H(12,7) encoding/decoding procedure chosen for error protection of the Frame
escriptor comprises the following operations:

) The 7-bit Frame Descriptor x = (x1, ... , x7) is encoded as a 12-bit codeword

D

1

() ()1 12 1 7 1,..., ,..., , ,...,c c x x p p= =c 5

appending to the message (FD) five parity bits calculated as

7

p x x x x x
p x x x x x
p x x x

p x x x x x

1 1 2 4 5 7

2 1 3 4 6

3 2 3 4

= + + + +

= + + + +
= + +

4 5 6 7p x x x= + +

5 1 2 3 5 6= + + + +

 (2.22)

ed FDC, Coded Frame Descriptor) is transmitted.

2) On the received vector y, that will be called also FDC’, four syndrome bits s1, ... ,s4 and an
overall parity bit s5 are calculated as

8s y y y y y y
s y y y y y y
s y y y y
s y y y y

= + + + + +

= + + + + +

= + + +

= + + +
 (2.23)

3) The number of err FDC to be greater uced from the value of
(s1, ... ,s4) and s5 accord to the following table:

Case (s N° of errors

nd codeword c (that will be also calla

1 1 2 4 5 7

2 1 3 4 6 7 9

3 2 3 4 10

4 5 6 7 11
12

5
1

i
i

s y
=

=∑

ors in ’ (supposed not than 2) is ded
ing

1, ... ,s4) s5
A 0000 0 0
B 0000 1 1 (on p’) 5
C ≠ 0000 0 2
D ≠ 0000 1 1

Table 2.2 – Possible cases arising from the value of the syndrome bits and the overall parity bit.

clares the non-correctable corruption of the FDC field; finally, if a single error is
vealed (case D) the decoder calculates a 7-bit correction vector ε (corresponding to the first 7 bits

f the occurred error pattern e) in accordance with the following table, that is readily derived from
able 2.1:

Note however that case B can also stem from the occurrence of an odd number of errors greater

than 2, but this goes beyond the detecting capability of the H(12,7) code.

4) In cases A and B the received message bits x’1, ... , x’7 are not corrupted, and hence they are
delivered by the decoder without modifications; if instead a double error is detected (case C), the
ecoder ded

re
o
T

 45

2 The FF-LYNX protocol

(s1 4) , ... ,s ε
1100 1000000
1010 0100000
0110 0010000
1110 0001000
1001 0000100
0101 0000010
1101 0000001

Table 2.3 – Association of the possible syndrome values to the 7-bit error vector.

The correction vector ε is then added to the received vector y to correct the error and reconstruct

the transmitted FDC. Note that in Table 2.3 the last four values of the syndrome that appear in
T

In conclusion, the logic architecture of the encoder is described by equations (2.22), while the one
uations (2.23) and by Table 2.2 and Table 2.3.

 of commands and elementary readout packets in the studied
H

use the FF-LYNX interface also for transmitting a stream of data
w

able 2.1 are not considered, since they correspond to errors in the parity bits of y and therefore the
message bits x’1, ... , x’7 must not be corrected.

of the decoder is defined by eq

2.3.2 Payload and label

As said before, user data are carried as payload of the frame without constraints about the internal
structure. The only characterization of the payload in a frame is its subdivision into 16-bit words:
this width was chosen to fit typical size

EP experiments. For example, in the CMS pixel detector the slow control is carried out by means
of a modified I2C protocol, with 10-bit long commands [5]; in the ATLAS pixel detector the “fast”
control commands are 9-bit long [13].

A feature about data structuring that is offered by FF-LYNX protocol v.1 is the possibility of
organizing the data stream in packets. In this sense, a data packet is here defined as a series of data
words that have an unitary meaning for the host, that delivers them to the TX interface one
consecutively (more details about data delivery to the TX interface by the host will be given in
chapter 3); a data packed is then transmitted by the TX interface encapsulating it in a single frame if
it is short enough, or fragmenting it into successive frames if its length exceeds the maximum frame
length (16 words). If a packet is contained in a single frame, the Last Frame bit of that frame is set
to ‘1’; when instead a packet is fragmented into multiple frames, the Last Frame bit is set only for
the last frame of the series, so that the receiver host can reassemble the packet by examining the
value of the Last Frame bit, that is outputted by the RX interface contemporaneously with the
frame. However, the hosts can

ithout any packet structure: to this end, the receiver host simply doesn’t consider the value of the
Last Frame bit of the frames, and receives the transmitted data words one after the other
reconstructing the data stream.

If the Label On bit in the Frame Descriptor field is set to ‘1’, the first 16-bit word of the payload
is considered to be a “label” tagging the frame or the data packet. The label is intended to contain
information that characterize the data carried by the frame, to be used for sorting or aggregating
data packets. The typical use should be that of event building: in response to a trigger command,
each Front End circuit sends a data packet containing its hit data through one or more FF-LYNX
frames, appending information about the timing of the hits (time stamp) as the label for the packet;

 46

2 The FF-LYNX protocol

data packets from many FEs are gathered by a data concentrator unit, that aggregates them on the
basis of the label thus constructing longer packets containing all the hit data relative to a single
e

ord of the
data packet it delivers to TX (see chapter 3 for details); the TX interface will then encapsulate that
packet into a frame with the Label On bit set to ‘1’. If the data packet is fragmented into multiple

ave the label at its beginning and the Label On bit set.

ith precise timing, is fixed (and small) latency, trigger data
fr

limited by the frame length: a relative timing

 = 2 if the frame length is ≤ 4, Nht = 3 if the frame length is ≤ 8) and Nhd
.g.: Nhd = 5 if the hit information is

the coordinate of the 4-strip cluster where the hit has been detected in a FE ASIC connected to
128 silicon strips).

- Parity bit: for detection of single bit-flips in the payload.

vent (i.e. the ones with the same value of the time stamp); finally, the data concentrator sends
aggregated data packets to the remote DAQ system, thus performing a first stage of data
compression and event reconstruction.

The label must be provided to the transmitter interface (TX) by the host as the first w

frames, only the first frame will h

2.3.3 Trigger data frames

Besides basic, variable length frames intended for generic, low priority data, in future versions of
the protocol a special kind of frame is foreseen to carry trigger data, i.e. information from a subset
of FE circuits that is used for trigger calculation (e.g. coordinates of clusters of pixels/strips that has
been hit at a given clock cycle). Since a fundamental requirement of trigger data, in order to allow
identification of interesting events w

ames have a fixed length (so that the time required for transmission is constant) and are marked
with a TRG sequence as their header, so that they are transmitted and routed with the highest
priority in any node of the network.

The transmission of a trigger data frame can be started when a hit is detected in the FE
electronics, and hits that are detected in the clock cycles used to transmit the frame will be included
in the same frame up to a maximum number
information is associated to each hit to allow reconstruction of the exact hit timing. The structure of
the trigger data frame is shown in Fig. 2.11; different possibilities are still under study for the size
of the fields of this frame, that are the following:

- Number of hits: specifies the number of hits (Nh) transmitted in the frame; it is Hamming-
encoded for robustness against bit-flip (e.g.: 1 bit encoded with Hamming in 3, if up to two
hits can be transmitted in the frame, 2 bits encoded in 5, if up to 4 hits can be transmitted).

- Payload: contains the information associated to the transmitted hits: Nht bits for the relative
hit timing (e.g.: Nht
bits for the hit address, i.e. the position of the hit sensor (e

Fig. 2.11 – Trigger data frame structure.

For example, with a link speed of 320 Mbit/s a frame length of three (40 MHz) clock cycles (i.e.

18 bits for data) would allow the transmission of up to 2 hits generated in the 3 clock cycles (1 ≤ Nh
≤ 2; Nht = 2; Nhd = 5) while a frame length of 5 clock cycles (i.e.: 30 bits for the data) would allow

 47

2 The FF-LYNX protocol

the transmission of up to 3 hits generated in the 5 clock cycles (1 ≤ Nh ≤ 3; Nht = 3; Nhd = 5).
Hence, different versions can be defined with respect to Link Speed (LS), frame length (NC) and
maximum Number of Hits (NH) per frame. Preliminary comparisons of some of these variants have
been carried out on the basis of the following figures of merit: Trigger Transmission Efficiency
(TTE), defined as the ratio between the average number of transmitted hits and the average number
f generated hits, and Bandwidth Occupancy (BO), that is the fraction of the bandwidth used to

transmit trigger data; the results, obtained with high-level C models and Monte Carlo simulation,
are shown in Table 2.4.

o

C models Monte Carlo sim.
LS NC NH TTE TTE BO

320 3 2 96,57% 96,54% 28,32% (a),(b)
320 5 3 98,53% 98,44% 39,78% (a),(b)
640 4 7 97,29% (a),(c)
640 8 13 98,94% (a),(c)

(a) Poisson distribution for hits (mean = 0.125 hits/bx)
(b) hits generated in 1 FE ASIC
(c) hits generated in 4 FE ASIC

T e 2.4 – Evaluation of Trigger Transmission Efficiency (TTE) and Bandwidth Occupancy (BO) resulting from

ifferent for the values of the parameters Link Speed (LS), frame
mum Number of Hits (NH).

res about error control, line coding and data handling are

dewords, so that a 1-error-correcting code can still work [25]. Interleaving has a

abel and will append it to the frame to be
transmitted, and the RX interface will perform the CRC check on the received frame signaling
possible check failure to the receiver host. The structure of the FF-LYNX frame with the
optional CRC checksum field is shown in Fig. 2.12:

abl
four possible versions of the trigger data frame, d
length in number of clock cycles (NC), and maxi

2.4 Future protocol versions

As already mentioned, additional featu
foreseen to be introduced in future versions of the FF-LYNX protocol, to improve performance and
to address the indications that will come out from complete tests of version 1. The features that are
currently under study are the following:

- Interleaving. If the channel is affected by burst errors, more than one bit-flip can occur in a
THS sequence, thus making the THS encoding ineffective; similarly, more than two bit-flips
can hit the Frame Descriptor field of a frame, thus deceiving the H(12,7) decoder and
preventing the correct reception of the frame. Interleaving can be a solution to this problem:
transmission of data is arranged is such a way that bits of different codewords are sent one
after the other (for example, the transmission order can be: 1st bit of the 1st codeword, 1st bit of
the 2nd codeword, ... , 1st bit of the nth codeword, 2nd bit of the 1st codeword, 2nd bit of the 2nd
codeword and so on), and the original order is recovered after reception (deinterleaving): this
way, a burst of m consecutive bits in the serial stream can be made to affect only one bit in m
different co
rather simple hardware implementation, but has the drawback of increasing the transmission
latency of data: the possible effects of this on trigger commands and data have to be carefully
evaluated.

- CRC. In version 1 the FF-LYNX protocol doesn’t offer any error protection on the payload,
leaving it to the upper layer (user level); in next versions, instead, the implementation of a
Cyclic Redundancy Check (CRC) covering the payload and the label is foreseen, optionally
activated by the host system: if the CRC option is selected, the transmitter interface will
calculate the CRC checksum on the payload and the l

 48

2 The FF-LYNX protocol

Fi . 2.12 – Structure of the FF-LYNX frame with an 8-bit CRC field; the dashed-line fields are optional.

be compared through

transitions to allow the CDR to follow any jitter of the incoming stream.

g

CRC is considered because of its simple hardware implementation and excellent
performance about error detection; various CRC versions, differing in checksum length and
generator polynomial (e.g. CRC-8-CCITT (8 bits), used in 1-Wire standard; CRC-16-CCITT
(16 bits), used among others in X.25 and Bluetooth protocols [21]) will
simulations to choose the one that fits best to the FF-LYNX application.

- Single wire transmission. Transmission of serial data stream and clock on the same wire is
an upgrade that is considered of major importance for the FF-LYNX protocol, in order to
reduce the cablings in the target application and to avoid possible skew problems between the
CLK and the DAT lines arising in the double wire version. With single wire transmission, a
Clock and Data Recovery circuit (CDR), usually comprising a PLL (Fig. 2.13), is needed in
the receiver to extract the timing signal from the received stream and use this for data
sampling: in order for this scheme to work, the data stream must have sufficiently frequent

Fi . 2.13 – PLL-based Clock and Data Recovery circuit.

f consecutive identical digits (CID) in the stream, so that the CDR scheme

ol suitable for applications with AC-coupled receivers and high-

ta, tags
it with a TRG sequence as its header and sends it in onto the link with highest priority.

g

Some block encoding is therefore needed to ensure frequent transitions; as already explained
in section 2.2.3.3, character-oriented codes like 8b/10b are widely employed to address this
issue, but they are not suitable for the FF-LYNX protocol due to the division of the stream
into two channels: a custom block encoding is hence currently under study to be applied to the
FRM channel only (thus preserving the THS encoding) and that is able to guarantee a limited
maximum number o
can work properly.

- DC balancing. The same custom block encoding used to ensure frequent transitions for the
CDR operation can be designed so that it also guarantees a bounded running disparity of the
serial bit stream: this way, a stream with negligible DC component can be generated, thus
making the FF-LYNX protoc
pass transmission channels.

- Trigger data handling. The implementation of trigger data frames, described in section 2.3.3,
in future versions of the protocol will allow the transmission of trigger data in the uplink using
the same physical links as the readout data transmission. The associated mechanism will be
implemented in uplink TX and RX interfaces: when the FE circuit requires the transmission of
trigger data, the TX interface builds the special fixed-length frame containing those da

 49

2 The FF-LYNX protocol

2.5 Protocol validation

A phase of validation of the defined protocol is advisable before proceeding to the interfaces
design, in order to verify the correctness of the choices that have been made and to foresee the
protocol performance. This is made by means of a high-level software model of the transmitter and
receiver interfaces, implementing the defined protocol, and a surrounding test controller that
stimulates the model, reads its outputs and measures appropriate performance figures. The model is
realized in SystemC language. SystemC is a library of C++ classes and macros which provide an
event-driven simulation kernel that makes it possible to simulate concurrent processes, thus
resembling hardware description languages such as VHDL and Verilog: when compared to true
HDL languages, SystemC has the drawback of inferior performance if used for register transfer
level simulation, but greater freedom of expressiveness is offered in return. These features make
SystemC optimal for system-level modeling, and for the modeling of hardware at a higher
abstraction level than HDL languages, thus allowing faster and more flexible description. On the
other hand, SystemC was preferred to other system-level modeling and simulation tools like
Simulink or Network Simulator for its better granularity, as a high level of detail (e.g. clock cycle
accuracy) is required to evaluate all the aspects of the protocol operation.

Fig. 2.14 – Client/Server architecture of the test controller system.

The test controller was realized with a client/server architecture that allows different operating

configurations (Fig. 2.14). The Client section commands the start of simulation runs, generates the
test vectors and calculates the performance figures; the Server instantiates and manages the Test

 50

2 The FF-LYNX protocol

Bench system that contains the interfaces model. Communication between Client and Server takes
place by means of TCP/IP sockets that determine the decoupling of the two sides: this way the
Server can be hosted on a physical machine that is different from the one running the Client, such as
a Symmetric Multi Processing (SMP) workstation or even a computing grid, to increase the
simulation performance.

The SystemC model was built with the aim of maximum extensibility and configurability, in
order to allow the test of different versions of the protocol, thus guiding the phase of protocol
definition and refinement. To permit comparisons between different versions, the basic task of the
high-level simulator is the evaluation of specific cost functions and figures of merit that has been
defined on the basis of system requirements. The following figures have been identified as some of
the most significant performance metrics for a data transmission system for HEP experiments, in
relation to the FF-LYNX protocol:

- lost packet rate (lpr): it is defined as the number of data packets that are lost over the number
of packets that are sent during all the test:

 lost

sent

npktlpr
npkt

=

a packet is lost if the header of the frame that carries it is not recognized by the receiver due to
transmission errors, so that the reception of the frame is not started;

- corrupted packet rate (cpr): it is defined as the number of corrupted packets over the number
of packets that are transmitted:

 corrupted

sent

npkt
lpr

npkt
=

a received packet is considered as corrupted if some of its data words are missing (because the
Frame Descriptor field of the frame that transports the packet is received with errors) or
contain errors;

- minimum, maximum and mean packet latency (min_pl, max_pl, mean_pl): the latency of a
data packet is defined as the interval (in number of clock cycles) between the start of the
introduction of the packet into the transmitter interface and the end of its delivery to the
receiver host by the receiver interface;

- lost trigger rate (ltr): the number of triggers that are lost during transmission over the number
of triggers that are sent during all the test:

 lost

sent

ntrgltr
ntrg

=

a trigger is deemed as lost if a trigger command is sent at the clock cycle i, but no trigger is
received at the cycle i + tl where tl is the trigger latency;

- fake trigger rate (ftr): the number of fake triggers that are received over the total number of
received triggers:

 fake

rcv

ntrg
ftr

ntrg
=

a fake trigger reception is counted when a trigger command is received at the clock cycle i,
but no trigger was sent at the cycle i − tl where tl is the trigger latency;

 51

2 The FF-LYNX protocol

In addition, the two-channel structure of the FF-LYNX protocol presents the issue of
synchronization. To evaluate this aspect, the following statistics have been considered:

- mean sync time: measures the mean time the receiver needs to recover channel
synchronization after losing it as a consequence of a clock error. It depends both on the
promptness of the synchronization algorithm in detecting the sync loss, and on its rapidity in
acquiring the new lock;

- false sync rate: counts how many times the synchronization algorithm incorrectly reports a
loss of synchronization condition over the total number of synchronization loss events. This
statistic analyses the sensitivity of the algorithm to spurious THS sequences in the FRM
channel.

The evaluation of the above figures in simulations on the SystemC model served as a guide for the

choice between architectural alternatives during the protocol definition. As an example, the choice
of the synchronization algorithm is here described.

2.5.1 Synchronization algorithm selection

As described in section 2.2.2, a synchronization mechanism based on the counting of THS
sequences in each channel and the reaching of two counting thresholds (a high threshold and a low
one) was chosen to provide a means of distinguishing between a sync lock state (when
synchronization is considered as acquired) and an out-of-lock state (when synchronization is being
looked for). This mechanism is hence called Dual Threshold (DT): the transition from the out-of-
lock state to the sync lock state takes place when one of the counters reaches the high threshold
(thus becoming the in-charge counter) while the inverse transition occurs when a counter that is not
in charge reaches the low threshold. Three variations of this algorithm have been devised:

- Fair Dual Threshold (FDT): as soon as a counter hits the higher threshold, it resets all the
counters including itself; this ensures that every counter has the same opportunity of becoming
the new in-charge.

- Privileged Dual Threshold (PDT): when a counter hits the high threshold, it resets all the other
counters but not itself. Whenever the sync lock is confirmed, meaning the in-charge detects
another THS sequence, again, all but the in-charge are reset. This approach privileges (hence
the algorithm’s name) the in-charge counter considering that most of the sequences other
counters report are likely spurious and so, to avoid their buildup to the thresholds, a reset is
issued often. This way, only tightly spaced bursts of THS sequences (which statistically occur
only in the true THS channel) can reach the thresholds thus changing the locked channel.

- Mixed Dual Threshold (MDT), which combines the two previous variations by giving an
intermediate level of privilege to the in-charge counter. As soon as it reaches the high
threshold, in fact, like in FDT, it is reset together with the other counters. Like in PDT,
however, the in-charge has an edge over the contenders: it needs not hit the higher threshold
again to confirm the sync lock, as the lower suffices. While the contenders need to reach the
higher threshold to relock, the in-charge resets itself and the others upon hitting the lower. It is
evident that more leeway is given to other counters to get to the high threshold, than in PDT.

The specific synchronization mechanism described in section 2.2.2 is therefore the PDT.
These three algorithms have been compared on the basis of three of the above defined figures:

mean sync time, false sync rate and lost packets rate. These statistics have been evaluated for each
algorithm in a benchmark constituted of several simulation runs, with test conditions chosen to
represent a peak level situation, where the interfaces are handling an above-average quantity of data

 52

2 The FF-LYNX protocol

and the clock error rate is over typical levels (a BER in the order of 10-9 can be considered for a
LVDS link, with a cable length of 1m, a data rate of 100 Mbit/s, operating in a strongly radiation-
full environment), in order to have significant results in a relatively short simulation time.

The details of the test conditions are reported in Table 2.5:

Parameter Value
architecture 4xF

number of runs 9 per algorithm
run duration 0.1 s
packet size random, 5 to 10

inter-packet idle time random, 10 to 100 cycles
trigger rate 10-2

missing clock rate 10-6

spurious clock rate 10-6

Table 2.5 – Test conditions for the comparison of the FDT, PDT and MDT synchronization algorithms .

In the nine runs for each algorithm, different values for the thresholds were selected to find out

the optimum choice also for this aspect: the tested values are listed in Table 2.6:

Run
1 2 3 4 5 6 7 8 9

Low threshold 2 2 2 3 3 3 4 4 4

High threshold 3 4 5 4 5 6 5 6 7

Table 2.6 – Threshold values used in each simulation run .

The results of the nine simulation runs about mean sync time, false sync rate and lost packets rate

are shown in Fig. 2.15, Fig. 2.16 and Fig. 2.17.
As for mean sync time, the best algorithm is FDT due to its fairness, that implies a faster response

to clock errors; PDT, on the other hand, has longer time of recovery from a sync loss event, because
if spurious sequences arrives on the in-charge channel before the counter on the true THS channel
can reach the high threshold, the sync is incorrectly reconfirmed.

 53

2 The FF-LYNX protocol

Fig. 2.15 – Mean sync time resulting from simulations for the PDT, FDT and MDT synchronization algorithms and for
different threshold values.

Fig. 2.16 – False sync rate resulting from simulations for the PDT, FDT and MDT synchronization algorithms and for
different threshold values.

