
Resource Management for Edge Computing
in Internet of Things (IoT)

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von
Farzad Samie

Tag der mündlichen Prüfung: 26. Januar 2018
Referent: Prof. Dr. Jörg Henkel
Korreferent: Prof. Dr. Dimitrios Soudris

Farzad Samie
Bettina-von-Arnim-Weg, 7
76135, Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –
die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Farzad Samie

To:

Whom may it concern! (Well, as a joke).

&

My family, especially my Mom.

Acknowledgment

First of all, I want to thank my advisor professor Jörg Henkel for giving me the opportunity
to join his research group and pursue my Ph.D. under his supervision. He believed in me,
motivated me and supported me during the course of Ph.D. study.

I also want to thank my co-advisor, professor Dimitrios Soudris from National Technical Uni-
versity of Athens (NTUA), Greece. I always enjoyed and learned from our conversations.

I would also like to express my high gratitude to my technical supervisor, Dr. Lars Bauer, from
whom I learned a lot. He was an incredible support, even sometimes without me knowing it.

Vasileios Tsoutsouras, the Ph.D. student of prof. Soudris has contributed to my papers. I really
enjoyed working with him as he has been always positive and helpful. He was a huge help when
I visited NTUA in Greece.

In the first few years of my Ph.D. study, I had three teammates Chih-Ming Hsieh, Sammer
Srouji, and Manyi Wang. I would like to thank them for the valuable (and sometimes fun)
discussions and all the good times.

Living in a foreign country is not always easy. But having awesome friends made it a lot easier
for me. I would like to thank my Iranian friends who have been my support since my first day in
Germany. I appreciate their valuable advices, geniality and unconditional assistance that helped
me overcome many difficulties.

I enjoyed the work environment and atmosphere of our institute. The positive and friendly
attitude of my colleagues from CES, CDNC, and CAPP created such a constructive workplace
for which I would like to thank them.

I supervised multiple students during my Ph.D. study (some of them are listed in Page vi). Their
work contributed to this thesis in one way or the other. I stand on their shoulders. I appreciate
all the effort and hard work that they put in.

Finally, I want to dedicate my thesis to my family, especially my Mom whose devotion and
sacrifices I can never compensate.

Karlsruhe, im January 2018 Farzad Samie

iii

List of Own Publications

List of Own Publications:

– Farzad Samie, Sebastian Paul, Lars Bauer, and Jörg Henkel. “Highly Efficient and Accurate
Seizure Prediction on Constrained IoT Systems”, in IEEE/ACM Design, Automation and Test
in Europe Conference (DATE’18), 2018.

– Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris, Jörg
Henkel. “Distributed Trade-based Edge Device Management in Multi-gateway IoT”, ACM
Transactions on Cyber-Physical Systems (TCPS), Special Issue on Internet of Things (IoT),
2017.

– Farzad Samie, Vasileios Tsoutsouras, Dimosthenis Masouros, Lars Bauer, Dimitrios Soudris,
Jörg Henkel. “Fast Operation Mode Selection for Highly Efficient IoT Edge Devices”, ACM
Transactions on Cyber-Physical Systems (TCPS), (under review), 2017.

– Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris, Jörg
Henkel. “Oops: Optimizing Operation-mode Selection for IoT Edge Devices”, ACM Transac-
tions on Internet Technology (TOIT), Special Section on Fog, Edge, and Cloud Integration for
Smart Environments, (under review) 2017.

– Jörg Henkel, Santiago Pagani, Hussam Amrouch, Lars Bauer, Farzad Samie. “Ultra-Low
Power and Dependability for IoT Devices” (Invited Paper for IoT Technologies) in Design,
Automation and Test in Europe Conference (DATE’17), 2017.

– Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris, Jörg
Henkel. “Computation Offloading Management and Resource Allocation for Low-power IoT
Edge Devices” in IEEE World Forum on Internet of Things (WF-IoT), 2016.

– Farzad Samie, Lars Bauer, Jörg Henkel. “IoT Technologies for Embedded Computing: A
Survey” in International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2016.

– Farzad Samie, Vasileios Tsoutsouras, Sotirios Xydis, Lars Bauer, Dimitrios Soudris, Jörg
Henkel. “Distributed QoS Management for Internet of Things under Resource Constraints” in
International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2016.

– Farzad Samie, Lars Bauer, Jörg Henkel. “An Approximate Compressor for Wearable Biomed-
ical Healthcare Monitoring Systems” in International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), 2015.

– Farzad Samie, Lars Bauer, Chih-Ming Hsieh, Jörg Henkel. “Online Binding of Applications
to Multiple Clock Domains in Shared FPGA-based Systems” in Design, Automation and Test
in Europe Conference (DATE’15), 2015.

iv

List of Own Publications

– Chih-Ming Hsieh, Farzad Samie, M. Sammer Srouji, Manyi Wang, Zhonglei Wang, Jörg
Henkel. “Hardware/Software Co-design for A Wireless Sensor Network Platform” in Interna-
tional Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’14),
2014.

v

List of Selected Supervised Student Works

List of Selected Supervised Student Works:

– Shivani Choudhary, “Optimization and Hardware Implementation of IoT Applications on
PILPino Platform”, Bachelor thesis, 2017.

– Axel Gallus, “A Simulation Framework for IoT systems”, Diploma thesis, 2017.

– Muhammad Saaduddin Siddiqui, “Study the performance of Bluetooth Low Energy”, Master
Thesis, 2017.

– Sebastian Paul, “Computation Offloading in Edge Computing for Internet of Things: A Case
Study of Epileptic Seizure Prediction”, Master thesis, 2017.

– Nick Vlasoff, “Design and Implementation of an IoT-based Smart Shoe for Gait Analysis”,
Bachelor thesis, 2017.

– Oleg Schell, “ECG Feature Extraction on Low-Power IoT Devices”, Bachelor thesis, 2016.

– Timo Kegelmann, “FPGA Platform for IoT: An Energy Efficiency Evaluation”, Bachelor
thesis, 2016.

– Jonathan Knam, “An IoT-based Wearable Solution for Physical Activity Monitoring”, Master
thesis, 2016.

– David Barahona Pereira, “Evaluation of Feature Extraction Techniques for an Internet of
Things Electroencephalogram”, Bachelor thesis, 2016.

– Moises Araya, “Design and implementation of a IoT-based portable ECG monitoring device”,
Bachelor thesis, 2015.

vi

Abstract

The massive number of Internet of Thing (IoT) devices and their continuous data collection will
lead to a rapid increase in the scale of collected data. Processing all these collected data with
central cloud servers is inefficient, and even sometimes is unfeasible or unnecessary. Hence,
the task of processing the data is pushed to the network edges introducing the concept of Edge
Computing. Processing the information closer to the source of data (e.g. on the gateways and
edge devices) not only reduces the huge workload of central servers and network, also decreases
the latency for the real-time applications by avoiding the unreliable and unpredictable network
latency to communicate with the cloud servers.

Current art in IoT architectures utilizes gateways to enable application-specific connectivity
for IoT devices. In typical configurations, IoT gateways are shared among several IoT edge
devices. Given the limited available bandwidth and processing capabilities of an IoT gateway,
the service quality (SQ) of connected IoT edge devices must be adjusted over time not only to
fulfill the needs of individual IoT device users, but also to tolerate the SQ needs of the other IoT
edge devices sharing the same gateway.

This thesis, first, investigates essential technologies for IoT and its existing trends, provides dis-
tinguishing properties of IoT for embedded system domain in addition to a comprehensive IoT
perspective for embedded systems. Several applications in the healthcare domain are studied
and implemented to help to derive a model for their data processing software. The application
model helps in identifying multiple operation modes. IoT systems anticipate the edge devices
to support different operation modes to be able to adapt to varying runtime situations, like pre-
serving energy at low battery while still maintaining some crucial functionalities, increasing the
service quality upon user’s request, etc. These modes are either because of different offload-
ing schemes (e.g. raw data transmission, partially process on IoT device, or transmitting the
final result), or due to different service qualities. Operation modes differ in terms of resource
usage, both on the device (e.g. energy consumption) and on the gateway (e.g. communication
bandwidth, processing power, memory, etc.). Selecting the optimal operation mode for edge
devices is a challenge given the limited resources on the edge of the network (e.g. bandwidth
and processing power of the shared gateway), diverse constraints on the IoT edge devices (e.g.
battery lifetime, quality of service, etc.), and runtime dynamics of the IoT edge infrastructure.
This thesis proposes and presents fast and efficient operation mode selection techniques.

Moving to multi-gateway IoT systems, where some IoT devices are reachable by more than
one gateway, managing the shared resources and selecting the operation mode of IoT devices
become much more complex. This thesis also presents a distributed trade-based device man-
agement mechanism for multi-gateway IoT systems. This mechanism targets the joint problem

vii

Abstract

of binding (i.e. determines the gateway for each IoT device) and allocation (i.e. determines
the allocated resources to each device). Starting from an initial setup, gateways negotiate and
communicate with each other, migrate or exchange IoT devices when it increases the system’s
overall benefit.

This thesis also presents application-specific optimizations for individual IoT devices. Three
applications in the health monitoring domain are implemented and investigated for wearable
IoT devices. It also proposes a novel approximate compression technique for IoT applications
that process bio-signals for health monitoring. This technique reduces the amount of data trans-
mission from IoT device which reduces the resource usage both on the device and on the shared
gateway.

To evaluate the proposed techniques and mechanisms, some applications are profiled on the IoT
platforms to measure their required parameters including execution time and resource utiliza-
tion. These parameters are then used in a framework that models the IoT network and captures
the interaction between devices and gateway(s) and measures the communication overhead as
well as the achieved battery lifetime and service quality of devices. The operation model se-
lection algorithms are implemented on IoT platforms to measure their overheads in terms of
execution time and memory usage.

viii

Kurzfassung

Die große Anzahl an Geräten im Internet der Dinge (IoT) und deren kontinuierliche Daten-
sammlungen führen zu einem rapiden Wachstum der gesammelten Datenmenge. Die Daten
komplett mittels zentraler Cloud Server zu verarbeiten ist ineffizient und zum Teil sogar un-
möglich oder unnötig. Darum wird die Datenverarbeitung an den Rand des Netzwerks ver-
schoben, was zu den Konzepten des Edge Computings geführt hat. Informationsverarbeitung
nahe an der Datenquelle (z.B. auf Gateways und Edge Geräten) reduziert nicht nur die hohe
Arbeitslast zentraler Server und Netzwerke, sondern verringer auch die Latenz für Echtzeitan-
wendungen, da die potentiell unzuverlässige Kommunikation zu Cloud Servern mit ihrer un-
vorhersehbaren Netzwerklatenz vermieden wird. Aktuelle IoT Architekturen verwenden Gate-
ways, um anwendungsspezifische Verbindungen zu IoT Geräten herzustellen. In typischen
Konfigurationen teilen sich mehrere IoT Edge Geräte ein IoT Gateway. Wegen der begren-
zten verfügbaren Bandbreite und Rechenkapazität eines IoT Gateways muss die Servicequalität
(SQ) der verbundenen IoT Edge Geräte über die Zeit angepasst werden. Nicht nur um die
Anforderungen der einzelnen Nutzer der IoT Geräte zu erfüllen, sondern auch um die SQ-
Bedürfnisse der anderen IoT Edge Geräte desselben Gateways zu tolerieren.

Diese Arbeit untersucht zuerst essentielle Technologien für IoT und existierende Trends. Dabei
werden charakteristische Eigenschaften von IoT für die Embedded Domäne, sowie eine um-
fassende IoT Perspektive für Eingebettete Systeme vorgestellt. Mehrere Anwendungen aus
dem Gesundheitsbereich werden untersucht und implementiert, um ein Model für deren Daten-
verarbeitungssoftware abzuleiten. Dieses Anwendungsmodell hilft bei der Identifikation ver-
schiedener Betriebsmodi. IoT Systeme erwarten von den Edge Geräten, dass sie mehrere Be-
triebsmodi unterstützen, um sich während des Betriebs an wechselnde Szenarien anpassen zu
können. Z.B. Energiesparmodi bei geringen Batteriereserven trotz gleichzeitiger Aufrechter-
haltung der kritischen Funktionalität oder einen Modus, um die Servicequalität auf Wunsch
des Nutzers zu erhöhen etc. Diese Modi verwenden entweder verschiedene Auslagerungss-
chemata (z.B. die übertragung von Rohdaten, von partiell bearbeiteten Daten, oder nur des
finalen Ergebnisses) oder verschiedene Servicequalitäten. Betriebsmodi unterscheiden sich in
ihren Ressourcenanforderungen sowohl auf dem Gerät (z.B. Energieverbrauch), wie auch auf
dem Gateway (z.B. Kommunikationsbandbreite, Rechenleistung, Speicher etc.). Die Auswahl
des besten Betriebsmodus für Edge Geräte ist eine Herausforderung in Anbetracht der begren-
zten Ressourcen am Rand des Netzwerks (z.B. Bandbreite und Rechenleistung des gemein-
samen Gateways), diverser Randbedingungen der IoT Edge Geräte (z.B. Batterielaufzeit, Ser-
vicequalität etc.) und der Laufzeitvariabilität am Rand der IoT Infrastruktur. In dieser Ar-
beit werden schnelle und effiziente Auswahltechniken für Betriebsmodi entwickelt und präsen-
tiert.

ix

Kurzfassung

Wenn sich IoT Geräte in der Reichweite mehrerer Gateways befinden, ist die Verwaltung der
gemeinsamen Ressourcen und die Auswahl der Betriebsmodi für die IoT Geräte sogar noch
komplexer. In dieser Arbeit wird ein verteilter handelsorientierter Geräteverwaltungsmecha-
nismus für IoT Systeme mit mehreren Gateways präsentiert. Dieser Mechanismus zielt auf
das kombinierte Problem des Bindens (d.h. ein Gateway für jedes IoT Gerät bestimmen) und
der Allokation (d.h. die zugewiesenen Ressourcen für jedes Gerät bestimmen) ab. Beginnend
mit einer initialen Konfiguration verhandeln und kommunizieren die Gateways miteinander und
migrieren IoT Geräte zwischen den Gateways, wenn es den Nutzen für das Gesamtsystem er-
höht.

In dieser Arbeit werden auch anwendungsspezifische Optimierungen für IoT Geräte vorgestellt.
Drei Anwendungen für den Gesundheitsbereich wurden realisiert und für tragbare IoT Geräte
untersucht. Es wird auch eine neuartige Kompressionsmethode vorgestellt, die speziell für IoT
Anwendungen geeignet ist, die Bio-Signale für Gesundheitsüberwachungen verarbeiten. Diese
Technik reduziert die zu übertragende Datenmenge des IoT Gerätes, wodurch die Ressource-
nauslastung auf dem Gerät und dem gemeinsamen Gateway reduziert wird.

Um die vorgeschlagenen Techniken und Mechanismen zu evaluieren, wurden einige Anwen-
dungen auf IoT Plattformen untersucht, um ihre Parameter, wie die Ausführungszeit und
Ressourcennutzung, zu bestimmen. Diese Parameter wurden dann in einem Rahmenwerk ver-
wendet, welches das IoT Netzwerk modelliert, die Interaktion zwischen Geräten und Gateway
erfasst und den Kommunikationsoverhead sowie die erreichte Batterielebenszeit und Service-
qualität der Geräte misst. Die Algorithmen zur Auswahl der Betriebsmodi wurden zusätzlich
auf IoT Plattformen implementiert, um ihre Overheads bzgl. Ausführungszeit und Speicherver-
brauch zu messen.

x

Contents

1 Introduction . 1
1.1 Motivation . 1

1.1.1 Limited Resources on the Edge of IoT system 3
1.2 Thesis Contribution . 5
1.3 Thesis Outline . 6

2 Background and Related Work . 7
2.1 IoT Architecture . 7

2.1.1 Hardware & Software Architecture of IoT Embedded Device 7
2.2 Edge Computing & Computation Offloading 9
2.3 Mode Selection and Resource Allocation . 11

3 IoT Enabling Technologies from an Embedded Design Perspective 13
3.1 Motivation . 13
3.2 Properties of Devices and Applications . 14

3.2.1 Application Areas . 14
3.2.2 Applications vs. Devices . 15

3.3 Connectivity . 16
3.3.1 Wireless Communication Technologies 17
3.3.2 Timing of Communication . 20
3.3.3 Bandwidth & Data Rate of IoT Sensors 21
3.3.4 Analysis & Insight . 22

3.4 Different Computing Layers . 23
3.5 Approximate vs. Exact Computing . 26

4 Efficient Resource Management Techniques for IoT Edge Computing . . 29
4.1 Model for IoT Applications in Healthcare . 29

4.1.1 Computation Offloading . 30
4.1.2 Service Quality . 31
4.1.3 Operation Modes . 31
4.1.4 Summary of Application Model . 32

4.2 Distributed SQ Management for Internet of Things under Resource Constraints 32
4.2.1 Problem Formulation . 33
4.2.2 Proposed Solution . 35
4.2.3 Use case: IoT in Healthcare Monitoring 44

xi

Contents

4.2.4 Evaluation and Results . 46
4.2.5 Summary of Distributed SQ Management Technique 51

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection 51
4.3.1 Problem Formulation . 52
4.3.2 Fast and Low-overhead Operation Mode Selection Scheme 54
4.3.3 Evaluation and Results . 63
4.3.4 Summary of Novel Memoization and Efficient Operation Mode Selection 69

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT . . . 70
4.4.1 Motivation . 70
4.4.2 Proposed Solution . 74
4.4.3 Evaluation & Experimental Results 86
4.4.4 Summary of Trade-based Management in Multi-gateway IoT 91

4.5 Summary of Resource Management Techniques 91

5 Application-Specific Optimizations for Healthcare 93
5.1 EEG processing to predict epileptic seizure 94
5.2 ECG processing to detect heart abnormality 96
5.3 Physical activity monitoring . 96
5.4 Approximate Compression for Health Monitoring Applications 98

5.4.1 Motivation . 99
5.4.2 Details of Approximated Compressor 100
5.4.3 Reducing Computational Overhead 102
5.4.4 Table Size Reduction . 104
5.4.5 Evaluation and Results . 106
5.4.6 Summary of Approximate Compression Technique 108

5.5 Summary of Application-Specific Optimizations 109

6 Conclusion and Future Work . 111
6.1 Conclusion . 111
6.2 Future Work . 112

A Appendix . 113
A.1 Wireless Transmission . 113
A.2 IoT prototypes . 114

xii

List of Figures

1.1 Estimated number of IoT devices in different sectors by Gartner [gar] 1
1.2 Components of the IoT ecosystem introduced by Business Insider [BI] 2
1.3 Computation layers in IoT systems and their properties 2

2.1 General stages of IoT applications . 7
2.2 General architecture of an IoT embedded device 8

3.1 IoT systems may exploit single/multiple devices to implement single/multiple ap-
plications . 16

3.2 Three main aspects of wireless technologies. Each technology can be optimized for
only two out of three [Mula]. 17

3.3 Data rate generation by different sensors in typical IoT applications 21
3.4 The number of cycles (i.e. required frequency) to fully process the IoT sensors, and

their expected power source . 24
3.5 The number of cycles (i.e. required frequency) to encrypt and transmit the captured

data from IoT sensors . 24
3.6 Different computation layers. The available resources (e.g. memory, processing

power) and networking latency increase from bottom to top. 25

4.1 Genral model for IoT applications which classify input signal 30
4.2 Problem model: IoT devices with different SQ and offloading levels resulting in

different transmission data rates. The gateway receives and processes the data. . . . 34
4.3 CoD matrix for an IoT device Id; omitting subscripts d for brevity 35
4.4 CoD matrix for Example 4.2.1 . 36
4.5 An example of EFC set . 37
4.6 The dynamic programming table (top), and an example solved using proposed ap-

proach (bottom). 39
4.7 Different possible changes in EFC set of an IoT device 42
4.8 Simplified flow of SQ management . 43
4.9 ECG analysis flow . 45
4.10 CPU utilization of ECG analysis stages . 46
4.11 The execution time of the proposed method compared to the BF method for different

number of devices and different sizes of EFC sets. 48
4.12 Total number of recursive calls of function (see Section 4.2.2), and number of re-

cursions in the proposed algorithm at different levels of the tree 48
4.13 function calls tree . 49

xiii

List of Figures

4.14 The time intervals between successive re-execution of algorithm in the case study . 50
4.15 The average battery lifetime of devices in the system and the unsupervised system

for different battery sizes . 50
4.16 The accumulated SQ (utility) in the system compared to the unsupervised system

for different number of devices . 50
4.17 A share of gateway’s resources is reserved for its management tasks (e.g. operat-

ing system, connectivity, etc.), the rest is shared between IoT edge devices with
multiple operating choices (quality level, offloading level, etc.) 54

4.18 Recursion tree for the sub-problems in Example 4.3.1 with conventional memoiza-
tion (used in state-of-the-art approach). 57

4.19 An example for the proposed novel memoization technique. 59
4.20 Recursion tree for sub-problems of Example 4.3.1 using the proposed approach.

Some sub-problems are ‘pruned’ and more sub-problems benefit from memoization
compared to Figure 4.18 (i.e. conventional memoization with no pruning). 61

4.21 The system level overview of selecting and updating the operation mode of IoT
devices . 61

4.22 The execution time overhead of CM-NP compared to the proposed technique for
different number of devices [number of operation modes is 4] 65

4.23 The execution time overhead of CM-NP compared to the proposed technique for
different number of operation modes [number of devices is 7] 66

4.24 The size of memory to store the sub-problems for (a) different number of devices
[number of operation modes is 4] and (b) different number of operation modes
[number of devices is 7] . 67

4.25 Memory hits for stored sub-problems and the level of recursion tree where they occur 68
4.26 Achieved efficiency (normalized to the optimal solution) with respect to the execu-

tion time . 69
4.27 An example of multi-gateway IoT systems where some IoT devices are reachable

by more than one gateway . 70
4.28 Problem model: IoT devices with different SQ and offloading levels resulting in

different transmission data rates. Multiple gateways to receive and process the data. 73
4.29 An example with two gateway sharing two IoT devices while each has three exclu-

sive IoT devices . 77
4.30 The extended utility function of device d derived from discrete EFC′d set. The

function is piecewise liner and weakly concave with respect to both variables (i.e. r
and p). 79

4.31 Different steps during the initial phase, followed by trade phase 80
4.32 Heterogeneity in resource usage of IoT devices and gateways. 82
4.33 An example for exchange trade . 84
4.34 An example of an examined IoT based system . 88
4.35 The scenario of low number of IoT devices . 89
4.36 The scenario of medium number of IoT nodes . 89
4.37 The scenario of high number of IoT node . 90

xiv

List of Figures

4.38 Communication overhead . 90

5.1 General overview of the stages for seizure prediction using EEG signals adopted
from [ANRS17]. 95

5.2 General overview of the stages for the proposed seizure prediction method 95
5.3 An ECG complex and its crucial points: P, Q, R, S, and T. Other features are calcu-

lated based on these crucial points [EEDA14]. 96
5.4 ECG processing application to detect the heart abnormalities 97
5.5 Stages to detect and classify the physical activity using accelerometer and gyro-

scope data . 98
5.6 ECG signal (left) and its histogram (right) as absolute values (top) and delta values

(bottom) . 99
5.7 The scheme of the compression and coding method 101
5.8 Approximating delta value with an error in acceptable range, and updated error range102
5.9 The proposed approximate compressor . 102
5.10 An SC table corresponding to the Huffman table and delta values 103
5.11 Index addressing to keep the default SC table usable for successive approximation.

