1,529 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Low-Power Wearable ECG Monitoring System for Multiple-Patient Remote Monitoring

    Get PDF
    Many devices and solutions for remote electrocardiogram (ECG) monitoring have been proposed in the literature. These solutions typically have a large marginal cost per added sensor and are not seamlessly integrated with other smart home solutions. Here, we propose an ECG remote monitoring system that is dedicated to non-technical users in need of long-term health monitoring in residential environments and is integrated in a broader Internet-of-Things (IoT) infrastructure. Our prototype consists of a complete vertical solution with a series of advantages with respect to the state of the art, considering both the prototypes with integrated front end and prototypes realized with off-the-shelf components: 1) ECG prototype sensors with record-low energy per effective number of quantized levels; 2) an architecture providing low marginal cost per added sensor/user; and 3) the possibility of seamless integration with other smart home systems through a single IoT infrastructure

    Resource Management for Edge Computing in Internet of Things (IoT)

    Get PDF
    Die große Anzahl an GerĂ€ten im Internet der Dinge (IoT) und deren kontinuierliche Datensammlungen fĂŒhren zu einem rapiden Wachstum der gesammelten Datenmenge. Die Daten komplett mittels zentraler Cloud Server zu verarbeiten ist ineffizient und zum Teil sogar unmöglich oder unnötig. Darum wird die Datenverarbeitung an den Rand des Netzwerks verschoben, was zu den Konzepten des Edge Computings gefĂŒhrt hat. Informationsverarbeitung nahe an der Datenquelle (z.B. auf Gateways und Edge GerĂ€ten) reduziert nicht nur die hohe Arbeitslast zentraler Server und Netzwerke, sondern verringer auch die Latenz fĂŒr Echtzeitanwendungen, da die potentiell unzuverlĂ€ssige Kommunikation zu Cloud Servern mit ihrer unvorhersehbaren Netzwerklatenz vermieden wird. Aktuelle IoT Architekturen verwenden Gateways, um anwendungsspezifische Verbindungen zu IoT GerĂ€ten herzustellen. In typischen Konfigurationen teilen sich mehrere IoT Edge GerĂ€te ein IoT Gateway. Wegen der begrenzten verfĂŒgbaren Bandbreite und RechenkapazitĂ€t eines IoT Gateways muss die ServicequalitĂ€t (SQ) der verbundenen IoT Edge GerĂ€te ĂŒber die Zeit angepasst werden. Nicht nur um die Anforderungen der einzelnen Nutzer der IoT GerĂ€te zu erfĂŒllen, sondern auch um die SQBedĂŒrfnisse der anderen IoT Edge GerĂ€te desselben Gateways zu tolerieren. Diese Arbeit untersucht zuerst essentielle Technologien fĂŒr IoT und existierende Trends. Dabei werden charakteristische Eigenschaften von IoT fĂŒr die Embedded DomĂ€ne, sowie eine umfassende IoT Perspektive fĂŒr Eingebettete Systeme vorgestellt. Mehrere Anwendungen aus dem Gesundheitsbereich werden untersucht und implementiert, um ein Model fĂŒr deren Datenverarbeitungssoftware abzuleiten. Dieses Anwendungsmodell hilft bei der Identifikation verschiedener Betriebsmodi. IoT Systeme erwarten von den Edge GerĂ€ten, dass sie mehrere Betriebsmodi unterstĂŒtzen, um sich wĂ€hrend des Betriebs an wechselnde Szenarien anpassen zu können. Z.B. Energiesparmodi bei geringen Batteriereserven trotz gleichzeitiger Aufrechterhaltung der kritischen FunktionalitĂ€t oder einen Modus, um die ServicequalitĂ€t auf Wunsch des Nutzers zu erhöhen etc. Diese Modi verwenden entweder verschiedene Auslagerungsschemata (z.B. die ĂŒbertragung von Rohdaten, von partiell bearbeiteten Daten, oder nur des finalen Ergebnisses) oder verschiedene ServicequalitĂ€ten. Betriebsmodi unterscheiden sich in ihren Ressourcenanforderungen sowohl auf dem GerĂ€t (z.B. Energieverbrauch), wie auch auf dem Gateway (z.B. Kommunikationsbandbreite, Rechenleistung, Speicher etc.). Die Auswahl des besten Betriebsmodus fĂŒr Edge GerĂ€te ist eine Herausforderung in Anbetracht der begrenzten Ressourcen am Rand des Netzwerks (z.B. Bandbreite und Rechenleistung des gemeinsamen Gateways), diverser Randbedingungen der IoT Edge GerĂ€te (z.B. Batterielaufzeit, ServicequalitĂ€t etc.) und der LaufzeitvariabilitĂ€t am Rand der IoT Infrastruktur. In dieser Arbeit werden schnelle und effiziente Auswahltechniken fĂŒr Betriebsmodi entwickelt und prĂ€sentiert. Wenn sich IoT GerĂ€te in der Reichweite mehrerer Gateways befinden, ist die Verwaltung der gemeinsamen Ressourcen und die Auswahl der Betriebsmodi fĂŒr die IoT GerĂ€te sogar noch komplexer. In dieser Arbeit wird ein verteilter handelsorientierter GerĂ€teverwaltungsmechanismus fĂŒr IoT Systeme mit mehreren Gateways prĂ€sentiert. Dieser Mechanismus zielt auf das kombinierte Problem des Bindens (d.h. ein Gateway fĂŒr jedes IoT GerĂ€t bestimmen) und der Allokation (d.h. die zugewiesenen Ressourcen fĂŒr jedes GerĂ€t bestimmen) ab. Beginnend mit einer initialen Konfiguration verhandeln und kommunizieren die Gateways miteinander und migrieren IoT GerĂ€te zwischen den Gateways, wenn es den Nutzen fĂŒr das Gesamtsystem erhöht. In dieser Arbeit werden auch anwendungsspezifische Optimierungen fĂŒr IoT GerĂ€te vorgestellt. Drei Anwendungen fĂŒr den Gesundheitsbereich wurden realisiert und fĂŒr tragbare IoT GerĂ€te untersucht. Es wird auch eine neuartige Kompressionsmethode vorgestellt, die speziell fĂŒr IoT Anwendungen geeignet ist, die Bio-Signale fĂŒr GesundheitsĂŒberwachungen verarbeiten. Diese Technik reduziert die zu ĂŒbertragende Datenmenge des IoT GerĂ€tes, wodurch die Ressourcenauslastung auf dem GerĂ€t und dem gemeinsamen Gateway reduziert wird. Um die vorgeschlagenen Techniken und Mechanismen zu evaluieren, wurden einige Anwendungen auf IoT Plattformen untersucht, um ihre Parameter, wie die AusfĂŒhrungszeit und Ressourcennutzung, zu bestimmen. Diese Parameter wurden dann in einem Rahmenwerk verwendet, welches das IoT Netzwerk modelliert, die Interaktion zwischen GerĂ€ten und Gateway erfasst und den Kommunikationsoverhead sowie die erreichte Batterielebenszeit und ServicequalitĂ€t der GerĂ€te misst. Die Algorithmen zur Auswahl der Betriebsmodi wurden zusĂ€tzlich auf IoT Plattformen implementiert, um ihre Overheads bzgl. AusfĂŒhrungszeit und Speicherverbrauch zu messen