 54

2 The FF-LYNX protocol

Fig. 2.17 – Lost packets rate resulting from simulations for the PDT, FDT and MDT synchronization algorithms and for
different threshold values.

About false sync rate, PDT is markedly the winner: by giving privilege to the in-charge channel, it

strongly limits the spurious sequences buildup phenomenon (even avoiding it completely for low
threshold values greater than 2); FDT is instead the worse choice here because its fairness makes it
particularly defenseless against spurious sequences.

Regarding lost packet rate, finally, PDT globally behaves better than the other two algorithms.
This figure, in fact, depends primarily on the time the receiver stays out of the correct sync, which
in turn results from the reactivity of the algorithm in recovering the sync after clock errors but also
from its tendency to false synchronization: the PDT algorithm, as seen above, is the slower in sync
recovery but is very robust against the false sync phenomenon, so that its lost packets rate is the
best at least for small threshold values.

In conclusion, PDT is chosen as the best synchronization algorithm after the above considerations,
and lower threshold values are preferable since they ensure better reactivity in case of clock errors,
thus leading to a lower lost packets percentage. In particular, the values 3 and 4 are chosen for the
thresholds so to have a zero false sync rate; this fact makes PDT 3-4 preferable to PDT 2-3 despite
the slightly higher packet loss (0.77% versus 0.72%). Preferring a 0% false sync rate over a lower
packet loss might seem counterintuitive, but it must be remembered that the one simulated is a peak
level situation, with an artificially high error rate. In more common situations, where errors occur
less frequently, the advantage of having no chance of losing data or triggers due to false syncs
compensates the slightly increased mean sync recovery time.

 55

3 FF-LYNX Interfaces

In this chapter the transmitter and receiver interfaces implementing the FF-LYNX protocol v.1 are
described in their architectural and external aspects. For the FF-LYNX Transmitter (FF_TX) and
the FF-LYNX Receiver (FF_RX) a description of input and output ports is given first, and then the
internal functional architecture is briefly outlined. For ease of exposition, the value of 40 MHz
(LHC scenario) is considered for the reference clock frequency F, and consequently the three values
of the transmission speed that have been implemented in the interfaces models are referred to as
160, 320 and 640 Mbit/s.

3.1 FF_TX

3.1.1 External specifications

The FF-LYNX Transmitter (FF_TX) is the interface that allows the host system to send trigger
commands and data towards a receiver system according to the FF-LYNX protocol. The symbol of
the FF_TX showing its inputs and outputs is reported in Fig. 3.1, while Table 3.1 lists the details of
these terminals.

Fig. 3.1 – Input and output terminals of FF_TX.

The signals that constitute the interface with the host system (TRG, word_in, Data_Valid,

Get_Data, Label_On, Data_Type) and the active low reset rst_L are all synchronous with the 40
MHz clock (clk40).

The functionalities of the FF_TX interface are:
- to accept trigger commands on the TRG input;
- to read and store data packets, provided by the host through the word_in port in a word-by-

word fashion and characterized with the bits Label_On and Data_Type;
- to generate a serial data stream onto the DAT output to transmit the TRG commands and the

stored data packets, in accordance with the FF-LYNX protocol.
These functionalities are described hereafter from an external point of view.

3 FF-LYNX interfaces

Name Direction # Bits Active level Description

TRG IN 1 high Input trigger command
word_in IN 16 - Parallel data input
Data_Valid IN 1 high Indicates that the value present on the word_in port is

valid and must be read by FF_TX
Get_Data OUT 1 high Signals that FF_TX is able to read a new word from

the word_in input
Label_On IN 1 high Specifies the Label_On bit for the current data packet
Data_Type IN 1 - Specifies the Data_Type bit for the current data packet
rst_L IN 1 low Synchronous reset
clk40 IN 1 - 40 MHz input clock
clk_tx IN 1 - Transmission-speed input clock
DAT OUT 1 - DAT output line, carrying serial data
CLK OUT 1 - CLK output line, carrying transmission clock

Table 3.1 – Description of input and output terminals of FF_TX.

Trigger commands

When a trigger must be sent, the host has to pull up the TRG input of the FF_TX interface for one

cycle of the 40 MHz clock: the timing is shown in Fig. 3.2.

Fig. 3.2 – Input TRG command timing. Three TRG commands are issued in this example.

Each command detected on the TRG input is transmitted onto the DAT stream three clk40 cycles

after, in order to be able to schedule header transmissions without overlapping them with the TRG
sequence. The minimum interval between two consecutive triggers is three clk40 cycles: that is, an
high level on the TRG input one or two cycles after a previous TRG command is ignored by
FF_TX, that will send an encoded TRG sequence on the DAT line for the first TRG command only.
This behavior is illustrated by the example in Fig. 3.3, where the downmost line shows the effective
TRG commands that are recognized by FF_TX interface if the shown pattern is applied to the TRG
input.

Fig. 3.3 – Example of effective TRG command recognition.

Reading of data packets

To start the storing of a data packed into the FF_TX interface, the host has to pull up the

Data_Valid input and to put the first 16-bit word of the packet onto the word_in input. As long as
Data_Valid remains high, a new word is read from the word_in input at each clk40 cycle and stored
into the internal TX Buffer as a part of the packet, so the host must pull down Data_Valid only at

 57

3 FF-LYNX interfaces

the end of the data packet. At the beginning of each packet reading, i.e. when the rising of
Data_Valid is detected, the value of the Label_On and Data_Type inputs is sampled as well and
stored as the value of the Label_On and Data_Type bits for that packet.

If FF_TX is not ready to accept a new input word (because either the TX Buffer, that stores the
data packets, or the FDC_FIFO, that stores the Frame Descriptor for the frames to be sent, is full) it
will pull down the Get_Data output, keeping it low until the FF_TX becomes available again to
store new words: therefore, while Get_Data is low the word presented at the word_in input is not
read by FF_TX, and hence the host must hold it until Get_Data goes high again.

Fig. 3.4 shows an example of the timing of the signals concerning data packet reading by FF_TX:

Fig. 3.4 – Example of timing for the reading of a 7-words data packet.

Generation of serial data stream

To transmit the TRG commands and the stored data packets, the FF_TX interface generates on to

the DAT output a serial stream, synchronous with the transmission clock (160, 320 or 640 MHz)
that is provided to the interface through the clk_tx input and is replied onto the CLK output. In
accordance with the FF-LYNX protocol, two bits of the DAT stream in each clk40 cycle are
reserved for the THS channel, while the other bits constitute the FRM channel (2, 6 or 14 bits
depending on the transmission speed): in particular, the THS bits occupy the second and the third
cycle of the transmission clock in each clk40 cycle, as shown in Fig. 3.5.

Fig. 3.5 – Example of DAT stream generated by FF_TX in the case of transmission speed equal to 160 (a), 320 (b) and
640 Mbit/s (c).

 58

3 FF-LYNX interfaces

The THS channel carries TRG sequences to transmit trigger commands to the receiver and HDR
sequences to mark the beginning of frames in the FRM channel; when free from TRG or HDR
transmission, the THS channel is filled with NOP sequences, constituted by the repetition of the
pair of bits “01” at each clk40 cycle. Fig. 3.6 shows the transmission of a TRG sequence in the THS
channel occurring, as said before, three clk40 cycles after the external command on the TRG input
of FF_TX; in this example the transmission speed is 320 Mbit/s.

Fig. 3.6 – Transmission of a TRG sequence on the THS channel of the DAT stream.

Reset conditions

When the reset input rst_L of FF_TX is activated, all the internal blocks including the TX Buffer

are reset (see later on): the external result is that the DAT output is forced to the low logic level.

3.1.2 Internal architecture

The functional architecture of the FF_TX interface is illustrated by the block diagram reported in
Fig. 3.7:

Fig. 3.7 – Functional architecture of the FF_TX interface.

 59

3 FF-LYNX interfaces

A brief description of the function of these blocks follows:

• TX Buffer – The TX Buffer is the memory that stores the data packets awaiting to be

transmitted. It is managed as a circular FIFO structure, with 16-bit locations: the data packets
are stored at one word per location. The full condition of the TX Buffer determines the pulling
down of the Get_Data output, to pause the arrival of packet words by the host. The TX Buffer
is clocked by the 40 MHz clock.

• Frame Builder – This is the block that controls the assembly of frames for the transmission
of data stored in the TX Buffer. In more detail, the tasks of the Frame Builder are: to control
the storing of data packets into the TX Buffer, managing the Data_Valid/Get_Data handshake
with the host system; to create frames for the transmission of the data packets stored in the TX
Buffer, preparing the Frame Descriptor for each frame and encoding it to create the FDC
(Coded Frame Descriptor) that is then passed to the Serializer; to start frame transmissions by
sending HDR commands to the THS Scheduler; to control the flow of data from the TX
Buffer to the Serializer during the transmission. This block is clocked by the 40 MHz clock.

• THS Scheduler – This block works out the arbitration between triggers and frame headers: it
receives TRG and HDR commands, respectively from the TRG input port of FF_TX and from
the Frame Builder, and passes them to the Serializer organizing their arrival in such a way that
the transmission of the THS sequences never overlaps. The THS Scheduler is clocked by the
40 MHz clock.

• Serializer – The Serializer is the block that generates the DAT output stream with the THS
channel and the FRM channel: it is the only FF_TX block that is clocked by the transmission
clock . It receives the FDC field from the Frame Builder and frame words from the TX Buffer,
and serializes these data into the FRM channel of the DAT output stream; into the THS
channel, instead, the Serializer transmits TRG and HDR sequences according to the
commands that arrive from the THS Scheduler.

 60

3 FF-LYNX interfaces

3.2 FF_RX

3.2.1 External specifications

The FF-LYNX Receiver (FF_RX) takes as inputs the DAT and CLK transmission lines, carrying
the serial data stream and the transmission clock generated by FF_TX, and delivers to the receiver
host the transmitted data packets, trigger commands and a reconstructed 40 MHz clock. Fig. 3.8
shows the input and output terminals of FF_RX, that are then described in Table 3.2.

Fig. 3.8 – Input and output terminals of FF_RX.

The signals that constitute the interface with the host system (TRG, word_out, Data_Valid,

Get_Data, Label_On, Data_Type, Last_Frame, Frame_Lost) and the active low reset rst_L are all
synchronous with the 40 MHz clock (clk40).

The tasks of the FF_RX interface are:
- to synchronize with the THS channel of the DAT stream, generating a reconstructed version

of the 40 MHz system clock (clk40_rx); this signal is then processed by an external Delay
Locked Loop (DLL) that produces a 40 MHz clock signal (clk40) phase-aligned with the 40
MHz clock of the DAT stream: this clk40 signal is provided to the host chip and to the FF_RX
interface itself;

- to detect TRG sequences in the THS channel of the incoming DAT stream and generate
trigger commands on the TRG output in correspondence with the detected TRG sequences;

- to receive and store data frames transported by the DAT stream;
- to deliver stored data frames to the receiver host through the word_out port.
These functionalities are described hereafter from an external point of view.

 61

3 FF-LYNX interfaces

Name Direction # Bits Active level Description

DAT IN 1 - DAT input line, carrying serial data
CLK IN 1 - CLK input line, carrying transmission clock
word_out OUT 16 - Parallel data output
Data_Valid OUT 1 high Indicates that the value present on the word_out port is

valid and can be read by the receiver host
Get_Data IN 1 high Signals that the host is able to read a new word from

the word_out port
Label_On OUT 1 high Specifies the Label_On bit for the data packet that is

currently being delivered to the host
Data_Type OUT 1 - Specifies the Data_Type bit for the data packet that is

currently being delivered to the host
Last_Frame OUT 1 high Indicates that the frame that is currently being

delivered to the host is the last of a packet
Frame_Lost OUT 1 high Indicates that a frame has been lost due to corruption

of its Frame Descriptor
sync OUT 1 high Indicates the achieved synchronization of the receiver

on the THS channel of the DAT stream
TRG OUT 1 high Output trigger command
rst_L IN 1 low Synchronous reset
clk40_rx OUT 1 - 40 MHz clock reconstructed by FF_RX
clk40 IN 1 - 40 MHz input clock regenerated by DLL

Table 3.2 – Description of input and output terminals of FF_RX.

Synchronization

At the start of transmission, the receiver interface examines the DAT stream searching for THS

sequences in order to locate the position of the THS channel in the received serial stream. When a
certain number of THS sequences is detected in one of the 2-bit channels of the DAT stream,
synchronization is acquired on that channel: at this time FF_RX pulls up the sync output and starts
generating the reconstructed 40 MHz clock (clk40_rx output). This is shown in Fig. 3.9.

Fig. 3.9 – Acquisition of synchronization by FF_RX at different transmission speed: 160 (a), 320 (b) and 640 Mbit/s
(c).

 62

3 FF-LYNX interfaces

If synchronization between the THS channel in the DAT stream and the receiver is lost during the
transmission (due to transmission errors on the CLK line), FF_TX pulls down the sync output and
starts again the sync acquisition procedure, at the end of which the sync output when sync is pulled
up and the reconstructed clock clk40_rx is adjusted to the new sync lock (Fig. 3.10).

Fig. 3.10 – New acquisition of synchronization by FF_RX after a sync unlock (transmission speed = 320 Mbit/s).

Trigger commands

When a trigger is detected in the DAT stream, the FF_RX interface pulls up the TRG output for

one clk40 cycle. The detection occurs when the last bit of the TRG sequence in the stream is
sampled by the receiver, and the TRG output command is issued on the next clk40 cycle: Fig. 3.11
illustrates this behavior (the transmission speed is 320 Mbit/s in this example).

Fig. 3.11 – Detection of a TRG sequence by FF_RX and issuing of the relative TRG output command. The 6-bit TRG
sequence in the DAT stream is underlined in red.

Fig. 3.11 also shows that the latency between the TRG input command in the transmitter
(TRG_in_TX) and the TRG output command in the receiver (TRG_out_RX) is equal to 6 cycles of
the 40 MHz clock, excluding the delay on the transmission line: this is true for all the three values
of the transmission speed (160, 320 and 640 Mbit/s).

Delivery of data packets

Data packets travel from the transmitter to the receiver on FF_LYNX frames: the FF_RX

interface receives these frames from the link and stores carried data in an internal buffer. Data
packets stored in the buffer are finally delivered to the receiver host through the word_out parallel
port: the outputting of a data packet is carried out delivering one word per clk40 cycle and one data
block at a time by means of a Data_Valid/Get_Data handshake, where the term “data block” is used
to designate the sequence of data words that were carried by a single frame .

When a data block is present in the receiver buffer, FF_RX pulls up the Data_Valid output and
starts the block delivery to the host, that goes on with the outputting of a data word onto the
word_out port at each clk40 cycle in which the Get_Data input is active; hence, the block delivering
process can be put on hold by the external circuit by pulling down the Get_Data signal. At the end

 63

3 FF-LYNX interfaces

of the block delivery, Data_Valid is pulled down for at least one clk40 cycle to indicate the finish of
the block to the host.

During the delivery of a data block, the value of the Data_Type and Label_On bits characterizing
the frame that transported that block are presented at the Data_Type and Label_On output of
FF_RX. If the data packet delivered by the transmitter host to the FF_TX interface was fragmented
into more frames, the FF_RX interface will deliver the corresponding data blocks activating the
Last_Frame output only for the last block of the packet, while the preceding blocks will have
Last_Frame set low: the host can thus reconstruct the data packet from the observation of the
Last_Frame signal. If a packet is tagged with a label, the Label_on output will be high for all the
blocks of that packet, but only the first word of the first block must be considered as the label.

Fig. 3.12 shows two examples of the timing of these signals.

Fig. 3.12 – Two examples of data delivery by FF_RX; in (a) a single data block constituting a data packet (Last_Frame
= ‘1’) is delivered, one word per clk40 cycle: the falling of Get_Data puts the delivery on hold, with the word_out kept
stable until it is actually read by the host (i.e. Get_Data returns high); in (b) two data blocks are delivered, belonging to
a data packet: the first has Last_Frame = ‘0’, while the second has Last_Frame set.

If a frame is lost due to a double bit error in its Frame Descriptor, it is indicated to the host by
means of a one-clk40-cycle long Data_Valid pulse, with the Frame_Lost output being high at the
same time(Fig. 3.13).

Fig. 3.13 – Signaling of a lost frame by FF_RX.

Reset conditions

When the reset input rst_L of FF_RX is activated, all the internal blocks including the RX Buffer

are reset (see internal architecture): the external result is that the all the output are forced to the low
logic level.

 64

3 FF-LYNX interfaces

3.2.2 Internal architecture

The functional architecture of the FF_RX interface is illustrated by the block diagram reported in
Fig. 3.14:

Fig. 3.14 – Functional architecture of the FF_RX interface.

A brief description of the function of these blocks follows:

• Deserializer – This block converts back the DAT stream into parallel form, separating the

THS channel and the FRM channel and providing the data words for storing into the RX
Buffer and the FDC field of incoming frames for decoding by the Frame Analyzer. It is
clocked by the transmission clock (CLK input).

• THS Detector – It detects the arrival of TRG, HDR and NOP sequences in the THS channel
examining the THS bits provided by the Deserializer. The THS Detector is clocked by the
transmission clock.

• Synchronizer – This block generates the 40 MHz reconstructed receiver clock (clk40_rx)
synchronized on the THS channel of the received DAT stream: the synchronization is
obtained according to the information coming from the THS Detector about the detected THS
sequences. The Synchronizer is clocked by the transmission clock.

• Frame Analyser – This is the block that controls the reception of data frames, their storing
into the RX Buffer and the delivery of stored data to the receiver host. The task of the Frame
Analyser is to decode and store the Frame Descriptor of received frames, to command the
writing of the received frame words in the RX Buffer and to manage the reading of the stored

 65

3 FF-LYNX interfaces

frames by the host, through the Data_Valid/Get_Data handshake. This block is clocked by the
40 MHz clock (clk40).

• RX Buffer – The RX Buffer is the memory that stores the received data packets awaiting to
be delivered to the receiver host. It is managed as a circular FIFO structure, with 16-bit
locations: the data packets are stored at one word per location. It is clocked by the 40 MHz
clock.

 66

4 VHDL modeling and simulation

The phase of the design flow that has constituted the main part of the present thesis work is the
creation of a VHDL model of the FF-LYNX interfaces for functional verification of the chosen
architecture and successive synthesis. VHDL (Very High Speed Integrated Circuits Hardware
Description Language) is, together with Verilog, the most widespread language for describing
digital electronic systems. As any other Hardware Description Language, VHDL allows to build
software models of a digital system, specifying the structure of a design and the function of its
building blocks: the result is a Register Transfer Level (RTL) description of the system, that can be
verified through functional simulation (after elaboration by a VHDL compiler) and finally passed to
a synthesis tool for implementation in a target technology. The typical VHDL modeling and
simulation flow is shown in Fig. 4.1:

Fig. 4.1 – VHDL modeling and simulation flow.

The development environment used for this phase was Active-HDL by Aldec [27], an integrated
environment comprising various design entry tools (HDL text editor, block diagram editor, state
diagram editor), VHDL and Verilog compilers, a simulation kernel, debugging tools and graphical
and textual simulation output viewers; the version employed was Active-HDL 7.2 Student Edition.

The VHDL model was created according to the interfaces architecture described in chapter 3. To
ease the task of building a functionally correct model, the function of each block in the FF_TX and
FF_RX architecture was first of all partitioned in simpler sub-blocks; then each sub-block was
described in textual form or by means of a graphic entry tool (block diagram editor, for schematic
descriptions, or state diagram editor, to describe state machines) and its functionality was verified in
a specific test bench. Afterwards, each block of the architecture was built connecting its constituting
sub-blocks, and functional simulations on the whole block were carried out. Finally, the complete
transmitter-receiver system was built and the overall functionality was verified in a global test
bench comprising also external VHDL modules for the generation of test vectors (data and trigger
commands to be transmitted) and for the reading of the system outputs (received data and trigger
commands).

4 VHDL modeling and simulation

This chapter describes the VHDL model of the FF-LYNX interfaces in section 4.2, 4.3 and 4.3,
showing the implementation details and the results of functional simulation of each sub-block;
finally, section 4.4 illustrates the structure of the test bench for the complete TX-RX system and
reports the results of functional simulations on it.

4.1 General description of the model

The VHDL model of the FF_LYNX interfaces consists of two entities: FF_TX, that models the
transmitter interface, and FF_RX, that is the receiver interface; these two entities are then
instantiated in the top-level test bench entity TX_RX_tb that will be described in section 4.4.

The model was created in a strongly parameterized form to allow reusability of building blocks in
different parts of the design and fast adaptability to changes about various aspects of the protocol
and of its hardware implementation, such as transmission speed, length of the frame fields, word
length, buffer size and so on. To this end, a VHDL package (called interfaces_pkg) has been created
that defines the numeric constants that are referred to through all the model and specifies their
values; Table 4.1 lists these parameters (the type is positive integer for all of them), and the value
that has been assigned to them in the first version of the protocol/VHDL model:

Name Description Value in model v.1

N_WORD Length (in bits) of a data word. 16
N_WORD_b Number of bits of counters that count transmitted/received bits of data

words: must be ≥ log2(N_WORD)
4

N_THS Length (in bits) of THS sequences. 6
N_THS_b Number of bits of counters that count transmitted/received bits of THS

sequences: must be ≥ log2(N_THS)
3

N_FD Length (in bits) of the Frame Descriptor field, prior to Hamming encoding. 7
N_FDC Length (in bits) of the coded Frame Descriptor field (i.e. after Hamming

encoding).
12

N_FL Length (in bits) of the Frame Length field inside the Frame Descriptor. 4
N_FLpwr Maximum number of words carried by frame: N_FLpwr = 2N_FL 16

Table 4.1 – Constants defined in the package “interfaces_pkg” and used as parameters in the interfaces VHDL model.