Accumulated error is -2, and the error range is ±2. 104
5.12 The appearance frequency of delta values of the ECG recordings of the same person

for two different days . 105
5.13 The whole range of delta values can be divided into two groups: rare range and

usual range . 105
5.14 Rare delta values are not coded by Huffman, instead, a delimiter is used to distin-

guish the Huffman codes and W-bit-codes . 106
5.15 Compression ratio of the approximate compressor (for different acceptable error

ranges) and exact Huffman compared to the uncompressed baseline 108
5.16 Compression ratio of the proposed approximate compressor and state-of-the-art

[KYM+10] compared to the uncompressed baseline 108
5.17 Compression ratio improvement of the proposed approximate compressor applied

on top of [PBM13] compared to [PBM13] as baseline 109

A.1 Picture of design board with peripherals, interfaces and main components 115
A.2 Layout of the two layers for the designed PCB . 115
A.3 Schematic of the two layers for the designed PCB 116
A.4 Picture of prototypes using designed PCB: (a) ECG monitoring device using Spark-

fun analog front end attached to the analog interface of PCB, (b) physical activity
monitoring using the force-sensitive resistor to detect the pressure on the heel. . . . 117

xv

List of Tables

1.1 Throughput of IoT wireless technologies [Smi11, Mulb] 4

3.1 Communication technologies for IoT applications, and their properties 19
3.2 Suitability of communication technologies for IoT application domains 19
3.3 Typical data processing operations in IoT applications and their execution time (per

Byte) . 23

4.1 Input data rates and transmission data rates for different SQ levels and offloading
levels . 45

4.2 Input data rates and transmission data rates for different SQ levels and offloading
levels . 86

5.1 The set of features initially were examined . 97
5.2 Comparison of Classifiers . 98
5.3 Code word length for some delta values . 100

xvii

1 Introduction

1.1 Motivation

Recent advances in technologies of sensors, wireless communication, and embedded processors
have enabled the design of small-size low-power and low-cost devices that can be networked or
connected to the Internet. These are the key components of the emerging paradigm of Internet
of things (IoT) [SBH16, AIM10]. IoT devices use the network, or particularly the Internet, as an
infrastructure for connecting to each other to communicate, coordinate and cooperate in order
to offer advanced control and monitoring services. IoT is covering an ever-increasing range
of applications, such as healthcare monitoring, smart home, smart building, smart city, smart
industry (also known as Industry 4.0 in Germany), etc. [SBH16].

Figure 1.1 shows the estimated number of IoT devices by the year 2020 in different sectors.
Consumer sector includes the devices which are used by the end user which include tracking and
fitness bands, healthcare devices, etc. The cross-industry sector includes the usual and general
devices that are being used in different industries including smart home, smart parking, smart
city, etc. The last sector is industry specific which includes special devices and infrastructures
used in factories to increase the efficiency of assembly lines, quality assurances, etc. The total
number of installed IoT devices is predicted to be more than 20 billion by 2020 [gar]. There are
other forecasts announced by other companies including International Data Corporation (IDC),
Ericsson and Cisco. Even though the predicted numbers are different, but they all anticipate a
massive number of connected IoT devices.

2014 2015 2016 2017 2018 2020
0

5

10

15

20

25

#
 I
o
T
 U

n
it
s

In
st

a
lle

d
 [

B
ill

io
n
]

Estimation of IoT Installed Units

Total
Consumer
Cross Industry
Industry Specific

Figure 1.1: Estimated number of IoT devices in different sectors by Gartner [gar]

1

1 Introduction

Figure 1.2 shows the components of the IoT ecosystem, including embedded devices, analytics,
networks, etc. [BI]. IoT devices are interacting with the physical world using sensors and/or
actuators to monitor and/or control the desired parameter. The gateway interfaces the IoT local
networks with the Internet. The gateway bridges the networks, aggregates the collected data
and even offers processing service. Cloud servers or cloudlets provide analysis and storage
services.

Figure 1.2: Components of the IoT ecosystem introduced by Business Insider [BI]

Figure 1.3 shows the hierarchical layers of computation in an IoT system [SBH16]. As we
move to the higher levels (i.e. from edge devices to the cloud servers), the processing capability
increases. However, the latency would increase due to two factors: 1) network delay and 2)
more workload on the servers. Therefore, the predictability of the real-time properties would
decrease.

Io
T device

s

Gate
ways

Fogs,
Clouldlets

Intel
Galileo

.
ARM cores,
ASIPs, etc.

Ethernet
GSM

BLE, ZigBee,
WLAN, LoRa,
HaLow, etc.

Wired (Ethernet),
4G, etc.

Wired (Ethernet),
4G, 5G, etc.

WiFi

LA
N

Arduino

Clo
uds

Raspberry Pi

GSM

LAN

La
te

n
cy

Core

EdgeV
o

lu
m

e
 o

f
ra

w
 d

at
a

R
e

so
u

rc
e

s

Figure 1.3: Computation layers in IoT systems and their properties

The large number of IoT edge devices, as well as their long-term and continuous data collection,
will lead to a hard-to-manage amount of acquired data [CCT+15] which brings new challenges

2

1.1 Motivation

into the embedded world. One of the challenges in IoT is to process and analyze a huge amount
of data from heterogeneous devices. This challenge has two aspects: 1) the large volume of
data which is also known as Big Data [LL15] and 2) diverse application requirements of IoT
[ZMK+15]. Handling all these collected data with central cloud servers is inefficient, and even
sometimes is unfeasible [ZMK+15], because of:

• the overall energy and cost to transmit large amount of data,

• unreliable and high latency of the network caused by the high workload to transmit
[WSJ15, SEKC15].

Edge Computing (EC) is a promising solution to address this issue [Rap16, SCZ+16]. In EC the
task of data processing is pushed to the edge of the IoT network (comprising gateways and edge
devices) close to where the data is collected [SEKC15, Rap16]. According to IDC Futurescape
[Rap16], more than 40% of IoT-generated data is predicted to be processed, stored, and acted
upon close to the network edge. This approach reduces the application latency (and increase
the reliability of the application), and reduces the load on the IoT network by distributing the
computation. However, it brings new challenges and problems such as resource management
and allocation that are needed to be addressed.

1.1.1 Limited Resources on the Edge of IoT system

Many IoT devices are battery-operated or have limited energy sources due to either their porta-
bility requirements or the lower cost of installation, deployment and maintenance [HPA+17].
This limitation imposes the following two constraints on the edge devices: 1) processing capa-
bility, 2) communication bandwidth.

– Processing Capability Constraint: Low-power and long battery lifetime requirements do al-
low IoT devices to utilize high-performance processor or microcontrollers. IoT devices feature
microcontrollers or processors with limited memory and performance. Due to this constraint,
some of the IoT applications are not able to autonomously process the whole collected data at
the edge devices. Hence, a portion of the processing task must be offloaded to the more pow-
erful layers (e.g. gateways, Fogs or cloudlets) [BMB+16, BBC+14]. However, to offload the
computation, the raw data or partially-processed data must be transmitted to the gateway, and
this is where the bandwidth constraint comes into play.

– Bandwidth Constraint: Limited energy resources on IoT edge nodes mandate low-power
wireless technologies. One of the main limitations of low power wireless technologies is their
low data rate and throughput. Despite the recent and rapid enhancements in these wireless
technologies and protocols, the throughput is still low. Table 1.1 summarizes the through-
put of the most popular low-power IoT wireless technologies including Bluetooth low energy
(BLE), ANT+, ZigBee, low power WiFi (also known as HaLow), Low Power Wide Area (LP-
WAN) technologies which include LoRa, SigFox, etc. [MM+16]. It is worth mentioning that

3

1 Introduction

the throughput may decrease further in case of interference with other surrounding wireless
radios [SBH16].

Table 1.1: Throughput of IoT wireless technologies [Smi11, Mulb]

Wireless BLE ANT+ ZigBee HaLow LoRa SigFox

Throughput

[Kbps]
270 20 120 150 50 <10

IoT envisions a model in which IoT edge nodes are connected to the Internet through gate-
ways, as illustrated in Figures 1.2 and 1.3. A gateway (i) enables seamless integration of
low-power wireless networks of IoT devices with other networks (e.g. cellular network, LAN,
etc. [ZWC+10]) and (ii) provides local data processing service at the edge of the network
[GRW+15] in the EC paradigm. Although the gateway might exploit a high-bandwidth con-
nection to the Internet (i.e. cellular or WiFi), its interface with IoT edge nodes is still a low-
power wireless connection such as LoRa, BLE or ZigBee, which have a low bandwidth (see
Figure 1.3 and Table 1.1). The bandwidth demand of IoT edge nodes can be reduced by novel
compression techniques [BMB+16, SBH15] or service quality adaptation [STX+16b]. How-
ever, the most effective approach would be processing the data partially on the IoT devices and
offload the rest of computation to the gateway or a more resourceful device.

Moreover, IoT gateways are located in the vicinity of IoT devices, and therefore, require a small
form-factor (e.g. they cannot afford to deploy high-performance processors due to cooling re-
quirements). For instance, Intel IoT gateways (DK50 and DK100 series) are based on Intel
Quark SoC X1000 and X1020D with only 400 MHz operating frequency [int]. Texas Instru-
ment’s IoT gateway TM4C129 is based on an ARM Cortex-M4F microcontroller unit running
at 120 MHz [Fol15b, Fol15a]. To reduce the cost and deployment effort, some IoT gateways
are battery-operated [BBM+15, Sch17]. Therefore, the processing power of gateways that is
available to edge processing is constrained [Sch17].

The scarce gateway resources (i.e. processing power, memory, communication bandwidth) are
shared between multiple IoT devices. The limited resources on the edge of the network (e.g.
bandwidth, memory and processing power of the shared gateway), diverse constraints on the
IoT edge devices (e.g. battery lifetime, quality of service, etc.), and the runtime dynamics of the
IoT edge infrastructure introduce the resource management as a challenge in IoT. Due to the
scalability and reliability issues especially in edge computing paradigm, the IoT local networks
must be self-organizing and self-supported [MSDPC12, GZY+13] and not dependent on the
cloud [ZMK+15]. Therefore, the resource management of IoT edge devices also needs to be
handled at the edge, on the gateway. Resource management needs to be fast and efficient at
runtime to be both responsive and low-overhead.

4

1.2 Thesis Contribution

1.2 Thesis Contribution

The aim of this thesis is to study and investigate the challenges and opportunities of IoT from an
embedded perspective and improve the efficiency of edge computing and address the efficient
resource management for edge computing.

In particular, the contributions of this thesis are as follows:

• Leveraging the pipeline structure of the application, IoT devices can benefit from multiple
computation offloading schemes well as multiple service quality levels. This introduces
the operation modes for the IoT device. This thesis uses the operation mode of devices
as a control parameter to respond to dynamic and varying runtime situations. The oper-
ation modes differ in terms of resource usage both on the IoT devices and on the shared
gateway. Fast of efficient mode selection techniques are proposed in this thesis to allocate
the constrained resources at the edge of the network more efficiently while respecting
the requirements of the IoT devices, their applications and the resources that are shared
between IoT devices.

• This work presents a distributed trade-based mechanism to manage the IoT devices in a
multi-gateway system. Having multiple gateways gives some IoT devices more than one
option for connecting to a gateway. The binding problem (determining the gateway for
each IoT device) is addressed jointly with allocation problem (determining the allocated
resource to each IoT device). The proposed mechanism starts with an initial setup and
step-by-step improves the overall service quality by migrating or exchanging IoT devices
between gateways.

• This thesis presents application-specific optimizations considering individual IoT de-
vices. It studies the IoT applications whose input data is in form of the signal such as
health monitoring applications that require bio-signals as their input. Three applications
are implemented on IoT platforms and investigated to illustrate the data processing steps
in such applications. These optimizations reduce the resource usage of IoT devices which
consequently diminish the resource contention. It derives a general model for the struc-
ture of IoT applications and their sequence of pipeline stages. Then, it presents a novel
approximate compression technique for bio-signals on wearable IoT devices which re-
duces the amount of data transmission.

• This thesis provides an overview of IoT technologies required from an embedded design
perspective and specific properties associated with IoT in embedded systems’ landscape.
It investigates essential technologies for development of IoT systems, existing trends,
and its distinguishing properties. By discussing the key characteristics, main application
domains, and major research issues in IoT, this thesis provides a comprehensive IoT per-
spective for embedded system design. It categorizes IoT applications and devices based
on different criteria and parameters and highlights the associated properties with each
category. The suitability of different technologies for IoT is investigated, too.

5

1 Introduction

1.3 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 provides background and detailed overview of the related work and state-of-
the-art. First, the hardware and software architecture of IoT embedded devices are dis-
cussed. Then, an overview of edge computing and computation offloading is presented.
Eventually, the background and state-of-the-art in mode selection and resource manage-
ment of IoT systems are discussed.

• Chapter 3 provides essential knowledge on IoT applications and their properties, char-
acteristics, and requirements. It also presents IoT technologies required from an embed-
ded design perspective and specific properties associated with IoT in embedded systems’
landscape. Essential technologies for the development of IoT systems, existing trends,
and its distinguishing properties are investigated. By discussing the key characteristics,
main application domains, and major research issues in IoT, this chapter provides a com-
prehensive IoT perspective for embedded system design and edge devices.

• Chapter 4 presents the main contributions of this thesis. It describes the proposed tech-
niques for resource management and efficient operation mode selection for the IoT device
at the edge of the network. First, a model has been presented in Section 4.1 according
to the data processing structure of IoT applications in health monitoring domain. It also
discusses the computation offloading levels, service quality levels in IoT applications and
introduces the operation modes for IoT applications, accordingly. Then, fast and low-
overhead techniques are presented in Sections 4.2 and 4.3 to determine the operation
mode of devices that share multiple resources of the gateway at runtime. The experi-
mental results are presented at the end of each section. Section 4.4 presents a distributed
trade-based mechanism for management of devices and resources in a multi-gateway IoT
system.

• Chapter 5 presents some application-specific optimizations. It studies several IoT appli-
cations in the healthcare domain whose input data is in form of signal. Sections 5.1 to 5.3
describe EEG processing, ECG processing, and physical activity monitoring applications,
respectively. The structure of their data processing software and their pipeline stages are
studied. Then Section 5.4 presents the novel approximate compressor for bio-signal data.

• Chapter 6 concludes the thesis with a summary of the contributions and an outlook for
the future extensions to this work. Section A presents the practical experiment to study
some properties of Bluetooth Low Energy which are used in other experiments as input
parameters. It also describes the designed and developed IoT prototypes in the scope of
this thesis.

6

2 Background and Related Work

This chapter provides an overview and background for the following technical chapters and
presents related work. This thesis envisions a dynamic IoT system that benefits from computa-
tion offloading, resource allocation, and operation adaptation to enable the data processing at the
edge of the network. An overview of IoT architecture from embedded point of view is presented
in Section 2.1. Both hardware and software architecture are analyzed, and for each, several op-
portunities for efficiency improvement are discussed. Section 2.2 discusses the concept of edge
computing and computation offloading and their related work in the literature. It presents the
achievements as well as the shortcomings and the current challenges, especially when they meet
the emerging paradigm of IoT. Section 2.3 presents the related work on managing the shared
resources using efficient allocation techniques. This chapter contains the background that is
needed for the proposed resource management techniques in the following technical chapters.
The rest of background information that is required for the discussions on IoT technologies and
enablers can be found in the next chapter.

2.1 IoT Architecture

2.1.1 Hardware & Software Architecture of IoT Embedded Device

The general operation stages of an IoT application include 1) data acquisition, 2) data process-
ing, 3) data storage, and 4) data transmission. The first and last stages exist on every application,
while the processing and storage may or may not exist in some applications (see Figure 2.1).

Data

acquisition

Data

Processing

Data

Storage

Data

Transmission

Real-time raw data transmission
Raw data transmission

Real-time on-board process
On-board process

Legend:

Figure 2.1: General stages of IoT applications

Figure 2.2 shows a general architecture of the main components of an IoT SoC platform [Kel14].
An IoT embedded device has many –if not most– of these components, e.g. at least one RF
component for the connectivity.

7

2 Background and Related Work

IoT Device

AFE

RFProcessing Unit On-chip
sensors

Power unit

MCUAccelerator

Accelerator...

ADC
DAC

Nonvolatile
memory

WiFi

BLE

LTE

RFID

ZigBee...

GPS

motion

gyro

...

DSPs

batterymanagement harvester...

Off-chip
sensors &
actuators

FFT
FIR

Audio
Video

Security
. . .

Figure 2.2: General architecture of an IoT embedded device

Efficiency at Different Stages

• Data acquisition:
At hardware level: Low power integrated and on-chip sensors with Micro-Electro-Mechanical
Systems (MEMS) technology can reduce the energy consumption of data acquisition. On-
chip accelerometers, gyroscopes, microphones and biosensors are some examples.
At software level: Energy efficient sensing schemes should effectively exploit spatial and tem-
poral characteristics of the input data, in order to collect as less samples as possible while the
required signal quality is retained [GBMP13]. The reduced amount of input data (depends
on number of samples and resolution) affects the energy for transmission and storage, too.
Compressed sensing (CS) [LDXW13] is a novel techniques in which the signal can be recon-
structed from much fewer samples than Nyquist theory, at the cost of accuracy loss. As long
as the input data has the sparseness property, a smaller number of samples can capture the
required information, and CS can reduce the volume of collected data without significant loss
of information.
Many IoT applications have the data sparsity property and can exploit the CS paradigm. In
health monitoring applications and wireless body sensor network, CS has been investigated
and studied extensively.

• Data processing:
At hardware level: Energy efficiency in a processing unit can be achieved by 1) ultra-
low power processors [MZL+15] and 2) efficiently customized co-processors [KC11]. In
[WLS+15], a heterogeneous dual-core processor is proposed and fabricated based on the
big.LITTLE architecture. An ultra low power near-threshold processor alongside with a high
performance processor in addition to a task scheduling framework brings energy efficiency
for IoT applications.

• Data storage:
At hardware level: Energy reduction in memory has received significant industrial and aca-
demic attention in embedded system design community [UAY+15], but there are some char-
acteristics specific to IoT applications that can be exploited for further improvements in en-
ergy efficiency of memory in IoT embedded devices. For instance, many IoT applications
inherently tolerate errors in data which opens up new possibilities for hybrid memory ar-
chitectures composed of an error-free portion (for more reliable data and operations) and an
error-prone one (for less important data). A hybrid memory based on this property has been

8

2.2 Edge Computing & Computation Offloading

designed for a low power biomedical signal processors in [BMB+14]. For wearable IoT de-
vices that need to have flexible and curvilinear forms, flexible non-volatile memory (NVM)
has been proposed [GH15].

• Data transmission:
At hardware level: Data transmission can be improved by integrating radio transceivers into
SoCs, providing low power multi-radio chips, etc. Main existing technologies, trends and
challenges in connectivity and communication are discussed in Section 3.3.
At software level: In order to reduce the amount of data to be stored or transmitted, new data
compression techniques, specially for the streams of data, are needed [PBM13].

Several new architectures have been designed and proposed in Chair for Embedded Systems
(CES) to address the needs of emerging applications and technologies:

• Invasive manycore systems [HHB+12] offer a scalable hardware and software platform
with a heterogeneous, tile-based manycore structure. This architecture along with its
multi-agent management software can assist the analysis of Big Data in a manycore en-
vironment on the cloud servers.

• RISPP [BSKH07], another new architecture, is an extensible embedded processors con-
cept that provides runtime adaptation to enhance the flexibility and efficiency of mid-end
embedded (and IoT) devices.

• Dependability is one of the major requirement of new embedded and IoT devices. Ref.
[HBB+11] presents an overview of design and architecture for dependable embedded
systems. The design process of embedded systems starts from gate level and includes
various levels of abstraction including operating system, application software, and sys-
tems architecture. This paper covers these levels of abstraction and considers error as a
specific design constraint and suggest to develop techniques for error resiliency in em-
bedded systems. It also introduces a new classification on faults, errors, and failures.

2.2 Edge Computing & Computation Offloading

Many recent and ongoing research efforts have addressed the foreseen challenges in IoT, in-
cluding efficient resource allocation, service quality management, and computation offload-
ing [CRMS09]. In mobile edge computing and wireless sensor networks, devices with mul-
tiple operation modes have been modeled in forms of either computation offloading schemes
[MZ16, HWN12, Che15, YCY+13] or adaptive data input rate [XZST07, BMB+15].

Computation offloading has received notable attention in the domain of mobile computing in
the recent past [Kha15]. Most of the proposed schemes aim at saving energy [XLL07, LWX01]
or improving the performance of applications [Kha15]. However, they only consider the mo-
bile device, as if there would be no resource contention between mobile devices. In IoT local
networks, the limited resources (bandwidth, gateway’s processing power) are shared between

9

2 Background and Related Work

multiple devices. Hence, the selected mode of one device would affect other IoT devices, as it
changes the available resources for others.

In [SML+15], authors propose to minimize the energy consumption of sensor nodes by offload-
ing the application tasks to other nodes. They optimally partition the workload of node, and
then use a node selection strategy to find cooperative node to offload the workload to. How-
ever, in this approach there is a one-to-one relation between the nodes that offload their tasks
and the nodes that cooperatively perform the offloaded tasks. Therefore, the computation and
communication resources are shared between multiple nodes and consequently, there is no con-
tention.

Ref. [SSB15] studies the joint optimization of the communication and computational resources
for offloading problem. The goal is to minimize the overall energy consumption of mobile
devices by offloading computation from mobile devices to resourceful cloud servers, while
meeting the latency constraints. The proposed solution supports only two operation modes:
either entirely offloading the computation or entirely performing it locally. The formulated
problem is executed in the powerful cloud, and therefore is not optimized to be fast and efficient
for embedded IoT gateways.

Mao et al. [MZ16] proposed a low-complexity online algorithm for dynamic computation of-
floading in energy harvesting devices. Considering the system state, this algorithm decides
whether to offload a task or perform it locally. In addition, it determines the frequency of the
processor and the transmission power of the radio. As it assumes unlimited resources at the
offloading target side (i.e. gateway or server), this solution is not suitable for typical IoT sys-
tems with limited resources. Besides, they only consider one device solely instead of multiple
devices in a local network.

In [AP13], the distributed mobile health monitoring system mHealthMon is presented. The cost
of computation and communication is taken into account to minimize the overall energy con-
sumption by means of program partitioning, network resource allocation, and network selection.
However, the problems of resource allocation and program partitioning are solved separately:
first the network resources are determined and allocated to maximize the network utilization.
Then according to the allocated resources, the program is partitioned into blocks for offloading.
However in typical IoT systems, maximizing resource utilization is not an objective. Instead,
improving the efficiency of devices (e.g. energy consumption reduction, battery lifetime exten-
sion, etc.) is the main objective. The control parameters to achieve this goal in IoT systems are
the given operation modes of edge devices. Therefore, the problem of resource allocation and
mode selection shall be solved conjointly to promise more efficient systems.