    ECG Signal Reconstruction on the IoT-Gateway and Efficacy of Compressive Sensing Under Real-time Constraints

    Get PDF
    Remote health monitoring is becoming indispensable, though, Internet of Things (IoTs)-based solutions have many implementation challenges, including energy consumption at the sensing node, and delay and instability due to cloud computing. Compressive sensing (CS) has been explored as a method to extend the battery lifetime of medical wearable devices. However, it is usually associated with computational complexity at the decoding end, increasing the latency of the system. Meanwhile, mobile processors are becoming computationally stronger and more efficient. Heterogeneous multicore platforms (HMPs) offer a local processing solution that can alleviate the limitations of remote signal processing. This paper demonstrates the real-time performance of compressed ECG reconstruction on ARM's big.LITTLE HMP and the advantages they provide as the primary processing unit of the IoT architecture. It also investigates the efficacy of CS in minimizing power consumption of a wearable device under real-time and hardware constraints. Results show that both the orthogonal matching pursuit and subspace pursuit reconstruction algorithms can be executed on the platform in real time and yield optimum performance on a single A15 core at minimum frequency. The CS extends the battery life of wearable medical devices up to 15.4% considering ECGs suitable for wellness applications and up to 6.6% for clinical grade ECGs. Energy consumption at the gateway is largely due to an active internet connection; hence, processing the signals locally both mitigates system's latency and improves gateway's battery life. Many remote health solutions can benefit from an architecture centered around the use of HMPs, a step toward better remote health monitoring systems.Peer reviewedFinal Published versio

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    Wireless Patient Monitoring over 4G Network

    Get PDF
    The purpose of this thesis is to explain how remote patient monitoring systems work over the 4G network using wearable sensors and corresponding interface devices. Gathered data from the sensing devices are carried over the Monitoring Wireless Sensor Network to the more elaborate 4G Network where the data is then relayed to the interface devices for reading, storage, interpretation and effective utilization. This thesis describes the underlying technologies and principles of sensors and sensor net-works, the concept of the 4G Network and how it integrates with the sensor network. The goal of Wireless Patient Monitoring over the 4G Network is link the spatial gap that exist between Healthcare and ICT, this will in turn enhance patients care efficiency while cutting costs, maximising profits and increase security while monitoring patients. This thesis is important in that it gives the reader an overview and basic idea of how a wireless patient monitoring system works over the 4G Network. An increasing number of ICT firms, healthcare and medical institutions are investing heavily on remote patient monitoring systems technologies and this thesis provides the reader the insight of how such systems work and how they can be implemented

    Communication system for a tooth-mounted RF sensor used for continuous monitoring of nutrient intake

    Get PDF
    In this Thesis, the communication system of a wearable device that monitors the user’s diet is studied. Based in a novel RF metamaterial-based mouth sensor, different decisions have to be made concerning the system’s technologies, such as the power source options for the device, the wireless technology used for communications and the method to obtain data from the sensor. These issues, along with other safety rules and regulations, are reviewed, as the first stage of development of the Food-Intake Monitoring projectOutgoin
    • 

    corecore