In addition, the parameters described in Table 4.2 (the type is positive integer for all of them)
have been used in FF_TX and FF_RX entities as generics (i.e. parameters that in VHDL are used to
pass information to an instance of an entity):

Value for tx speed equal

to (Mbit/s)
Name Description

160 320 640
N_CYC Number of clk_tx (transmission clock) cycles in a clk40 (40 MHz

clock) cycle.
4 8 16

N_CYC_b Number of bits of counters that count tx_clock cycles in each clk40
cycle: must be ≥ log2(N_CYC).

2 3 4

N_FRM Number of FRM bits in each clk40 cycle. 2 6 14

Table 4.2 – Generics used to configure FF_TX, FF_RX entities and their sub-blocks.

The values of these parameters for the FF_TX and FF_RX entities are set in the top-level test
bench by means of a configuration statement, and are then passed through FF_TX and FF_RX to
their constituting blocks that use these parameters. There is one configuration statement for each of
the three considered transmission speeds: this way, the simulation for the interfaces architecture

 68

4 VHDL modeling and simulation

relative to 160, 320 or 640 Mbit/s can be set up by simply selecting the appropriate configuration,
that passes to FF_TX and FF_RX the values of N_CYC, N_CYC_b and N_FRM needed to
simulate a specific transmission speed.

The following sections describe some VHDL entities that are instantiated in various points of the

design. The type of all single-bit signals is std_logic, and std_logic_vector for all multi-bit signals.

4.1.1 FIFO_N_D

Fig. 4.2 – Symbol of entity FIFO_N_D.

Name Type Description

N integer Length (in bits) of a each location (word) of the FIFO.

D integer Number of locations (depth) of the FIFO.

Table 4.3 – Generics of entity FIFO_N_D.

Name Direction # Bits Active level Description
word_in IN N - Parallel data word input.
write IN 1 high Synchronous write command.
read IN 1 high Synchronous read command.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Input clock..
word_out OUT N - Parallel data word output.
empty OUT 1 high Empty flag: signals that the FIFO is empty.
full OUT 1 high Full flag: signals that the FIFO is full.

Table 4.4 – Description of input and output terminals of entity FIFO_N_D.

FIFO_N_D is a FIFO memory with D locations of N bits each. It consists of a D-deep array of N-
bit words (D and N are integer generics), two integer pointers W_pnt and R_pnt and two flags for
the empty and full conditions. The write pointer W_pnt points to the FIFO location to be written
next, while the read pointer R_pnt points to the location to be read next.

The operation of the FIFO is implemented through a writing process and a pointer updating
process. If the active low reset input rst_L is active at the rising edge of clk, the writing process
writes ‘0’ in all the locations of the FIFO, and the pointer updating process resets W_pnt and R_pnt
to 0, sets the empty flag and resets the full flag.

If rst_L is inactive at the rising edge of clk, the write command is active and the FIFO is not full,
the writing process stores the word_in value in the location pointed by W_pnt, while the pointer
updating process increases W_pnt (resetting it back to 0 if it reaches the value D). If in addition the

 69

4 VHDL modeling and simulation

read command is inactive, the pointer updating process resets the empty flag and sets the full flag if
after its increase W_pnt has reached the same value as R_pnt.

If at the rising edge of clk the reset is inactive, the read command is active and the FIFO is not
empty, the pointer updating process increases R_pnt (resetting it back to 0 if it reaches the value D);
if in addition the write command is inactive, the full flag is reset and, if after its increase R_pnt has
reached the same value as W_pnt, the empty flag is set.

The word_out output is always the value of the FIFO array location pointed by R_pnt.

4.1.2 Counter_N

Fig. 4.3 – Symbol of entity Counter_N.

Name Type Description

N integer Number of bits of the counter.

modul integer Modulus of the counter.

Table 4.5 – Generics of entity Counter_N.

Name Direction # Bits Active level Description
en IN 1 high Count enable input.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Input clock..
count OUT N - Count output.

Table 4.6 – Description of input and output terminals of entity Counter_N.

This is a N-bit binary synchronous up counter with synchronous active-high count enable (en) and
synchronous active-low reset (rst_L). The modulus of the counter is specified by generic “modul”:
clearly it must be modul ≤ 2N.

4.1.3 ffd

Fig. 4.4 – Symbol of entity ffd.

 70

4 VHDL modeling and simulation

Name Direction # Bits Active level Description
D IN 1 - Data input.
en IN 1 high Enable input.
CLR IN 1 low Synchronous reset.
Q OUT 1 - Data output..
QN OUT 1 - Inverted data output.

Table 4.7 – Description of input and output terminals of entity ffd.

This is a D-type flip-flop with synchronous active-low reset (CLR) and synchronous active-high
enable (en): when en is asserted, the value present at the D input is sampled at the rising edge of clk.

4.1.4 Register_N

Fig. 4.5 – Symbol of entity Register_N.

Name Type Description

N integer Number of bits of the register.

Table 4.8 – Generics of entity Register_N.

Name Direction # Bits Active level Description
data_in IN N - Data input.
en IN 1 high Enable input.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Input clock..
data_out OUT N - Data output.

Table 4.9 – Description of input and output terminals of entity Register_N.

Register_N is N-bit, D-flip-flop-type register with synchronous active-low reset (rst_L) and
synchronous active-high write command (write): if write is asserted, the value present at the data_in
input is latched at the rising edge of clk.

 71

4 VHDL modeling and simulation

4.1.5 Shift Registers

Fig. 4.6 – Symbol of entities SISO_reg_N, SIPO_reg_N, PISO_reg_N, SISOPO_reg_N, SIPISO_reg_N.

Name Type Description

N integer Number of bits of the register.

Table 4.10 – Generics of entities SISO_reg_N, SIPO_reg_N, PISO_reg_N, SISOPO_reg_N, SIPISO_reg_N.

Name Direction # Bits Active level Description
S_in IN 1 - Serial data input.
P_in IN N - Parallel data input.
load IN 1 high Load command for parallel data input.
shift_en IN 1 high Shift enable input.
rst_L IN 1 low Synchronous clear input.
clk IN 1 - Input clock..
S_out OUT 1 - Serial data output.
P_out OUT N - Parallel data output.

Table 4.11 – Description of input and output terminals of entities SISO_reg_N, SIPO_reg_N, PISO_reg_N,
SISOPO_reg_N, SIPISO_reg_N.

SISO_reg_N, SIPO_reg_N, PISO_reg_N, SISOPO_reg_N, SIPISO_reg_N are N-bit shift
registers with serial input (SI), parallel input (PI), serial output (SO), or parallel output (PO). They
all have synchronous active-low clear input (rst_L) and synchronous active-high shift enable
command (shift_en); the shift direction is rightward, from bit N-1 (MSB) to bit 0 (LSB). The shift
registers with parallel input also have active-high, synchronous load command (load).

 72

4 VHDL modeling and simulation

4.2 FF_TX

The transmitter interface FF_TX has the logic internal architecture described in section 3.1.2; the
Active-HDL block diagram for this entity, showing also the internal signals that connect the various
blocks, is reported in Fig. 4.7.

Fig. 4.7 – Block diagram of FF_TX.

As in the logic architecture, the four functional blocks TX Buffer, Frame Builder, THS Scheduler
and Serializer are present; the addition here is the auxiliary block called sel_THS Generator TX
(entity sel_THS_gen_TX) that has the task of generating the sel_THS signal needed by Serializer
(see section 4.2.5).

These blocks are described in more detail hereafter.

4.2.1 TX Buffer

TX Buffer is the FIFO memory that stores the frame words provided by the external circuit
awaiting to be transmitted by the TX interface. It is realized with a FIFO_N_D entity (see section
4.1.1): the write command is the Data_Valid input of FF_TX, and the read command is obtained by
OR gating the read_TX_Buf output of the Frame Builder and the HDR_out output of the THS
Scheduler (see sections 4.2.3 and 4.2.4). It is clocked with the 40 MHz clock (clk40).

 73

4 VHDL modeling and simulation

4.2.2 sel_THS Generator TX

Fig. 4.8 – Symbol of sel_THS_gen_TX.

Name Direction # Bits Active level Description

clk40 IN 1 - 40 MHz input clock.
clk_tx IN 1 - Transmission input clock.
rst_L IN 1 low Synchronous reset.
sel_THS OUT 1 high sel_THS signal for the Serializer: when it’s high, the Serializer

sends the THS channel bits into the output DAT stream.

Table 4.12 – Description of input and output terminals of sel_THS_gen_TX.

This block uses the 40 MHz clock (clk40 input) to generate the sel_THS signal to be used by the
Serializer (see section 4.2.5). The internal architecture is shown in Fig. 4.9:

Fig. 4.9 – Internal block diagram of sel_THS_gen_TX.

The component with instance name CNT is an instance of the entity counter_N, that is a N bit
synchronous counter (N is an integer generic) with active-low reset (rst_L) and active-high count
enable (en). The counter_N entity is used extensively in many parts of the interfaces model; here
the actual value of parameter N is 2.

The active low reset rst_L resets the 2-bit counter CNT and FF, that is a D flip-flop with
asynchronous, active low reset ACLR.

At the rising edge of the 40 MHz clock the flip-flip output FF_out goes high, thus deactivating the
reset of the counter that therefore starts to count at the first clk_tx rising edge after the rising edge
of clk40. The sel_THS output is pulled high when the count equals 1 or 2 (i.e. in the second and
third clk_tx cycle after the rising edge of clk40). When the count is equal to 2, also, the reset_FF
signal is pulled down, and this resets the flip-flop through its asynchronous clear input: the FF
output therefore goes low again resetting the counter, so that sel_THS is pulled low again. The
circuit has thus returned to its initial state, waiting for the next rising edge of clk40.

 74

4 VHDL modeling and simulation

A simulation on the sel_THS_gen_TX block is shown in Fig. 4.10 for tx speed = 160, 320 and 640
Mbit/s:

Fig. 4.10 – Simulation showing the behavior of sel_THS_gen_TX for tx speed = 160 (a), 320 (b) and 640 Mbit/s (c).

 75

4 VHDL modeling and simulation

4.2.3 Frame Builder

Fig. 4.11 – Symbol of Frame_Builder.

Name Direction # Bits Active level Description
Data_Valid IN 1 high Data_Valid input of FF_TX.
Label_On IN 1 high Label_On input of FF_TX.
Data_Type IN 1 - Data_Type input of FF_TX.
Get_Data IN 1 high Get_Data output of FF_TX; directed to FB_Control1 inside

the Frame Builder.
delay_HDR IN 1 high Signal generated by Serializer to indicate that a frame

transmission is ongoing, and directed to FB_Control2 inside
the Frame Builder.

sel_shr IN 1 - Signal coming from Serializer, where it indicates the shift
register in use (see Serializer description), and directed to
FB_Control2.

rst_L IN 1 low Synchronous reset.
clk IN 1 - 40 MHz input clock.
FDC_out OUT 12 - Parallel output to send the FDC field to the Serializer.
HDR_cmd OUT 1 - HDR command for the THS Scheduler.
Read_TX_Buf OUT 1 high Read command for the TX Buffer.
stop_SER OUT 1 high Stop command for the Serializer.

Table 4.13 – Description of input and output terminals of Frame_Builder.

This block, working with the 40 MHz clock, prepares the FDC field for each frame stored in the
TX Buffer, starts frame transmissions by sending HDR commands to the THS Scheduler and
commands the readings of the TX Buffer to provide the Serializer with the frame words during the
transmission. The internal architecture is shown in the Fig. 4.12.
 The operation of the Frame Builder is controlled by two state machines. The FB_Control1 FSM
(FB_CTRL1), using the Word Counter1 (WORD_CNT1) and the FD registers FL_reg, LO_reg,
DT_reg and LF_reg (that keep respectively the Frame Length field and the Label On, Data Type
and Last Frame bits of the Frame Descriptor), deals with the construction of the FD field of the
frame that is being loaded into the TX Buffer; the FD is then encoded by the FD Encoder
(FD_ENC) and queued into the FDC FIFO Buffer (FDC_FIFO).

 76

4 VHDL modeling and simulation

Fig. 4.12 – Internal block diagram of Frame_Builder.

 77

4 VHDL modeling and simulation

The Word Counter1 is enabled by Data_Valid AND Get_Data, so that it counts only the words
that are actually written into the TX Buffer; when all the bits of its output are ‘1’ the Frame_Limit
signal is pulled up to indicate that the maximum frame length has been reached. The flip-flop DEL
is used to generate the write command for the FDC FIFO (write_FDC) by delaying of a clk40 cycle
the write_FLLF signal originated by FB_Control1.

The FB_Control2 FSM (FB_CTRL2) instead has the task of issuing HDR commands (HDR_cmd
output) to start frame transmissions, commanding FDC_FIFO readings to send the FDC information
to the Serializer and commanding TX Buffer readings (through the Read_TX_Buffer output signal)
to send the frame words to the Serializer; it uses the Word Counter 2 (WORD_CNT2) to count the
words that has been read from the TX Buffer, so as to determine the end of the frame that is being
transmitted by comparison with the Frame Length (signal FL2) available at the output of the
FDC_FIFO (the last_W signal is pulled up when countW2 = FL2).

The internal components of Frame Builder are described in further detail hereafter.

4.2.3.1 FB_Control1

Fig. 4.13 – Symbol of FB_Control1.

Name Direction # Bits Active level Description
DV IN 1 high Data_Valid input.
GD IN 1 high Get_Data input.
Frm_Lim IN 1 high Connected to the Frame_Limit signal inside the Frame

Builder.
rst_L IN 1 low Synchronous reset.
clk IN 1 - 40 MHz input clock.
rst_WCNT_L OUT 1 low Reset command for Word Counter 1
write_LODT OUT 1 high Write command for LO and DT registers.
LF OUT 1 high Imposes the value of the Last Frame bit in the LF register.
write_FLLF OUT 1 high Write command for FL and LF registers.

Table 4.14 – Description of input and output terminals of FB_Control1.

This block is a Mealy machine that controls the Word Counter 1 and generates the write
commands for the FD registers and for the FDC FIFO. The state diagram is reported in Fig. 4.14.

At the reset, the FSM is in the IDLE state resetting the Word Counter 1 (rst_WCNT_L <= ‘0’).
When a ‘1’ on the DV (Data_Valid) input is detected, meaning that the host has started a packet
delivery, FB_Control1 moves to the state PKT_LOADING: on this transition the FSM starts the
Word Counter by removing its reset and activates the write_LODT command, that in the Frame
Builder writes the value of the Label_On and Data_Type inputs into the corresponding FD registers
LO_reg and DT_reg (the write_LODT output of FB_Control1 is not registered to allow the
sampling of the Label On and Data Type inputs on the first cycle of the frame loading, i.e. when
DV goes high).

 78

4 VHDL modeling and simulation

Fig. 4.14 – State diagram of FB_Control1.

The FSM remains in the state PKT_LOADING as long as DV = ‘1’, i.e. until the end of the

packet, carrying on the counting of the words: since the Word Counter 1 is enabled by the signal
Data_Valid AND Get_Data, only the words that are actually written into the TX Buffer are counted
(that is, the words that are proposed by the host in the clock cycles when Get_Data is high).

Consider first the case in which GD stays high during all the packet loading. When DV returns to
0, indicating that the packet loading in the TX Buffer is completed, the FSM goes to the state
PKT_END resetting the Word Counter and activating the write_FLLF command: this writes into
the FL register the value reached by the Word Counter before its reset, equal to the number of clk40
cycles that DV has been high (diminished by one to conform to the convention “number of words of
the frame = value of FL +1”). The write_FLLF command also stores in the LF register the value of
the Last Frame bit imposed by FB_Control1 itself through the LF output: on the passage from
PKT_LOADING to PKT_END, LF is set to 1 since a transition of DV from 1 to 0 always
correspond to the ending of a data packed, that hence won’t be fragmented into further frames. If
instead the maximum number of words in the frame is reached (i.e. the Frame_Limit signal goes
high) while DV is still asserted, FB_Control1 sets LF to ‘0’, writes this value in the LF register by
activating the write_LFFL command (thus writing also the Frame Length, now equal to the
maximum possible value “111....111”, into the FL register) but remains in the PKT_LOADING
state to continue the loading of the packet words as a new frame. The word counter doesn’t need to
be reset in this case because it has reached its maximum value and so it will start again from zero
with the first word of the new frame.

 79

4 VHDL modeling and simulation

Fig. 4.15 – Simulation showing the operation of FB_Control1 in case of loading of a 4-word data packet (a) and of a
17 word data packet (b). The signal named “fifo_array” is the content of the FDC FIFO. -

Now let’s consider the possibility of Get_Data going low during the loading of a packet, i.e. when

FB_Control1 is in the state PKT_LOADING and DV is asserted. If this happens for, say, one clk
cycle, the word proposed by the host in that cycle will not be written in the TX Buffer and will not
be counted by the Word Counter 1; the condition (DV = '1') AND ((Frm_Lim = '0') OR (GD = '0'))

 80

4 VHDL modeling and simulation

will be true and therefore FB_Control1 will remain in the state PKT_LOADING without activating
the write_FLLF command. This behavior is correct because, even if the frame limit has been
reached and so Frm_Lim (Frame_Limit) is high in this cycle, the first word of the second frame of
the fragmented packet hasn’t been written yet in the TX Buffer. The fragmentation, i.e the
activation of the write_FLLF command, must be carried out only when the condition (DV = '1')
AND (Frm_Lim = '1') AND (GD = '1') is true: this corresponds to the second loop transition of the
st

DT command
a

eg and LF_reg, that is the moment when the complete
F

se to its fragmentation in two consecutive frames, the first with LF = 0 and
th

mentation (write_FLLF
command) is postponed to the next clk cycle, when GD is pulled up again.

ate PKT_LOADING in the FB_Control1 state diagram.
At the next clock cycle after the arrival into the PKT_END state, if DV is still low the FSM goes

back to the IDLE state keeping the Word Counter in reset; if instead DV has been set again,
FB_Control1 moves directly to the PKT_LOADING state activating the write_LO
gain and starting the Word Counter to begin the FL calculation for the new frame.
Being the write_FDC command within the Frame Builder originated by delaying the write_FLLF

command, the FDC field (calculated by the Hamming Encoder) is written into the FDC_FIFO one
(40MHz) clock cycle after the writing of FL_r

D is available as output of the FD registers.
The operation of FB_Control1 was tested with packets of length ranging from 0 to 39, to verify

the correctness of the fragmentation function. Fig. 4.15 shows two examples of the evolution of the
FB_Control1 signals: in the first case a 4-word data packet is loaded, causing the creation of a
single frame with the LF bit set to 1 in the Frame Descriptor; in the second case the loading of a 17-
word data packet gives ri

e second with LF = 1.
Simulations where performed also for the case of Get_Data going low (with various patterns)

during the packet loading. Fig. 4.16 shows as an example the “critical” case of GD going low in the
cycle in which the Frame_Limit signal goes high: as it can be seen, the frag

Fig. 4.16 – Simulation showing the operation of FB_Control1 during a packet loading, in the case of GD going low in

e cycle in which the Frame_Limit signal goes high.

th

 81

4 VHDL modeling and simulation

4.2.3.2 FB_Control2

Fig. 4.17 – Symbol of FB_Control2.

Name Direction # Bits Active level Description
Frame_ready IN 1 high Signals that the FDC_FIFO is not empty.
delay_HDR IN 1 high Signal coming from Serializer and used by FB_Control2 to

determine the moment when a HDR command can be sent.
sel_shr IN 1 high Signal coming from Serializer: indicates to FB_Control2

when the transmission of each frame word is finished.
last_W IN 1 high Last_W signal generated from the output of WCNT2.
rst_L IN 1 low Synchronous reset.
clk IN 1 - 40 MHz input clock.
HDR_cmd OUT 12 low HDR command for the THS Scheduler.
read_TX_Buf OUT 1 high Read command for the TX Buffer.
read_FDC_FIFO OUT 1 high Read command for the FDC_FIFO.
stop_SER OUT 1 high Stop command for the Serializer.
en_WCNT OUT 12 low Enable command for Word Counter 2
rst_WCNT_L OUT 1 low Reset command for Word Counter 2.

Table 4.15 – Description of input and output terminals of FB_Control2.

This entity is a Mealy machine that reads the FDC FIFO (read_FDC_FIFO output command),
generates the HDR commands (HDR_cmd), issues the read commands for the TX Buffer (read
TX_Buf) and controls the Word Counter 2; besides, it generates the “stop” signal for the Serializer
(stop_SER) at the end of a frame transmission. The state diagram is shown in Fig. 4.18.

At the reset, the FSM begins it activity in the READY state, waiting for the Frame_ready signal.
When a frame is ready to be transmitted, its FDC is written in the FDC_FIFO and thus the
Frame_ready signal (that is the negation of the FDC_FIFO empty signal) goes to ‘1’: this event, if
the delay_HDR signal is low (meaning that the THS channel is free and the Serializer has
completed any previous frame transmission, see Serializer description), causes the FB_Control2 to
move to the START_FRAME state issuing a HDR_cmd to start the frame transmission in the
Serializer.