A decentralized game theoretic approach for computation offloading in mobile computing sys-
tems is presented in [Che15]. A single gateway is considered, whose wireless channel is the
scarce and shared resource while the processing capability of the server is unlimited. In addi-
tion, this approach does not support multiple levels of offloading for a device. In other words,
the decision is between fully offloading the computation or fully processing on-board.

10

2.3 Mode Selection and Resource Allocation

2.3 Mode Selection and Resource Allocation

Several research works attempted to address the resource allocation problems, particularly the
bandwidth allocation in shared wireless networks, by determining the optimal operating mode
for each device [Che15, SSB15].

MiLAN [MH03, HMCP04] is a middleware to manage and allocate network resources for the
applications, that fuses data from multiple sensors and needs to select optimal set of sensors.
However, the SQ of each sensor is fixed. Moreover, MiLAN only considers the bandwidth limi-
tation of the network while the processing capability is not modeled. Besides, it does not model
the on-board processing and therefore cannot support combinations of offloading schemes.

In [MPW07], a utility-based approach is studied for bandwidth allocation in wireless networks.
The proposed approach is market-oriented but in a centralized fashion that is designed for single
gateway systems. Hence, it does not support computation offloading.

A protocol for bandwidth allocation in mobile ad-hoc networks is presented in [CH05]. It uses a
method to estimate the approximate bandwidth, finds the residual available bandwidth and then
reacts to the network traffic. This solution is not applicable to the systems where applications
operate at different input data rates with multiple offloading policies.

In [OPP+15] an approach based on game theory is proposed to allocate the bandwidth dynam-
ically in a shared network channel to manage the quality of experience. One of the restriction
of this approach is that it needs a continuous function of bandwidth allocated to the device (i.e.
does not support discrete operating modes).

An optimal dynamic resource allocation technique is presented in [VQA14] for mobile cloud
computing. While the mobile application can be offloaded to the cloud servers, the computa-
tion resources and the communication bandwidth are shared and constrained. Considering the
quality of service requirements, power consumption, and available resources, a multi-objective
optimization problem is formulated to select the network resources and the QoS profiles for
applications. The optimum offloading coefficient (i.e. the portion of workload to be offloaded)
is determined by a method that uses dynamic programming at its core algorithm.

11

3 IoT Enabling Technologies from an Embedded
Design Perspective

This chapter aims at exploring the IoT and its technological enablers from embedded design
point of view. Besides investigating essential technologies for IoT and existing trends, this
chapter provides distinguishing properties of IoT for embedded domain in addition to a com-
prehensive IoT perspective for embedded systems. It presents the essential findings and insights
that are published in [SBH16].

The chapter is organized as follows: Section 3.1 presents a short motivation and introduction
on the IoT challenges in embedded design. Section 3.2 provides discussion on IoT applica-
tion domain, properties of IoT devices and their applications. Section 3.3 discusses one of the
most important aspects of IoT devices, the connectivity. Wireless low-power technologies and
their properties are summarized, and the suitability of those technologies for each IoT domain
is discussed. Section 3.4 is dedicated to the computation layers in an IoT system including
embedded devices, gateways, cloudlets and cloud servers. Finally, Section 3.5 studies the op-
portunities for using approximate computing in different components of an IoT device to meet
its tight constraints.

3.1 Motivation

Recent and ongoing advances in the technologies such as wireless communication, ultra-low
power processors, embedded sensors and actuators, Radio Frequency IDentification (RFID),
mobile phones, and cloud/fog computing has enabled the emergence of IoT [GZY+13]. Al-
though not all those technologies are needed for each and every IoT application, they all
facilitate the proliferation of IoT by providing an essential prerequisite [MSDPC12, LL15].
While RFID enables low-cost object identification, and while ultra-low power system-on-chips
(SoC) enable portable battery-operated embedded devices, cloud computing and fog comput-
ing can be used to offload computations and services to the local or global servers, provid-
ing additional resources for handling large-scale data or performing more complex operations
[BMZA12, GBMP13].

IoT takes advantage of several existing technologies and application domains and brings them
under one umbrella. These technologies include wireless sensor networks (WSN), machine-to-
machine (M2M), RFID, Cyber Physical Systems (CPS), Mobile Computing (MC) [WTJ+11,

13

3 IoT Enabling Technologies from an Embedded Design Perspective

DXHL14, S+14]. There have been many research efforts on IoT from the perspective of net-
working, object identification, data access (security and privacy) [GZY+13, LL15], however, it
has gained less attention from the perspective of embedded computing.

The diversity of IoT applications, their requirements and technologies makes it difficult to
present a general comprehensive statement for the requirements of IoT in hardware and soft-
ware. Therefore, the IoT embedded designer faces questions whose answers are challenging as
the solutions can be contradictory, e.g.:

• Which wireless communication technology 1) covers the required range, 2) provides the
required data rate, 3) is still (ultra) low-power and meets energy constraints?

• What trade-offs to make between 1) Quality of Service (QoS) and energy consumption, 2)
on-board processing and computation offloading, etc.?

• How to handle the uncertainty and unpredictability of IoT systems (mainly caused by com-
munication)?

3.2 Properties of Devices and Applications

3.2.1 Application Areas

IoT can impact various application domains either by enabling new services, or by improv-
ing the efficiency of existing ones [PZCG14]. Among the possible applications, this section
provides a review of their main categories (that cover a wide range of different requirements,
technologies, development challenges) and futuristic applications. Indeed, IoT applications are
not limited to these categories, and a huge number of applications can be envisioned. However,
their requirements, properties, and design challenges have similarities with those presented in
these categories. The main challenges and requirements are discussed in the following sec-
tions.

– Healthcare:
IoT has shown a great potential for enabling and improving healthcare services [HPS+15]. IoT-
based healthcare systems enable long-term monitoring of personal health status in real-time any-
time, anywhere. They acquire vital biosignals including electrocardiogram (ECG) –electrical
signal of heart–, electroencephalogram (EEG) –electrical signal of the brain–, and electromyo-
gram (EMG) –electrical signal of muscles–, body motion, blood pressure, Glucose level etc.
The data can be processed real-time or could be transmitted to a remote device (e.g. cloud
server) for further processing and diagnosis [GRW+15, ABC+15]. Ultra-low power design and
real-time constraints are among the challenges for these applications.

– Assisted Living:
Assisted living aims at offering solutions for helping (i) elderly, (ii) chronically ill, and (iii)
disabled people [AIM10]. For instance, a wearable IoT device can leverage online city maps
together with a smart cane to detect and avoid obstacles, access buildings, navigating indoor
and outdoor, etc. [Dom12]. Another example is fall detection systems that use wearable devices

14

3.2 Properties of Devices and Applications

or installed devices at home to provide immediate assistance to patients by issuing a message
to the emergency center or family members if needed [PPB+12].

– Smart Building and Home:
IoT provides connectivity for embedded devices which can enable applications for reducing the
costs, increasing personal comfort, and improving safety and security in buildings and homes
[S+14]. Smart thermostats, smart lights, smart doors, etc. are among the IoT devices that im-
prove the efficiency in the buildings and homes.

– Smart City:
In a smart city, distributed IoT devices equipped with different sensors are used to improve the
transportation and traffic management, monitoring the air quality (e.g. pollution, temperature,
humidity, etc.), smart parking, smart lighting, and smart watering gardens [cit, TBA+14].

– Smart Industry:
IoT-enabled solutions for automation, control and monitoring may improve industry by low-
ering operational and maintenance cost, and increasing quality of service [LL15], for indus-
trial domains such as supply chain management, transportation and logistics, and automotive
[PZCG14, KS15]. For instance, food industry can exploit systems based on RFID and NFC
for tracking, monitoring, and tracing food quality. Another example is remote monitoring of
machinery (e.g. in plant, wind turbine, etc.) for predictive maintenance [LL15, DXHL14].

3.2.2 Applications vs. Devices

The combination of IoT applications and their underlying hardware or device introduces some
design challenges which need to be address either at software application or at the hardware
level. The relation between the number of devices and number of provided service and applica-
tions can be classified into four categories as also shown in Figure 3.1:

• One-to-One: One IoT device is used for a single service. For instance, an IoT-based
healthcare monitoring device that captures real time biosignals [SBH15, BCM+15, MNMKSK+15].
Another example, is the IoT-based smart cane to help blind people navigating [Dom12].

• One-to-many: One single IoT device provides multiple services. One example is a wear-
able device like a smart watch that has several sensors and can keep track of user’s physi-
cal activity, heart rate, location, etc. [MSDPC12]. Another example is a smart conference
room which uses a single device for multiple applications including detecting the start/end
of a meeting, analyzing the environmental condition of the room (e.g. temperature and lu-
minance), and processing the acoustic signals to record the proceedings of the meeting,
etc. [SBHH15]. For this category, a decision that needs to be made by the designer is the
management of shared resources. The solutions range from conservatively choosing the
underlying hardware (processor, memory, wireless ratio, etc.) which support the worst
case accumulated usage, to dynamically managing and scheduling the hardware usage.

15

3 IoT Enabling Technologies from an Embedded Design Perspective

• Many-to-one: In this class, spatially distributed devices provide a single service. For in-
stance, distributed smart cameras are exploited for video surveillance in [CCT+15]. This
category usually has two properties that need to be considered by designers to optimize
the system: 1) high communication between devices and 2) large amount of redundancy.

• Many-to-many: In some IoT applications multiple devices are shared between multiple
applications and services. Smart Citizen [sma] consists of multiple IoT embedded de-
vices that are geographically distributed to gather information for the applications that
report temperature, humidity, noise level, and air pollution. Shared WSNs belong to this
category, too [SBHH15, LEMC12].

S
in

g
le

 d
e

v
ic

e
M

u
lt

ip
le

 d
e

v
ic

e
s

Single application Multiple applications

EEG

Smart

cane

Smart glass

Crowdsourcing

72

Physical

Activity

location

Wearable/

smartwatch

Smart conference

room

Noise

Level

PIR sensors

cameras

Surveillance

Figure 3.1: IoT systems may exploit single/multiple devices to implement single/multiple applications

Figure 3.1 shows these categories with some examples. Although shared IoT devices reduce
the cost of hardware and maintenance, they introduce new challenges like binding, allocation,
online and runtime resource management, guaranteeing the timing constraints of applications
that share a single device, etc. [S+14, WLS+15, Kim15].

3.3 Connectivity

Connectivity (wired or wireless) is what distinguishes embedded IoT systems from conven-
tional embedded systems. In a broader sense and vision, IoT is a global infrastructure of
heterogeneous, networked embedded devices and objects [GKN+11]. Communication abil-
ity, and in particular the Internet connectivity, lets devices and smart objects (also known
as machines) communicate and interact with (i) other machines and devices, or (ii) humans
[MSDPC12, WTJ+11, DXHL14].

16

3.3 Connectivity

3.3.1 Wireless Communication Technologies

Different wireless communication technologies can be used for (i) connecting the IoT device
as local networks, and (ii) connecting these local networks (or individual IoT devices) to the
Internet. IoT wireless communication has three main aspects as shown in Figure 3.2: data
rate, communication range and power consumption. IoT devices and applications benefit from
a wireless radio with high data rate, long range and low power consumption. But these three
metric cannot be improved at the same time. Each wireless technology can achieve only two
out of three. Improving one aspect costs degradation in another one [Mula]. In other words,
each technology falls into one of the areas labeled with 1, 2 and 3 in Figure 3.2 . In most of
IoT applications, low power consumption is a critical objective. Therefore the communication
range is compromised to gain the required data rate or vice versa.

Low-power

consumption

High

data rate

Long

range

1 2

3

Figure 3.2: Three main aspects of wireless technologies. Each technology can be optimized for only two out of
three [Mula].

The main IoT wireless technologies in the market are as follows:

• NFC [COO13]: It is a short-range wireless communication technology that enables the
data transmission between devices in a close proximity to each other (∼20 cm). It has a
tag that can contain small amount of data. This tag can be read-only (similar to RFID tags
for identification purposes) or can be re-writable and be altered later by the device.

• Bluetooth: This technology witnesses an increasingly ubiquitous presence including in
smartphones, tablets, laptops, headsets, etc. Therefore it is a suitable technology for the
IoT devices in the consumer sector where the end user can control or monitor the sur-
rounding IoT devices without special equipment such as dedicated gateways but just using
his/her smartphone.

1. Classic Bluetooth: It offers a high enough throughput and bandwidth which makes
it suitable for data stream applications (e.g. audio). However, it has several limi-
tations including limited number of nodes in the network (up to seven slaves) or
topology. The power consumption is also relatively high which does not fit to the
ultra-low power applications.

2. Bluetooth Low Energy (BLE): It is also known as Bluetooth smart and is designed
and enhanced for short-rage, low bandwidth, and low latency IoT applications. The

17

3 IoT Enabling Technologies from an Embedded Design Perspective

advantages of BLE over classic Bluetooth include lower power consumption, lower
setup time, and supporting star topology with unlimited number of nodes. BLE is
quickly becoming the dominate transceiver in IoT.

3. Bluetooth 5 (BT v5): To better fit to the IoT requirements, Bluetooth 5 has been
enhanced and features longer range (up to four times) and higher data rate (up to
two times) compared to BLE while increasing the capacity of broadcasts. It pro-
vides four discrete data rate speeds (i.e. 125 Kbps, 500 Kbps, 1 Mbps and 2 Mbps)
which offers a wider range to support diverse application requirements. The overall
throughput is 5x higher than BLE. Bluetooth 5 offers long range communication
with two of its modes (i.e. data rate of 125 Kbps and 500 Kbps) in which it uses
Forward Error Correction (FEC). It is anticipated to become the de-facto wireless
technology in IoT.

• ZigBee: A small-size, low-cost, low-power wireless specification that can support differ-
ent network topologies (e.g. mesh, star, tree). It offers a wide transmission range, depend-
ing on the output power. Although ZigBee has established in some industrial applications
and WSN nodes, it faces some market barriers, especially with the emergence of attractive
alternatives like BLE that provides higher bandwidth at a lower energy consumption.

• WiFi:

1. Conventional WiFi (IEEE 802.11 b/g/n): The main advantages are high bandwidth
and availability in urban districts. Its high energy consumption makes it unsuitable for
ultra-low-power IoT devices.

2. Low-power WiFi (802.11 ah) or HaLow: Compared to conventional WiFi, it is in-
tended to extend the range of transmission with less data rate, and to reduce the energy
consumption for IoT applications. In addition, it will suffer less interference with exist-
ing wireless networks as it uses a different frequency band (i.e. 0.9 GHz).

• Cellular network: Widespread mobile networks like 3G and LTE provide reliable high-
speed connectivity to the Internet. However, they have a high power consumption profile
and they are not suitable for M2M or local network communication.

• Low Power Wide Area Network (LPWAN) [LL16]: These technologies are suited for
low power applications with very long rage transmission. They support up to 10 Km dis-
tance between end-nodes and gateway. However, it comes at the cost of very low data
rate (<1 Kbps). Main technologies of LPWAN include SigFox, LoRaWAN and Weight-
less, which operate in sub-GHz bands. One of the challenges for LPWAN is the lack of a
globally available band for LPWAN in sub-GHz.

Table 3.1 summarizes some characteristics of wireless technologies which are needed to be
considered in the design process of IoT devices. This table shows the typical value of these

18

3.3 Connectivity

Ta
bl

e
3.

1:
C

om
m

un
ic

at
io

n
te

ch
no

lo
gi

es
fo

rI
oT

ap
pl

ic
at

io
ns

,a
nd

th
ei

rp
ro

pe
rt

ie
s

N
FC

B
lu

et
oo

th
B

L
E

B
T

v5
Z

ig
B

ee
H

aL
ow

L
P

W
iF

i
80

2.
11

ah
L

PW
A

N
C

el
lu

la
rn

et
w

or
k

80
2.

11
b/

g/
n

3G
LT

E

R
an

ge
in

do
or

<0
.2

m
1–

10
0

m
∼

10
0

m
<3

00
m

<2
0

m
<7

0
m

<7
00

m
<1

0
K

m
>5

K
m

>5
K

m
ou

td
oo

r
<1

50
0

m
<2

30
m

<1
00

0
m

B
it

ra
te

[M
pb

s]
0.

42
4

1–
3

1
2

0.
25

>1
0.

15
–4

0
<0

.0
5

0.
17

75
–3

00

T
hr

ou
gh

pu
t

[M
bp

s]
0.

22
1.

5
0.

30
1.

5
0.

15
2-

50
>0

.1
<0

.0
5

N
A

fr
eq

.[
G

H
z]

0.
01

4
2.

4–
2.

5
2.

4–
2.

5
2.

4
2.

4
2.

4/
5

0.
9

su
b-

G
H

z
0.

8–
1.

9
2.

1
N

et
w

or
k

to
po

lo
gy

p2
p

sc
at

te
rn

et
st

ar
,

sc
at

te
rn

et
N

A
st

ar
,t

re
e,

m
es

h
st

ar
st

ar
st

ar
N

A

Ta
bl

e
3.

2:
Su

ita
bi

lit
y

of
co

m
m

un
ic

at
io

n
te

ch
no

lo
gi

es
fo

rI
oT

ap
pl

ic
at

io
n

do
m

ai
ns

A
pp

lic
at

io
n

do
m

ai
ns

L
oc

al
N

et
w

or
k

(M
2M

)
H

ea
lth

ca
re

Sm
ar

tC
iti

es
Sm

ar
tB

ui
ld

in
g

A
ut

om
ot

iv
e

In
du

st
ry

wirelesstechnology

N
FC

m
ed

iu
m

hi
gh

lo
w

ve
ry

lo
w

ve
ry

hi
gh

m
ed

iu
m

B
L

E
ve

ry
hi

gh
lo

w
lo

w
ve

ry
lo

w
lo

w
hi

gh
Z

ig
B

ee
,B

T
v5

m
ed

iu
m

hi
gh

ve
ry

hi
gh

lo
w

hi
gh

hi
gh

W
iF

ib
/g

/n
lo

w
hi

gh
m

ed
iu

m
m

ed
iu

m
lo

w
hi

gh
H

aL
ow

hi
gh

ve
ry

hi
gh

hi
gh

hi
gh

hi
gh

ve
ry

hi
gh

L
PW

A
N

lo
w

ve
ry

hi
gh

hi
gh

hi
gh

ve
ry

hi
gh

hi
gh

C
el

lu
la

rn
et

w
or

ks
(3

G
,L

T
E

,e
tc

.)
lo

w
hi

gh
hi

gh
hi

gh
m

ed
iu

m
ve

ry
lo

w

19

3 IoT Enabling Technologies from an Embedded Design Perspective

parameters. Indeed, most of them depend on the design constraints of the IoT devices. For ex-
ample, by increasing/decreasing the transmission power (and the size of antenna), the transmis-
sion range can be further increased/decreased. Table 3.2 shows the suitability of each wireless
technology for different application domains.

Each of these communication technologies has its advantages and disadvantages. For instance,
Bluetooth, WiFi, and ZigBee may face interference due to the coexistence of other devices
working at the same frequency band (i.e. 2.4 GHz), especially with the increasing rate of IoT
devices. The interference can lead to severe drop in data rates, which consequently may increase
the energy consumption of IoT devices, reduce the QoS, and result in missing the deadline in
real-time applications (i.e. affecting other optimization goals of the system). On the other hand,
NFC needs sender and receivers to be close to each other.

Hybrid communication schemes seem to be the best fitted solutions for IoT applications. The
emergence of integrated transceivers which include multiple communication technologies on a
single chip1 has opened doors for more efficient wireless communication. For instance, BLE
is not intended for continuous data streaming applications, but it is highly efficient for sending
small, discrete data chunks (e.g. states, temperature, heart rate). Bluetooth classic and WiFi,
on the other hand, offer higher throughput and efficiency for streaming application with higher
data rate demands (e.g. ECG monitoring, audio).

3.3.2 Timing of Communication

The timing of data transmission schemes in IoT applications can be classified into three different
categories.

• Continuous: The IoT devices send or receive data continuously (e.g. real-time health moni-
toring).

• Sporadic: The IoT device collects and stores the data and then transmits it whenever the
connection is available [DMSS15]. Long-term health monitoring applications for fitness and
wellness which keep track of biomedical signals in a daily basis, and analyze them later on
the cloud server are examples of this category.

• On-demand:
1. User driven: The IoT device can be requested by the operator to send the collected data

[SCL+05].
2. Event driven: The communication is done once a specific event happens. For instance, the

IoT device is capturing biosignals from person’s body, and processing it by some basic fea-
ture extractions. If a suspicious anomaly is observed, the device starts sending the collected
raw biosignal data to the cloud server for further and deeper analysis [MNMKSK+15].

For designing an efficient IoT system, the timing of data transmission matters, especially for
managing low power modes (deep sleep, standby, active). For instance, if the data transmission

1 For example, TI CC1350 modules provide BLE and sub-1 GHz radios on a chip.

20

3.3 Connectivity

is sporadic, a predictor based on learning techniques can be used to dynamically manage the
low power modes of the wireless transceiver.

Health
Monitoring

Smart City

Physical
Activity

Structural
Monitoring

Security
SD HD

1 10 100 1000 10000 100000 1000000 10000000

Temperature
Humidity
Velocity

Vibration
Accelerometer

Gyroscope
Magnetometer

Acoustic
Image

Video LD
Video

Audio HD
ECG
EEG
EMG

HR
Resp

Rate of Data Generation

1Mbps 10Mbps1Kbps 10Kbps 100Kbps100bps10bps

BLE

WiFi & 802.11 ah

ZigBee
BluetoothSuitable Wireless

Technology:
LPWAN

[20, 53]

[51]

[55,56]

[55,56]

Figure 3.3: Data rate generation by different sensors in typical IoT applications

3.3.3 Bandwidth & Data Rate of IoT Sensors

This subsection provides a comprehensive overview of the main sensor applications in IoT.
Then it derives the typical data generation rate of different sensors according to the reported
application scenarios. The required wireless transmission bandwidth and the appropriate tech-
nology is annotated, too. Then it presents an estimation for the required processing power to
perform the typical operations on the captured data, and reports the appropriate IoT hardware
core to support it.

• Ambient/Object Temperature, Humidity: Different applications including smart homes,
smart cities, smart industry, etc. use these sensors.

• Accelerometers and Gyroscopes: These sensors are widely used in industrial machinery,
medical and fitness devices, as well as wearable devices for monitoring physical activity, fall
detection, navigation, or for structural health monitoring of machinery or buildings [Kim05].

• Magnetometer: It usually comes along side with accelerometers and gyroscopes and is used
for finding the direction for navigation.

• Light: This sensor is usually used for saving energy consumption by adjusting the lighting
(e.g. smartphones, smart homes, smart cities).

• Chemical Sensors: These sensors are mainly used for measuring the air quality (e.g. CO,
NO2, SH2, and CO2) in smart city application, environment monitoring, or smart factories
[sma].

• Location: These sensors are mainly based on GPS technology (seldom work indoors). Smart
industry and transportation use this sensor for tracking and localizing the objects.

21

3 IoT Enabling Technologies from an Embedded Design Perspective

• Imaging: Besides normal imaging sensors, infrared sensors are emerging in IoT market to
capture the temperature differences of the objects. The feature is useful for security applica-
tions to detect intruders or getting thermal image of home or objects to detect insulation or
possible leaks.

• Acoustic: Analog or digital microphones are used for security and surveillance, and noise
pollution for smart cities [sma].

• Ultra Violet (UV): It measures the strength of UV radiation for healthcare, wellness, and
smart city applications. It also indicates the strength of sun’s exposure for smart farming and
smart agriculture.

• Ultrasonic: It is useful to detect the obstacles and get the distance. Assisted-living and
smart industry can benefit from this sensor to help visually impaired people or preventing the
moving robots to collide, respectively.

• Health Monitoring Sensors: As mentioned in Section 3.2.1, healthcare applications of IoT
[HPS+15, CDDM+12] include, but are not limited to:
◦ Heart Rate: To detect the heart rate (and consequently heart rate variability).
◦ ECG: To measure the electrical activity of the heart which conveys essential information

about the status of heart and the function of its muscular contractions [BCM+15].
◦ EMG: To measure the electrical signal causes by muscular activity [SCL+05] for gesture

recognition, detection of neuromuscular diseases, etc. [BCM+15].
◦ EEG: To capture the electrical voltages which represent the brain activity. The captured data

has many applications in diagnosis (e.g. epileptic seizure detection), well-being (e.g. stress
monitoring and sleep monitoring) and brain-machine-interface.
◦ Blood Pressure
◦ Respiration Rate
◦ SpO2: The arterial oxygen saturation or the amount of oxygen dissolved in blood.
◦ Skin Conductivity: To measure the conductivity of skin to detect psychological or physio-

logical arousal, or the moisture level of the skin [CLM+10].
• RF radio modules: Although RF modules are primarily used for communication, they can

be used as localization sensors. The strength of received signal can be used for indoor local-
ization and navigation [PBCA15].

3.3.4 Analysis & Insight

Figure 3.3 illustrates the typical data rate of different IoT sensors in different applications.
Those numbers are obtained based on the typical resolution of captured data and typical sam-
pling rates in different case studies and applications [vid13, SSGS15].

Figure 3.4 estimates the required processing capability to perform the basic operations and
processing tasks on the captured signals of different sensors in different IoT applications. For
instance, to process the EEG data on the IoT device, it needs to be subdivided into different
bands (e.g. Delta, Theta, etc.) by filters. Then, different bands are transformed to frequency
domain using Fast Fourier Transform (FFT). The average number of CPU cycles to perform

22

3.4 Different Computing Layers

those operations per sample are measured and then the required frequency to process the data
at the derived data rates is calculated.

Figure 3.5 shows the minimum required frequency for a microcontroller to transmit the un-
processed data to the Internet (through the gateway). Those numbers are obtained under the
assumption that the microcontroller needs to encrypt the data and add error detection codes
to it before transmission. Advanced Encryption Standard (AES) and cyclic redundancy check
(CRC) are used for this purpose, implement them and measured the average execution time and
number of cycles to perform these operations on one byte of captured data. Then, using the
derived typical data rate, the required CPU cycles to transmit the data are estimated.

The number of CPU cycles and execution time for the typical operations (e.g. FFT, FIR, AES,
CRC) are obtained from the conducted experiments on the Atmel Atmega328 microcontroller
which is used in IoT platforms including Arduino boards. Table 3.3 summarizes the measure-
ments for those operations.

Table 3.3: Typical data processing operations in IoT applications and their execution time (per Byte)

Operation Exe. time [µs] # of cycles Code Size [B]

FFT (256 p) 18 586 3850

FIR 1492 23872 1750

AES
Enc 18.25 292

3666
Dec 22.75 364

CRC 3.75 60 500

3.4 Different Computing Layers

An enormous amount of data, including streams of data, audio, or video, will be generated
from IoT devices which is also known as Big Data [ZMK+15]. The problems associated with
emerging Big Data (e.g. massive storage and huge processing power demand, high latency, etc.)
necessitates the migration of computation and processing to different underlying computing
layers available in the IoT chain [GRW+15, Kim15]. Figure 3.6 shows different processing and
computing layers starting from IoT embedded device up to the cloud servers.

The collected data can be processed on either IoT device, or gateway, etc. Hence, for IoT ap-
plications that involve data processing, a major challenge is to decide where the computation
should be done (i.e. computation offloading) [Kim15, PJZ+14]. The decision depends on many
parameters and factors including the system objectives (e.g. real-time requirement, energy effi-
ciency, etc.), and system specifications (e.g. energy consumption for data processing and data
transmission on IoT device, communication bandwidth, transmission delay, etc.). As shown in
Figure 3.6 different computing layers and platforms include:

23

3 IoT Enabling Technologies from an Embedded Design Perspective

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Temperature

Humidity

Velocity

Vibration

Vibration

Accelerometer

Gyroscope

Magnetometer

Acoustic

Image

Video LD

Video

Audio HD

Video HD

ECG

EEG

EMG

HR

Resp

…
…

…
…

…
…

…
…

…

Frequency (Hz)

Health
Monitoring

Security

Smart
City

Physical
Activity

Structural
Monitoring

10M 1G10K 100K 1M1K 100M

onboard processing

C
or

te
x-

M
0+

C
or

te
x-

A
8

M
S

P
43

0

C
or

te
x-

M
7

C
or

te
x-

A
9

M
ic

ro
ch

ip
P

IC

C
or

te
x-

M
4

Coin-cell battery
Rechargable Li-ion battery

Power outlet

Energy Harvesters

In
te

l Q
ua

rk

Suitable
Energy
source:

Typical
Processing

core:

Figure 3.4: The number of cycles (i.e. required frequency) to fully process the IoT sensors, and their expected
power source

10 100 1000 10000 100000 1000000 10000000 100000000 1E+09

Temperature
Humidity

Velocity
Vibration

Vibration
Accelerometer

Gyroscope

Magnetometer
Acoustic

Image
Video LD

Video

Audio HD
Video HD

ECG
EEG

EMG
HR

Resp

…
…

…
…

…
…

…
…

…

Frequency (Hz)

Raw data (Enc+CRC)Health
Monitoring

Security

Smart
City

Physical
Activity

Structural
Monitoring

1M 100M 1K 10K 100K10010 10M 1G

Figure 3.5: The number of cycles (i.e. required frequency) to encrypt and transmit the captured data from IoT
sensors

24

3.4 Different Computing Layers

Io
T

 E
d

g
e

 d
e

v
ic

e
s

g
a

te
w

a
y

s

F
o

g
s

 &
c

lo
u

d
le

ts

C
lo

u
d

s

Smart CityPersonal & Health Smart Home
. . .

Low power wireless connections (e.g. Bluetooth Low Energy, LPWAN, ZigBee, HaLow)

P
ro

c
.
C

a
p

a
b

il
it

y

Q
u

a
n

ti
ty

 o
f

d
e

v
ic

e
s

 L
a

te
n

c
y

 (
c

o
m

m
.
+

 c
o

m
p

.)

 P
re

d
ic

ta
b

il
it

y

Ex. for HW platforms:
Ultra-low power ASICs,
8-bit microcontrollers,
ARM Cortex-M0, etc.

Ex. for HW platforms:
Intel Quark SoC, Intel
Atom, Raspberry Pi,
ARM Cortex-M, etc.

Figure 3.6: Different computation layers. The available resources (e.g. memory, processing power) and network-
ing latency increase from bottom to top.

• Device centric: The microcontroller in an IoT device can be exploited to perform the com-
putation. The main challenges are the scarce resources on IoT devices (e.g. on-chip memory,
processing capabilities) and to meet the low-power requirements. A key decision concerns
whether to perform the computation on the IoT embedded device or to offload it to other lay-
ers of computation. This decision making becomes more challenging when the answer should
be determined at runtime (i.e. depends on the operation, input data, energy source’s status,
and other runtime parameters) [Kim15].

• Gateway centric (e.g. smartphone): IoT gateway devices which are used to settle the het-
erogeneity between different networks and Internet usually have more computational power
[PJZ+14, DBN14] (e.g. ARM Cortex-A and Cortex-M MCUs are proposed as gateway pro-
cessor in ARM, Freescale and Texas Instrument solutions). Gateway devices like smartphones
can be used to perform data processing as proposed in [ZKC+15]. This scheme has been used
for medical and healthcare monitoring application in [SBH15], where the captured ECG sig-
nal is transmitted to the smartphone to be processed. The key challenge here is to guarantee
the availability and deadline constraints, which is difficult due to the unpredictability of the
wireless communication and latency, especially when the number of IoT devices increases.

• Fog centric: The concept of fog computing is the extension of the cloud computing paradigm,
which can help the IoT domain to restrain the Big Data problem [BMZA12, ZMK+15]. Fogs
provide more computational power compared to IoT embedded and gateway devices and have
less latency compared to the cloud servers (due to their location and distribution) [GRW+15,
AFGM+15]. An ECG feature extraction for a healthcare monitoring application is presented
in [GRW+15] and shows the benefits of the fog computing concept.

• Cloud centric: [GBMP13, KS15] Cloud computing provides a solution for handling Big data
and processing them. It requires massive data storage volume, huge processing resources to
deliver a high quality of service and to help decision making [LL15]. However, as the number

25

3 IoT Enabling Technologies from an Embedded Design Perspective

of IoT devices increases, and consequently, the amount of stream data increases, the cloud
computing solution faces problems and challenges including the scalability, high energy cost,
latency, bandwidth, and availability [HPS+15, ZMK+15].

• Hybrid approach: Since each of the aforementioned choices have their advantages and dis-
advantages, solutions that exploit a multi-layer and hybrid computing approach are more
efficient. An example: classification methods, including Support Vector (SV) machines, are
widely used for anomaly detection or gesture recognition in personal healthcare monitoring
applications [BCM+15]. A set of SVs are stored in memory which will be used at runtime for
classification. When the number of SVs is large (i.e. needs large memory on IoT device), an
efficient solution is to store some SVs on the gateway (e.g. smartphone), instead of increasing
the memory size at design time. In this solution, if a feature is far from the SVs that are stored
on the IoT device, it will be transmitted to the smartphone, and compared with other SVs.
Such a hybrid approach enables the applications to increase their efficiency and meet their
requirements by leveraging the advantages of each computing level (e.g. larger memory, more
computational resources, lower latency, etc.). However, the main challenge to address in a
hybrid approach is to find the efficient balance between local processing and computation
offloading, and to find the perfect timing for offloading (in real-time applications).

3.5 Approximate vs. Exact Computing

The emerging paradigm of approximate computing leverages inherent resilience of applications
and relaxes the requirement of exact equivalence between the specification and implementation
to gain more efficiency [CCRR13, HO13]. Most of IoT applications are interacting with the
physical world with noisy input data [S+14]. Therefore, they are inherently dealing with ap-
proximation. For instance, the first stage of approximation happens in the Analog-to-Digital
conversion which introduces a quantization error. Although these applications tolerate some
errors, the final output or QoS should be in a certain range.

Many applications can exploit the error tolerance property to trade the output quality for compu-
tational effort (e.g. energy consumption, performance, etc.). Some open challenges exist in the
domain of approximate computing for IoT. The tolerable error can be accepted and exploited at
different hardware components and different software parts:

• Data acquisition: The quality of input data, during the data acquisition, is determined by
resolution and sampling rate (or frame rate). For instance, the ECG signal in [GRW+15] is
capture at 360 samples per second with 11-bit resolution. When the IoT application tolerates
error, reducing the quality of input data is one way to take advantage of it to reduce the
energy consumption or delay. In [RT09], a low-power analog system is presented to adjust
the sampling rate in a body sensor network to reduce the acquired data.

• Data processing: The approximation can be done also in underlying hardware by design-
ing inexact hardware units for specific arithmetic operations (e.g. adders, multipliers, DCT,

26

3.5 Approximate vs. Exact Computing

FFT, etc.) [HO13]. It can also be done at the software level by methods like stage skipping
[CCRR13].

• Data storage: The tolerable error can be exploited at the memory unit to reduce the size of
required memory, reduce the number of access to memory, or reduce its energy consumption.
One example of approximation in memory is presented in [BMB+14].

Indeed, hybrid schemes, where multiple stages exploit approximation, are also possible. The
main challenge here is to decide 1) at which stage, and 2) how much approximation should be
applied in order to minimize the computational effort while meeting the QoS requirements.

27

4 Efficient Resource Management Techniques for IoT
Edge Computing

This chapter first presents a general model for the IoT applications in the healthcare domain
which process input signal data in Section 4.1. Then it introduces the operation modes of IoT
applications as a control parameter to adjust to the varying situations of IoT environment. The
operation modes are the results of different computation offloading level and/or service quality
levels that can be chosen at runtime.

Then, it considers IoT systems where multiple IoT devices are connected to a shared gateway,
and hence the limited resources of the gateway are shared between devices. It presents efficient
and low-overhead techniques to select the operation modes of IoT devices at runtime such that
the constraints of individual devices are met, the sharable resources of the gateway are allocated
to the devices to achieve the optimization goal of the system. Each section is dedicated to a
different problem and technique, followed by evaluation of the proposed solution.

Particularly, Section 4.2 addresses the problem of service quality (SQ) management for IoT
devices under bandwidth, battery, and processing constraints. This section first formulates the
problem of resource-aware SQ tailored to the IoT paradigm and then proposes an efficient prob-
lem decomposition that enables the adoption of a recurrent dynamic programming approach
with reduced execution time overhead. The proposed approach is evaluated with a case study
and through extensive experimentation over different IoT systems, regarding the number and
type of the employed IoT devices. Then in Section 4.3, an efficient and fast technique to select
the operation mode of IoT devices is proposed. The proposed technique is especially advanta-
geous when multiple types of resources are shared between devices.

Section 4.4 is dedicated to the IoT device management in a multi-gateway system. A trade-
based distributed mechanism is presented to find the sub-optimal solutions. It starts with an
initial setup and step-by-step improves the overall SQ of the system by migrating the IoT de-
vices to other gateways and exchange the IoT devices between gateways when it is beneficial.
Eventually, Section 4.5 summaries the main contributions and concludes the chapter.

4.1 Model for IoT Applications in Healthcare

Figure 4.1 illustrates the general model for IoT applications whose input data is in form of
signal and their task is to classify the event based on input data. It not only fits to the above-
mentioned IoT applications, but describes other applications including gesture recognition using

29

4 Efficient Resource Management Techniques for IoT Edge Computing

EMG processing [MBF17], structural health monitoring, etc. [LYZ+17]. The main properties
of these applications are the following, which are also shared by many other IoT applications:

segmentation
Preprocessing

(e.g filter noise)
Feature

extraction
Classification

Post-processing
(decision making)

Input data User interface

Figure 4.1: Genral model for IoT applications which classify input signal

• they operate on segments of data, which are buffered first and then acted upon,

• while processing one segment, the data for the next segment is captured and buffered,

• they are composed of a multi-stage pipeline structure to process input data, where discrete
operations are performed per pipeline stage,

• the input data rate in most of IoT applications is relatively low. For instance, the sampling
rate for the above-mentioned applications is only a few hundred samples per second. The
epileptic seizure detection accepts EEG signals with 200-400 Hz. The ECG signal in
heart monitoring applications is captured with sampling rate in the range of 100 Hz to
400 Hz. The length of segments is usually in the range of few seconds (e.g. 5 seconds
in EEG application, 3 seconds in ECG application and 4 seconds in physical activity
monitoring).

• due to generally low input data rate, the processing of one segment of data is finished
before the next segment is completely buffered. This has two consequences: 1) the pro-
cessor spends most of the times in the low-power sleep mode before the next data segment
is ready [HPA+17], and 2) at each point in time only one stage of pipeline is busy.

4.1.1 Computation Offloading

The IoT application may either 1) fully process the captured data on the IoT device and send
only the results to the Internet, or 2) partially process the data on the IoT device and offload the
rest of the computation to the gateway or 3) offload the whole computation to the gateway by
transmitting the raw data. This would lead to different possible offloading levels.

Regardless of pipeline structure of the IoT application, it has at least two computation offloading
levels: (i) Level 1 submits the raw data without on-board processing, (ii) Level 2 indicates ‘no
computation offloading’, thus fully processes the data and only transmits the results. Moreover,
the pipeline stages (in Figure 4.1) are potentially suitable to be considered for offloading the
partially-processed data. For instance, consider an IoT-based fitness & heart monitoring device
that can capture and process ECG signals. This device may have 4 offloading levels. Level 1
transmits the raw data. Level 2 could indicate ‘no offloading’ and thus only transmit a small
amount of results (e.g. the features extracted from the signal). Level 3 could be used to offload

30

4.1 Model for IoT Applications in Healthcare

a certain percentage of the input sample rate. For instance, the device could store a certain
amount of input samples in a buffer, then process the buffer and offload all incoming samples
during this processing to the gateway. Level 4 could perform some pre-processing on the data,
e.g. apply a filter on it, and then send the filter output to the gateway.

4.1.2 Service Quality

Some IoT applications offer their service at different qualities, ranging from ‘low quality’ to
‘high quality’. Different service qualities can be achieved either by employing more complex
processing pipelines or by exploiting higher quality input data (e.g. sampling rate [TSE+15]).
For instance, consider the IoT-based EEG processing device that can capture EEG signals at
any of multiple discrete sampling rates (e.g. 200 Hz, 300 Hz, and 400 Hz). The quality of
the captured signal allows for processing of higher resolution and thus determines the service
quality and affects the user’s satisfaction [STX+16b]. Another example is when the device can
use different classification algorithms which differ in accuracy vs. computational requirements.
A more advanced classification algorithm provides higher service quality to the user.

The service quality is quantified as the utility which is user’s satisfaction [TZGX15, MPW07].
It is a soft requirements in the systems and can be given by the system’s designer or the end
user. Higher service quality or utility comes at the cost of higher resource usage both on the
device and the gateway (e.g. energy consumption, bandwidth, etc.). The service quality may be
changed at runtime upon the user-specific requirements or in response to the limited resources.
For instance if the battery is running low, the device can switch to a lower service quality to
preserve the energy.

4.1.3 Operation Modes

IoT devices can support multiple operation modes to be able to adapt to varying conditions of the
system at runtime (e.g. battery status). These modes are either because of different offloading
schemes (e.g. raw data transmission, partially process on IoT device, or transmitting the final
result), or due to different service qualities [STX+16b]. For instance, in case of low battery,
a device may switch to a mode with lower quality of input data (e.g. lower sampling rate) to
preserve energy. Or when the cost of transmission increases (due to interference), the device
may process the data on-board and transmit only the final result. Operation modes differ in
terms of resource usage, both on the device (e.g. energy consumption) and on the gateway (e.g.
communication bandwidth, processing power, memory, etc.).

The difference between these modes is due to: (i) a change in the provided quality of service,
i.e. different processing pipeline or input sampling rate, (ii) a different computation offloading
scheme, or (iii) a conjunction of the above parameters (i.e. quality and offloading scheme).

Changing the operation mode of devices at runtime is a control parameter to manage the ap-
plication requirements, available resources on the device, shared resources on the gateway and

31

4 Efficient Resource Management Techniques for IoT Edge Computing

the design objectives of the IoT system. If the new operation mode requires runtime adapta-
tion of the execution flow, first the processing of the current segment of data must finish, and
meanwhile the next segment is buffered according to the updated operation mode. If the new
operation mode requires changing the offloading scheme, the partially-processed data will be
transmitted after the associated pipeline stage (e.g. filtering). If the current segment has com-
pleted that particular stage, the new offloading scheme is applied to the next segment.

Due to the scalability and reliability issues specially in edge computing paradigm, the IoT local
networks must be self-organizing and self-supported [MSDPC12, GZY+13] and not dependent
on the cloud [ZMK+15]. Therefore, the management of IoT systems also needs to be handled at
the edge and thus the mode selection for IoT edge devices needs to be decided on the gateway.
However, mode selection is challenging due to dynamic changes in the operating conditions of
IoT systems and highly constrained processing capabilities of gateway. It needs to be online
and it needs to be fast to be both responsive and low-overhead.

4.1.4 Summary of Application Model

This section has presented a general application model for IoT applications in health monitoring
domain. This application model can describe a wide range of IoT applications and consists of
a sequence of similar stages. It has shown that those stages offer the opportunity to offload the
partially-processed data to other devices (e.g. the gateway). Therefore, IoT devices can support
multiple offloading levels including ‘no offloading’ (i.e. process the data fully on the IoT device
and only transmit the final results), offloading the partially-processed data, and offloading the
whole computation by transmitting the raw data. This section also introduced multiple operation
modes for the IoT devices which have different service quality levels and/or different offloading
levels. These operation modes are a control parameter that can be leveraged in order to respond
to the varying runtime situations such as application requirements, available resources, etc.

In the following sections, fast and low-overhead techniques are presented to select the opera-
tion mode of IoT devices at runtime to manage the limited shared resources at the edge while
respecting the application requirements and devices’ constraints.

4.2 Distributed SQ Management for Internet of Things under Resource
Constraints

This section presents a technique to select the operation mode of IoT devices and manage their
service quality under different constraints at the edge of network including battery lifetime of
devices and shared communication and computation resources of the gateway. The proposed
technique is presented in [STX+16b].

32

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

4.2.1 Problem Formulation

Consider a local network with a set of N IoT devices, where each device is uniquely identified
by an integer value d ∈ {1, . . . ,N}.

Id =
(

Xd,Rd,Bd,ed,Ud(·),Sd(·),Td(·),Cd(·)
)

(4.1)

Each IoT device Id is specified by a tuple, where

• Xd denotes the set of possible input data rates of device Id . They depend on the sensor
sampling frequency and data resolution. An IoT device offers its service at Md different
SQ levels, with each level having a different input data rate and thus providing a different
service quality. For instance, consider an IoT-based heart monitoring device that can
capture ECG signals at multiple discrete sampling rates (e.g. 100 Hz, 200 Hz, 300 Hz,
and 1000 Hz).

Xd =
{

xdi | i ∈ [1,Md]
}

(4.2)

• Rd denotes the set of possible transmission data rates of device Id . They depend on the
input data rate xdi and the computation offloading strategy of the IoT device. Offloading
determines how much input data is not processed on the device (on-board processing),
but instead transmitted to the gateway (offloaded). An IoT device offers Qd different
offloading levels. The transmission data rate rdi j depends on the SQ level i (input data
rate) and the offloading level j. It corresponds to the share of input data rate that is
offloaded plus the (intermediate) results from the on-board processed data.

Rd =
{

rdi j | i ∈ [1,Md], j ∈ [1,Qd]
}

(4.3)

For instance, consider that the above-mentioned IoT-based heart monitoring device had 3
offloading levels. Level 1 could indicate ‘no offloading’ and thus only transmits a small
amount of results (e.g. the features that were extracted from the signal), independent of
the input data rate. Level 2 could be used to offload a certain percentage of the input
sample rate. For instance, the device could store a certain amount of input samples in a
buffer, then process the buffer and offload all incoming samples during this processing to
the gateway. Level 3 could perform some pre-processing on the data, e.g. applying a filter
on it, and then send the filter output to the gateway. As the filter would not reduce the
data rate, the transmission rate would equal the input data rate, but some of the processing
is already done. The particular transmission data rates depend on the device and how it
is used, which has to be determined by the user and thus is considered as given in this
problem formulation.

• Bd denotes the minimum required battery lifetime (i.e. until the next recharge or battery
replacement).

• ed is the remaining energy in the battery of device Id .