The HDR command will be processed by the THS Scheduler and will then arrive to the Serializer,
that as a consequence will start the transmission of the frame words alternating the use of its two
shift registers by means of the sel_shr signal (see Serializer description): FB_Control2 uses this
signal to determine the end of each word transmission, thus resolving the problem of the interfacing
between the 40 MHz-clocked Frame Builder and TX Buffer and the clk_tx-clocked Serializer (note
that sel_shr remains in each state, low or high, for at least one clk40 cycle, providing that the
number of bits of a frame word is equal or greater than the number of FRM bits transmitted in each
clk40 cycle; with N_WORD = 16, this is true for all the three considered values of the tx speed).

 82

4 VHDL modeling and simulation

Fig. 4.18 – State diagram of FB_Control2.

Hence, FB_Control2 remains in the START_FRAME state as long as sel_shr is low, which means

that the Serializer is still transmitting the FDC field of the frame; when the FDC transmission is
finished sel_shr goes high and this in turn (supposing that the frame consist in more than one word,
so that the “last word” flag last_W is low at this time) causes FB_Control2 to move to the state
WAIT_WORD0. On this transition the FSM commands a reading of the TX Buffer to load the next
frame word into the Serializer.

Once in the state WAIT_WORD0, the FSM waits that the Serializer has finished transmitting the
first word of the frame. When this happens, sel_shr goes low again and FB_Control2 moves to the
state WAIT_WORD1 commanding another reading of TX Buffer and incrementing the value of the

 83

4 VHDL modeling and simulation

Word Counter 2 by activating its enable (en_WCNT <= ‘1’). In the state WAIT_WORD1 the FSM
waits for sel_shr to go high again (indicating that another word’s transmission has been completed),
and when this happens it moves back to the state WAIT_WORD0 reading another word from TX
Buffer and incrementing again the word counter.

The alternation between WAIT_WORD0 and WAIT_WORD1 goes on until the flag last_W goes
high, that happens when the value of the Word Counter 2 reaches the value of the signal FL2, which
is the Frame Length of the frame that is currently being transmitted. When, being FB_Control2 in
the state WAIT_WORD0/1, the signal sel_shr changes state and last_W is high, the FSM returns
into the READY state because the Serializer is now sending the last word of the frame. On this
transition a reading of the FDC_FIFO is commanded (read_FDC_FIFO <= ‘1’) so that FB_Control2
knows, once returned into the READY state, if there are more frames ready to be sent: if this is the
case the signal Frame_ready will be high and so FB_Control2 will start a new frame transmission
(moving again into the state START_FRAME and issuing a new HDR command) as soon as the
signal delay_HDR will be detected low, meaning that the Serializer has completed the transmission
of the last word of the preceding frame. On the transition from the state WAIT_WORD0/1 to the
READY state the stop_SER output command is activated too: it is used to command the Serializer
to return back to its IDLE state, thus stopping the transmissions in the FRM channel, at the end of
each frame.

In the case of a single-word frame, the signal FL2 is equal to 0 and consequently the signal
last_W is high when FB_Control2 is in the state START_FRAME: hence, when sel_shr is detected
as high, meaning that the Serializer has finished sending the FDC field and is now transmitting the
first (and last) word of the frame, FB_Control2 goes back directly to the READY state commanding
a reading of the FDC_FIFO and issuing a stop_SER command.

The HDR_cmd output is registered because the HDR command must be issued when
FB_Control2 enters the START_FRAME state and not before; the read_TX_Buffer output is
registered too, because this signal has also the effect of loading the shift registers inside the
Serializer and so it seemed more safe (for possible post synthesis timing problems) to load them in
the middle of their “idle” interval (i.e. the interval during which a shift register is not enabled to
shift out) rather than at its beginning, i.e. at the first tx_clk edge after the transition of sel_shr. On
the contrary, read_FDC_FIFO and the word counter control signals (en_WCNT and rst_WCNT_L)
are not registered: indeed, if read_FDC_FIFO were registered, the FB_Control2 would know if
there are other frames in the FDC_FIFO only one clk40 cycle after the detection of last_W = ‘1’,
and at tx speed = 640 Mbit/s this is too late because there is only one clk40 cycle from the detection
of last_W = ‘1’ and the detection of delay_HDR = ‘0’, that marks the clk40 edge at which a
possible new HDR_cmd must be issued. As for en_WCNT and rst_WCNT_L, they must have their
effect on the clk40 edge at which FB_Control2 changes state (moving into the state
WAIT_WORD0/1) to have the words counted properly, ad so they must be not registered.

An example of the evolution of the FB_Control2 signals at the end of a frame transmission (with
the beginning of a new transmission immediately after) is shown in Fig. 4.19 for the three values of
the tx speed.

 84

4 VHDL modeling and simulation

Fig. 4.19 – Simulation showing the operation of FB_Control2 at the end of a frame transmission with the beginning of a
ne transmission immediately after; tx speed = 160 (a), 320 (b) and 640 Mbit/s (c). w

 85

4 VHDL modeling and simulation

4.2.3.3 FD Encoder

Fig. 4.20 – Symbol of FD_Encoder.

Name Direction # Bits Active level Description
FD IN 7 - Uncoded Frame Descriptor.
FDC OUT 12 - Coded Frame Descriptor.

Table 4.16 – Description of input and output terminals of FD_Encoder.

This block performs the H(12,7) encoding on the Frame Descriptor (FD input) producing the
coded FD to be included into the frame for transmission (FDC output). Its architecture is defined by
the encoding algorithm described in section 2.3.1.1: the 7 most significant bits of FDC are the bits
of FD without changes, while the remaining FDC(4), ..., FDC(0) are the five parity bits calculated
according to equations (2.22).

4.2.4 THS Scheduler

Fig. 4.21 – Symbol of THS_Scheduler.

Name Direction # Bits Active level Description
TRG_in IN 1 high TRG input command.
HDR_in IN 1 high HDR input command.
rst_L IN 1 low Synchronous reset.
clk IN 1 - 40 MHz input clock.
TRG_out OUT 1 high TRG output command.
HDR_out OUT 1 high HDR output command.

Table 4.17 – Description of input and output terminals of THS_Scheduler.

This block, clocked by the 40 MHz clock, manages TRG and HDR commands, arriving through
the TRG_in and HDR_in inputs respectively from TRG input port of FF_TX and from the Frame
Builder, and passes them to the Serializer through the TRG_out and HDR_out outputs: the task of
the THS_Scheduler is to organize the arrival of the TRG and HDR commands to the Serializer in
such a way that the transmission of the THS sequences never overlap, i.e. there is always an interval

 86

4 VHDL modeling and simulation

of at least 3 clk40 cycles (i.e. the duration of the THS sequences) between two successive THS
commands.

The scheduling strategy is the one that was described in section 2.2.1: when a TRG_in command
arrives, the THS_Scheduler starts the forbidden window of 5 clock cycles and generates the
TRG_out pulse at the third clock cycle of this window; if a HDR_in command arrives inside the
forbidden interval, it is put on hold and the corresponding HDR_out pulse is generated at the end of
the interval, as shown in Fig. 4.22. (To be more precise, the Serializer simply ignores THS
commands that arrive when a preceding THS sequence’s transmission is still ongoing: hence, the
arrival of a HDR command in the forbidden interval would not lead to an overlap with the TRG
sequence but would cause the loss of the TRG command or of the HDR command itself, depending
on which is the last of the two).

Fig. 4.22 – Scheduling of TRG and HDR commands: if a HDR_in command arrives inside the 5-clock-cycles
“forbidden window”, the corresponding HDR_out command is issued at the end of this window.

The internal architecture of the THS_Scheduler is shown in Fig. 4.23:

F

ig. 4.23 – Internal block diagram of THS_Scheduler.

TRG_manager is a registered-output Mealy machine with the state diagram shown in Fig. 4.24.
Being in the IDLE state at the reset, when a ‘1’ on the TRG_in input arrives (TRG command pulse)
the FSM starts to move at every next clk cycle through the states TRG1, ... , TRG5, setting the
output HDR_block to ‘1’: this signal is the one that determines the forbidden interval, stopping a
possible HDR command as will be explained next. On the transition between TRG2 and TRG3 the

 87

4 VHDL modeling and simulation

TRG_out pulse is generated. After completing the cycle in TRG5, the FSM returns to the IDLE
state, but if a second TRG_in command arrives while the FSM is in TRG3, TRG4 or TRG5, the
machine jumps directly to the state TRG1 to extend the forbidden window (HDR_block = ‘1’) and
p

 the HDR_manager will intervene to generate
a HDR_out pulse at the end of the forbidden interval.

roduce another TRG_out pulse once arrived again to the TRG3 state.
Considering again the THS_Scheduler architecture, if a HDR_in command arrives in a clk cycle

that doesn’t belong to the forbidden interval, the HDR_block signal will be low and the HDR
command will be passed through the OR and the AND gates generating a pulse on HDR_out in the
same clk cycle. If, on the contrary, the HDR_in pulse occur in the forbidden window, it will be
blocked by the AND gate being HDR_block = ‘1’ and

ig. 4.24 – State diagram of TRG_manager.

DR_manager is a registered-output Mealy machine with the state diagram shown in Fig. 4.25.

F

H

 88

4 VHDL modeling and simulation

Fig. 4.25 – State diagram of HDR_manager.

This FSM stays in the IDLE state until a HDR_in command arrives and, at the same time,
HDR_block = ‘1’, meaning that the HDR_in command has been stopped: when this happens, the
HDR_manager moves to the WAITING state and sets HDR_wait to ‘1’. This signal is used to
extend, by means of the OR gate following the HDR_manager, the HDR pulse until one clk cycle
after the end of the forbidden interval, and indeed it is reset when the HDR_manager leaves the
WAITING state having detected the resetting of HDR_block.

The simulation shown in Fig. 4.26 illustrates the mechanism of TRG and HDR command
management described above:

Fig. 4.26 – Simulation showing the operation of the THS Scheduler .

 89

4 VHDL modeling and simulation

4.2.5 Serializer

Fig. 4.27 – Symbol of Serializer.

Name Direction # Bits Active level Description
TRG_cmd IN 1 high Commands the transmission of a TRG sequence.
HDR_cmd IN 1 high Commands the transmission of a HDR sequence.
SYN_cmd IN 1 high Commands the transmission of a SYN sequence.
FDC_in IN 12 - Input for the FDC field coming from the Frame Builder.
word_in IN 16 - Input for data words coming from the TX Buffer.
read_TX_Buf IN 1 high Read command for the TX Buffer.
sel_THS IN 1 high Signal coming from the sel_THS Generator: identifies the

THS channel bits inside each clk40 period.
stop_in IN 1 high Stop signal for Serializer coming from the Frame Builder.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input, connected to the transmission clock (clk_tx).
DAT_out OUT 1 - DAT serial stream output.
delay_HDR OUT 1 high Signal directed to Frame Builder to indicate that a frame

transmission is ongoing.
sel_shr OUT 1 - Signal directed to Frame Builder to indicate which shift

register is in use inside the Serializer.

Table 4.18 – Description of input and output terminals of Serializer.

This component is clocked by the transmission clock clk_tx (160, 320 or 640 Mbit/s) and
produces the DAT serial stream with the FRM channel and the THS channel. The internal
architecture is shown in Fig. 4.28:

 90

4 VHDL modeling and simulation

Fig. 4.28 – Internal block diagram of Serializer.

 91

4 VHDL modeling and simulation

The DAT_out stream is provided by a mux that switches between the THS and the FRM streams,
controlled by the sel_THS signal that is high in the THS part of each clk40 cycle, and low in the
FRM part: the sel_THS signal arrives to the Serializer from the Sel_THS Generator.

The THS stream is produced by the THS shift register (THS_SHR) that is loaded with the THS
command sequence that has to be transmitted and is enabled to shift out its content in the THS part
of each clk40 cycle, being enabled by the sel_THS signal. The THS sequences are kept in three
registers (TRG_reg, HDR_reg and SYN_reg): the sequence to be loaded in the THS_SHR is chosen
by the THS_cmd_selector, while the load command (load_THS) is generated by the THS_load_ctrl
block when a pulse on the THS_cmd input occur. The leftmost bit of THS_SHR is shifted in from
the output of the flip-flop NOP_FF, that is reset when the sel_THS signal goes low and therefore
produces the NOP pattern 0101010101... into the THS stream. The encoding that was implemented
in this version of the Serializer is the TRG/HDR balanced encoding (described in section 2.2.3.3)
that doesn’t have a SYN command, but the possibility of transmitting a third THS sequence as a
“spare” command besides TRG and HDR was left in this Serializer: however, the SYN_cmd input
of Serializer is connected to ground (see Fig. 4.7).

The FRM stream is produced by the two shift registers SHR0 and SHR1, that are loaded
alternatively with the words to be transmitted into the FRM channel (coming from the Frame
Builder through the FDC_in input and from the TX Buffer through the word_in input) and
alternatively are shifted out in the FRM part of each clk40 cycle. In principle, a single shift register
for the FRM stream could have been used, but in the 320 and 640 Mbit/s configurations the
transmission of a word can finish in the FRM part of the clk40 cycle and so the shift register should
be loaded with the new word while the shifting is ongoing: this can cause timing problems that can
be eliminated with the choice of using two shift registers, and loading one of them while the other is
being shifted out and vice versa.

The source of the FRM stream is chosen between SHR0 and SHR1 by the mux controlled by the
sel_shr signal. This latter also determines, together with the sel_THS signal, the intervals in which
the two shift registers are enabled to shift: the shift enable for SHR0 (shift_en_shr0) is high when
sel_THS is low (i.e. in the FRM part of the clk40 cycle) and sel_shr is low (i.e. when SHR0 is
selected as the source of the FRM stream), while the shift enable for SHR1 (shift_en_shr1) is high
when sel_THS is low and sel_shr is high (i.e. when SHR1 is the source of the FRM stream).

The loading of SHR0 and SHR1 is controlled by the load enable signals load_shr0 and load_shr1,
that are generated from the HDR_cmd and Read_TX_Buf inputs. At the beginning of a frame
transmission, a clk40 cycle-long pulse arrives on the HDR_cmd input: from this pulse a clk_tx
cycle-long pulse is obtained by AND-gating it with the THS_busy signal generated by the THS load
Control block (see its description below), and this “shrunk” HDR command (HDR_cmd_shrk)
causes the loading of both SHR0 and SHR1. SHR1 is loaded with the first word of the payload
(from the word_in input) while SHR0 is loaded with the FDC field coming from the FDC_in input
since the mux M1, that selects the input of SHR0 between FDC_in and word_in, is controlled by
the HDR_cmd signal and at this time HDR_cmd is high. Then, during the frame transmission, the
Frame Builder issues a Read_TX_Buf command for each word that must be transferred from the
TX Buffer to the Serializer: in the Serializer the clk40 cycle-long pulse on the Read_TX_Buf input
is first narrowed by the Pulse Shrinker (see its description below) to create a clk_tx cycle-long pulse
(the signal load_shr), and this latter is combined with the sel_shr signal to create two load command
signals for SHR0 and SHR1 (the upper inputs of the two OR gates) that alternate at each successive
frame word transferred from the TX Buffer to the Serializer.

The signal sel_shr is generated by the FSM Ser_Control, that uses the Bit Counter (BIT_CNT) to
determine the end of the transmission of the FDC field and of each word of the frame. The Bit
Counter reset is commanded by Ser_Control, and its enable is the inversion of the sel_THS signal
(sel_FRM) to have it counting only the bits that are transmitted into the FRM channel of the output
stream.

 92

4 VHDL modeling and simulation

The D-type flip-flop STP_FF is used to generate the stop command for SER_CTRL: the stop
signal is set to ‘1’ when the stop_in input goes high, and is then reset when a HDR_cmd arrives.
Indeed the stop_in command, generated by the Frame_Builder, must be extended to guarantee the
proper operation of SER_CTRL in all cases (see SER_CTRL description).

The delay_HDR output signal (that is used by the Frame Builder to determine the moment at
which a HDR command can be sent) is generated by means of the flip-flop DH_FF and the
following OR gate: the arrival of a HDR_cmd sets the flip-flop, that is then reset when the
Serializer is transmitting the third last bit of the last word of the frame (condition (stop = ‘1’ OR
stop = ‘1’) AND countB = N_WORD-3): therefore, the DH_FF output (delay_HDR_0 signal) is set
to ‘1’ at the beginning of a frame and is reset almost at its end in a moment such that, for N_WORD
= 16 and in all the cases of tx speed and frame length, delay_HDR_0 is low around the rising edge
of clk40 at which a possible new HDR command must be sent by the Frame Builder to start a new
frame transmission, back-to-back with the preceding. To obtain the actual delay_HDR output, the
delay_HDR_0 signal is then OR-gated with the THS_busy signal coming from the THS_load_ctrl
block, so that the Frame Builder is forced to delay a HDR generation also if a preceding HDR or
SYN transmission is not completed. Indeed, as seen in the description of the THS_Scheduler, it is
possible that a SYN is generated one or two clk40 cycles before the moment in which the Frame
Builder would produce a HDR command, and thus in this case the HDR generation must be
delayed; additionally, in the case tx speed = 640 Mbit/s and with a frame consisting in only one
word, the frame transmission is completed in two clk40 cycles, i.e. one cycle before the completion
of the HDR sequence transmission: the new HDR command generation must be delayed also in this
situation, and this is done again by means of the delay_HDR signal.

A more detailed description of the internal blocks of the Serializer follows.

4.2.5.1 THS load controller

Fig. 4.29 – Symbol of THS_load_ctrl.

Name Direction # Bits Active level Description
sel_THS IN 1 high Signal coming from the sel_THS Generator: identifies the

THS channel bits inside each clk40 period.
THS_cmd IN 1 high Signals that a TRG, HDR or SYN command is active.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input (connected to clk_tx).
load_THS OUT 1 high Load command for the THS shift register.
THS_busy OUT 1 high Signals that the transmission of a THS sequence is ongoing.

Table 4.19 – Description of input and output terminals of THS_load_ctrl.

The THS commands arriving to the Serializer from the THS Scheduler are one clk40 period long,
so if the THS_cmd was used as the load command for the THS shift register this latter would be
blocked for a clk40 cycle without shifting out properly the loaded sequence: the THS load
controller generates a 1-clk_tx long load command for the correct operation of the THS shift

 93

4 VHDL modeling and simulation

register when a THS command arrives. The internal architecture of this component is shown in Fig.
4.30:

Fig. 4.30 – Internal block diagram of THS_load_ctrl.

The rst_L input clears the content of both the D flip-flop (DFF) and the counter (CNT). When
rs

e case
tx

t_L is inactive and a ‘1’ on the THS_cmd input is sampled on the rising edge of the clock, the
DFF sets its output to ‘1’ and thus the counting of CNT is enabled during the THS intervals of the
transmission, i.e. when sel_THS is high. The load_THS output initially follows the THS_cmd to
‘1’, but then it is reset to ‘0’ when the DFF output is set: hence, the THS shift register will be
loaded with the THS sequence only at the first clk_tx edge after the THS_cmd arrival, as it’s
correct. When the count reaches N_THS-1, where N_THS is the number of bits of the THS
sequences, the DFF and the counter are reset and the circuit returns into its initial state, waiting for
the next THS_cmd. The THS_busy output, being the DFF output, is high during the counting of the
N_THS transmitted bits, and so it means that the transmission of a THS sequence is ongoing.

The behavior of the THS_load_ctrl on response of a THS_cmd is shown in Fig. 4.31 (for th
 speed = 320 Mbit/s, as an example).

Fig. 4.31 – Simulation showing the behavior of THS_load_ trl when a THS command arrives (tx speed = 320 Mbit/s). c
“Reg” is the content of the THS shift register.

 94

4 VHDL modeling and simulation

4.2.5.2 THS command selector

Fig. 4.32 – Symbol of THS_cmd_selector.

Name Direction # Bits Active level Description
TRG_cmd IN 1 high TRG command.
HDR_cmd IN 1 high HDR command.
SYN_cmd IN 1 high SYN command.
TRG IN 6 - TRG sequence from TRG_reg.
HDR IN 6 - HDR sequence from HDR_reg..
SYN IN 6 - SYN sequence from SYN_reg..
THS_seq OUT 6 - Selected THS sequence to be loaded in THS shift register.

Table 4.20 – Description of input and output terminals of THS_cmd_selector.

This component is a combinatorial logic that assigns to the THS_seq output the value of the TRG,
HDR, or SYN input depending on which of the 3 input command (TRG_cmd, HDR_cmd or
SYN_cmd) is active. If more than a input command is active the priority order is TRG, HDR, SYN.

4.2.5.3 Pulse Shrinker

Fig. 4.33 – Symbol of Pulse_shrk.

Name Direction # Bits Active level Description
pulse_in IN 1 - One-clk40-cycle long input pulse.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input (connected to clk_tx).
pulse_out OUT 1 - One-clk_tx-cycle long output pulse.

Table 4.21 – Description of input and output terminals of Pulse_shrk.

 95

4 VHDL modeling and simulation

This block, clocked by clk_tx, has the task of generating a one-clk_tx cycle long pulse (pulse_out)
when a one-clk40 cycle long pulse arrives on its input pulse_in. It’s internal architecture, similar to
the one of THS load controller, is shown in Fig. 4.34:

Fig. 4.34 – Internal block diagram of THS_load_ctrl.

The operation is similar to the one of the THS load controller, with the difference that here the
sel_THS signal doesn’t take part in the enabling of the counter: when rst_L is inactive and a high
level of the pulse_in input is sampled on the rising edge of the clock, the DFF sets its output to ‘1’
thus enabling the N_CYC_b-bit counter (whose modulus is N_CYC). The pulse_out output initially
follows the pulse_in to ‘1’, but after one clk_tx cycle (when the DFF output is set) it is reset to ‘0’
and all the circuit becomes insensitive to the value of pulse_in for N_CYC-1 bits, i.e. for a clk40
cycle. Finally, when the count reaches N_CYC-2 the DFF and the counter are reset and the circuit
returns into its initial state, waiting for the next pulse on the input (that can arrive at the next clk40
cycle, back to back with the preceding pulse).