33

4 Efficient Resource Management Techniques for IoT Edge Computing

2

3

1 Gateway

. .
 .

x1

x2

x3

r1

r2

r3

rN N

xN

Io
T

 d
e

v
ic

e

r3

x3
...

...

Offloading levels

S
Q

 l
e

v
e

ls

in
p

u
t

Figure 4.2: Problem model: IoT devices with different SQ and offloading levels resulting in different transmis-
sion data rates. The gateway receives and processes the data.

• Ud(xdi) is the utility function that quantifies the utility or service quality (SQ) provided to
the user when the device is capturing input data at rate xdi .

• Sd(xdi) is the power consumption of the device for sensing and capturing data at rate xdi .

• Td(rdi j) is the power consumption for transmitting data at rate rdi j .

• Cd(i, j) is the power consumption for processing at input data rate xdi under offloading
level j.

The battery lifetime of IoT devices depends on 1) the remaining energy and 2) the total power
consumption rate:

bdi j =
ed

Sd(xdi)+Cd(i, j)+Td(rdi j)
(4.4)

where bdi j denotes the expected battery lifetime when the device captures input data at rate xdi ,
processes it, and then transmits at rate rdi j .

The gateway connects devices to the Internet. It receives data from IoT devices, processes it
and transmits the final result to the Internet. The gateway is specified by triple:

G =
(

p(·),R,P
)

where:

• p(rdi j) shows the required processing capability of the gateway to perform the necessary
operations on the received data at rate rdi j and offloading level j.

• R is the total available bandwidth of the gateway to receive data from IoT devices.

• P shows the total processing capability of the gateway.

The effect of environment and surrounding devices (e.g. interference) on the transmission can
be modeled in R and Td(·).

The system is summarized in Figure 4.2. The problem that is targeted in this section can be
solved by deciding the SQ level i and the offloading level j for each IoT device Id at runtime,

34

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

such that the bandwidth, computation, and lifetime constraints are fulfilled (Eq. (4.5) to (4.7))
and the overall benefit (Eq. (4.8)) is maximized.

Bandwidth constraint: ∑∀d rdi j ≤ R (4.5)

Computation constraint: ∑∀d p(rdi j)≤ P (4.6)

Lifetime constraint: ∀ d : bdi j ≥ Bd (4.7)

Optimization goal: maximize∑∀d Ud(xdi) (4.8)

4.2.2 Proposed Solution

Decomposing the Problem

The targeted problem (see Section 4.2.1) has two sets of constraints: one for IoT devices and
one for the gateway. The selected configurations for devices Id (i.e. xdi and rdi j) should meet the
lifetime constraint (Eq. (4.7)). Given the selected configuration for IoT devices, the gateway’s
constraints to be met are bandwidth and computation (Eq. (4.5) and (4.6)).

The device’s constraint depends solely on device parameters. To reduce the search space, the
optimization problem can be decomposed into 1) device’s problem and 2) network (gateway)
problem. In the device’s problem, each IoT device excludes those configurations that violate its
lifetime constraint to reduce the search space. Then, the network (gateway) problem is solved
by considering the reduced search space.

Device Problem

– CoD Matrix Consider a matrix for each IoT device that shows the possible Configurations
of that Device (CoD matrix). Each element κd[i, j] at the intersection of the SQ level i (cor-
responding to the input data rate xdi) and the offloading level j contains a pair of the battery
lifetime (see Eq. (4.4)) and the transmission data rate, i.e. (bdi j ,rdi j), i ∈ [1,Md], j ∈ [1,Qd], as
shown in Figure 4.3.

(b11,r11) · · · (b1Q,r1Q)

...
. . .

...

(bM1,rM1) · · · (bMQ,rMQ)

1 · · · Q

x1

...
xM

Q Offloading levels

M
SQ

le
ve

ls

Figure 4.3: CoD matrix for an IoT device Id ; omitting subscripts d for brevity

35

4 Efficient Resource Management Techniques for IoT Edge Computing

Since the available energy of IoT devices changes over time (due to consumption or re-charge),
the expected battery lifetime of each configuration (i.e. the first element of each tuple in the
matrix) changes over time, which means this matrix needs to be updated periodically.

Example 4.2.1: Consider an IoT device Id with battery lifetime constraint of Bd = 40 that
has 5 different SQ levels Xd = {100,200,300,400,1000} and 4 different offloading levels per
SQ level. In this example, lets say that each offloading level transmits 20% more data than the
previous offloading level, i.e. ri(j+1) = ri j +0.2∗ xi.

(49, 20) (57, 40) (63, 60) (74, 80)

(44, 40) (46, 80) (54,120) (61,160)

(31, 60) (43,120) (46,180) (52,240)

(24, 80) (28,160) (33,240) (40,320)

(18,200) (22,400) (27,600) (31,800)

1 2 3 4

x1 = 100

x2 = 200

x3 = 300

x4 = 400

x5 = 1.000

 Offloading levels

SQ
le

ve
ls

Figure 4.4: CoD matrix for Example 4.2.1

Figure 4.4 shows the CoD matrix associated with Example 4.2.1. The configurations whose
expected battery lifetime is less than the constraint (i.e. bdi j < Bd) are not feasible and should
be excluded from the search space. The infeasible configurations (those with expected battery
lifetime less than 40) are shown in shaded area. All other configurations are feasible as they
meet the battery constraint.

– Properties of CoD Matrix The CoD matrix of most applications may have the following
property. However, it should be emphasized that neither the formulated problem nor the pre-
sented solution is restricted to this property.

Property 4.2.1: For each column of the CoD matrix, the elements are in an increasing order
in terms of transmission data rate, but in an decreasing order in terms of estimated battery
lifetime.

The nature of this property can be understood intuitively. For a given offloading level (i.e.
column), an increased input data rate leads to increased transmission data rate and increased
on-board processing requirements. This has negative effects on the power consumption for
sensing data Sd , transmitting data Td , and processing data Cd , all of which have a negative effect
on the battery lifetime (see Eq. (4.4)).

– Reducing Problem Size Although all the elements outside the shaded area meet the battery
lifetime constraint and are feasible configurations for the problem, some of them are intuitively
inefficient. For instance, all the elements in the first row of the above matrix (Figure 4.4) provide
the same SQ and utility to the user. They are just different in the the amount of computation
offloading. Selecting the element with the smallest transmission data rate (marked with a green
circle in Figure 4.4) would result to the optimal solution as is proved in the following.

36

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

Theorem 1. If two elements from the same row i are feasible, κ(i, j1) and κ(i, j2) where j1 < j2,
then κ(i, j2) never outperforms κ(j, j1) in the optimal solution.

Proof. The theorem is intuitively obvious. Since κ(i, j1) and κ(i, j2) offer the same SQ level i
and utility U(xi) their direct contribution to the objective goal (see Eq. (4.8)) does not differ.
However, imposing less computation to the gateway (i.e. less transmitted data) may leave more
room for other IoT devices, so that the gateway can possibly choose another feasible configura-
tion with higher utility and correspondingly more computation and offloading.

Inspired by theorem 1, for each IoT device, one can only consider the leftmost feasible element
of each row (i.e. the one with the least data transmission rate):

∀ 1≤ i≤Md rdi = min
bdi j≥Bd

(rdi j) (4.9)

After building/updating the CoD matrix, each device finds the efficient feasible configurations
(EFC), from Eq. (4.9), and forms a set of pairs containing 1) utility of each EFC, and 2) the
transmission data rate rdi of each EFC. In the previous example shown in Figure 4.4, let us
assume the utility of SQ levels is as U(100)=50, U(200)=90, U(300)=110, U(400)=150,
and U(1000)=310. Then the EFC set of this device is shown in Figure 4.5.

CoD elements:
xd1 : (49,20) xd2 : (44,40) xd3 : (43,120) xd4 : 40,320)

EFCd =
{
(50,20), (90,40), (110,120), (150,320)

}
Ud(xd1) Ud(xd2) Ud(xd3) Ud(xd4)

Figure 4.5: An example of EFC set

Each IoT device periodically checks its remaining energy (i.e. ed), updates the CoD matrix,
and updates the EFC set. In case that the EFC set changes, the device sends the new set to the
gateway, where it is used to solve the Network problem. Note that the EFC set only contains
feasible solutions, i.e. the number of entries in the EFC set of a particular device may change
over time.

Network (Gateway) Problem

– Integer Linear Programming (ILP) Formulation For each IoT device, there is a set of
efficient feasible configurations (EFC), showing the offered utility and transmission rate to the
gateway. Given all EFC sets of all IoT devices, the gateway needs to solve the SQ management

37

4 Efficient Resource Management Techniques for IoT Edge Computing

problem. The gateway extends each EFC set by including the processing requirement of the
associated transmitted data (i.e. p(rd)). The resulting EFC′d set is shown in Eq. (4.10).

EFC′d =
{ (

Ud f , rd f , pd f
)

1≤ f≤
∣∣EFCd

∣∣ }
Ud f =Ud(xd f) // Utility of device Id for f -th EFC entry

rd f = rd f // Corresponding transmission rate (see Eq. (4.9))

pd f = p(rd f) // Corresp. gateway processing requirement

(4.10)

The gateway problem is to select one and only one item from each set such that the overall
utility is maximized and the gateway’s constraints are met. This can be formulated as an Integer
Linear Programming (ILP):

max ∑
d

∑
f
(Ud f ×wd f) (4.11)

subject to ∀d : ∑
f

wd f = 1 (4.12)

∑
d

∑
f

rd f ×wd f ≤ R (4.13)

∑
d

∑
f

pd f ×wd f ≤ P (4.14)

where

wd f =

 1 if f -th EFC element from d-th device is chosen

0 otherwise

This optimization problem corresponds to the Multidimensional Multiple-Choice Knapsack
Problem (MMKP) and is NP-hard, thus computationally intractable [MJS97]. Since the con-
straints in Eq. (4.13) and (4.14) are inequalities, the proposed technique in [Pis95] for merging
multiple constraints does not apply to this problem. In the following, a solution to this problem
is presented based on a dynamic programming (DP) approach.

Definition 4.2.1: The term “instance of problem” is used to refer to the configurations of the
gateway problem (i.e. the input data for Eq. (4.11) to (4.14)). Any change in the EFC sets makes
it another instance of the problem.

Dynamic Programming Solution

– Intuition Although one can design and introduce heuristic approaches, a dynamic program-
ming solution seems more appropriate for this problems because:

• It is needed to solve different instances of the problem where subsequent instances do
not differ substantially. This gives the dynamic programming approach the opportunity

38

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

#
d

e
v
ic

e

R
P

solution

d1 1 2 3 4 5 2 devices
S1={(7,1,1), (9,3,2)}
S2={(6,1,2), (7,2,3)}

R=5
P=4

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 7 7 7 7 7 7 7 7 7 9 9 9 7 9 9 9 7 9 9 9
2 14 15 15

d1 1 2 3 4 5 6

 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 7 8 10
2 14 16
3 22

3 devices: EFC’1={(7,1,1), (8,2,2), (10,3,3)} EFC’2={(6,1,2), (7,2,3)} EFC’3={(5,1,1), (8,2,2)} R=6 P=6

i
d2

d2 i

Figure 4.6: The dynamic programming table (top), and an example solved using proposed approach (bottom).

to possibly reuse some computations that are performed in the previous instance of the
problem.

• It provides a quick and optimal solution to the problem.

Since this problem has two dimensions (i.e. two constraints including data rate and processing
power), the table to form the basis for the dynamic programming approach has 3 dimensions:
one for the number of devices, and two others for the constraints.

– Formulation & Example Let Z(d,R,P) denote the maximum overall utility that can be ob-
tained from the first d devices while the constraints on the data rate and processing capability
of gateway are R and P, respectively.

For the dth device, it is needed to choose one of its configurations from its EFC set whose size
is
∣∣EFCd

∣∣. Considering the f th element of the EFC set, its utility, data rate, and processing
requirements are Ud f , rd f and pd f , respectively. For the f th configuration, the algorithm first
finds the overall utility of a solution with d−1 devices whose overall required bandwidth and
processing resources are R−rd f and P− pd f , respectively. Then, it will be added to the provided
utility by f th configuration (i.e. Ud f). All the possible configurations of device d are investigated
and the one that maximizes the overall utility is selected. Therefore, this algorithm leads to
the global optimum solution. It should be noted that the order of devices does not matter.
Equation (4.15) shows the recurrence relation which is proposed to calculate Z(d,R,P) (as
explained above):

Z(d,R,P) = max
1≤ f≤|EFCd |

{
Z
(
d−1,R−rd f ,P−pd f

)
+Ud f

}
(4.15)

Example 4.2.2: Figure 4.6 shows an example with three devices whose extended EFC sets are
as follows, respectively:

EFC′1={(7,1,1),(8,2,2),(10,3,3)}
EFC′2={(6,1,2),(7,2,3)}
EFC′3 ={(5,1,1),(8,2,2)}

39

4 Efficient Resource Management Techniques for IoT Edge Computing

Algorithm 1: The proposed approach based on top-down DP
1 Inputs : M EFC sets, and constraints P and R
2 Function Z(d,R,P)
3 if R≤ 0 or P≤ 0 then
4 return −∞;

else if d == 0 then
5 return 0;

end
6 for f ← 1 to |EFCd | do
7 if rd f ≤ R and pd f)≤ P then
8 if T b[d−1][R− rd f][P− pd f] ==−∞ then

T b[d−1][R− rd f][P− pd f]← Z(d−1,R− rd f ,P− pd f));
end

9 if T b[d−1][R− rd f][P− pd f]+Ud f > T b[d][R][P] then
10 T b[d][R][P]← T b[d−1][P− rd f][P− pd f]+Ud f ;

end
end

end
11 call Z(N,R,P)

The constraints of the gateway are R= 6 and P= 6. The optimal solution is Z∗=Z(3,6,6).
Based on Eq. (4.15):

Z(3,6,6)= max{5+Z(2,6−1,6−1),8+Z(2,6−2,6−2)}
=max{5+16, 8+14}= 22

Z(2,5,5) =max{6+Z(1,4,3),7+Z(1,3,2)}= 16

Z(2,4,4) =max{6+Z(1,3,2),7+Z(1,2,1))}= 14

In this example, the cell Z(1,3,2) is referred twice, which simply shows the benefit of using
dynamic programming to avoid recomputing the same sub-problem repeatedly. A top-down
dynamic programming is preferred for the proposed approach as some of the sub-problems
never get examined at all (see Figure 4.6). For instance, among all the elements corresponding
to device N (3 in the above example), only computing Z(N,R,P) (or Z(3,6,6) in the example)
is required. Hence, to avoid computing unnecessary cells, a top-down DP is implemented that
is based on the recursive relation and on memoizing the computed sub-problems in a linked list
structure, which reduces the memory usage as well as computation runtime.

Algorithm 1 illustrates the utilized top-down dynamic programming approach to find the opti-
mum solution to the SQ management problem based on the recursive relation in Eq. (4.15).

40

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

Reusing Sub-solutions

Definition 4.2.2: Mask the change: Any change in the EFC set of device d that does not change
the cells of the table corresponding to device d +1 (i.e. [d +1,∗,∗]) is masked, and hence does
not propagate to other cells of the table. A masked change does not affect the solution.

As mentioned earlier, the EFC set of each node may change over time as its available energy
changes due to consumption or battery re-charge. Some of those changes can be completely
masked. However, the unmasked changes still benefit from pre-computed cells of the solution
table.

– Classifying the Possible Changes Possible changes in an EFC set can be categorized into
three different class:

1. ADD: A new item is added: It happens only when the battery is re-charging and the
available energy (i.e. ed) increases. Then, a SQ level that was not present in the EFC set
is added to it. For example in Figure 4.7(a), the highest SQ level (last row) is included as
one of its configurations meets the battery lifetime constraint.

2. REM: An existing item is removed: It happens when the battery depletes and the avail-
able energy decreases. Then, a SQ level that can no longer fulfill the battery lifetime
constraint (under the new circumstances) is completely excluded and its corresponding
items are removed from the EFC set as shown in the example of Figure 4.7(b).

3. CHANGE: An existing item changes its second entry (i.e. r). It means that the item still
offers the same SQ level (the same utility value U), but with a different data transmission
rate. In other words, the item is replaced with another item from the same row in the
CoD matrix but from a different column as shown in Figure 4.7(c) and Figure 4.7(d). It
happens under two different circumstances:

• DEC: Due to battery recharge, a new element in the CoD matrix is added to the
feasible region of a row (see Figure 4.7(c)). Therefore, the corresponding item in
the EFC set is replaced with a new one which has the same utility (they are both in
the same row of CoD) but with less data to transmit (i.e. more on-board processing):
(U,r∗)→ (U, r̂) : r∗ > r̂.

• INC: Due to the energy consumption, the previous EFC item is not feasible anymore
and another element in the CoD matrix from the same row is selected to be in the
EFC set (see Figure 4.7(d)). The first entry (i.e. utility) is the same, but the data rate
is increased (i.e. more computation offloading): (U,r∗)→(U, r̂) : r∗< r̂.

Any change in the EFC set falls into one of the above categories. It should be noted that multiple
changes can happen at the same round of updating the CoD matrix.

– When and How to Reuse? This subsection investigates different classes of changes, and tries
to propose efficient solutions to reuse the sub-solutions that were computed before the changes.

41

4 Efficient Resource Management Techniques for IoT Edge Computing

. . .

. . .

. . .

. . .

. . .

. . .

(d) INC:

. . .

. . .

. . .

. . .

(c) DEC:

. . .

. . .

. . .

. . .

(b) REM:

. . .

. . .

. . .

. . .

(a) ADD:

Prev. CoD matrix New CoD matrix

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.
.

.

. . .

. . .

. . .

. . .

.
.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.
.

.

Figure 4.7: Different possible changes in EFC set of an IoT device

Among all the possible changes, some do not change the optimal solution. Hence, the previous
solutions remain the same with no need to solve the problem again. Some cases can reuse the
previous solution partially, and others need to rerun the algorithm.

I ADD: In case that the change is an ‘ADD’, the previously computed cells of table are
completely reused, but some new cells need to be computed. For instance, assume that
in Example 4.2.2, a new item is added to the EFC set of device 2, i.e. EFC′2 = EFC′2∪
{(8,3,4)}. It affects computing of Z(2,5,5) and Z(2,4,4) as following:

Z(2,5,5)=max{6+Z(1,4,3),7+Z(1,3,2),8+Z(1,2,1)}
=16

Z(2,4,4)=max{6+Z(1,3,2),7+Z(1,2,1),8+ Z(1,1,0) }

=14

As it is shown, only one new table cell is needed to be computed (i.e. Z(1,1,0)) and all
the other required cells are reused from previously computed cells.

I REM:

1. If the removed item was not the item that was selected as the solution in the previous
setup, then the optimal solution does not change and there is no need to re-run the
algorithm. This case can be checked and masked at the IoT device without the need
to inform the gateway.

2. Based on Property 4.2.1, the removed item had the highest utility and data rate. In
this case, the solution to the new setup is already in the computed table, as the new
instance of the problem is a subset of the previous instance.

42

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

 IoT device
 IoT device

 IoT device Gateway

Update
CoD Matrix

Find EFC set

Change in
EFC set?

New
Setup?

Find optimal
solution (DP)

Timer
expires?

start

No

Yes

No

Send to
Gateway

Yes

Extend the EFC
sets

Changes
masked?

Inform devices
new configs

Yes

No

Yes

No

 IoT devices

Figure 4.8: Simplified flow of SQ management

I INC: The updated item in the EFC set is either the selected item in previous instance or a
non-selected item.

1. In the former case, if the amount of increase in bandwidth (i.e. ∆r = r∗− r̂) and
processing (i.e. ∆p = p(r∗)− p(r̂)) are less than available resources that are left (i.e.
R−∑r∗d and P−∑ p(r∗d)), then the solution does not change.

2. In the latter case, the optimal solution does not change, hence there is not need to
re-run the algorithm to find it.

I DEC: If this change happens for device d1 (1 ≤ d1 ≤ N), only the precomputed cells of
devices 1≤ d2 < d1 can be reused, and the other referred cells need to be updated. Let us
assume that in Example 4.2.2, the EFC set of device 2 witnesses a ‘DEC’ change as the
second item becomes (7,2,2). All the cells containing Z(1,∗,∗) remain unchanged, but
the others are updated as following:

Z(2,5,5)= max{6+Z(1,4,3),7+Z(1,3,3)}= 17

Z(2,4,4)= max{6+Z(1,3,2),7+Z(1,2,2)}= 15

Z∗ = Z(3,6,6)= max{5+17,8+15}= 23

This shows that in the proposed solution not only the sub-problems of each instance can be
reused to avoid re-computation (by means of dynamic programming), but different instances
of the problem (i.e. after changes in the setup) can still benefit from previously computed sub-
solutions.

Figure 4.8 shows a simplified flow of the solution including the device flow and gateway solu-
tion flow.

43

4 Efficient Resource Management Techniques for IoT Edge Computing

4.2.3 Use case: IoT in Healthcare Monitoring

This subsection uses on ECG arrhythmia detection, serving as the application around which
a realistic use case is formulated for evaluating the efficiency of the proposed IoT resource
management solution. The following subsections present the use case including the details of
a monitoring IoT device and a network of devices with realistic models for gateway and IoT
devices.

ECG Analysis & Arrhythmia Detection

ECG provides essential information about the status of the heart which is critical for prevention,
early diagnosis, and treatment of cardiovascular diseases [LZP+12] as well as wellness applica-
tions [BMB+15]. In this work, ECG signals are used to detect heart arrhythmia, i.e. irregularly
fast or slow heart beats which may lead to strokes or heart failure [SCL+05]. The ECG analysis
flow of Figure 4.9 is implemented on the IoT device, which receives raw ECG data and detects
arrhythmia (if any).

1. Filtering: The initial step includes signal acquisition and filtering. A band-pass FIR filter
is used to remove baseline wander (< 1 Hz) and power line noise (50 Hz).

2. Segmentation and heart beat detection: For segmentation of the ECG signal, it is first
needed to detect the R peak (see the annotated ECG signal in Figure 4.9). The periodicity
of the heart beat is not constant and varies due to different reasons such as physical ac-
tivity, stress level, etc. Hence, a window of samples are examined to locate the peak. The
window size depends on the sampling rate. The detected R peak is used as the start of a
new segment.

3. Feature extraction: Features extraction of the heart beat is performed through Discrete
Wavelet Transformation (DWT) which is very popular for ECG signal processing due to
the fact that it is lightweight and capable of providing time and frequency information
simultaneously [BAAR12, MAM13]. This is essential when analyzing signals whose
frequency response varies in time, such as the ECG signal, and thus time localization of
the frequency spectral components is required.

4. Diagnosis: For the final stage, a Support Vectors Machine (SVM) classifier is used to
capture non-linear relationships of the feature space representing the target classification
problem [HPS+15]. The execution of the classifier concludes whether the processed heart
beat exhibits any signs of arrhythmia. Figure 4.9 depicts an example ECG signal exhibit-
ing normal and arrhythmic heart-beats.

The examined IoT scenario is located at clinical ward which welcomes a large number of pa-
tients that should all be monitored simultaneously. Wearable ECG analysis devices communi-
cate with the gateway through low-power low proximity wireless communication which in the
deployed scenario is Bluetooth Low Energy.