Fig. 4.35 shows an example of the operation of the Pulse Shrinker for tx speed = 160, 320 and 640
Mbit/s:

 96

4 VHDL modeling and simulation

Fig. 4.35 – Simulation showing the behavior of Pulse_shrk for tx speed = 160 (a), 320 (b) and 640 Mbit/s (c)..

4.2.5.4 Ser_Control

Fig. 4.36 – Symbol of Ser_Control.

Name Direction # Bits Active level Description
HDR_cmd IN 1 high Connected to HDR_cmd_shrk (shrunk version of HDR_cmd).
stop IN 1 high Stop signal generated by STP_FF.
count_B IN 4 - Output of Bit Counter.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input, connected to the transmission clock (clk_tx).
sel_shr OUT 1 - Selects the shift register (SHR0 or SHR1) to enable for

serialization.
rst_BCNT_L OUT 1 low Reset command for the Bit Counter.

Table 4.22 – Description of input and output terminals of Ser_Control.

 97

4 VHDL modeling and simulation

This entity is a Mealy machine that controls the operation of the shift registers SHR0 and SHR1,
using the Bit Counter (BIT_CNT) to determine the end of the transmission of FDC and of each
frame word. The state diagram of this FSM is shown in Fig. 4.37:

Fig. 4.37 – State diagram of Ser_Control.

At the reset (rst_L input = ‘0’) the machine goes into the IDLE state, resetting the bit counter
(r

detected on the HDR_cmd input, the FSM moves to the FDC0 state to
tr

unt reaches N_FDC-1 (condition FDC_END), meaning that the FDC sequence
h

‘1’) and the bit counter is reset.

st_BCNT_L <= ‘0’).
When a logic ‘1’ is
ansmit the FDC field by means of the shift register SHR0, which is selected as the source of the

FRM stream (sel_shr <= ‘0’); as described above, at this time SHR0 is loaded with the value of the
FDC_in input and SHR1 is loaded with the value of the word_in input, that is the first word of the
frame (or its label). While the FSM is in the FDC0 state the transmission of the FDC sequence (that
has been loaded in the SHR0 during the THS part of the first clk40 cycle of the frame) goes on, and
the bit counter counts the bits transmitted in the FRM channel, being enabled by the negation of the
sel_THS signal.

When the bit co
as been transmitted, the FSM goes to the state WORD1 to transmit the first word of the frame

from SHR1: hence, on this transition SHR1 is selected as the source of the FRM stream (sel_shr <=

 98

4 VHDL modeling and simulation

When the bit count reaches N_WORD-1 (condition W_END), meaning that the first word has
been transmitted, if the frame is not finished (i.e. if stop = 0) Ser_Control goes to the state WORD0
to

ves to Ser_Control through its stop_in input and in turn activates the stop signal by means
o

 transmit the second word of the frame that has been loaded into SHR0 by the Frame Builder
during the transmission of the first word: on this transition sel_shr is set to ‘0’ again and the bit
counter is reset (if the modulus of the counter is set equal to N_WORD, it resets itself at this point,
but the situation can arise in which the bit counter reaches its limit value N_WORD-1 at the
beginning of the THS interval: in this case, if Ser_Control didn’t reset the counter, its value would
be stuck at N_WORD-1 for all the duration of the THS interval, causing Ser_Control to bounce
repeatedly between the states WORD0 and WORD1). When the second word has been completed,
the FSM returns to the state WORD1 to transmit the third word, and so on until the end of the
frame.

Once the last word of the frame is reached, the Frame Builder activates the stop_SER command
that arri

f the flip-flop STP_FF. If the last word transmission terminates inside the FRM interval of a clk40
cycle, the condition (W_END) AND (stop = ‘1’) AND (HDR_cmd = ‘0’) will become true and so
Ser_Control goes back to the IDLE state. However, depending on the tx speed and the number of
words of the frame, the situation can arise in which the frame transmission is completed exactly at
the end of the FRM interval of a clk40 cycle: as shown in Fig. 4.38, this happens at tx speed = 160
Mbit/s with frames consisting in any number of words, at tx speed = 320 Mbit/s with frames
consisting in k·3 words (with k positive integer), and at tx speed = 640 Mbit/s with frames
consisting in 1 + k·7 words (with k positive integer).

Fig. 4.38 – Possible situations of transmission being completed at the end of the FRM interval of a clk40 cycle.

 99

4 VHDL modeling and simulation

In this situation, the last bit of the last word of the frame is transmitted during the first clk_tx
c

d by the THS Scheduler: in this case Ser_Control will find the condition

 Scheduler (because of an upcoming TRG): in this case

tend to the first clk_tx cycle of the new clk40
c

utputs, sel_shr is registered while rst_BCNT_L is not: this assures that at the
m

, of the
e

ycle of a new clk40 cycle. If there aren’t more frames to be transmitted, the stop signal will
continue to be high and Ser_Control goes back to the IDLE state. If on the contrary a new frame has
to be transmitted (back-to-back frames), the Frame Builder will issue a HDR in this clk40 cycle,
and two cases can occur:
1) the HDR is not delaye

(W_END) AND (HDR_cmd = ‘1’) to be true and will move directly to the state FDC0 to begin
the transmission of the new frame;

2) the HDR is delayed by the THS
Ser_Control will find the condition (W_END) AND (stop = ‘1’) AND (HDR_cmd = ‘0’) to be
true and will go back to the IDLE state, to wait for the transmission of the frame to be started by
the Serializer when the HDR will be scheduled.

In the second case the stop command needs to ex
ycle, or Ser_Control would not go back to IDLE: this explain the operation of the STP_FF flip-

flop in the Serializer.
Of the Ser_Control o
oment of the state change of Ser_Control (from FDC0 to WORD1 and then between WORD1 and

WORD0) the signal sel_shr changes state too, and the Bit Counter starts again from count 0.
Fig. 4.39, Fig. 4.40 and Fig. 4.41 show an example, for tx speed = 160, 320 and 640 Mbit/s

volution of the Ser_control signals at the end of a frame transmission, with a new frame
transmission following immediately after or delayed by a TRG. Some FB_Control2 signals are also
reported, to show the joint behavior of the Frame Builder and the Serializer during the frame
transmission.

 100

4 VHDL modeling and simulation

Fig. 4.39 – Simulation showing the evolution of the Ser_control signals at the end of a frame transmission, with a new
frame transmission following immediately after (a) and delayed by a TRG (b); tx speed = 160 Mbit/s. The two signals
“reg” are the content of SHR0 and SHR1.

 101

4 VHDL modeling and simulation

Fig. 4.40 – Simulation showing the evolution of the Ser_control signals at the end of a frame transmission, with a new
frame transmission following immediately after (a) and delayed by a TRG (b); tx speed = 320 Mbit/s. The two signals
“reg” are the content of SHR0 and SHR1.

 102

4 VHDL modeling and simulation

Fig. 4.41 – Simulation showing the evolution of the Ser_control signals at the end of a frame transmission, with a new
frame transmission following immediately after (a) and delayed by a TRG (b); tx speed = 640 Mbit/s. The two signals
“reg” are the content of SHR0 and SHR1.

 103

4 VHDL modeling and simulation

4.3 FF_RX

The receiver interface FF_RX has the logic internal architecture described in section 3.2.2; the
Active-HDL block diagram for this entity, showing also the internal signals that connect the various
blocks, is reported in Fig. 4.42.

Fig. 4.42 – Block diagram of FF_RX.

Besides the five blocks Deserializer, THS Detector, Synchronizer, Frame Analyser and RX Buffer
that were described in the functional architecture, two auxiliary blocks are present: sel_THS
Generator RX (entity sel_THS_gen_RX) that has the task of generating the sel_THS signal needed
by Deserializer and the THS_valid signal needed by THS Detector (see section 4.3.2), and TRG
Stretcher, that generates a one-clk40-cycle long pulse (TRG_out output) for TRG pattern revealed
by THS Detector. The internal components of FF_RX are described in more detail hereafter.

4.3.1 Deserializer

Fig. 4.43 – Symbol of Serializer.

 104

4 VHDL modeling and simulation

Name Direction # Bits Active level Description

DAT_in IN 1 - DAT serial stream input.
HDR IN 1 high HDR signal from THS Detector.
sel_THS_del IN 1 high Delayed sel_THS signal (from sel_THS_gen_RX).
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input, connected to the transmission clock (clk_tx).
word_out OUT 16 - Parallel data output for Frame Analyser and RX Buffer.
THS_out OUT 6 - THS bits for THS Detector.
sel_shr OUT 1 - Signal directed to Frame Analyser to indicate which shift

register is in use inside the Deserializer.
FDC_rcv OUT 1 high Signal directed to Frame Analyser to indicate that the FDC

field of a frame is being received by Deserializer.

Table 4.23 – Description of input and output terminals of Deserializer.

The Deserializer receives the DAT serial bit stream (DAT_in) and converts it in parallel form,
providing the THS bits (THS_out) for the THS Detector and the frame words and FDC field
(word_out) for the RX Buffer and the Frame Analyzer. The block diagram is pictured in Fig. 4.45:

The block of SISO and SISO/PO registers R1, …, R5 constitutes the shift register (let’s call it
shift register A) that has the task of providing the THS bits in parallel form for the THS detector,
and is driven by the clk_tx shifting in a new DAT stream bit at each clock edge. In the hypothesis of
THS sequences consisting in 6 bits (in 3 successive clk40 cycles, 2 bits per cycle), the registers R1,
R3 and R5 have a dimension of 2 bits each one and their parallel output, as a whole, makes up the
THS output; R2 and R4, instead, have only the function of appropriately separating the THS bits of
the incoming DAT stream and have a dimension that depends on the tx speed, being equal to the
N_FRM parameter (passed as generic to the Deserializer entity): N_FRM = 2, 6, 14 for tx speed =
160, 320, 640 Mbit/s respectively. The complete shift register A, thus consisting in 10, 18 or 34
bits, is shown in Fig. 4.44 for the three possible tx speeds:

Fig. 4.44 – Shift register A of Deserializer in the three different architectures (for tx speed = 160, 320 and 640 Mbit/s).

 105

4 VHDL modeling and simulation

Fig. 4.45 – Internal block diagram of Deserializer.

 106

4 VHDL modeling and simulation

When a HDR sequence is present in the THS bits, the THS detector recognizes it and notifies the

event to the Deserializer through its HDR input: at this point, the Deserializer must start collecting
the FDC field and the words of the incoming frame and making them available in parallel form for
the Frame Analyzer and the RX Buffer. Since these latter blocks work with the 40 MHz clock, each
deserialized word must be available for at least a clk40 cycle: this dictates the need of at least one
buffering register in the Deserializer to hold the last received word stable for some time while the
next word is being shifted in from the DAT stream at one bit per clk_tx cycle. To minimize the total
number of flip flops in the registers, one could think to add as buffer a single register, of dimension
= N_WORD, in addition to the shift register A (extended to have at least N_WORD bits, excluding
the THS locations), using the latter to deserialize the words and transferring each word in a parallel
way from the shift register A to the buffer register. However, in the cases tx speed = 320 and 640
Mbit/s this approach would imply the need of quite complex combinatorial logic to move the data
from the shift register A to the buffer register, since the words appear in the shift register A in
different positions: for example, in the case tx speed = 640 Mbit/s, if at a certain clk40 cycle a word
is present in the FRM bits 0 to 15 of the shift register A (the FRM bits of the shift register A are the
ones represented in white in Fig. 4.44), then at the next clk40 cycle the new word occupies the FRM
bits 2 to 17 and so on, as shown in Fig. 4.46:

Fig. 4.46 – Positions occupied by frame words in shift register A in successive clk40 cycles, in the case tx speed = 640
Mbit/s.

Therefore, to avoid the use of complex combinatorial logic and the probable associated timing
problems, an architecture was chosen with two buffer shift registers, SHR0 and SHR1, that are
alternatively loaded with the serial output of the shift register A: when SHR0 is loaded, SHR1
maintains its data stable to be read by the Frame Analyzer or by the RX Buffer, and vice versa. The
alternate writing of SHR0 and SHR1 is controlled by the state machine DES_Control by means of
the signal sel_shr; to generate the effective enable signals for the shift registers, en_shr0 and
en_shr1, sel_shr is then AND gated with the signal sel_THS_del (delayed sel_THS) so that SHR0
and SHR1 actually shift in only the FRM bits of the input DAT stream. The Des_control FSM is
started by the arrival of a pulse on the HDR input from the THS_Detector, indicating the beginning
of a new frame in the DAT stream, and uses the Bit Counter BIT_CNT to determine the moment
when a word has been written in SHR0 [SHR1] to switch sel_shr and start writng a new word in
SHR1 [SHR0]: the Bit Counter is enables by the same signal sel_THS_del to count only the bits
that are actually routed into SHR0 or SHR1.

In the Serializer block of the TX Interface, sel_THS is a signal that stays high during the THS part
of each clk40 cycle (2 bits) and low in the FRM part: in the Deserializer, to have SHR0 and SHR1
load the FRM bits of the DAT stream, their input could be connected to the leftmost FRM bit of the
shift register A using the sel_FRM signal (the inverse of the sel_THS signal) as shift enable for
SHR0 and SHR1. However, since the HDR pulse produced by the THS_detector occurs in the first
clk_tx cycle of the low period of sel_THS, i.e. the first clk_tx cycle of the high period of sel_FRM,

there would be no time for Des_Control to start the Bit Counter and begin the frame acquisition.
So, a one-clk_tx-cycle delayed version of sel_THS and sel_FRM, sel_THS_del and sel_FRM_del,
is used instead to enable SHR0/1 and the Bit Counter, and the same delay is introduced also into the

 107

4 VHDL modeling and simulation

data path from DAT_in to SHR0/1 by picking up the input of SHR0/1 from the THS bit 1 of the
shift register A. The resulting conceptual architecture is shown in Fig. 4.47, for the case of tx speed
= 320 Mbit/s as an example:

Fig. 4.47 – Conceptual architecture of Deserializer, in the case of tx speed = 320 Mbit/s.

The internal blocks of the Deserializer are described in more detail hereafter.

4.3.1.1 Des_control

Fig. 4.48 – Symbol of Des_Control.

Name Direction # Bits Active level Description
HDR IN 1 high HDR signal from THS Detector.
count_B IN 4 - Output of Bit Counter.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input (connected to clk_tx).
sel_shr OUT 1 - Selects which shift register (SHR0 or SHR1) is enabled for

deserialization.
rst_BCNT_L OUT 1 low Reset command for the Bit Counter.
FDC_rcv OUT 1 high Signal directed to Frame Analyser to indicate that the FDC

field of a frame is being received by Deserializer.

Table 4.24 – Description of input and output terminals of THS_load_ctrl.

This block is a Mealy FSM that has the task of controlling, by means of the sel_shr signal, the
alternate loading of SHR0 and SHR1 with the words of the incoming frame. Through the active low
reset signal rst_BCNT_L this FSM also controls the Bit Counter, that is used to count the bits that
enter SHR0 and SHR1. Its state diagram is reported in Fig. 4.49:

 108

4 VHDL modeling and simulation

Fig. 4.49 – State diagram of Des_Control.

The FSM begins at the reset in the state IDLE, resetting the Bit Counter (rst_BCNT_L <= ‘0’).
When a HDR arrives (HDR = ‘1’), the FSM goes to the FDC0 state starting the Bit Counter
(rst_BCNT_L <= ‘1’) that counts the bits of the FDC field of the frame that are shifted in SHR0
(sel_shr <= ‘0’). When all the FDC field has been written in SHR0 (condition FDC_END), the FSM
moves to the state WORD1 resetting the Bit Counter and enabling SHR1 to shift in the bits of the
first word of the frame; during the loading of the word in SHR1, the FDC field in SHR0 is stable
and can be read by the Frame Analyzer. As soon as the first word is completed (condition W_END)
the Des_Control goes to the WORD0 state switching sel_shr to 0 again to write the second word in
SHR0 (the Bit Counter resets itself automatically when the count reaches N_WORD, so
Des_control doesn’t need to pull down rst_BCNT_L). When the second word is finished, the FSM
goes back to WORD1 to deserialize the third word and so on. This loop between the states WORD0
and WORD1 is interrupted when a new HDR arrives, marking the beginning of a new frame: when
this happens, the FSM goes to the state FDC0 or FDC1 whether the state occupied at the moment of
the HDR arrival was WORD0 or WORD1: doing so, the last word of the preceding frame can be

 109

4 VHDL modeling and simulation

Fig. 4.50 – Simulation showing the evolution of the Des_Control signals at the passage between two consecutive
frames; tx speed = 160 (a), 320 (b) and 640 Mbit/s (c).

 110

4 VHDL modeling and simulation

kept stable for at least one clk40 cycle because the shift register where it was written is not the one
where the new FDC is written now. From the FDC0 or FDC1 state the FSM then moves to WORD1
or WORD0, respectively, and the cycle for the acquisition of the new frame is started.

The output FDC_rcv (FDC receiving) is pulled up when Des_Control is in the state FDC0 or
FDC1: it signals to the Frame Analyser that a FDC is being received (see Frame Analyser
description).

An example of the evolution of the Des_Control signals at the moment of passage between two
consecutive frames is shown in Fig. 4.50.

4.3.2 THS Detector

Fig. 4.51 – Symbol of THS_Detector.

Name Direction # Bits Active level Description
THS_in IN 6 - THS bits from Deserializer.
sync IN 1 high Signal generated by Synchronizer: indicates acquired

synchronization.
THS_valid IN 1 high Signal generated by sel_THS_gen_RX: defines the moments

when the input signal THS_in contains the THS channel bits.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input, connected to the transmission clock (clk_tx).
HDR OUT 1 high Signals that a HDR has been detected in the THS channel.
TRG OUT 1 high Signals that a TRG has been detected in the THS channel.
THS_det OUT 1 high Signals that a TRG, HDR or NOP sequence has been detected

in the THS channel. It is directed to Synchronizer.

Table 4.25 – Description of input and output terminals of THS_Detector.

The THS_Detector checks the THS bits of the received DAT stream (provided by Deserializer)
and detects the presence of TRG, HDR and NOP sequences, generating the HDR, TRG, and
THS_det output signals. Its internal architecture is shown in Fig. 4.52.

When a TRG, HDR or NOP exact (i.e. without bit-flips) sequence is present in the THS_in input
(coming from the Deserializer), the TRG_det, HDR_det or NOP_det internal signal, respectively, is
pulled up (it has a one-clk_tx-cycle long pulse), and this in turn causes a pulse on the THS_det
output. When a TRG or HDR sequence with one bit-flip is present in the THS_in input, the
TRG_det_BF or HDR_trg_BF internal signal, respectively, is pulled up. When TRG_det or
TRG_det_BF is high (meaning that a TRG command is detected, exact or with one bit-flip), and
THS_valid and THS_enable are also high, the TRG output is pulled up for one clk_tx cycle. When
HDR_det or HDR_det_BF is high (meaning that a HDR command is detected, exact or with one
bit-flip), and THS_valid and THS_enable and sync are also high, the HDR output is pulled up for

 111

4 VHDL modeling and simulation

one clk_tx cycle. The filtering of HDR with the sync signal is done to avoid the start of frame
reception by the Frame Analyser due to detection of false HDR sequences while the receiver is not
synchronized on the THS channel.

The THS_valid signal is used to filter the TRG and HDR detection signals validating only the
ones that actually belong to the THS channel: THS_valid is high only in the 4th clk_tx cycle (160,
320 or 640 MHz) of each clk40 cycle, as in that clk_tx cycle the THS_out output of the Deserializer
actually contains the THS channel bits. The THS_enable signal, produced by the THS_enable
generator, is pulled down when a TRG or HDR sequence (confirmed by THS_valid) is found and
set to 1 again after 3 clk40 cycles, to disable the possible recognition of spurious sequences while
the last detected one is still to be completed in the THS channel.

Fig. 4.52 – Internal architecture of THS_detector.

4.3.3 Synchronizer

Fig. 4.53 – Symbol of Synchronizer.

 112

4 VHDL modeling and simulation

Name Direction # Bits Active level Description
THS_det IN 1 high Signal coming from THS Detector.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input, connected to the transmission clock (clk_tx).
clk_out OUT 1 - 40 MHz reconstructed clock.
sync OUT 1 high Signals acquired synchronization.

Table 4.26 – Description of input and output terminals of Synchronizer.

The Synchronizer is the block that keeps the FF_RX synchronized with the THS channel of the
DAT stream, reconstructing the 40 MHz clock with the correct phase from the transmission clock
(CLK line). The internal architecture of Synchronizer comprises a Clock Splitter, 4, 8 or 16
Sync_Counters (depending on the tx speed configuration) and some combinatory logic arranged as
in the block diagram reported in Fig. 4.54, that shows the architecture for the case tx_speed = 160
Mbit/s (the architectures for tx_speed = 320 and 640 Mbit/s are analogous, with 8 and 16
Sync_Counters respectively).

The THS_det input (from the THS_Detector) activates one of the four Sync_Counters, enabling
its counting for a clk_in cycle, through the demultiplexer that switches the connection of the input
to a different output at every clk_in cycle, being controlled by the count output of the Clk_Splitter.
The overall operation is the same as each counter checked one of the four 2-bit channels of the input
stream, separated by 1 bit one from another, and counted the THS sequences appearing in that
channel.

Consider first an initial situation with all the Sync_Counters reset and the sync signal, that
indicates the obtained synchronization, being low. When the transmission starts one of the
Sync_Counter (say, the counter i, with i = 0,...,3) begins to detect real THS sequences on the THS
channel, while the other Sync_Counters can detect spurious sequences on the other channels. Every
time a Sync_Counter detects a THS sequence in the channels it controls, its internal count is
incremented: when one of the Sync_Counters (most likely the Sync_Counter i, being aligned with
the THS channel) reaches the value N2 it pulls up its set_sync output, that has the effect of setting
the sync signal (through the sync logic), and sets its sel output that in turn selects the output clock
clk_out as clk_split(i) through the clk_out selector: the Sync_Counter i has become the counter “in
charge”.

From this moment, each detection of a THS sequence by the Sync_Counter in charge will cause
that counter to pull down its clr_all_CNT_L output: this in turn will issue, through the 4-input AND
gate, a rst_all_CNT_L command that resets the count in all the non-in-charge Sync_Counters.

If any non-in-charge Sync_Counter reaches the value N1 with its count it pulls up its reset_sync
output, that commands the sync logic to reset the sync output in order to signal the (possible) lost of
synchronization. After this, the first Sync_Counter that reaches the threshold N2 (it can be the in-
charge one or the others) becomes the new in-charge counter, so it set its sel output and sets the
sync signal again by means of its set_sync output: this has also the effect, through the leftmost OR
gate, of activating the rst_all_FF_L command that resets the sel output in all the other
Sync_Counters.

The description of the inner blocks of Synchronizer follows.

 113

4 VHDL modeling and simulation

Fig. 4.54 – Internal block diagram of Synchronizer.

 114

4 VHDL modeling and simulation

4.3.3.1 Clock Splitter

Fig. 4.55 – Symbol of Clk_Splitter.

Name Direction # Bits Active level Description
clk_in IN 1 - Clock input (connected to clk_tx).
rst_L IN 1 low Synchronous reset.
clk_out OUT N_CYC - 40 MHz output clocks.
count OUT N_CYC_b - Output of internal counter, directed to the demux inside the

Synchronizer.

Table 4.27 – Description of input and output terminals of Clk_Splitter.

This entity takes an input clock (clk_in) and, by counting its rising edges, generates N output
clocks with clk_out_period = clk_in_period·N and phase shifted of one clk_in cycle one from
another. The count output has N_COUNT bits and counts the edges of clk_in. If the rst_L input is
activated, the count is reset to 0 and all the clk output are set to 0.

The values of N and N_COUNT are passed as generics (integer) to the entity Clk_Splitter: their
actual values are N_CYC and N_CYC_b respectively.

4.3.3.2 Sync Counter

ig. 4.56 – Symbol of Sync_Counter. F

This entity has the following generics:
- CNT_mod (integer): to be passed to the Counter_N as its modulus;
- CNT_b (integer): to be passed to the Counter_N as its number of bits;
- N1 (integer): first threshold;
- N1 (integer): second threshold.
The internal architecture is shown in Fig. 4.57.
When the CNT_en input is high at the rising edge of the clock (clk input, that is connected to the

transmission clock) the counter CNT increments its count value. When the count is equal to N2, the
N2_reach signal is pulled up which in turn sets the flip-flop FF and thus the sel output: the
Sync_Counter becomes in this way the counter in charge. The N2_reach signal also coincides with

 115

4 VHDL modeling and simulation

the set_sync output, so the reaching of the threshold N2 has also the effect of setting the sync output
of the Synchronizer. If the present Sync_Counter is in charge (sel output high), each pulse on the
CNT_en input generates also a negative pulse on the clr_all_CNT_L output command that has the
effect of resetting all the other Sync_Counters. In fact, in a Sync_Counter that is not in charge the
signal sel is low and thus the rst_CNT_L input active low command effectively resets the counter
through the OR and the AND gates.

Name Direction # Bits Active level Description

CNT_en IN 1 high Signal coming from the sel_THS Generator: identifies the
THS channel bits inside each clk40 period.

rst_CNT_L IN 1 low Reset command for the internal counter.
rst_FF_L IN 1 low Reset command for the internal flip-flop.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input (connected to clk_tx).
sel OUT 1 high Selection output.
set_sync OUT 1 high Commands the setting of sync.
reset_sync OUT 1 high Commands the resetting of sync.
clr_all_CNT_L OUT 1 low Reset command for all other counters.

Table 4.28 – Description of input and output terminals of Sync_Counter.

Fig. 4.57 – Internal block diagram of Sync_Counter.

The flip-flop FF can be reset, thus removing the Sync_Counter from its in-charge condition, by

the active low input rst_FF_L that is activated when one of the Sync_Counters in the Syncronizer
reaches the threshold N2 (see Synchronizer diagram): if the Sync_Counter reaching N2 is not this
Sync_Counter, the signal N2_reach will be low too at that time and therefore the rst_FF_L
command will effectively reset the FF and thus the sel output.

When the count signal is equal to N1, the N1_reach signal is pulled up, which in turn activates the
reset_sync output if the sel output is not set, i.e. if this Sync_Counter is not the counter in-charge:

 116

4 VHDL modeling and simulation

this way, the sync output of the Synchronizer is reset. The active low rst_L input resets both the
counter CNT and the flip-flop FF.

Fig. 4.58 shows two examples of the evolution of the Synchronizer signals in the case tx_speed =
320 Mbit/s:

Fig. 4.58 – Simulation showing the evolution of the Synchronizer signals (tx_speed = 320 Mbit/s) at the beginning of
the transmission (first sync lock acquired) (a) and after the loss of sync lock due to a bit-flip on the CLK line
(clk_bitflip signal going high) (b): the threshold are set as N1 = 4, N2 = 7.

 117

4 VHDL modeling and simulation

4.3.4 Frame Analyser

Fig. 4.59 – Symbol of Frame_Analyser.

Name Direction # Bits Active level Description
FDC_rcv IN 1 high Signal generated to by Deserializer to indicate that the FDC

field of a frame is being received.
sel_shr IN 1 - Signal generated to by Deserializer to indicate which shift

register is in use.
word_in IN 16 - Input for FDC data coming from Deserializer.
Get_Data IN 1 high Get_Data input of FF_RX; directed to FA_Control2 inside the

Frame Analyser.
rst_L IN 1 low Synchronous reset.
clk IN 1 - Clock input, connected to the 40 MHz clock (clk40).
write_word OUT 1 high Write command for RX Buffer.
Data_Valid OUT 1 high Data_Valid output of FF_RX (see Table 3.2).
Data_Type OUT 1 - Data_Type output of FF_RX (see Table 3.2).
Label_On OUT 1 high Label_On output of FF_RX (see Table 3.2).
Last_Frame OUT 1 high Last_Frame output of FF_RX (see Table 3.2).
Frame_Lost OUT 1 high Frame_Lost output of FF_RX (see Table 3.2).

Table 4.29 – Description of input and output terminals of Frame_Analyser.

The task of the Frame Analyser is to decode and store the Frame Descriptors of received frames,
to command the writing of the received frame words in the RX Buffer and to manage the delivery
of the frames stored in the RX Buffer to the outside world, through the Data_Valid/Get_Data
handshake. To simplify the interfacing with the RX Buffer and the external circuits, this block has
been designed so as to work with the 40 MHz clock; the internal architecture is shown in Fig. 4.60.

The operation of the Frame Analyser is managed by two state machines: FA_Control1 and
FA_Control2. FA_Control1 deals with the writing of the received frame words into the RX Buffer,
by means of the write_word command, and the storing of Frame Descriptors. Each Frame
Descriptor (FDC) received by the Deserializer, available at the input word_in, is decoded by the
Hamming Decoder, temporarily stored in the FD_reg register and finally saved in the FD_FIFO
when the reception of the frame is completed. The FD_reg register and each location of the
FD_FIFO are N_FD+1 bit long, since they contain the FD field and, in addition, a “Frame_Lost” bit
that comes from the error output of the FD Decoder (FD_err signal) and indicates that the frame has
not been received because its FDC was corrupted by a double-bit error.

 118

4 VHDL modeling and simulation

Fig. 4.60 – Internal block diagram of Frame_Analyser.

 119

4 VHDL modeling and simulation

During the reception of a frame, FA_Control1 uses the Word Counter n°1 (WORD_CNT1) to

count the received words thus being able to determine the frame’s end through the last_W1 signal:
this latter is obtained by comparing the word count (count_W1) with the Frame Length of the
currently received frame (FL1) available from the Frame Descriptor stored in the FD_reg.

FA_Control2 handles the reading of the frames stored in the RX Buffer by the external circuits:
when some Frame Descriptor is available in the FD_FIFO, FA_Control2 pulls up the Data_Valid
output to notify to the outside the presence of a frame to be delivered, and during the delivery of the
frame it uses the Word Counter n°2 (WORD_CNT2) to determine the ending of the frame
(similarly to last_W1, the last_W2 signal is now used for this purpose, obtained by comparing the
second word count (count_W2) with the Frame Length of the delivered frame (FL2) available from
the Frame Descriptor that is being read from the FD_FIFO). At the end of the frame, Data_Valid is
pulled down for at least one clk40 cycle to indicate the finish of the frame to the external reader,
and the FD_FIFO is read to look for possible other frames to be delivered. The frame reading
process can be put on hold by the external circuit by pulling down the Get_Data signal, thus
stopping the FA_Control2 state machine; the read command for the RX Buffer is obtained as
(Data_Valid AND Get_Data), so that a new word is read only when the external circuit is ready to
receive it.

A more detailed description of these components follows.

4.3.4.1 FA_Control1

Fig. 4.61 – Symbol of FA_Control1.

Name Direction # Bits Active level Description
FDC_rcv OUT 1 high Signal directed to Frame Analyser to indicate that the FDC

field of a frame is being received by Deserializer.
sel_shr IN 1 - Signal generated to by Deserializer to indicate which shift

register is in use.
last_W IN 1 high Last_W1 signal generated from the output of WCNT1.
FD_err IN 1 high Error signal from FD Decoder.
rst_L IN 1 low Synchronous reset.
clk IN 1 - 40 MHz input clock.
write_FD_reg OUT 1 high Write command for FD register.
write_FD_FIFO OUT 1 high Write command for FD FIFO.
write_word OUT 1 high Write command for RX Buffer.
en_WCNT OUT 1 high Count enable command for Word Counter 1.
rst_WCNT_L OUT 1 low Reset command for Word Counter 1.

Table 4.30 – Description of input and output terminals of FA_Control1.

 120

4 VHDL modeling and simulation

This block is a Mealy state machine that controls the Word Counter 1 and generates the write
commands for the FD_reg, the FD_FIFO and the RX Buffer. The state diagram is shown in Fig.
4.62:

Fig. 4.62 – State diagram of FA_Control1.

At the reset, the FSM goes to the IDLE state resetting the word counter (W_CNT1), and in this

state it waits for the signal FDC_rcv, that comes from the Deserializer and indicates, when it is
high, that a FDC is being received. When FDC_rcv becomes high, FA_Control1 moves to the state
WAIT_FDC: a frame reception is started in the Deserializer and so the FA_Control1 prepares to
begin its activity. When FDC_rcv is pulled down again, meaning that the reception of the FDC field
by the Deserializer is completed, FA_Control1 goes to the state WAIT_WORD0 or
WAIT_WORD1 whether the sel_shr signal (coming from the Deserializer as well) is 0 or 1, writing
the FD field into the FD_reg (write_FD_reg <= ‘1’). The FD field has been calculated in the
meanwhile by the Hamming Decoder from the FDC field, that is made available at the word_in
input of the Frame Analyser when FDC_rcv goes low. The sel_shr signal was used in the

 121

4 VHDL modeling and simulation

Deserializer to select the shift register to be loaded with the incoming bit stream: here sel_shr is
simply used to figure out the moments when each word has been completely received by the
Deserializer and is thus available for writing in the RX Buffer.

Supposing for the moment that FD_err = ‘0’ (i.e. the FDC has been decoded without errors), in
the state WAIT_WORD0 the FA_Control1 FSM waits for the reception of a word in the SHR0 of
the Deserializer to be completed: this is indicated by the transition of sel_shr from 0 to 1, so when
this happens the FSM moves into the state WAIT_WORD1 enabling the word counter to count a
word (en_WCNT <= ‘1’) and writing the received word in the RX Buffer (write_word <= ‘1’). The
same behavior is carried on in the state WAIT_WORD1, with the difference that here the transition
of sel_shr from 1 to 0 is awaited. In both the states WAIT_WORD0 and WAIT_WORD1, at the end
of the reception of a word (i.e. when sel_shr = 1 and 0, respectively), the last_W input (connected to
the last_W1 signal) and FDC_rcv are checked as well: if last_W is high and FDC_rcv is low,
meaning that the word that has been received is the last of the frame but the Deserializer is not
already receiving a new FDC, the FSM goes back to the IDLE state, writing the last word in the RX
Buffer and resetting the word counter; if instead FDC_rcv is high, indicating that the FDC of a new
frame is being deserialized, FA_Control1 goes directly to the state WAIT_FDC to start the new
frame reception.

If instead a double-bit error has been detected in the received FDC by the FD_Decoder, the input
FD_err will be high when the decoded FD is written into the FD_reg, that is, when FA_Control1
moves from the state WAIT_FDC to the state WORD0/1: if this is the case, FA_Control1 goes back
immediately to the IDLE state renouncing to the frame reception (no word is written into the RX
Buffer) but writing into the FDC_FIFO the FDC of the lost frame (with the Lost_Frame bit set).

The FA_Control1 outputs are not registered because in the case tx speed = 640 Mbit/s there is less
than two clk40 cycles of time for FDC and for each incoming word to be stored, and so the delay
introduced by the registering of the FA_Control1 output would not allow a correct functionality of
the Frame Analyser; at 160 and 320 Mbit/s, instead, the FA_Control1 outputs can be registered, and
in particular this would have the advantage of more time for the Hamming Decoder to perform its
calculation (from the moment when FDC is available at the Deserializer output to the moment when
FD is written in the FD_reg).

An example of the evolution of the FA_Control1 signals is shown Fig. 4.63:

 122

4 VHDL modeling and simulation

Fig. 4.63 – Simulation showing the evolution of the FA_Control1 signals at the end of a frame reception, with a new
frame reception following immediately after; tx speed = 160 (a), 320 (b) and 640 Mbit/s (c). The first signal named
“fifo_array” is the content of RX Buffer; the second is the content of FD_FIFO.

 123

4 VHDL modeling and simulation

4.3.4.2 FA_Control2

Fig. 4.64 – Symbol of FA_Control2.

Name Direction # Bits Active level Description
Frame_Ready IN 1 high Signals that the FDC_FIFO is not empty.
Get_Data IN 1 high Signals that the host is able to read a new word from the

word_out port
last_W IN 1 high Last_W2 signal generated from the output of WCNT2.
Frame_Lost IN 1 high LSB of signal FDC_FIFO_out: indicates that the current

Frame Descriptor is relative to a frame that has been lost due
to the corruption of its FDC.

rst_L IN 1 low Synchronous reset.
clk IN 1 - 40 MHz input clock.
Data_Valid OUT 1 high Data_Valid output of FF_RX (see Table 3.2).
read_FD_FIFO OUT 1 high Read command for FD FIFO.
en_WCNT OUT 1 high Count enable command for Word Counter 2.
rst_WCNT_L OUT 1 low Reset command for Word Counter 2.

Table 4.31 – Description of input and output terminals of FA_Control2.

This block is a Mealy machine that controls the Word Counter 2 and manages the handshake with
the external reader of the received frames. The state diagram is shown in Fig. 4.65.

At the reset, the FSM goes to the IDLE state resetting the word counter (W_CNT2), and in this
state it waits for the signal Frame_Ready to become high: Frame_Ready is the inversion of the
FD_FIFO empty output, so it indicates that at least one Frame Descriptor is present in the
FD_FIFO, and hence that a frame is present in the RX Buffer.

When Frame_Ready goes high, FA_Control2 moves to the state DELIV_FRAME (delivering
frame) pulling up Data_Valid to signal that a word is available at the RX Buffer for reading. Then,
as long as the frame delivering is not finished (last_W = 0) the FA_control2 remains in the state
DELIV_FRAME increasing the word counter if Get_Data is high (meaning that a word has been
read by the external circuit) or leaving it unchanged if instead Get_Data is low. When the frame
reading is completed (last_W = 1) the FSM returns to the IDLE state pulling down Data_Valid and
commanding a reading of the FD_FIFO, so that in the next clock cycle it will know, through the
Frame_Ready signal, if there is another frame to be delivered, in which case a new frame delivery
cycle is started by going to the DELIV_FRAME state again.

 124

4 VHDL modeling and simulation

Fig. 4.65 – State diagram of FA_Control2.

If the Frame Descriptor present in the FD_FIFO is relative to a frame that has been lost due to the

corruption of its FDC, the Frame_Lost signal will be high when FA_Control2 enters the state
DELIV_FRAME: in this case, provided that the host is ready to read (i.e. Get_Data is high),
FA_Control2 goes back to the IDLE state after just one cycle of permanence in the
DELIV_FRAME state, still issuing a read_FD_FIFO command to pass on to the next FD.
Therefore, the lost frame is indicated to the host by means of a one-clk40-cycle long Data Valid
pulse, with the Frame_Lost output being high at the same time. No word is read from the RX Buffer
in this case, since its read command is given by (Data_Valid AND Get_Data AND
NOT(Frame_Lost)) (see FF_RX block diagram).

Note that, since a FD is written into the FD_FIFO only when the reception of the relative frame is
completed, the delivery of a frame to the external user can go on without interruption by the Frame
Analyser because all the frame is already available in the RX Buffer.

An example of the evolution of the FA_Control2 signals during the delivery of a 7-words frame
followed by a 3-words frame is shown in Fig. 4.66.

 125

4 VHDL modeling and simulation

Fig. 4.66 – Simulation showing the behavior of FA_Control2 during the delivery of a 7-words frame followed by a 3-
words frame (tx speed = 320 Mbit/s).

4.3.4.3 FD Decoder

Fig. 4.67 – Symbol of FD_Decoder.

Name Direction # Bits Active level Description
FDC IN 12 - Coded Frame Descriptor.
FD OUT 12 - Decoded Frame Descriptor.
err OUT 1 high Signals a double bit error in FDC.

Table 4.32 – Description of input and output terminals of FD_Decoder.

This block performs the H(12,7) decoding of the received coded Frame Descriptor (FDC input)
reconstructing the transmitted FD (FD output). Single bit errors are corrected, while double bit
errors are signaled on the err output. Its architecture is defined by the decoding algorithm described
in section 2.3.1.1, in particular by equations (2.23) and by Table 2.2 and Table 2.3.

 126

4 VHDL modeling and simulation

4.3.5 sel_THS Generator RX

Fig. 4.68 – Symbol of sel_THS_gen_RX.

Name Direction # Bits Active level Description

clk40_RX IN 1 - 40 MHz reconstructed clock.
clk_tx IN 1 - Transmission input clock.
sel_THS OUT 1 high Identifies the THS channel bits inside each clk40 period.
sel_THS_del OUT 1 high sel_THS signal delayed by one clk_tx cycle: it’s directed to

Deserializer.
THS_valid OUT 1 high Signal directed to THS Detector: defines the moments when the

input signal THS_in contains the THS channel bits.

Table 4.33 – Description of input and output terminals of sel_THS_gen_RX.

This block uses the 40 MHz reconstructed clock (clk40_RX input) to generate the sel_THS_del
and THS_valid signals needed by Deserializer and the THS_Detector. The internal architecture is
shown in Fig. 4.69:

Fig. 4.69 – Internal block diagram of sel_THS_gen_TX.

The counter CNT, driven by clk_tx, is reset when clk40_RX is low, so it will start its counting
after the clk40 rising edge. The sel_THS output is high only when the count equals 1 or 2 (i.e. in the
second and third clk_tx cycle after the rising edge of clk40); by delaying sel_THS with the flip-flop
FF the sel_THS_del output is generated, and THS_valid is obtained as (sel_THS_del) AND
NOT(sel_THS), so it is high only in the fourth clk_tx cycle after the rising edge of clk40, that is the
time when a real THS sequence can be present in the THS_out output of the Deserializer.

A simulation on this block is shown in Fig. 4.70.

 127

4 VHDL modeling and simulation

Fig. 4.70 – Simulation showing the operation of sel_THS_gen_RX (tx speed = 640 Mbit/s).

4.3.6 TRG stretcher

Fig. 4.71 – Symbol of TRG_strch..

Name Direction # Bits Active level Description

TRG_in IN 1 high One-clk_tx-cycle long input pulse.
rst_L IN 1 low Synchronous reset.
clk40 IN 1 - 40 MHz input clock.
clk_tx IN 1 - Transmission input clock.
TRG_out OUT 1 high One-clk40-cycle long output pulse.

Table 4.34 – Description of input and output terminals of TRG_strch.

The task of this block is to generate a one-clk40-cycle long pulse for the TRG output in response
to each one-clk_tx-cycle long pulse that arrives on the TRG_in input. There are two different
internal architecture for entity TRG_strch: one for the 160 Mbit/s configuration (TRG_strch160)
and one for the 320 and 640 Mbit/s configurations (TRG_strch320_640).

The TRG_strch160 architecture is shown in Fig. 4.72. It simply consists of a D-flip-flop, clocked
by clk40; when a TRG_in pulse arrives from the THS detector (this occurs in the fourth 160 MHz
clock cyle of a clk40 cycle, and hence the high level of TRG_in is sampled by the rising edge of
clk40) the TRG_out signal is set, and is then pulled down again at the next clk40 positive edge,
when the QN signal resets the flip-flop. A simulation is shown in Fig. 4.73.