44

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

Raw ECG
signal Filtering

Heart beat detection
and segmentation

Feature
extraction

Diagnosis
classifier

D
at

a
re

d
u

ct
io

n
 f

lo
w

Stage 1

Stage 2

Stage 3

Stage 4 Diagnosis – Normal /
Abnormal

Normal heart
beat

Abnormal heart
beats

R peak

Q
S

T

P

Figure 4.9: ECG analysis flow

SQ and offloading levels

The presented design is pipelined in the sense that it produces valid results at the end of every
processing stage. For example, if the device is instructed to execute up to the feature extraction
process then the output of the flow is the Discrete Wavelet Decomposition of the input signal.
This result can be used in subsequent processing if transmitted to other devices.

This property of the flow enables the system to support offloading of processing to the gateway.
All of the aforementioned pipeline stages can be executed on the gateway. Therefore, processing
can be performed up to an arbitrary pipeline stage on the IoT node, then transmit its output to
the gateway, and resume the execution of pipeline there. The gateway decides the level of
offloading for each IoT node of the system by solving the SQ management problem.

As far as different SQ levels are concerned, they correspond to different sampling frequencies
of the ECG signals. Signals sampled at a higher frequency offer more detailed description of
the monitored ECG. The increased signal resolution enhances further analysis and diagnosis
by medical experts thus leading to increased SQ and utility for the patient. Combinations of
SQ levels and offloading levels (i.e. after which pipeline stage computation is offloaded to the
gateway) result in different data rates for input (xd in Eq. (4.2)) and output (rd in Eq. (4.3)) of
the device. Table 4.1 summarizes these values for combinations of SQ levels and offloading
levels stages for the ECG monitoring prototype.

Table 4.1: Input data rates and transmission data rates for different SQ levels and offloading levels
Transmission rate rd [B/s] for offload-
ing after a certain pipeline stage

SQ
level

Sampling
freq. [Hz]

Input data
rate xd [B/s] Stage 1 Stage 2 Stage 3 Stage 4

1 180 720 720 360 104 1

2 360 1440 1440 720 192 1

3 720 2880 2880 1440 372 1

4 1440 5760 5760 2880 564 1

5 2000 8000 8000 4000 1024 1

45

4 Efficient Resource Management Techniques for IoT Edge Computing

Due to the increased sampling frequency of higher SQ levels, an increase in input and output
data rate of each stage is observed. For example, if the window of data analysis W is 256 points
wide at sampling frequency of 360 Hz, then the corresponding window rises to 512 data points
at double the sampling frequency. Inevitably, this affects all other pipeline stages given that
they operate on greater amount of data. The only exception is the result of the analysis flow
(Stage 4), which is always one value that corresponds to the diagnosis label of the processed
heart beat.

Stages 1 to 3 of the flow have been designed to operate on a variable-sized input data window
while a classifier model (stage 4) was trained for each SQ level. Therefore, there is an instance
of the pipeline for each SQ Level, which operates on different amount of data. To comprehend
how this fact affects the resources needed for the execution of each combination of SQ level
and pipeline stage, the execution of the flow is profiled on the target IoT device. Figure 4.10
summarizes the percentage of execution of each processing stage over one minute for increasing
SQ levels.

180 360 720 1440 2000
0

20%

40%

60%

80%

100%

Sampling frequency of ECG singal [Hz]

C
P

U
 u

til
iz

at
io

n

Filtering
Segmentation
Feature Extraction
Classification

Figure 4.10: CPU utilization of ECG analysis stages

A expected, a higher SQ level comes at the price of increased computational requirements. Fig-
ure 4.10 also shows the computational effort that is offloaded to the gateway for the different
offloading levels, as the breakdown for the computational complexity of all pipeline stages is
shown. In all cases, the most computationally intensive stage is the diagnosis part due to its
complex structure in an effort to provide accurate predictions. On the contrary, beat segmen-
tation and DWT do not occupy the CPU for prolonged period. The rest of the time the CPU
remains idle, which is the major reason of power consumption variations over different SQ
levels.

4.2.4 Evaluation and Results

Experimental Setup

To construct the ECG analysis flow, actual patient ECG data records are used from MIT-BIH
Arrhythmia Database [MM01]. The annotated signals by medical experts are used for training
the machine learning tools. Original signals were sampled at 360 Hz. Down- and up-sampling
has been used to generate ECG signals of differing sampling rates.

46

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

Experimental analysis has been performed by simulating IoT network topologies of up to 10
nodes. To efficiently model the characteristics of the case study for different SQ and offloading
levels, the real execution of the ECG analysis flow is profiled on an Intel Quark SoC, already
proposed and used for wearable IoT devices [AB15, AMJ15]. The outcome of this profiling
campaign summarizes the computational requirements, expressed in CPU utilization, of each
combination of SQ- and offloading-level.

To conduct the experiments, a combination of experimentally derived data enhanced with nom-
inal data from data-sheets of commercial devices is used for the model parameters values. Re-
garding the available energy of the IoT device (ed), a battery consumption model of each IoT
node is composed based on the instrumented CPU utilization. More specifically, energy con-
sumption of ECG acquisition Sd(xdi) was calculated based on [Han13]. Bluetooth Low En-
ergy (BLE) is used for communication between IoT devices and gateway. Power consumption
value of data transmission (i.e. Td(rd)) is 0.153 µW based on [Smi11] and transmission latency
is 4 µs/bit [SHNN12]. Since BLE exploits an adaptive frequency hopping mechanisms, the
probability of interference is very low. To complete the battery model of the IoT nodes, a
rechargeable Lithium-Ion coin cell battery is chosen with a nominal capacity of up to 420mAh
[DMHL12]. A realistic discharge model is used for the battery using [ZLSX13] for various
values of discharge currents to evaluate the available energy for Eq. (4.4).

An ARM Cortex-M3 device is considered as the gateway [MPV11]. The energy consumption
values were acquired by profiling the execution of the ECG analysis flow for all combinations
of SQ levels and processing stages to measure the values of the required parameters, e.g. Cd(·),
p(rdi j), etc.

The final key component of the system model is to determine the utility functions of each device.
The SQ value of each combination of SQ level and ECG processing stage was set proportional
to the ratio of the sampling frequency of the ECG signal divided by the maximum available
ECG sampling frequency (2 kHz). It is possible to create more complex profiles of IoT devices
by allowing the user to specify a factor of how important high SQ levels are for this device.

Overhead Analysis

The proposed DP approach is implemented on the ARM Cortex-M3 microcontroller that is
used as the gateway platform. The measurements include the number of CPU cycles that the
proposed solution needs to calculate the optimal result and compare it against the brute-force
(BF) method in Figure 4.11. As the number of devices increases, the algorithm execution time
for BF increases exponentially whereas the execution time of the proposed algorithm increases
moderately (note the logarithmic scale of the Z-axis). For instance, having ten IoT devices with
each one having five feasible configurations, the proposed algorithm finds the optimal solution
in 0.4 seconds when the gateway is running at 100 MHz (i.e. 39,480,530 [cycles]

108 [Hz] ' 0.4s), while

the BF methods takes around 56 seconds (i.e. 5,587,270,875 [cycles]
108 [Hz] ' 56s). The generally short

execution time of the proposed solution and its good scalability show its suitability for online

47

4 Efficient Resource Management Techniques for IoT Edge Computing

3

4

5

2345678910
10

2

10
4

10
6

10
8

10
10

Size of EFC set#devices

#C
P

U
 C

yc
le

s

Proposed BF

Figure 4.11: The execution time of the proposed method compared to the BF method for different number of
devices and different sizes of EFC sets.

and dynamic scenarios of IoT networks where the number of active devices and their feasible
configurations change over time repeatedly.

Q=3 Q=4 Q=5

N
=7

N
=8

N
=9

N
=1
0

Q=3 Q=4 Q=5

N
=7

N
=8

N
=9

N
=1
0

Q=3 Q=4 Q=5

N
=7

N
=8

N
=9

N
=1
0

Q=3 Q=4 Q=5

N
=7

N
=8

N
=9

N
=1
0

3 2 1 0 1 2 3 4 5

1

2

3

4

5

6

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1

2

3

4

5

6

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1

2

3

4

5

6

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105

Q=3 Q=4 Q=5

N
=7

N
=8

N
=9

N
=1
0

3 2 1 0 1 2 3 4 5

1

2

3

4

5

6

7

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1

2

3

4

5

6

7

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1

2

3

4

5

6

7

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105

Q=3 Q=4 Q=5

N
=7

N
=8

N
=9

N
=1
0

3 2 1 0 1 2 3 4 5

1
2
3
4
5
6
7
8

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1
2
3
4
5
6
7
8

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1
2
3
4
5
6
7
8

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105

Q=3 Q=4 Q=5

N
=7

N
=8

N
=9

N
=1
0

3 2 1 0 1 2 3 4 5

1
2
3
4
5
6
7
8
9

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1
2
3
4
5
6
7
8
9

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105 3 2 1 0 1 2 3 4 5

1
2
3
4
5
6
7
8
9

#of recursions

Proposed

Total

103 102 10 10 102 103 104 105103 102 10 10 102 103 104 105

Figure 4.12: Total number of recursive calls of function (see Section 4.2.2), and number of recursions in the pro-
posed algorithm at different levels of the tree

As explained in Section 4.2.2, the proposed solution is based on a recursive function and its sub-
problems may occur repeatedly. The execution time is reduced by memoizing the answers of
sub-problems to avoid recomputing them over and over. Figure 4.12 shows a detailed analysis

48

4.2 Distributed SQ Management for Internet of Things under Resource Constraints

of the proposed algorithm with N = 7, · · · ,10 devices and Q = 3, · · · ,5 SQ levels. It shows the
average number of recursive function calls if the sub-problems are not stored (named ‘Total’),
and the average number of recursive function calls in this approach. Note that the values on
the X-axis are presented in logarithmic scale. The Y-axis shows the recursion level where the
function call happened.

1

Z(N,R,P) Z(10,.,.)

Z(9,*,*)

Z(8,*,*)

Z(1,*,*)

Figure 4.13: function calls tree

To make it clear, see Figure 4.13 which shows
the function calls as a tree. The root is at
the Nth level, where N is the number of IoT
devices (see Section 4.2.1). For instance, in
Figure 4.13 the number of function calls at
level 9 is equal to 4. Now consider the green
node which is labeled with 1 . This node is
called four times, however, in the proposed
solution it is called only once and the result
is stored in the table for later references. The
number of function calls at the Nth level is al-
ways 1 and is not shown in Figure 4.12.

Figure 4.14 shows the time interval between two successive re-executions of the algorithm (i.e.
time between two problem instances), which is triggered after a change in the set of feasible
configurations. As the number of devices increases in the case study, the average time between
re-executions decreases (i.e. it is needed more frequently).

Comparison to unsupervised devices

The proposed solution is also compared to the system that operates with no SQ management by
the gateway (called ‘unsupervised’). The experiments are conducted with two scenarios for the
unsupervised system.

In the first scenario, devices operate at the highest SQ level and with no offloading to the gate-
way. The battery lifetime constraint is assumed to be 20 hours (1200 minutes) and assume that
designers can choose a battery out of three ranges with small (260–320 mAh), medium (320–
380 mAh) and high (380–420 mAh) capacity. For a varying number of IoT devices in a range of
2 to 10, the achieved battery lifetime of the unsupervised system and the proposed solution are
compared. Figure 4.15 shows the average achieved battery lifetime. The unsupervised system
fails to meet the constraint even when the battery capacity is high, while the proposed technique
always respects it. In some cases, the battery lifetime of the system may exceed the battery con-
straint (i.e. device operates a bit longer). The reason is that as the number of devices increases,
the proposed solution offloads more data and the constraints of the gateway force the devices
to decrease their SQ level such that all devices can benefit from offloading. For instance, in
Figure 4.4 instead of x4=400 and r4,4=320, the algorithm has to select x3=300 and r3,2=120
in order to meet the gateway’s constraints. This leads to lower energy consumption and longer
battery lifetime.

49

4 Efficient Resource Management Techniques for IoT Edge Computing

2 3 4 5 6 7 8 9 10
0

20

40

60

80

#of devices

T
im

e
be

tw
ee

n
tw

o
su

cc
es

si
ve

 e
xe

cu
tio

n
[m

in
]

Figure 4.14: The time intervals between successive re-execution of algorithm in the case study

800

900

1000

1100

1200

1300

1400

2 3 4 5 6 7 8 9 10

A
ve

ra
g

e
B

at
te

ry
 L

ife
tim

e
[m

in
]

#of devices

Small (260-320 mAh) Small (260-320 mAh)
Medium (320-380 mAh) Medium (320-380 mAh)
High (380-420 mAh) High (380-420 mAh)

Unsupervised: Proposed:

battery
constraint

Figure 4.15: The average battery lifetime of devices in the system and the unsupervised system for different bat-
tery sizes

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10

S
Q

 im
pr

ov
em

en
t (

%
)

#of devices

Figure 4.16: The accumulated SQ (utility) in the system compared to the unsupervised system for different num-
ber of devices

In the second scenario, the IoT devices in the unsupervised system select a low SQ level to make
sure that the battery lifetime constraint is met. Figure 4.16 presents the average achieved SQ
with the proposed solution compared to the unsupervised system. In a system with only a few
devices (i.e. 2 or 3), the gateway resources are not scarce and therefore, this solution selects a
high SQ level for the IoT devices. As the number of devices increases, the gateway’s resources
become saturated and thus this solution assigns a low SQ level to IoT devices. By employing
this solution, the overall SQ of devices is at least 50% more than unsupervised system.

50

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

4.2.5 Summary of Distributed SQ Management Technique

This section studied the problem of SQ management in IoT systems, where the IoT devices can
provide different SQ levels and can offload a share of their workload. The SQ management
has to fulfill constraints for the battery lifetime of IoT devices, communication bandwidth to
the gateway, and processing capability of the gateway (for offloading). This section presented
an ILP formulation for this problem and decomposed it into separated device and gateway
problems. This allowed to reduce the search space and to distribute a part of the problem
calculation to the IoT devices. The proposed solution benefited not only from reusing its sub-
solutions (based on dynamic programming), but also from previous instances of the problem.
The effectiveness of the proposed approach has been demonstrated by using a case study of
ECG processing in a personal healthcare monitoring application. The experiments showed that
this solution improves the overall SQ (i.e. utility) by 50% compared to an unsupervised system
while both meet the constraints.

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

This section aims at improving the efficiency for operation mode selection where the system
optimization objective is in the form of max-min goal. It also presents a novel memoization
technique for the resource allocation techniques which are based on dynamic programming.
This novel technique is especially advantageous when the shared resources are divisible. The
contributions of this section are also based on [STB+17b].

As described in Chapter 5, IoT devices support multiple operation modes to be able to adapt to
varying conditions of the system at runtime (e.g. battery status). The operation modes of IoT
edge devices must be selected at runtime such that the efficiency (e.g. energy efficiency) among
all devices is improved. Since optimizing the overall efficiency or reaching maximum efficiency
might lead to poor efficiency in some IoT devices (e.g. starvation where some devices consume
most of the shared resources and starve all other devices), this section considers the ‘max-min’
goal for optimization. In this problem, the lowest efficiency among all IoT edge devices shall
be maximized. Therefore, the overall efficiency among all the devices is improved.

The novel contributions of this section are as follows:

• It presents a fast and low-overhead scheme to select the operation modes of IoT devices.
The scheme is based on dynamic programming.

• It introduces a novel memoization technique for the dynamic programming scheme in
which each sub-problem determines the solution to a range of sub-problems instead of
only one. It reduces the required memory to store the sub-problems significantly, which
is important for IoT systems.

• It identifies the properties of the mode selection problem and then leverages them to prune
the search space, which reduces both memory and execution time overhead.

51

4 Efficient Resource Management Techniques for IoT Edge Computing

4.3.1 Problem Formulation

Gateway Model

The constrained resources of the gateway are shared between the connected IoT devices. R is
the vector of length g showing the shared resources on the gateway where R[j], j = 1, · · · ,g,
shows the amount of resource j on the gateway that is dedicated for edge processing and that
is thus shared among all IoT devices. For instance, the communication bandwidth (j = 1),
the processing capability (j=2), and internal memory (j=3) can be considered as scarce re-
sources. See Example 4.3.1 for more details. This vector is determined after considering the
other functionalities of the gateway, i.e. resources that are needed for the operating system,
control/management tasks etc. are excluded from it. Only resources that go beyond these re-
quirements are dedicated to the edge computing purpose. Note that the available resource of the
gateway may change at runtime, but it is assumed that it is not more often than one round of the
problem.

Definition 4.3.1: For resource vectors R1 and R2, let us define R1 ≤v R2 if and only if for
all types of resources (j=1, · · · ,g), it holds that R1[j]≤R2[j]. This definition is used later for
determining the feasible solutions.

IoT device Model

Consider a local network with a set of N IoT edge devices connected to the gateway (see Fig-
ure 4.17). Each edge device is uniquely identified by an integer value d ∈ {1, · · · ,N} and is
specified by a tuple:

Id =
(

Qd,Ld,Ed(·, ·),Rd(·, ·), fd(·, ·)
)

(4.16)

where

– Qd denotes the number of possible SQ levels of device d. At each point of time, the device
is operating at one SQ, qd ∈ {1, · · · ,Qd}, with each level having a different input data rate
and thus providing a different quality of service. The SQ depends on the sensor sampling
frequency and data resolution (see Chapter 5).

– Ld denotes the number of different offloading levels that the application on the device d
offers. Offloading level determines how much of data processing is not performed on the
edge device (on-board processing), but instead transmitted to the gateway (offloaded). At
each point of time, device d operates at one offloading level ld ∈ {1, · · · ,Ld}.

– Ed(qd, ld) is the average power consumption of device d when offering the SQ level qd

and operates under offloading level ld .

– Rd(qd, ld) is the vector of length g showing the amount of shared resources that device d
requires on the gateway to be able to operate at SQ level qd and offloading level ld . It is

52

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

assumed that for all the SQ and offloading levels Rd(qd, ld)≤ν R, otherwise the operation
mode would not be feasible at all, as it would require more resources than are available.

– fd(qd, ld) denotes the efficiency factor of device d when it offers the SQ level qd and
operates under offloading level ld . This is a general factor defined by the designer that
can support different metrics, e.g. energy efficiency. Depending on the system objectives,
the designer can define this factor by considering critical parameters such as energy con-
sumption, service quality, battery lifetime, etc. The following definition is used in this
section which depends on the provided SQ and consumed energy:

fd(qd, ld) =
U(qd)

Ed(qd, ld)
(4.17)

where U(·) is a strictly increasing function which shows the quality of service and user
satisfaction (i.e. utility [TZGX15]) for each SQ level. If the user has any constraint on the
quality of service that he/she receives, the utility of the SQ levels lower than the constraint
would be set to zero.

Equation (4.17) illustrates how efficient the energy is used to provide a certain quality of
service. Alternatively, the current battery status (i.e. its residual energy) could be included
in the factor as well.

Given two different operation modes with the resource usages of R1 and R2 and efficiency
factors f1 and f2, if R1 ≤ν R2 and f1 ≥ f2 then the first operation mode outperforms the sec-
ond mode (i.e. less resource usage but higher efficiency). Hence, the second mode can be
excluded from the problem without effecting the final solution. However even without exclud-
ing it, the overhead of the proposed algorithm for solving the problem remains the same (see
Section 4.3.2).

It is worth noting that device parameters might change at runtime too, however it is assumed
that they do not change before one instance of problem is solved.

Problem Statement

The IoT system model is summarized in Figure 4.17 where several IoT devices share a gateway
to connect to the Internet and consequently share the resources on the gateway. The operation
mode of each device should be selected at runtime such that the constraints of shared resources
on the gateway as well as the constraints of each device are met. The problem that is targeted
in this work can be solved by deciding the SQ level q and the offloading level l for each IoT
device d at runtime, such that the constraints of shared resources on the gateway are fulfilled
(Eq. (4.18)) and the minimum efficiency among edge devices is maximized (Eq. (4.19)).

Resources constraint: ∑Rd(qd, ld)≤ν R (4.18)

Optimization goal: maximize min
∀d

{
f 0
d + fd(qd, ld)

}
(4.19)

53

4 Efficient Resource Management Techniques for IoT Edge Computing

Legend

Reserved

Shared

WiFi, LAN
Cloud

Storage of
final results

Io
T

d
ev

ic
es

Gateway

Bluetooth

. . .

Gateway

battery battery

quality:

offloading
level:

1 2

1 2 3
battery

quality:

offloading
level:

1 2 3

1 2 3

quality:

offloading
level:

1 2 3

1 2 3

quality:

offloading
level:

1

1 2
battery

. . .

1 2 3 N

Io
T

d
ev

ic
es

memory

processor

bandwidth

N

N

N

1

1

1 32

2 3

32

Low power wireless radio
e.g. Bluetooth Low Energy, LPWAN, ZigBee

Gateway

battery

quality:

offloading
level:

1 2

1 2 3
battery

quality:

offloading
level:

1 2 3

1 2

quality:

offloading
level:

1 2

1 2

. . .

1 2 N

Io
T

d
ev

ic
es

memory

processor

bandwidth

N

N

N

1

1

1 32

2 3

32

Low power wireless radio
Bluetooth Low Energy

battery

Figure 4.17: A share of gateway’s resources is reserved for its management tasks (e.g. operating system, con-
nectivity, etc.), the rest is shared between IoT edge devices with multiple operating choices (quality
level, offloading level, etc.)

where the relation ≤ν is defined in Def. 4.3.1, and f 0
d is the efficiency factor from the previous

rounds of mode selection. If this is the first round of problem, then ∀d : f 0
d = 0.

4.3.2 Fast and Low-overhead Operation Mode Selection Scheme

This subsection presents a dynamic programming approach as the core of the solution similar
to the state of the art [STX+16b]. Dynamic programming provides the opportunity to solve
this problem optimally and quick. It avoids recomputing the same sub-problems repeatedly by
memoizing their solution. Then two novel approaches will be proposed to enhance the solution
which make it faster and reduce the memory requirements.

Complexity Analysis of the Problem

This subsection shows and proves that the problem of mode selection under resource constraints
that is formulated by Eq. (4.18) and (4.19) is NP-Hard. The Multiple Choice Multi-dimensional
Knapsack Problem (MMKP) is a well-known NP-Hard problem [CH09]. One can reduce the
MMKP problem to the above-mentioned problem in polynomial time, as follows. The operation
modes of each device is the class of items from which example one must be chosen. Each oper-
ation modes consumes multiple resources on the gateway which corresponds to the knapsack’s
capacity. The efficiency of each operation mode is the profit that user gains from the chosen
item.

Since the mode selection problem is NP-Hard, there is no polynomial-time solution for it. How-
ever, the number of IoT devices connected to a single gateway is bounded due to the practical
limitations. For instance in typical applications, the communication bandwidth of the gateway
is only enough to support a couple of devices [GRW+15, ZMK+15]. Another limitation might

54

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

be because of wireless radio protocol. For instance, Bluetooth can supports up to 7 devices
connected to a gateway.

In practice, the number of IoT devices in typical applications and scenarios does not grow.
Practical limitations do not allow very large number of IoT devices to connect to one gateway. In
addition, typical IoT applications do not have very dense deployment of IoT devices. Therefore,
in such problems the absolute overhead of solution is more important than its complexity.