 128

4 VHDL modeling and simulation

Fig. 4.72 – Internal block diagram of TRG_strch160 architecture.

Fig. 4.73 – Simulation showing the operation of TRG_strch160 architecture.

The TRG_strch320_640 architecture is shown in Fig. 4.74. When a TRG_in pulse arrives from
the THS detector the first flip-flop (FF1) is set, so that at the next clk40 rising edge also the second
flip-flop (FF2) is set by Q1 being high. This in turn causes the reset of FF1 (by QN2 being low) at
the next clk_tx positive edge and consequently the reset of FF2, too, at the next clk40 positive edge.

A simulation is shown in Fig. 4.75.

Fig. 4.74 – Internal block diagram of TRG_strch320_640 architecture.

 129

4 VHDL modeling and simulation

Fig. 4.75 – Simulation showing the operation of TRG_strch320_640 architecture, for tx speed = 320 Mbit/s (a) and 640
Mbit/s (b) .

4.3.7 RX Buffer

RX Buffer is the FIFO memory that stores the received frame words awaiting to be delivered to
the receiver host. It is realized with a FIFO_N_D entity (see section 4.1.1): the write command is
provided by the Frame Analyser, while the read command is obtained as Data_Valid AND
Get_Data AND NOT(Frame_Lost), so that a new word is actually read when the Frame Analyser is
delivering a not corrupted frame (i.e. when Data_Valid is activeand Frame_Lost is not) and the host
is able to read the word (Get_Data active). It is clocked with the 40 MHz clock (clk40).

 130

4 VHDL modeling and simulation

4.4 Test bench

To test the functionality of the transmitter-receiver system, a VHDL test bench was created with
the structure shown in Fig. 4.76:

Fig. 4.76 – Architecture of the test bench for FF_TX-FF_RX.

The module named TX Host Emulator (TX_Host_Em) generates trigger commands and data
packets for the FF_TX interface, and produces two text files listing the generated triggers and
packets (TX_TRG_file and TX_Pkt_file); the RX Host Emulator (RX_Host_Em) reads TRGs and
data packets outputted by FF_RX and writes two text files listing the received triggers and packets
(RX_TRG_file and RX_Pkt_file); both these modules are clocked by the 40 MHz clock (clk40) and
their operation is synchronous with this clock. TX_Host_Em can generate triggers and data packets
using an internal random generator or reading an input text file (Hit_file), originated from physics
simulations, that describes particle hits on a sensor. At the end of the test, the TX files and the RX
files are compared to verify the correct operation of the link. Transmission errors corrupting bits on
the DAT line and the CLK line are simulated by a Bit-flip insertion block: bit-flips on the DAT line
have been inserted to test the THS and the Frame Descriptor encoding; bit-flips on the CLK line
have been inserted to test the operation of the synchronization mechanism (see sections 2.2.2 and
4.3.3). The tests with TRG and Pkt files instead were carried out without bit-flip insertion, to check
the basic functionalities of data transmission of the link A test controller, not shown in the figure,
generates the 40 MHz and the transmission clock (clk40 and clk_tx), the reset signal rst_L, the start
command for TX_Host_Em and RX_Host_Em and the clk_count signal, that counts the clk40
cycles and whose value is included as time stamp in the trigger and packet files.

 131

4 VHDL modeling and simulation

4.4.1 TX Host Emulator

The TX Host Emulator generates trigger commands and data packets to be used as test vectors for
the link, and creates the TX_TRG_file and TX_Pkt_file to be compared with the analogous files
that are produced by the RX Host Emulator on the receiver side of the link. TX_Host_Em can
operate in two modes: random mode and hit file mode. In the first, triggers and data packets are
internally generated in a random way, while in the second mode they are generated from the
information contained in an input text file (hit file) that describes the hits occurring in a sensor
module (supposed to be connected to the TX host circuit in this case).

TRG and data packet generation in random mode.

In random mode, after the start of test (start input), at each clk40 cycle TX_Host_Em generates a

random real number TRG_rand with uniform probability distribution in the range [0, 1), and if the
generated value is below a settable threshold a TRG command is outputted (i.e. a one-clk40-cycle
long pulse on the TRG output is produced). After a TRG command, the TRG generator is
suspended for 3 clk40 cycles (to respect the constraint about minimum interval between consecutive
triggers) and then it is resumed.

In random mode, at each clk40 cycle TX_Host_Em generates also a random real number
DV_rand with uniform probability distribution in the range [0, 1), and if the generated value is
below a settable threshold the Data_Valid (DV) output is pulled up to start the delivery of a data
packet tot FF_TX. At this moment, other random number are generated to decide with the same
modality the value of the Label_On and Data_Type bits for the current packet, and the generated
values are placed onto outputs LO and DT in the same clock cycle as the rising of DV; also, the
length of the data packet (i.e. the number of its words) is chosen at the same time as a random
integer uniformly distributed between 1 and a settable maximum length (for example 20, to test also
the packet fragmentation functionality). From now on, a new data word (randomly generated as
well) is put onto the word_out output at each clock cycle as long as its reading by FF_TX is
confirmed by the Get_Data signal being asserted. If instead GD is low at some clock cycle, the
word outputted by TX_Host_Em in that cycle is kept unchanged until GD goes high again, meaning
FF_TX has correctly read it. Generation of words goes on until the end of the packet (i.e. when the
previously generated packet length is reached): at this time, the DV output is pulled down and the
packet generation algorithm is started again at the next clock cycle.

TRG and data packet generation in hit file mode.

In this operating mode, TX_Host_Em reads a text file that lists, for each value of a bunch crossing

counter (time index), the coordinates of hits occurred in a sensor module and the amplitude of each
hit. In particular, the CMS Pixel case was considered and the file, provided by Read Out Chips
(ROC) designers at Paul Scherrer Institut (PSI), was originated from physics simulations on a 4-cm
layer module with 16 ROCs at the full LHC phase I upgrade luminosity: it is a text file with each
line having the following format (the various fields are enclosed in square brackets) :

[Time index] – [L1T] – [1st Hit Data] [2nd Hit Data] [3rd Hit Data] ...[last Hit Data] ;

Time index is an integer that expresses the clk cycle number (bunch crossing number) at which

the events described in the line occur; lines are ordered by increasing time index. Next, enclosed
between two dashes “–“, is the field L1T: a character that can be either “0” (meaning no trigger for
the current event) or “T” (trigger present). Then hit data follow, separated with spaces one from
another: each hit data block specifies the address of a single pixel and the amplitude of the hit it
gets, and has the following format:

 132

4 VHDL modeling and simulation

([ROC number] , [column address] , [row address] , [hit amplitude])

Finally, the line must be ended with a semicolon. So, an example of a line of the hit file could be:

23 – T – (3, 15, 142, 2) (5, 0, 63, 5);

meaning that at clk cycle n° 23 a L1T is present and two hits occur: one with amplitude 2 for pixel
number 142, in the n° 15 Column of ROC number 3, and the other of amplitude 5 for pixel n° 63, in
the n° 0 Column of ROC number 5.

In hit file mode, TX_Host_Em reads each line containing a trigger and emulates the behavior of a
ROC or the data concentrator inside the module (called TBM, Token Bit Manager): when the clock
counter of the test bench reaches the value of the time index of the line, it creates a packet with the
data describing the hits listed in that line that refer to a specific ROC (in ROC mode) or for all the
ROCs in the module (in TBM mode), following the format foreseen for the CMS Pixel digital
readout in the phase I upgrade:

ROC number: 4 bits
column address: 5 bits
row address: 8 bits
hit amplitude: 8 bits

therefore, 25 bits for each hit. In TBM mode, a 16-bit time stamp (containing the current time index
value) is also added as the label for the packet. TX_Host_Em then divides this packet into 16-bit
words, stores it into an internal buffer and delivers it word-by-word to FF_TX, according to the
Data_Valid-Get_Data handshake.

The trigger commands read from the hit file are sent to the FF_TX interface as well, to test the
simultaneous transmission of readout data and triggers with realistic rates.

Writing of TX_TRG_file and TX_Pkt_file.

Regardless of the generation method, trigger commands and data packets that are delivered to the

FF_TX interface are also written into the TX_TRG_file and TX_Pkt_file.
For each TRG command produced, a line is added to the text file TX_TRG_file simply containing

the time stamp of the transmitted TRG command, that is the value of the clk_count signal in the
cycle when the TRG pulse was delivered to the FF_TX interface. At the end of the test, the
TX_TRG_file will appear as the example in Fig. 4.77:

Fig. 4.77 – Example of TX_TRG_file (a portion is shown here).

 133

4 VHDL modeling and simulation

When a packet delivery by TX_Host_Em begins, that is when DV goes high, a line is added to the

text file TX_Pkt_file with the string “Packet #” followed by a progressive integer used to identify
the packet and the value of the LO and DT bits for that packet. Then, into the following lines the
words belonging to the packet are written, one word per line preceded by its time stamp, i.e. the
value of the clk_count signal in the cycle when that word was read by the FF_TX interface. At the
end of the test, the TX_Pkt_file will appear as the example in Fig. 4.78:

Fig. 4.78 – Example of TX_Pkt_file (a portion is shown here).

4.4.2 RX Host Emulator

The RX Host Emulator reads trigger commands and data packets outputted by FF_RX and writes
them into two text files to be compared with TX_TRG_file and TX_Pkt_file.

Writing of RX_TRG_file.

After the start of test (start input), at each clk40 cycle RX_Host_Em checks the TRG input,

connected to the trigger command output of FF_RX: if a TRG command is present, RX_Host_Em
writes a line into the text file RX_TRG_file simply containing the time stamp of the received TRG,
that is the value of the clk_count signal in the cycle when the TRG pulse was delivered by the
FF_RX interface. Therefore at the end of the test, if the link operation was correct, the

 134

4 VHDL modeling and simulation

RX_TRG_file will appear as the TX_TRG_file, but with each time stamp incremented of an
amount equal to the TRG latency in the link, that is six clk40 cycles; for example, the
RX_TRG_file portion relative to the TX_TRG_file portion of Fig. 4.77 is the one shown in Fig.
4.79:

Fig. 4.79 – Portion of RX_TRG_file relative to the portion of TX_TRG_file shown in Fig. 4.77.

Writing of TX_Pkt_file.

After the start of test (start input), at each clk40 cycle RX_Host_Em checks the DV input,

connected to the Data_Valid output of FF_RX: if a DV is asserted, meaning that a packet delivery is
started by FF_RX, RX_Host_Em writes a line into the text file RX_Pkt_file with the string “Packet
#” followed by a progressive integer used to identify the packet and the value of the LO and DT bits
for that packet, read from the Label_On and Data_Type output of FF_RX. Then, into the following
lines the words belonging to the packet are written, one word per line preceded by its time stamp,
i.e. the value of the clk_count signal in the cycle when that word was delivered by the FF_RX
interface. When DV goes low, meaning the end of the delivery of a frame by FF_RX, if the packet
is not finished (i.e. the Last_Frame output of FF_RX was unasserted for the frame that has just
ended) RX_Host_Em writes a blank line in the file before writing the words of the next frame of the
packet: this is done to visually represent the fragmentation of long packets. At the end of the test, if
the link operation was correct, the RX_Pkt_file will appear as the TX_Pkt_file, but with different
time stamps and blank lines inside the fragmented packets; for example, the RX_Pkt_file portion
relative to the TX_Pkt_file portion of Fig. 4.78 will be the one shown in Fig. 4.80.

4.4.3 Comparison of files

At the end of the test, a procedure is started that compares the TX_TRG_file with the
RX_TRG_file and the TX_Pkt_file with the RX_Pkt_file. For the TRG files, it is verified that for
each time stamp with value tsi in TX_TRG_file a correspondent time stamp exists in RX_TRG_file
with value tsi + 6 (i.e. the TRG latency), otherwise an error is reported. For the Pkt files, it is
checked that for each data packet in TX_Pkt_file a correspondent packet in RX_Pkt_file exists,
possibly fragmented into more frames but with the same value of the LO and DT bits and the same
words, otherwise an error is reported.

 135

4 VHDL modeling and simulation

Fig. 4.80 – Portion of RX_Pkt_file relative to the portion of TX_Pkt_file shown in Fig. 4.78.

4.4.4 Test results

Test runs were performed in hit file mode to check the link functionality with realistic data and
trigger rates. Test runs with an input hit file of 100000 clock cycles (bunch crossings), relative to a
4-cm layer module with 16 ROCs at the full LHC phase I upgrade luminosity, were carried out for
different link speeds (160, 320 and 640 Mbit/s) and in both ROC mode and TBM mode, to test the
application of the FF-LYNX interfaces to the ROC-TBM link and to the module-DAQ system link.
The average trigger frequency in this file is about 125 kHz, and the average data rate, considering
the 25-bit-per-hit format described in previous section, is about 5.7 Mbit/s from each ROC and
about 34.5 Mbit/s from the entire module.

The result of all the test runs was positive, i.e. the TRG and Pkt file comparison was successful
for all the different link speeds and for both ROC mode and TBM mode: obviously, the occupancy
of the TX buffer, i.e. the maximum number of occupied locations, that dictates the depth that the
buffer itself must have not to have data overflows, is different for the various cases: for example, a
160 Mbit/s link can be applied to the module-DAQ system stretch, but a large TX buffer is required
in this case to avoid overflows. The occupancy of the TX buffer measured in the hit file mode
simulations is reported in Table 4.35: in these simulations the depth of the TX_Host_Em buffer
(representing the buffering capability of the ROC/TBM) was set to a value such that it can contain
the largest hit data packet generated in a single bunch crossing.

 136

4 VHDL modeling and simulation

TX Buffer occupancy Mode Average

data rate link speed =160 Mbit/s link speed = 320 Mbit/s link speed = 640 Mbit/s
ROC 5.7 Mbit/s 24 22 20
TBM 34.5 Mbit/s 108 57 31

Table 4.35 – TX Buffer occupancy for different link speed and application (ROC or TBM).

These results show that, even if the average data rate is well under the link capability, because of
data rate peaks (in correspondence with triggered events) it is preferable to use high speed links
(320 or 640 Mbit/s) in the module-DAQ system stretch in order to limit the size of buffers that are
needed in the transmitter interfaces to avoid overflows.

Many test runs were also carried out in random mode to verify the functionality of the interfaces
with very high trigger and data rates: by appropriate setting of random generators inside the
TX_Host Emulator, trigger rates up to about 3,3 MHz (one TRG every 12 clk40 cycles on average)
and (average) data rates up to about 230 Mbit/s were simulated in several test runs at different link
speed, each with a duration of about 100000 clk40 cycles: the test result was positive in all the runs,
thus confirming the correct functionality of the interfaces VHDL model at least in absence of errors
on the line.

 137

5 FPGA prototyping

As final result for the first year of activity in the FF-LYNX project, the realization of an FPGA-
based emulator for the FF-LYNX transmitter-receiver system is foreseen. This emulator will consist
in an FPGA development board on which the VHDL models of the FF_TX and FF_RX interfaces
are synthesized, together with a surrounding test system that drives the interfaces with stimuli and
reads the results; the development board provides all necessary resources, such as memories,
interfaces and connectors to create a physical link between FF_TX and FF_RX and interfaces for
communication with a PC that controls the emulator operation, provides the test vectors and
analyzes the test results. The architecture foreseen for the FF-LYNX Emulator is briefly outlined in
section 5.1, while the development board chosen to implement the emulator is described in section
5.2. In view to design and realize the emulator, as the final step of this thesis work the synthesis of
the FF-LYNX interface VHDL model was carried out on the Stratix III FPGA included in the
chosen development board, to have a first complexity estimate of the designed interfaces. Synthesis
results are reported in section 5.3.

5.1 FF-LYNX Emulator

The conceptual architecture that is foreseen for the FF-LYNX Emulator is depicted in Fig. 5.1.

Fig. 5.1 – Conceptual architecture of the FF-LYNX Emulator.

The Device Under Test (DUT) is the FF-TX-FF_RX pair. The test input signals are provided to

the FF_TX interface by a TX Controller block (TX_CTRL) that reads test vectors (trigger
commands and data packets) stored in a transmitter memory (MEM_TX). An RX Controller
(RX_CTRL) reads triggers and data received by the FF_RX interface and writes them into a
receiver memory (MEM_RX). Test vectors are generated by a software application running on a
Personal Computer, and then written into MEM_TX through an interface module that deals with
data exchange between the PC and the Emulator system using a communication port of the board
(Ethernet). The same software application reads DUT output data from MEM_RX and elaborates
them, performing comparison with test vectors and calculating predefined performance figures;
also, it controls the test procedure by setting the content of the emulator control registers (REGS)
that drive the operation of TX_CTRL and RX_CTRL. The client/server architecture of the high-
level test controller used for the protocol validation phase (section 2.5) reveals particularly useful

5 FPGA prototyping

here: the server side can be now replaced with the FPGA emulator without changing the client,
since the TCP/IP socket interface remains the same.

In a first development phase, all the Emulator system will be implemented into the FPGA;
su

5.2 Development board

The development board chosen for the FF-LYNX Emulator is a Stratix III EP3SL150 from Altera
[3

 (PLLs)

er
cludes a variety of memory modules, displays, buttons and interfaces as shown

in

ccessively, on-board RAM modules will be used as memory blocks MEM_TX and MEM_RX to
provide longer test capability, and the link between FF_TX and FF_RX will be realized with an
external cable between connectors of the development board to test the interfaces operation with a
physical link technology (LVDS in particular).

1]. It is based on a EP3SL150F1152C2 device, that is a 1,152-pin Altera Stratix III FPGA in a
ball-grid array (BGA) package featuring:
- 142,000 logic elements (LEs)
- 5,499 Kbits of memory
- Eight phase locked loops
- 16 global clock networks
- 736 user I/Os
- 1.1 V core pow

The board also in
 Fig. 5.2.

Fi . 5.2 – The Altera Stratix III EP3SL150 development board. g

 139

5 FPGA prototyping

In particular, the following components are useful for the implementation of the FF-LYNX

6-MByte DDR2 SDRAM devices, to be used as TX and RX test memories;

ard) interfaces, supporting both single-ended and

5.3 FPGA synthesis of FF-LYNX interfaces

Using the Altera Quartus II design software, synthesis has been carried out of the interfaces
V

FF_RX entities together
w

Logic utilization

Emulator:
- two 1
- Ethernet interface for connection to PC;
- two HSMC (High Speed Mezzanine C

differential signaling: these two ports have a direct connection with I/O pins of the FPGA and
a loopback HSMC daughter card can be used to establish a loop link in different technologies,
such as LVDS or LVCMOS.

HDL model on the Stratix III FPGA included in the development board.
To his end, a top-level schematic was created including the FF_TX and
ith one of the eight Phase Locked Loops (PLL) available on the Stratix III, to generate the

reference clock at frequency F (F = 40 MHz nominally) and the transmission clock for both the
receiver and transmitter interfaces from an FPGA input clock. Then, using the Quartus II synthesis
tool several synthesis attempts were made for the three modeled architectures (4xF, 8xF and 16xF,
nominally 160, 320 and 640 Mbit/s) to find the maximum value of F for which the modeled
architecture can be mapped onto the FPGA respecting the internal timing constraints, i.e. without
violation of the hold and setup time conditions on any of the internal paths between registers: this
analysis is carried out by the Timing Analyzer tool included in the Quartus II design processing
flow. The synthesis results are reported in Table 5.1.

 clk40/clk_tx

Combinational ALUT Block memory bits frequency Registers
Fnom 4 313 /1 7%) 2,6) 0/160 MHz 479 /113,600 (0.42%) 13,600 (0.2 88 /5,630,976 (0.04%

4xF
Fmax 100/400 MHz 453 /113,600 (0.39%) 316 /113,600 (0.28%) 2,688 /5,630,976 (0.04%)
Fnom 40/320 MHz 508 /113,600 (0.45%) 353 /113,600 (0.31%) 2,688 /5,630,976 (0.04%)

8xF
Fmax 50/400 MHz 503 /113,600 (0.44%) 360 /113,600 (0.32%) 2,688 /5,630,976 (0.04%)
Fnom 40/640 MHz - - -

16xF
585 /113,6 (0.51%) 425 /113,6 (0.37%) 2,688 /5,630 76 (0.04%) Fmax 25/400 MHz 00 00 ,9

Table 5.1 – Synthesis results.

Logic utilization, that gives an estimate of the interfaces area occupation, is reported as the
n

umber of combinational ALUT, registers and block memory bits utilized by the synthesis tool to
map the design into the Stratix III FPGA. Devices of this family have a core architecture that is
based on Logic Array Blocks (LAB) surrounded by an interconnect matrix (Fig. 5.3). Each LAB
consists of ten Adaptive Logic Modules (ALM), that are the basic building blocks of the FPGA
logic, carry chains, shared arithmetic chains, LAB control signals, local interconnect, and register
chain connection lines. The local interconnect transfers signals between ALMs in the same LAB.
Paired with each LAB there is a Memory LAB (MLAB) that is a LAB with SRAM capability: each
MLAB can be configured to work as a regular LAB or as a memory block.

 140

5 FPGA prototyping

Fig. 5.3 – The Stratix III LAB structure.

The structure of an Adaptive Logic Module is shown in Fig. 5.4. The basic logic functionality is
based on two Adaptive Look-Up Tables (ALUT) and two registers (flip-flops); in addition to these,
each ALM contains two dedicated full adders, a carry chain, a shared arithmetic chain, and a
register chain. ALUTs are combinational in normal LABs, while in MLABs they function as
SRAM blocks.

Fig. 5.4 – Internal architecture of the Stratix III ALM.