Addressing Critical Applications’ Requirements

In many IoT systems some IoT edge devices may have a more critical application. This level of
criticality may even change at runtime for some devices either due to the changes in the physical
world and input data or upon user’s preferences. The proposed mode selection scheme supports
the devices with different priorities. The designer can distinguish important and critical devices
by assigning a lower utility to their operating modes (see Eq. (4.17)). Since the proposed scheme
aims at improving the lowest efficiency among devices, it consequently allocate more resources
to the critical devices in order to improve their efficiency. Therefore, the utility of the device is
a controlling parameter to address the criticality of its application at runtime.

Dynamic Programming Solution for Mode Selection

– Formulation & Example

Let F(d,R) denote the output of Eq. (4.18) and (4.19) (highest minimum efficiency) that can be
gained from the first d devices under constraint R for the shared resources of the gateway.

F(d,R) = max
1≤q≤Qd
1≤l≤Ld

{
min

{
F
(
d−1,R−Rd(q, l)

)
, f 0

d + fd(q, l)
}}

(4.20)

There are two boundary conditions:

F(d,R) =

{
−∞ if ∃1≤ j≤ g : R[j]< 0

∞ if d = 0
(4.21)

The first condition prevents the violation of resource constraints (i.e. keeps the allocated re-
sources less than or equal to the available resources on the gateway). The solution to Eq. (4.18)
and (4.19) is F(N,R).

Example 4.3.1: The following example is used to explain the details of the proposed solution
in the rest of this section. Let us assume the gateway has two shared resources (i.e. g = 2):
R = [11,12]. Three devices are connected to this gateway (i.e. N = 3), each of which has 3
levels of quality (i.e. Qd = 3, d = 1,2,3) and one level of offloading (i.e. Ld = 1, d = 1,2,3).
Hence, the number of total operation modes for each device is Ld ×Qd = 1× 3 = 3. The

55

4 Efficient Resource Management Techniques for IoT Edge Computing

resource usage of devices in different modes and associated efficiency factors are as follows:

Device 2:

Device 1:

Device 3:

([3,3], 0.3) ([5,4], 0.6)([4,4], 0.4)

Resource usage Efficiency factor

Quality level: 1 2 3

([2,3], 0.4) ([4,5], 0.6)([3,4], 0.5)

([2,1] ,0.2) ([4,5], 0.5) ([2,3], 0.3)

The solution to this example is F(3, [11,12]). Equation (4.22) shows the first level of recursive
calls to solve it:

F(3, [11,12]) = max{min
(
F(2, [11−2,12−3]),0.4

)
,

min
(
F(2, [11−3,12−4]),0.5

)
,

min
(
F(2, [11−4,12−5]),0.6

)
}

(4.22)

The final solution to this example is F(3, [11,12]) = 0.4 which corresponds to these selected
modes (quality level):

• Device 3 operates at mode 1, (i.e. R = [2,3], f = 0.4),

• Device 2 operates at mode 3, (i.e. R = [5,4], f = 0.6), and

• Device 1 operates at mode 3, (i.e. R = [4,5], f = 0.5).

– Memoization

While a bottom-up dynamic programming approach requires computing all sub-problems (even
those that might never be called), a top-down approach allows to compute required sub-
problems on demand. Therefore, a top-down approach for this problem has less execution
time, consumes less energy and requires less memory to store the solutions. The recursive
relation in Eq. (4.20) and (4.21) allows a top-down dynamic programming approach in which
the solution to the sub-problems are stored after being called and re-use them in subsequent
calls.

A linked-list structure is used to store the sub-problems which reduces the memory usage as
it only allocates memory for the sub-problems that are called (instead of a statically allocate
an array for the worst case). Although a linked-list is more memory efficient for storing the
sub-problems, it has a disadvantage: for each sub-problem the list has to be searched to find the
solution, which imposes additional time overhead. Therefore the advantages of having a short
linked-list (by eliminating unnecessary entries) are twofold: i) reduce the required memory
and ii) reduce the execution time. The next two subsections propose two novel approaches
to reduce the length of the linked-list (number of stored sub-problems) and to decrease the
execution time.

56

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

To reduce the memory usage, one can avoid storing some sub-problems that will never oc-
cur more than once. Since the operation modes supposedly have different resource usage (i.e.
Rd(·, ·)) the sub-problems F(N−1, ·) occur only once, and therefore are not stored. In addition,
the cost (memory usage and execution time) of memoizing some sub-problems may be more
than the cost of computing them. The computation cost of the function calls for the F(0, ·) is
very low as they need to just check the boundary conditions (see Eq. (4.21)) for L1×Q1 modes.
Therefore, one can avoid memoizing these sub-problems too.

Figure 4.18 shows the tree for recursive function calls (i.e. sub-problems) corresponding to
Example 4.3.1. According to the above discussion, only the sub-problems F(1, ·) are stored
which are 9 in overall. In this example, two sub-problems benefit from memoization as they
occur more than once and therefore after the first time, their solution is retrieved from memory
instead of re-computation. The sub-problems that have not been re-computed (after memory
hit) are marked with a red label in the figure.

 Legend

F(3,[11,12])

{F(2,[7,7]), 0.6}{F(2,[8,8]), 0.5}{F(2,[9,9]), 0.4}

{F(1,[2,3]), 0.6}

{F(1,[3,3]), 0.4}

{F(1,[4,4]), 03} {F(1,[5,5]), 0.3}

{F(0,[-2,-2]), 0.5}

{F(0,[0,0]), 0.3}

{F(0,[0,2]), 0.2}

{F(0,[-1,-2]), 0.5}

{F(0,[1,0]), 0.3}

{F(0,[1,2]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[2,1]), 0.3}

{F(0,[2,3]), 0.2}

{F(0,[-1,-1]), 0.5}

{F(0,[1,1]), 0.3}

{F(0,[1,3]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[2,1]), 0.3}

{F(0,[2,3]), 0.2}

{F(0,[1,0]), 0.5}{F(0,[0,0]), 0.5}

{F(0,[2,2]), 0.3}

{F(0,[2,4]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[3,2]), 0.3}

{F(0,[3,4]), 0.2}

{F(0,[2,1]), 0.5}

{F(0,[4,3]), 0.3}

{F(0,[4,5]), 0.2}

Repeated sub-problem: bold, e.g. F(1,[4,4]) Not executed (memoization): F(0,[2,3])

Cutting point:

 {F(1,[3,4]), 0.6}

{F(1,[4,4]), 0.4} Mem.
Hit ✓

{F(0,[3,4]), 0.2}

{F(0,[3,2]), 0.3}

{F(1,[4,5]), 0.6}

{F(1,[5,5]), 0.4}

R=[2,3] R=[4,5]
R=[3,4]

R=[5,4]R=[4,4]R=[3,3]R=[5,4]R=[4,4]R=[3,3]R=[5,4]

{F(1,[6,6]), 0.3}

R=[4,4]

R=[4,4]

R=[2,3]

R=[2,1]

R=[4,4]

R=[2,3]

R=[2,1]

R=[3,3]

Mem.
Hit ✓

{x,y}: minimum{x,y}

1

2

3 4

5

6 7

8

9

1 2 9... : sequence of sub-problems being stored or retrieved from memory

Figure 4.18: Recursion tree for the sub-problems in Example 4.3.1 with conventional memoization (used in state-
of-the-art approach).

Cover a Range of Sub-problems

Based on the observations, when there are multiple types of shared resources (i.e. g > 1), as
in Example 4.3.1, the number of distinct sub-problems increases. Therefore, the chance of
recurring the same sub-problem decreases. It means that many sub-problems will be stored (i.e.
huge memory overhead), but would have a low hit ratio. In Example 4.3.1, the hit-per-entry
ratio is 2

7 (7 sub-problems are stored with 2 hit access in overall). However, if the number of
shared resources in Example 4.3.1 was g = 1 (ignoring the first resource), then the number of
stored sub-problems would have decreased to 4, and the number of hits would have increased
to 5. The more shared resource types there are (i.e. larger g), the larger the memory overhead
becomes.

57

4 Efficient Resource Management Techniques for IoT Edge Computing

In the following, it is shown that even though some sub-problems are distinct (e.g. F(1, [2,3])
and F(1, [4,4]) in Example 4.3.1), they still have the same solution. This will help us to reduce
the number of stored sub-problems, increase the hit ratio and decrease the execution time.

Definition 4.3.2: Vector R̄d,R denotes the ‘surplus’ (i.e. leftover) resources after optimal al-
location of resources by solving Eq. (4.20). For instance in Example 4.3.1, if R = [4,4] then
R̄1,[4,4] = [2,1]. According to Eq. (4.20), F(1, [4,4]) = 0.3 which corresponds to the second
operating mode of device 1 whose resource usage is [2,3]. Therefore, the leftover of resources
would be [4,4]−[2,3]=[2,1].

Property 4.3.1: The optimal solution to F(d,R) is identical to the solution of a range of sub-
problems F(d,R2) where

(R− R̄d,R)≤ν R2 ≤ν R

(refer to Def. 4.3.1 for the definition of ≤ν).

In the above-mentioned example, F(1, [4,4]) is equal to F(1, [2,3]) and F(1, [3,3]) (as well as
F(1, [2,4]), F(1, [3,4]), and F(1, [4,3]), which are not called in this example). Therefore, using
this property, it is possible to cover the solution of several sub-problems using the solution of
only one. After solving each sub-problem, this scheme calculates the leftover (i.e. surplus)
resource vector (i.e. R̄d,R). Instead of associating this solution to a sub-problem, it is associated
with the range of sub-problems that it supports (see Algorithm 2 for more details). It results in
a significant reduction in function calls and the required memory in the dynamic programming
algorithm.

Figure 4.19a shows the tree for recursive calls (i.e. sub-problems) corresponding to Exam-
ple 4.3.1 when using the novel memoization technique. Compared to the conventional memo-
ization (see Figure 4.18), the number of stored sub-problems reduces from 7 to 2, but the number
of memory hits increases from 2 to 7. Figure 4.19b depicts the timeline of the sub-problems
being stored and retrieved over the time. Upon computation of sub-problem F(1, [6,6]), the
leftover resources equals [2,1] which makes the solution cover this range of sub-problems (SP):
F(1, [4,5])−F(1, [6,6]). The three subsequent SPs fall into this range and encounter a mem-
ory hit. Sub-problem F(1, [4,4]) is not covered by any entry in the memory, therefore needs
to be computed. The leftover resources, similarly, equals [2,1] which leads to a solution that
can cover the range of F(1, [2,3])−F(1, [4,4]). The four subsequent SPs falls into this range
and consequently have the memory hit. Therefore their computation is avoided. This exam-
ple shows that the novel memoization technique offer a great potential to reduce the memory
required for dynamic programming solutions as well as their computation cost.

To benefit most from the proposed memoization technique, the operation modes of each device
shall be examined in an increasing order of resource usage. Technically, in the data structure
of each memory entry, instead of having one ‘index’, the scheme stores the ‘start index’ and
‘end index’. According to the experiments on a 32-bit microcontroller unit (see Section 4.3.3),
the size of each memory entry increases by (at most) 4 Bytes, but the number of entries to

58

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

 Legend

F(3,[11,12])

{F(2,[7,7]), 0.6}{F(2,[8,8]), 0.5}{F(2,[9,9]), 0.4}

{F(1,[2,3]), 0.6}

{F(1,[3,3]), 0.4}

{F(1,[4,4]), 03}{F(1,[5,5]), 0.3}

{F(0,[-2,-2]), 0.5}

{F(0,[0,0]), 0.3}

{F(0,[0,2]), 0.2}

{F(0,[-1,-2]), 0.5}

{F(0,[1,0]), 0.3}

{F(0,[1,2]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[2,1]), 0.3}

{F(0,[2,3]), 0.2}

{F(0,[-1,-1]), 0.5}

{F(0,[1,1]), 0.3}

{F(0,[1,3]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[2,1]), 0.3}

{F(0,[2,3]), 0.2}

{F(0,[1,0]), 0.5}{F(0,[0,0]), 0.5}

{F(0,[2,2]), 0.3}

{F(0,[2,4]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[3,2]), 0.3}

{F(0,[3,4]), 0.2}

{F(0,[2,1]), 0.5}

{F(0,[4,3]), 0.3}

{F(0,[4,5]), 0.2}

Stored sub-problem: bold, e.g. F(1,[4,4]) Not executed (memoization): F(0,[2,3]) Cutting point:

 {F(1,[3,4]), 0.6}

{F(1,[4,4]), 0.4}

{F(0,[3,4]), 0.2}

{F(0,[3,2]), 0.3}

{F(1,[4,5]), 0.6}

{F(1,[5,5]), 0.4}

R=[2,3] R=[4,5]
R=[3,4]

R=[5,4]R=[4,4]R=[3,3]R=[5,4]R=[4,4]R=[3,3]R=[5,4]

{F(1,[6,6]), 0.3}

R=[4,4]

R=[4,4]

R=[2,3]

R=[2,1]

R=[4,4]

R=[2,3]

R=[2,1]

R=[3,3]

Mem.
Hit ✓

{x,y}: minimum{x,y}

Mem.
Hit ✓

Mem.
Hit ✓

Mem.
Hit ✓

Mem.
Hit ✓

Mem.
Hit ✓

Mem.
Hit ✓

1

2

3 4

5

6 7

8

9

(a) Recursion tree for the sub-problems in Example 4.3.1 with the novel memoization technique.

F(1,[3,3])

[2,3] ≤v [3,3]≤v [4,4]

Memory hit!

F(1,[2,3])

[2,3] ≤v [2,3]≤v [4,4]

Memory hit!

F(1,[4,4])

[2,3] ≤v [3,4]≤v [4,4]

Memory hit!

 F(1,[3,4])

[2,3] ≤v [3,4]≤v [4,4]

Memory hit!

F(1,[4,4]) F(1,[5,5])

[4,5] ≤v [5,5]≤v [6,6]

Memory hit!

F(1,[4,5])

[4,5] ≤v [4,5]≤v [6,6]

Memory hit!

F(1,[5,5])

[4,5] ≤v [5,5]≤v [6,6]

Memory hit!

F(1,[6,6])

time

time 1 2 3 4 5

6789

Solve! Leftover:[2,1]

Range of SP:
F(1,[4,5])-F(1,[6,6])

Mem. miss

Solve! Leftover:[2,1]

Range of SP:
F(1,[2,3])-F(1,[4,4])

Mem. miss

(b) The timeline for sub-problems of Example 4.3.1 being stored and retrieved.

Figure 4.19: An example for the proposed novel memoization technique.

store decrease significantly. Therefore, the memory requirement for storing the sub-problems
decreases (evaluated in Section 4.3.3).

Pruning

The problems with max-min goal provide a key opportunity to further reduce the computation
as well as the required memory by pruning the solution space. The intuition behind the pruning
approach is as follows:

Property 4.3.2: Assume an arbitrary function H(x) and two known scalars a1 and a2. To
calculate the following term,

max{ min(a1,H(x1)), min(a2,H(x2)) }

59

4 Efficient Resource Management Techniques for IoT Edge Computing

if a1 ≥ a2 and H(x1)≥ a2 then the value of H(x2) does not matter. The proof follows immedi-
ately from the definition:

a2 ≤ a1

a2 ≤ H(x1)

⇒ a2 ≤min(a1,H(x1))

min(a2,H(x2))≤ a2

⇒

min(a2,H(x2))≤

min(a1,H(x1))

so under these assumptions, the value of H(x2) does not need to be computed.

Since the efficiency factors (i.e. fd(·)) are known and given as input to the problem, under the
above-mentioned circumstance, some of the function calls of F(·) in Eq. (4.20) can be pruned.
To benefit from pruning, the operation modes should be examined in an descending order with
respect to their efficiency factor. For instance in Eq. (4.22), the value of F(2, [7,7]) is calculated
first, and then the pruning condition is checked (see Property 4.3.2). If it does not hold, then
the value of F(2, [8,8] needs to be calculated, and so on. Otherwise, the scheme stops checking
other sibling nodes in the recursion tree (i.e. prune them).

Example 4.3.2: In Example 4.3.1, the value of function F(2, [9,9]) depends on the values
of F(1, [4,5]), F(1, [5,5]), and F(1, [6,6]). The value of F(1, [4,5]) equals 0.5. Since 0.5 >

f2(2,1)=0.4 and 0.4 > f2(1,1)=0.3, according to Property 4.3.2, the value of those last two
functions does not change the output and F(2, [9,9]) equals 0.5. Therefore the function calls to
F(1, [5,5]) and F(1, [6,6]) are pruned.

Example 4.3.3: This example illustrates the effect of the proposed approaches (i.e. covering
the range of sub-problems using surplus resources and pruning) with more details. In Exam-
ple 4.3.1, the solution to the following sub-problems are memorized and retrieved:

sub-prob. #hits sub-prob. #hits sub-prob. #hits

F(1,[2,3]): 0 F(1,[3,3]): 0 F(1,[4,4]): 1

F(1,[3,4]): 0 F(1,[5,5]): 1 F(1,[4,5]): 0

F(1,[6,6]): 0

which results into 7 memory entries but with only 2 hit accesses. By exploiting Properties 4.3.1
and 4.3.2, the solution to these sub-problems are memorized and accessed:

sub-prob. #hits sub-prob. #hits

F(1,[2,3]) – F(1,[2,3]): 0 F(1,[2,3]) – F(1,[3,3]): 0

F(1,[2,3]) – F(1,[4,4]): 2 F(1,[4,5]) – F(1,[5,5]): 1

which results into 4 memory entries and 3 hit accesses. It is noteworthy that some of the entries
are a sub set of other entries. For instance F(1, [2,3])−F(1, [3,3]) is a sub set of F(1, [2,3])−

60

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

F(1, [4,4]). The reason is that the former is stored before the latter (its sub-problem has occurred
first). Comparing Figure 4.20 with Figure 4.18, one can see that in the thirds level of tree (i.e.
the sub-problems in form of F(1, [·, ·])) the proposed technique reduces the number of sub-
problem computations from 6 to 3.

 Legend

F(3,[11,12])

{F(2,[7,7]), 0.6} {F(2,[8,8]), 0.5} {F(2,[9,9]), 0.4}

{F(1,[2,3]), 0.6}

{F(1,[3,3]), 0.4}

{F(1,[4,4]), 03} {F(1,[5,5]), 0.3}

{F(0,[-2,-2]), 0.5}

{F(0,[0,0]), 0.3}

{F(0,[0,2]), 0.2}

{F(0,[-1,-2]), 0.5}

{F(0,[1,0]), 0.3}

{F(0,[1,2]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[2,1]), 0.3}

{F(0,[2,3]), 0.2}

{F(0,[-1,-1]), 0.5}

{F(0,[1,1]), 0.3}

{F(0,[1,3]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[2,1]), 0.3}

{F(0,[2,3]), 0.2}

{F(0,[1,0]), 0.5} {F(0,[0,0]), 0.5}

{F(0,[2,2]), 0.3}

{F(0,[2,4]), 0.2}

{F(0,[0,-1]), 0.5}

{F(0,[3,2]), 0.3}

{F(0,[3,4]), 0.2}

{F(0,[2,1]), 0.5}

{F(0,[4,3]), 0.3}

{F(0,[4,5]), 0.2}

F(0,[2,3])Not executed (pruned): Not executed (memoization): F(0,[2,3]) Cutting point:

 {F(1,[3,4]), 0.6} Mem.
Hit ✓

{F(1,[4,4]), 0.4} Mem.
Hit ✓

{F(0,[3,4]), 0.2}

{F(0,[3,2]), 0.3}

{F(1,[4,5]), 0.6} Mem.
Hit ✓

{F(1,[5,5]), 0.4}

R=[2,3]R=[4,5]
R=[3,4]

R=[5,4] R=[4,4] R=[3,3] R=[5,4] R=[4,4] R=[3,3] R=[5,4]

{F(1,[6,6]), 0.3}

R=[4,4]

R=[4,4]

R=[2,3]

R=[2,1]

R=[4,4]

R=[2,3]

R=[2,1]

R=[3,3]

{x,y}: minimum{x,y}

Figure 4.20: Recursion tree for sub-problems of Example 4.3.1 using the proposed approach. Some sub-problems
are ‘pruned’ and more sub-problems benefit from memoization compared to Figure 4.18 (i.e. con-
ventional memoization with no pruning).

 Legend
time

Device 1:

Device N:

0 T

Mode 3: QL=2 OL=1

Mode 6: QL=3 OL=2O
p

er
at

io
n

M

o
d

e

Mode 4

Mode 5

Select
modes

. . .

. .
 .

. . .

Change in system
e.g. resources,

efficiency factors, etc.

Mode 2: QL=1 OL=2

Mode 3: QL=2 OL=1

2T

Gateway:
Select
modes

Select
modes

Select
modes

Mode 2: QL=1 OL=2

Mode 2: QL=1 OL=2

QL: Quality Level
OL: Offloading Level

Predefined
constant period

. .
 .

. .
 .

. .
 .

. .
 .

Operation mode
selection algorithm

Op. modes
Eff. factors

Selected
modes

Figure 4.21: The system level overview of selecting and updating the operation mode of IoT devices

Figure 4.20 shows the tree of sub-problems (recursion tree based on Eq. (4.20)) associated
with Example 4.3.1 using the proposed techniques. The sub-problems that are labeled with
green are pruned. Therefore neither of them nor their sub-nodes in the recursion tree require
calculation. In addition, the sub-problems that are bold and labeled with red are not executed as
their solution was stored and available in the memory. Comparing Figures 4.18 and 4.20 shows
that the proposed techniques not only reduce the number of function calls (sub-problems with
no label: white boxes) from 32 to 15, but they also reduce the number of memory entries from
7 to 4. This example shows that this approach reduces the execution time at a lower memory
usage.

Algorithm 2 illustrates the pseudo-code of the proposed approach. Lines 3-8 state the boundary
conditions of Eq. (4.21). In Lines 9-13, the memory is checked for the solution of this sub-
problem. If the solution is not memoized, it is calculated first (Lines 14-26), and then stored

61

4 Efficient Resource Management Techniques for IoT Edge Computing

it into the memory for subsequent calls (Lines 27-31). The algorithm will be implemented as
management task in the middle-ware of the gateway. Gateway needs to receive the updated op-
eration modes and their properties (i.e. efficiency factors and resource usage) from each device.
It selects the optimal operation mode for each device with respect to its available resources and
then informs the devices to operate at the selected modes.