Therefore, the combinational ALUT utilization result in the synthesis report refers to the number
of ALUT that are used for combinational functions in normal LABs, while the block memory bits
result refers to the total number of memory bits used in MLABs, plus the ones used in other
dedicated SRAM blocks that are included in the Stratix III architecture.

 141

Conclusions and future developments

In High Energy Physics experiments, systems for data acquisition and distribution of Timing,
Trigger and Control signals have similar architectures and similar requirements about data rate,
trigger latency, robustness of critical data against transmission errors, radiation hardness and power
dissipation and of hardware components and material budget. The same will be in the near future,
for example in the scenario of the experiments for the Super LHC, that is the upgrade of the Large
Hadron Collider at CERN to be carried out in two phases foreseen for 2013 and 2018. Therefore,
the use of common solutions that can be reused in different applicative contexts can bring many
advantages such as the reduction of costs, risks and time needed for the development of new
experiments. In particular, a research and development activity appeared as useful in the field of
electrical links that are employed for data transmission to and from Front End circuits inside the
detectors to move power-consuming optical converters away from the interaction point: indeed,
analog readout schemes currently used in some contexts (e.g. the CMS pixel readout system) need
to be replaced with digital and serial links in order to improve the noise performance, and standard
protocols used in telecommunications, consumer electronics and automotive industry don’t fulfill
satisfactorily the requirements about radiation hardness and trigger distribution imposed by these
applications.

These consideration constituted the motivations for the FF-LYNX project, that was started in
January 2009 by a collaboration between INFN-PI (Italian National Institute for Nuclear Physics,
division of Pisa) and the Department of Information Engineering (DII_IET) of the University of
Pisa. In a three-year foreseen activity, the project aims at the definition of a serial communication
protocol for the integrated distribution of TTC signals and Data Acquisition that could meet typical
requirements of HEP applications and be adaptable to different applicative scenarios inside this
field, and its implementation in radiation-tolerant interfaces designed and developed in a standard
CMOS technology.

In the first nine months of activity, a first version (v.1) of the FF-LYNX protocol has been defined
with features that address some of the basic requirements of HEP applications, such as constant
trigger latency and robustness of critical data against transmission errors: this version of the
protocol was then tested in a SystemC simulation environment to validate the choices that have
been made and implemented in a transmitter and a receiver interface, for which a VHDL model was
created and simulated. This work of thesis, in particular, concerned the protocol definition and the
VHDL modeling of the transmitter and receiver interfaces in three architecture, distinguished for
the value of the transmission speed: 4xF, 8xF and 16xF, where F is the reference frequency of the
applicative context, i.e. the master clock frequency of the experiment; in the LHC scenario F = 40
MHz and the featured transmission speed values are 160, 320 and 640 Mbit/s.

The first version of the FF-LYNX protocol was defined at the data-link layer of the ISO/OSI
model, dealing with the issues of stream multiplexing and synchronization, framing and error
control of critical data. To minimize the number of required wires a serial transmission was chosen,
and a separate clock transmission scheme was preferred to simplify the receiver circuits: the
transmission is therefore carried out on two wires:, a DAT line that delivers serial data and a CLK
line that carries the transmission clock with frequency 160, 320 or 640 MHz (referring to the LHC
scenario, where the reference clock frequency is 40 MHz); the reference clock to be delivered to the
receiver host circuit is reconstructed by a synchronizer circuit inside the receiver interface.

To guarantee the fundamental requisites of error protection of the trigger command and constant
latency from its transmission to its reception, a dedicated time-division channel, called THS
channel, inside the DAT serial stream was reserved to transmission of Triggers, frame Headers and
Synchronization patterns, while the other channel (FRM channel) carries data frames.

The THS channel comprises two bits in each 40 MHz clock cycle and carries THS sequences of
six bits each. Two of these sequences, denoted as TRG and HDR, are used to encode triggers and
frame headers respectively: TRG transmission is always scheduled with highest priority in order to

Conclusions and future developments

guarantee fixed latency to the trigger command; a third sequence (SYN) to be used as a
synchronization pattern, was initially considered, but afterwards a balanced version of the THS
encoding was chosen comprising just the TRG and HDR sequences and a NOP pattern that is
continuously sent onto the THS channel when no TRG or HDR is being transmitted.
Synchronization of the receiver on the THS channel, i.e the individuation of the 2 bits of this
channel among the 4, 8 or 16 bits (depending on the transmission speed) that arrive on the DAT line
in each 40 MHz clock cycle, is obtained by detecting and counting THS sequences inside the
received DAT stream. A custom 6-bit encoding for the TRG, HDR and NOP sequences was
adopted to allow a correct recognition of each pattern even in presence of single-bit transmission
errors.

The FRM channel is used to transmit user data, encapsulated in data frames. The basic FF-LYNX
frame has a simple structure that comprises, besides the HDR sequence that is transmitted into the
THS channel to mark the frame beginning, a Frame Descriptor field, an optional “label” and the
payload, structured in 16-bit words; to have maximum flexibility towards data formats, no other
structure is imposed for the user data carried in the payload. The optional, 16-bit label field is
intended to contain information that characterize the data carried by the frame, to be used for
sorting or aggregating data packets: the typical use should be that of carrying a timing information
(time stamp) relative to the particle hit data produced by the sensors, for event building purposes.
The Frame Descriptor specifies some important characteristics of the frame itself and the payload:
the frame length, expressed in number of 16-bit words, the presence of the label, the data type and a
“last frame” bit that is used in case of fragmentation of a long data packet into more consecutive
frames. Since it carries the frame length information, that is crucial for the correct reception of the
frame, the Frame Descriptor is protected against transmission errors by means of a H(12,7) code,
that is a shortened and extended Hamming code capable of detecting and correcting single-bit errors
and detecting double-bit errors.

Besides basic, variable length frames intended for generic, low priority data, in future versions of
the protocol a special kind of frame is foreseen to carry trigger data, i.e. information from a subset
of FE circuits that is used for trigger. These trigger data frame have a fixed length and are marked
with a TRG sequence as their header to guarantee a fundamental requirement of trigger data, that is
fixed and small latency.

The architecture of a transmitter (FF_TX) and a receiver (FF_RX) interface has been defined to
implement the FF-LYNX protocol v.1. FF_TX is the interface that allows the host system to send
trigger commands and data towards a receiver system according to the FF-LYNX protocol. It
comprises the following functional blocks: TX Buffer, that is the FIFO memory that stores the data
packets awaiting to be transmitted; Frame Builder, that controls the assembly of frames for data
transmission; THS Scheduler, that manages the scheduling of triggers and frame headers
transmission; Serializer, that generates the DAT output serial stream with the THS channel and the
FRM channel. FF_RX takes as inputs the DAT and CLK transmission lines, carrying the serial data
stream and the transmission clock generated by FF_TX, and delivers to the receiver host the
transmitted data packets, trigger commands and a reconstructed 40 MHz clock. The functional
blocks of FF_RX are: Deserializer, that is the block that converts back the DAT stream into parallel
form providing the received data words; THS Detector, that reveals the arrival of TRG, HDR and
NOP sequences in the THS channel; Synchronizer, that gets the sync with the THS channel of the
received DAT stream thus generating the 40 MHz reconstructed receiver clock; Frame Analyser,
that controls the reception of data frames, their storing into the RX Buffer and the delivery of stored
data to the receiver host; RX Buffer, that is the FIFO memory that stores the received data packets
awaiting to be delivered to the receiver host.

For the design phase of the FF-LYNX interfaces, a model of FF-TX and FF_RX was built using
the VHDL hardware description language, employing the development environment Active-HDL
by Aldec to write the model and to perform functional simulations on it. The function of each block
in the FF_TX and FF_RX architecture was partitioned in simpler sub-blocks; then each sub-block

 143

Conclusions and future developments

was described and its functionality was verified in a specific test bench. Afterwards, each block of
the architecture was built connecting its constituting sub-blocks, and functional simulations on the
whole block were carried out. Finally, the complete transmitter-receiver system was built and the
overall functionality was verified in a global test bench comprising also external VHDL modules
for the generation of test vectors (data and trigger commands to be transmitted) and for the reading
of the system outputs (received data and trigger commands). Of these modules, the one on the
transmitter side, named TX Host Emulator, can generate triggers and data packets to be delivered to
FF-TX by using an internal random generator or reading an input text file, originated from physics
simulations, that describes particle hits on a sensor; it also produces two text files listing the
generated triggers and data packets. On the receiver side, the RX Host Emulator module reads
triggers and data packets outputted by FF_RX and writes two text files listing the received triggers
and packets. At the end of the test, the TX files and the RX files are compared to verify the correct
operation of the link.

Test runs were performed with an input hit file, originated by physics simulations on the CMS
Pixel system and provided by Read Out Chips (ROC) designers at Paul Scherrer Institut (PSI), to
check the link functionality with realistic data and trigger rates. Test runs with an input hit file of
100000 clock cycles (bunch crossings), relative to a 4-cm layer module with 16 ROCs at the full
LHC phase I upgrade luminosity, were carried out for different link speeds (160, 320 and 640
Mbit/s); the average trigger frequency in this file is about 125 kHz, and the average data rate is
about 5.7 Mbit/s from each ROC and about 34.5 Mbit/s from the entire module. Test runs were also
carried out with random generation of test vectors to verify the functionality of the interfaces with
very high trigger and data rates: trigger rates up to about 3,3 MHz and average data rates up to
about 230 Mbit/s were simulated in several test runs at different link speed, each with a duration of
about 100000 40 MHz clock cycles. The result of all the test runs was positive, thus confirming the
correct functionality of the interfaces VHDL model.

As the final result for the first year of activity in the FF-LYNX project, the realization of an
FPGA based emulator for the FF-LYNX transmitter-receiver system is foreseen.. This emulator will
consist in an FPGA development board on which the VHDL models of the FF_TX and FF_RX
interfaces are synthesized, together with a surrounding test system that drives the interfaces with
stimuli and reads the results; the test vectors generation, the test results analysis and the control of
the test system operation will be carried out by a software application running on a personal
computer. The conceptual architecture for the FF-LYNX Emulator has been defined and the Altera
Stratix III EP3SL150 development board has been chosen to realize the emulator: this board offers
all the resources needed for our system (such as SDRAM modules, Ethernet interface for
connection to PC, and various types of external connectors to test the protocol with different
physical technologies, LVDS in particular) and for possible future developments.

As the final step in this thesis work, synthesis has been carried out of the interfaces VHDL model
(for the 160, 320 and 640 Mbit/s architectures) on the Stratix III FPGA using the Altera Quartus II
design software: the maximum working frequency (referring to the transmission clock) resulted to
be 400 MHz for all the three architectures.

As for next developments of the FF-LYNX project, the first activity to be carried out is the
completion of the design and the implementation of the FPGA emulator, and a thorough testing
activity on it to evaluate the performance aspects that have been defined and explored with the
SystemC simulator.

Next versions of the FF-LYNX protocol will be studied and defined to include new features that
appear as useful to improve the link performance: interleaving, to make the adopted error control
techniques effective also with burst errors; error protection of the payload and the label of data
frames with Cyclic Redundancy Check (CRC); a custom block encoding (similar to 8b/10b) to be
applied to the FRM channel only (thus preserving the THS encoding) and that is able to guarantee
DC balancing of the stream (thus making the FF-LYNX protocol suitable for applications with AC-
coupled receivers and high-pass transmission channels) and frequent transitions, so that a Clock and

 144

Conclusions and future developments

Data Recovery circuit scheme can work properly and hence a single-wire (clock + data)
transmission scheme can be adopted; trigger data frames handling, to allow transmission of trigger
data from Front End circuits with small and fixed latency. The definition of a second version (v.2)
of the FF-LYNX protocol, including fixed length frames for trigger data transmission, and its
implementation in the SystemC and VHDL models is foreseen for the last three months of 2009; in
the first months of 2010 the FF-LYNX protocol v.2 will be upgraded to version 3 by including the
single-wire feature with the “8b/10b-like” encoding. For each new protocol version the relative
interfaces will be designed and tested in a VHDL modeling phase and a FPGA prototyping phase,
upgrading the FF-LYNX Emulator that has been realized for the version 1.

For the first half of 2010 the design and realization of a test chip is also foreseen to complete the
verification and characterization of the FF-LYNX interfaces implementing the protocol version 2.
The chip will contain the transmitter and receiver interfaces (in all the different versions in terms of
transmission speed) and will be interfaced with the test bench architecture that has been already
synthesized on the FPGA emulator; will be realized in a commercial CMOS technology (below 180
nm to profit of intrinsic robustness of these technologies to Total Ionization Dose effects) and will
be tested in order to characterize the interfaces about electrical and thermal properties; also
radiation tests will be performed to evaluate tolerance to Total Ionization Dose and Single Event
Effects.

The FF-LYNX project and the work described in this thesis was presented at the following

international workshops and conferences:

- 2nd Common ATLAS CMS Electronics Workshop for SLHC (ACES ‘09), Geneva,
Switzerland, 3-4 March 2009: oral and poster presentation [32].

- XI Pisa Meeting on Advanced Detectors: Frontier Detectors for Frontier Physics, La Biodola,
Isola d'Elba, Italy, 25-30 May 2009: poster presentation and paper on Nuclear Instrumentation
and Methods in Physics Research A [33].

- IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS ‘09), 21-23 September 2009, Rende, Italy: poster presentation and paper on
conference proceedings [34].

 145

Bibliography

[1] O. Bruning, “LHC challenges and upgrade options”, J. Phys.: Conf. Ser. 110, 2008.

[2] O. Bruning et al., “LHC Design Report 2004 Volume 1”, CERN-2004-003.

[3] E.Bartz, The 0.25μm Token Bit Manager Chip for the CMS Pixel Readout, Proceedings of

the 11th Workshop on Electronics for LHC and Future Experiments, Heidelberg, Germany,
12-16 September 2005.

[4] H. C. Kästli et al., “Design and Performance of the CMS Pixel Detector Readout Chip”,

arXiv:physics/0511166 v2 24 Feb 2006.

[5] K. Gabathuler, “PSI46 Pixel Chip - External Specification”, 8 Dec 2005.

[6] H. C. Kästli, “CMS Pixel Upgrade”, presentation at 2nd ACES workshop, CERN, 2009.

[7] G. Hall, "Super LHC: Detector and Electronics Upgrade," presentation at RD50 workshop,

May 2004.

[8] G. Papotti, A. Marchioro, P. Moreira, “An Error-Correcting Line Code for a HEP Rad-Hard

Multi-GigaBit Optical Link”, Proc. 12th Workshop on Electronics for LHC and Future
Experiments, Valencia, Spain, 25-29 September 2006.

[9] AA. VV. “CMS Tracker Project, Technical Design Report”, CERN/LHCC 98-6.

[10] R. Horisberger, “Progress on the CMS Pixel front-end system”, presentation at 2nd ACES

workshop, CERN, 2009.

[11] The CMS Collaboration, S Chatrchyan et al., “The CMS experiment at the CERN LHC”,

Journal of Instrumentation, 2007.

[12] The ATLAS Collaboration, “ATLAS Inner Detector Technical Design Report”, Volume 1

and 2, ATLAS TDR 4, CERN/LHCC/97-16.

[13] R.Beccherle et al., “MCC: the Module Controller Chip for the ATLAS Pixel Detector”,

Nucl. Instr. and Meth. in Phys. Res. A 492 (2002) 117-133.

[14] T. Virdee et al., “CMS High Level Trigger”, CERN-LHCC-2007-021, Geneva, 2007.

[15] J. Troska et al., "Optical readout and control systems for the CMS tracker," IEEE Trans.

Nucl. Sci, vol. 50, pp. 1067-1072, 2003.

[16] G. Anelli et al., “Radiation tolerant VLSI circuits in standard deep submicron CMOS

technologies for the LHC experiments: practical design aspects”, IEEE Transactions on
Nuclear Science, vol.46, no.6, December 1999, pp.1690-1696.

[17] F. Faccio et al., “Radiation tolerance of commercial 130nm CMOS technologies for High

Energy Physics Experiments”, FEE 2006 Perugia.

Bibliography

[18] P. Moreira, A. Marchioro, K. Kloukinas, “The GBT: a proposed architecture for multi-Gb/s
data transmission in high energy physics”, Topical Workshop on Electronics for Particle
Physics, Prague, Czech Republic, 03 - 07 Sept 2007.

[19] M. Suess, “From SpaceWire to SpaceFibre”, 2006 MAPLD International Conference,

Washington, USA, Sept 2005.

[20] T. Grötker et al., “System Design with SystemC”, Springer, 2002.

[21] J. F. Kurose, K. W. Ross, “Computer Networking”, Addison Wesley, 2000.

[22] F. Halsall, “Computer Networking and the Internet”, Addison Wesley, 2005.

[23] W. C. Huffman, V. Pless, “Fundamentals of Error-Correcting Codes”, Cambridge

University Press, 2003.

[24] A. X. Widmer, P. A. Franaszek, "A DC-Balanced, Partitioned-Block, 8B/10B Transmission

Code", IBM Journal of Research and Development 27 (5), 1983.

[25] P. Sweeney, “Error Control Coding. From Theory to Practice”, John Wiley & Sons, 2002.

[26] A. Papoulis, “Probability, random variables, and stochastic processes”, 3rd ed., McGraw-

Hill, 1991.

[27] http://www.aldec.com/ (Aldec website).

[28] D. L. Perry, “VHDL Programming by example”, McGraw-Hill, 2002.

[29] “IEEE Standard VHDL Language Reference Manual”, IEEE, 2002.

[30] B. Cohen, “VHDL: Coding Styles and Methodologies”, Kluwer, 1995.

[31] http://www.altera.com/ (Altera website).

[32] G. Bianchi, R. Castaldi, L. Fanucci, G. Magazzù, S. Saponara, C. Tongiani, P. G. Verdini,

“FF-LYNX: Fast and Flexible protocols and interfaces for data transmission and distribution
of timing, trigger and control signals”, poster presented at 2nd Common ATLAS CMS
Electronics Workshop for SLHC (ACES ‘09), Geneva, Switzerland, 3-4 March 2009.

[33] G. Bianchi, R. Castaldi, L. Fanucci, G. Magazzù, S. Saponara, C. Tongiani, P. G. Verdini,

“Fast and Flexible Electrical Links for Data Acquisition and Distribution of Timing, Trigger
and Control Signals in Future High Energy Physics Experiments”, Nuclear Instrumentation
and Methods in Physics Research section A, 2009.

[34] G. Bianchi, R. Castaldi, L. Fanucci, G. Magazzù, S. Saponara, C. Tongiani, P. G. Verdini,

“The FF-LYNX Project: Design of Fast and Flexible Protocols and HW Interfaces for Data
Acquisition and TTC Distribution in High Energy Physics Experiments”, poster presented at
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS ‘09), 21-23 September 2009, Rende, Italy.

 147

http://www.aldec.com/
http://www.altera.com/

	Introduction
	1 The FF-LYNX project
	1.1 Genesis of the project
	1.1.1 High Energy Physics experiments
	1.1.2 The Large Hadron Collider at CERN and its experiments
	1.1.2.1 CMS
	1.1.2.2 ATLAS

	1.1.3 Requirements of DAQ/TTC systems for HEP experiments

	1.2 Purposes of the project
	1.3 Methodology and design flow

	2 The FF-LYNX protocol
	2.1 General characteristics
	2.2 The THS channel
	2.2.1 TRG and HDR scheduling
	2.2.2 Synchronization
	2.2.3 The THS encoding
	2.2.3.1 Elements of coding theory
	2.2.3.2 TRG/HDR/SYN encoding
	2.2.3.3 TRG/HDR balanced encoding

	2.3 The FF-LYNX frame
	2.3.1 The Frame Descriptor
	2.3.1.1 The H(12,7) encoding

	2.3.2 Payload and label
	2.3.3 Trigger data frames

	2.4 Future protocol versions
	2.5 Protocol validation
	2.5.1 Synchronization algorithm selection

	3 FF-LYNX Interfaces
	3.1 FF_TX
	3.1.1 External specifications
	3.1.2 Internal architecture

	3.2 FF_RX
	3.2.1 External specifications
	3.2.2 Internal architecture

	4 VHDL modeling and simulation
	4.1 General description of the model
	4.1.1 FIFO_N_D
	4.1.2 Counter_N
	4.1.3 ffd
	4.1.4 Register_N
	4.1.5 Shift Registers

	4.2 FF_TX
	4.2.1 TX Buffer
	4.2.2 sel_THS Generator TX
	4.2.3 Frame Builder
	4.2.3.1 FB_Control1
	4.2.3.2 FB_Control2
	4.2.3.3 FD Encoder

	4.2.4 THS Scheduler
	4.2.5 Serializer
	4.2.5.1 THS load controller
	4.2.5.2 THS command selector
	4.2.5.3 Pulse Shrinker
	4.2.5.4 Ser_Control

	4.3 FF_RX
	4.3.1 Deserializer
	4.3.1.1 Des_control

	4.3.2 THS Detector
	4.3.3 Synchronizer
	4.3.3.1 Clock Splitter
	4.3.3.2 Sync Counter

	4.3.4 Frame Analyser
	4.3.4.1 FA_Control1
	4.3.4.2 FA_Control2
	4.3.4.3 FD Decoder

	4.3.5 sel_THS Generator RX
	4.3.6 TRG stretcher
	4.3.7 RX Buffer

	4.4 Test bench
	4.4.1 TX Host Emulator
	4.4.2 RX Host Emulator
	4.4.3 Comparison of files
	4.4.4 Test results

	5 FPGA prototyping
	5.1 FF-LYNX Emulator
	5.2 Development board
	5.3 FPGA synthesis of FF-LYNX interfaces

	Conclusions and future developments
	Bibliography