Algorithm 2: Pruning & Novel Memoization for Dynamic Programming
1 Inputs : Sorted set of operation modes from devices, and resource vector of gateway R
2 Function F(d,R)
3 if !(0≤ν R) then // resource constraint violated
4 solution−−> e f f =−∞;
5 return solution;

else if d == 0 then // last level in call tree: i.e. last device
6 solution−−> le f tover = R;
7 solution−−> e f f = ∞;
8 return solution;

end
9 index← calculate index of sub-problem F(d,R) in memory;

10 solution = get_memoized(index) // retrieve solution from memory;
11 if solution != null then // memory hit
12 solution−−> start_ind = index;
13 return solution;

else // memory miss, so calculate the sub-problem:
14 for i← |Md | downto 1 do
15 get q and l corresponding to mode i;
16 fd,q,l ← efficiency factor of this mode;
17 Rql ← Rd(q, l); // resource usage of d at q and l
18 solution← F(d−1,R−Rql);
19 m←min

(
solution−−> e f f , fd,q,l

)
;

20 if m > max_min then
21 max_min = m;
22 trace = solution−−> trace;
23 le f tover = solution−−> le f tover;
24 best_id = i;
25 if m≥ efficiency of mode (i+1) then // prune!
26 break;

end
end

end
end

27 solution−−> e f f = max_min;
28 solution−−> trace = concat(trace,best_id);
29 solution−−> end_index = index;
30 solution−−> start_index = get_Index(d,R− le f tover); // supporting the range for sub-problems
31 add_to_memory(solution);
32 return solution

62

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

Systems-level Scheme for Operation Mode Selection

Figure 4.21 illustrates the timeline for operation mode selection in an IoT network where de-
vices have 6 operation modes (3 quality levels × 2 offloading levels). After selecting the op-
eration mode for IoT devices, the whole system keeps operating with this setup. However, the
operation modes of devices need to be updated under one of these circumstances:

1. once there is a change in the problem’s parameter (e.g. efficiency factor of IoT devices,
number of IoT devices connected to the gateway, available resources on the gateway, etc.).

2. after a predefined constant period of time. This parameter can be determined by the
system designer by considering the frequency of changes in the system and application’s
property. Therefore, it is assumed to be given as input.

4.3.3 Evaluation and Results

As explained in Chapter 2, Ref. [VQA14] targets the multi-dimensional resource allocation. It
uses dynamic programming in core of its solution but it uses conventional memoization without
any pruning. This is the nearest state-of-the-art competitor to the proposed work in this section,
and therefore is compared against it. In [STX+16b], too, the core of the solution is dynamic
programming with conventional memoization.

In the following, ‘conventional memoization, no pruning’ (CM-NP) is used to refer to the state-
of-the-art techniques that use dynamic programming such as [VQA14] and [STX+16b]. The
algorithms are implemented on the same platform, to have a fair comparison. Since both ap-
proaches (the proposed and [VQA14]) reach the optimal solution for operation modes, their
overhead are compared in terms of execution time and required memory.

Experimental Setup

The experimental analysis includes measurements on the actual IoT devices and trace driven
network simulation to study the behavior of the whole system under the proposed mechanism.

To efficiently model the characteristics of the case study for different configurations, the real ex-
ecution of IoT applications are profiled (see Chapter 5) and interpreted as proposed and utilized
in [STX+16b]. The profiling is performed on an Intel Quark SoC which has already proposed
and used for wearable IoT devices [AB15, AMJ15].

– Target IoT devices The Intel Quark SoC platform is considered as the gateway which has
been proposed and used widely as the IoT gateway. Its clock frequency is up to 400 MHz,
and features 512 KB SRAM as the internal memory [int]. Two types of shared resources are
assumed on the gateway (i.e. g = 2 in Section 4.3.1): i) processing power or CPU utilization
and ii) communication bandwidth. In idle mode, when there is no workload for the gateway,

63

4 Efficient Resource Management Techniques for IoT Edge Computing

the CPU utilization on the hardware platform is about 40% which is due to the operating sys-
tem’s tasks. 50% of the CPU is dedicated to be shareable between IoT devices to perform the
offloaded computation. The rest is dedicated for operating system, management tasks (e.g. 10%
is dedicated to the management of IoT devices for operation mode selection).

Different number of IoT devices are considered to be connected to the gateway ranging from
5 to 10. In addition, different number of operation modes are assumed based on quality levels
and offloading levels including 3 modes (i.e. 3 quality × 1 offloading levels or vice versa), 4
modes (i.e. 2 quality× 2 offloading levels), 6 modes (i.e. 3 quality× 2 offloading levels or vice
versa), 8 modes (i.e. 4 quality × 2 offloading levels or vice versa), and 9 modes (i.e. 3 quality
× 3 offloading levels).

Experiments & Results

Both CM-NP and proposed technique in this section achieve the optimal solution for Eq. (4.18)
and (4.19). The overhead of both algorithms are measured in terms of i) execution time over-
head (number of CPU cycles) and ii) the memory overhead for storing the sub-problems. The
algorithms are implemented and evaluated on the Intel Quark SoC gateway.

– Execution Time Overhead

In the experiment, the CPU usage of processes is limited by means of Linux Control Groups, a
standard tool provided by Yocto. The following four scenarios are considered for the CPU limit
of the management algorithms: 10%, 20%, 50%, and 100% (i.e. no CPU limit). The execution
time overhead of CM-NP and the proposed technique are measured and reported for these three
parameters: 1) different number of devices, 2) different number of operation modes, and 3) the
percentage of Quark’s CPU that is dedicated to algorithms.

In Figure 4.22, the number of connected IoT devices to the gateway varies from 5 to 10, while
the number of operation modes is 4. As the number of devices increases the execution time
overhead for CM-NP increases exponentially compared to the proposed. When the CPU ded-
ication is 10%, the average of execution time overhead is reduced from 36.7 s to 2 s. For the
CPU dedication of 100%, the average overhead of CM-NP is 6.8 s while the proposed scheme’s
is 0.4 s. With increasing the dedicated CPU from 10% to 100%, the runtime overhead of both
algorithms decreases. However the ratio remains almost the same. For instance, when the num-
ber of connected devices is 10, the CM-NP is around 14× slower than the proposed algorithm
for all the four scenarios (Figures 4.22a to 4.22d).

Figure 4.23 shows the the execution time overhead when the number of operation modes in-
creases. The number of devices connected to the gateway is maintained constant as 7. As the
number of operation modes increases, the runtime overhead of the proposed scheme increases
moderately. while the overhead of CM-NP increases exponentially. The proposed algorithm
decreases the average runtime overhead from more than 15 seconds to 0.1 seconds when the
CPU has no limit to run the algorithms (Figure 4.23d).

64

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

0
.1

0
.1

0
.1

0
.3

1
.7

 9
.5

2
.0

0
.1

0
.3

 0
.9

6
.6

7
4

.5

1
3

7
.7

3
6

.7

0.0

0.1

1.0

10.0

100.0

1000.0

5 6 7 8 9 10 Avg.

Ex
e

cu
ti

o
n

 t
im

e
 [

se
c]

#devices

Proposed

CM-NP

(a) dedicated CPU: 10%
0

.1

0
.1

0
.1

 0
.2

 1
.0

5
.1

1
.1

0
.1

0
.2

 0
.5

4
.5

4
1

.4

7
4

.4

2
0

.2

0.0

0.1

1.0

10.0

100.0

5 6 7 8 9 10 Avg.

Ex
e

cu
ti

o
n

 t
im

e
 [

se
c]

#devices

Proposed

CM-NP

(b) dedicated CPU: 20%

0
.1

0
.1

0
.1

0
.1

 0
.5

2
.6

0
.6

0
.1

0
.1

 0
.3

1
.8

1
9

.9

3
6

.8

9
.8

0.0

0.1

1.0

10.0

100.0

5 6 7 8 9 10 Avg.

Ex
e

cu
ti

o
n

 t
im

e
 [

se
c]

#devices

Proposed

CM-NP

(c) dedicated CPU: 50%

0
.1

0
.1

0
.1

0
.1

 0
.3

1
.7

0
.4

0
.1

0
.1

 0
.2

1
.3

1
3

.3

2
5

.6

6
.8

0.0

0.1

1.0

10.0

100.0

5 6 7 8 9 10 Avg.

Ex
e

cu
ti

o
n

 t
im

e
 [

se
c]

#devices

Proposed

CM-NP

(d) dedicated CPU: 100%

Figure 4.22: The execution time overhead of CM-NP compared to the proposed technique for different number of
devices [number of operation modes is 4]

65

4 Efficient Resource Management Techniques for IoT Edge Computing

0
.1

 0
.2

0
.3

 1
.0

1
.3

0
.6

0
.2

 0
.9

2
3

.7

1
8

2
.4

2
2

8
.2

8
7

.1

0.0

0.1

1.0

10.0

100.0

1000.0

3 4 6 8 9 Avg.
Ex

e
cu

ti
o

n
 t

im
e

 [
se

c]

#operation modes

Proposed
CM-NP

(a) dedicated CPU: 10%

0
.1

0
.1

0
.2

 0
.5

0
.7

0
.3

0
.1

 0
.5

1
3

.1
 9
9

.3

1
2

4
.4

4
7

.5

0.0

0.1

1.0

10.0

100.0

1000.0

3 4 6 8 9 Avg.

Ex
e

cu
ti

o
n

 t
im

e
 [

se
c]

#operation modes

Proposed
CM-NP

(b) dedicated CPU: 20%

0
.1

0
.1

0
.1

 0
.3

0
.4

0
.2

0
.1

 0
.3

6
.5

 4
8

.7

6
0

.6

2
3

.2

0.0

0.1

1.0

10.0

100.0

3 4 6 8 9 Avg.

Ex
e

cu
ti

o
n

 t
im

e
 [

se
c]

#operation modes

Proposed
CM-NP

(c) dedicated CPU: 50%

0
.1

0
.1

0
.1

 0
.2

0
.3

0
.1

0
.1

 0
.2

4
.3

3
2

.7

4
0

.7

1
5

.6

0.0

0.1

1.0

10.0

100.0

3 4 6 8 9 Avg.

Ex
e

cu
ti

o
n

 t
im

e
 [

se
c]

#operation modes

Proposed
CM-NP

(d) dedicated CPU: 100%

Figure 4.23: The execution time overhead of CM-NP compared to the proposed technique for different number of
operation modes [number of devices is 7]

– Memory Overhead This subsection reports the overhead of the proposed algorithm and CM-
NP in terms of memory usage for storing the sub-problems. The absolute required memory is
presented when the number of connected devices and operation modes changes.

Figure 4.24a shows the size of required memory to store the sub-problems in the proposed
method compared to the CM-NP method for different number of devices ranging from 5 to 10.
The number of operation modes for each device in this experiment is 4 (e.g. two quality levels

66

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

and two offloading levels). Thanks to the novel memoization scheme, the required memory for
the proposed algorithm is more than 50% less compared to state-of-the-art.

In Figure 4.24b, the required memory to store the sub-problems is presented for the proposed
method compared to the CM-NP. The number of operation modes varies from 3 to 9 and the
number of connected IoT devices in this experiment is 7. While the required memory for
CM-NP is up to 61 KB, the proposed schemes uses less than 17.7 KB. The reduced memory
requirements of the proposed scheme show its suitability and efficient run-time potential even
for gateways with much lower internal memory. For instance, Texas Instrument microcontroller
units which have an ARM Cortex-M4F core are used and deployed in some of TI gateways
[Fol15b, Fol15a]. Their internal memory system has 64 KB to 256 KB SRAM. Note that the
designer can limit the size of memory to store the sub-problems depending on the available
memory on the gateway. In that case, when the memory quota is finished, the new distinct
sub-problems will not memorized anymore.

1
.3

4
.3

1
2

.0
 2
7

.4

6
4

.0

1
1

0
.2

0
.2

0
.4

1
.5

5
.5

 1
9

.8

5
0

.4

0

20

40

60

80

100

120

5 6 7 8 9 10

Si
ze

 o
f

m
em

o
ry

 t
o

 s
to

re

su
b

-p
ro

b
le

m
s

[K
B

]

#devices

Proposed

CM-NP

(a)

4
.9

 1
2

.0

4
5

.5
 6

1
.8

5
9

.8

0
.3

1
.5

 7
.7

 1
5

.1

1
7

.7

0

20

40

60

80

3 4 6 8 9

Si
ze

 o
f

m
em

o
ry

 t
o

 s
to

re

su
b

-p
ro

b
le

m
s

[K
B

]

#Operation Modes

Proposed

CM-NP

(b)

Figure 4.24: The size of memory to store the sub-problems for (a) different number of devices [number of opera-
tion modes is 4] and (b) different number of operation modes [number of devices is 7]

– Memory Hits

To further analyze the proposed memoization scheme, the number of memory hits for the sub-
problems at different levels of the recursion tree (see Figure 4.19) are measured and reported. If
the solution of a sub-problem is among the memorized and stored sub-problems, it is a memory
hit and avoids re-computation of that sub-problem. When the memory hit happens in the early
(higher) levels of recursion tree, it saves much more computation and therefore reduces the
execution time more intensely.

67

4 Efficient Resource Management Techniques for IoT Edge Computing

Figure 4.25 shows the number of memory hits for sub-problems in each level of recursion tree.
Note that the X-axis is in logarithmic scale, and the zero values are not (cannot be) shown. In
addition, the values ‘1’ cannot be shown in logarithmic figures, therefore to distinguish the ‘0’
and ‘1’ values in these figures, a small square on the Y-axis is used to indicate ‘1’ memory
hit. Another important note is that the first level of recursion tree is not stored as it does not
occur more than once (see the recursion trees in Figures 4.18, 4.19a and 4.20). According to
this experiment, the total number of memory hits in CM-NP is more than the proposed scheme.
However in the proposed scheme, the memory hits in the early (first) levels of recursion tree are
greater than in CM-NP. As explained, the influence of memory hits in the early levels is much
greater.

1 10 100

#5

#4

#3

#2

#of memory hits

le
ve

l i
n

 r
e

cu
rs

io
n

 t
re

e

Proposed

CM-NP

(a) #devices: 5

1 10 100 1000

#6

#5

#4

#3

#2

#of memory hits

le
ve

l i
n

 r
e

cu
rs

io
n

 t
re

e
 Proposed

CM-NP

(b) #devices: 6

1 10 100 1000 10000

#7

#6

#5

#4

#3

#2

#of memory hits

le
ve

l i
n

 r
e

cu
rs

io
n

 t
re

e
 Proposed

CM-NP

(c) #devices: 7

1 10 100 1000 10000

#8

#7

#6

#5

#4

#3

#2

#of memory hits

le
ve

l i
n

 r
e

cu
rs

io
n

 t
re

e
 Proposed

CM-NP

(d) #devices: 8

1 10 100 1000 10000

#9

#8

#7

#6

#5

#4

#3

#2

#of memory hits

le
ve

l i
n

 r
e

cu
rs

io
n

 t
re

e

Proposed

CM-NP

(e) #devices: 9

1 10 100 1000 10000

#10

#9

#8

#7

#6

#5

#4

#3

#2

#of memory hits

le
ve

l i
n

 r
e

cu
rs

io
n

 t
re

e

Proposed

CM-NP

(f) #devices: 10

Figure 4.25: Memory hits for stored sub-problems and the level of recursion tree where they occur

68

4.3 Novel Memorization for Fast and Efficient Operation Mode Selection

Comparison with Heuristic Solution

Since both CM-NP [VQA14] and the proposed scheme calculate an optimal solution, they have
the same effect on the efficiency of the devices. Hence, a heuristic solution based on simu-
lated annealing is exploited, which iteratively searches for an approximated solution. In each
iteration, the heuristic algorithm produces new solutions based on the already calculated ones
by examining neighboring solutions in a probabilistic manner. The total number of performed
search iterations is the critical parameter which affects the efficiency of the outcome of the
heuristic.

Figure 4.26 shows the achieved efficiency of the heuristic scheme normalized to the optimal
solution (which is achieved by the proposed technique and CM-NP) with respect to its execution
time. In this experiment the number of devices is 8, the number of operation modes is 4 and
CPU of gateway is fully dedicated to the heuristic algorithm. As expected, the efficiency in
the heuristic solution approaches the proposed scheme as the number of iterations increases.
Nevertheless, the acquired results are highly affected by the inherent internal randomness of
the simulated annealing algorithm, which cannot maintain the same quality of solutions across
varying input problems.

50 iter.

100 iter.
200 iter.

400 iter.
800 iter. 10000 iter.

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

ac
h

ie
ve

d
 s

e
rv

ic
e

 q
u

al
it

y
n

o
rm

al
iz

e
d

 t
o

 o
p

ti
m

al

so
lu

ti
o

n

Execution time [sec]

Proposed

Heuristic

[VQA14]

Figure 4.26: Achieved efficiency (normalized to the optimal solution) with respect to the execution time

4.3.4 Summary of Novel Memoization and Efficient Operation Mode Selection

In this section a fast and low-overhead mode selection algorithm has been proposed to improve
the efficiency among IoT edge devices. This algorithm is based on a top-down dynamic pro-
gramming. A novel memoization technique has been introduced in which each sub-problem
determines the solution to a range of sub-problems instead of only one. It leaded to a significant
reduction in the required memory to store the sub-problems. The proposed technique also lever-
aged the property of the problem and reduced the search space by pruning some sub-problems,
which reduced both execution time and memory overhead. Experimental results showed up to
2 orders of magnitude in overhead reduction compared to state-of-the-art.

69

4 Efficient Resource Management Techniques for IoT Edge Computing

4.4 Distributed Trade-based Edge Device Management in Multi-gateway
IoT

This section addresses the management of IoT devices and their operation mode selection in a
multi-gateway system where some IoT devices are reachable by more than one gateway. After
presenting the motivation and problem model, a trade-based mechanism is presented which
starts with an initial setup for the IoT devices and then step-by-step improves the overall service
quality by exchanging and migrating some IoT devices between gateways (when it is beneficial).
The proposed mechanism, experimental results and findings are presented in [STB+17a] and
[STX+16a].

4.4.1 Motivation

Existence of multiple gateways provides some IoT devices more than one option to connect
and receive gateway service (referred to as binding problem). Binding problem arises when the
range of wireless radio of gateways overlap and there are some IoT devices in the overlapping
areas. Therefore, those IoT devices have multiple choices as their gateway. The importance
of efficient binding is to avoid situations where some gateways are overloaded while other
gateways are underutilized. For instance, if several IoT devices with high data transmission
demand are connected to the same gateway, they must reduce their service quality to meet the
constraint on the limited shared communication bandwidth. Consequently, the overall SQ of
applications decreases. The binding problem is dynamic and requires online solution. Consider
an example where some devices are mobile (i.e. users are moving in the building). As the
location of an IoT devices changes, the gateways that can reach it will change too. Figure 4.27
shows a simple example of multi-gateway systems where two IoT devices are reachable by two
gateways.

▪▪▪▪▪▪▪▪

▪▪▪▪▪▪▪▪

▪▪
▪▪
▪▪
▪

▪▪
▪▪
▪▪
▪

Mem.

▪▪▪▪▪▪▪▪

▪▪▪▪▪▪▪▪

▪▪
▪▪
▪▪
▪

▪▪
▪▪
▪▪
▪

Mem.G
at

ew
ay

G
at

ew
ay

Io
T

d
ev

ic
e

Io
T

d
ev

ic
e

Figure 4.27: An example of multi-gateway IoT systems where some IoT devices are reachable by more than one
gateway

70

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

A mechanism is needed to capture the dynamism in an IoT network and help the IoT devices
to choose (i) their gateway, and (ii) their best operation mode to specify their SQ level and
offloading scheme. These decisions are interdependent and should be made conjointly. The SQ
management under battery lifetime constraints in a multi-gateway IoT system needs dynamic
online solutions due to the following reasons:

1. The remaining energy of IoT devices varies over time due to consumption or recharge.

2. The available bandwidth or processing capability of the gateways may change over time
according to their available power and their resource demand for management tasks.

3. The number of IoT devices connected to the gateway may change [Kim15] due to the
mobility of the IoT devices (i.e. user) [KK15].

It necessitates an online mechanism to address efficient SQ management and offloading in such
a dynamic IoT configuration.

The novel contributions of this section are as follows:

• It presents a resource management scheme for multi-gateway IoT systems with con-
straints on battery which jointly addresses efficient binding, bandwidth allocation and
computation offloading.

• It analyzes in depth the new problem instance and suggests mechanisms to enable fine-
grained SQ levels to be achieved.

• It proposes a distributed agent-based mechanism which improves the overall SQ by trad-
ing IoT devices between gateways.

IoT device Model

This section considers an IoT network consisting of N portable IoT devices, where each device
Id , d ∈ {1, · · · ,N}, is described by a tuple:

Id =
(

Xd,Rd,Bd,ed,Ud(·),Cd(·)
)

(4.23)

where

• Xd denotes the set of possible input data rates of device d. They depend on the sensor
sampling frequency and data resolution. An IoT device offers its service at Md different
SQ levels, with each level having a different input data rate and thus providing a different
service quality.

Xd =
{

xdi | i ∈ [1,Md]
}

(4.24)

71

4 Efficient Resource Management Techniques for IoT Edge Computing

• Rd denotes the set of possible transmission data rates of device Id . They depend on the
input data rate xdi and the computation offloading strategy of the IoT device. offloading
determines how much input data is not processed on the device (on-board processing),
but transmitted to the gateway (offloaded) instead. An IoT device offers Qd different
offloading levels. The data transmission rate rdi j depends on the SQ level i (input data
rate) and the offloading level j. It corresponds to the share of input data rate that is
offloaded plus the (intermediate) results from the on-board processed data.

Rd =
{

rdi j | i ∈ [1,Md], j ∈ [1,Qd]
}

(4.25)

The particular transmission data rates depend on the device and how it is used, which has
to be determined by the user and thus is considered as given in this problem formulation.

• Bd denotes the minimum required battery lifetime (i.e. until the next recharge or battery
replacement).

• ed is the remaining energy in the battery of device d.

• Ud(xdi) is the utility function that quantifies the utility or service quality (SQ) provided to
the user when the device is capturing input data at rate xdi .

• Cd(i, j) is the total power consumption for sensing and capturing input data at rate xdi ,
processing it under offloading level j and transmitting the data at rate rdi j . It includes the
power consumption for sensing, computation and communication.

The battery lifetime of IoT devices depends on 1) the remaining energy and 2) the total power
consumption rate:

bdi j =
ed

Cd(i, j)
(4.26)

where bdi j denotes the expected battery lifetime when the device captures input data at rate xdi ,
processes it, and then transmits at rate rdi j .

Gateway Model

The gateway connects devices to the Internet. It receives data from IoT devices, processes it
and transmits the final result to the Internet.

Assume a set of G gateways where each gateway g is specified by a tuple:

gateway g :
(

pg(·),Rg,Pg

)
where:

• p(rdi j) shows the required processing capability of the gateway to perform the necessary
operations on the received data at rate rdi j and offloading level j,

72

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

GatewayGateway

d

xd

r2

rd

Io
T

 d
e

v
ic

e

rd

xd
...

...

Offloading levels

S
Q

 l
e

v
e

ls

1

3

Gateway

x1

x3

r3

2

x2

r1

. . .

.

rN

N

xN

Figure 4.28: Problem model: IoT devices with different SQ and offloading levels resulting in different transmis-
sion data rates. Multiple gateways to receive and process the data.

• Rg is the total available bandwidth of the gateway to receive data from IoT devices.

• Pg shows the total processing capability of the gateway.

The effect of environment and surrounding devices (e.g. wireless interference) on the trans-
mission can be modeled in gateways’ parameter, Rg and IoT devices’ parameter, Cd(·). For
instance, if an IoT device observes an increase in re-transmission rate, it can increase the cost
of transmission. However, modeling the effect of interference on the transmission parameters
is beyond the scope of this work.

Network Model

While the gateways are assumed to be stationary and non-mobile, the IoT devices are quasi
mobile. The IoT devices are mobile but their location does not change significantly and fre-
quently, which results in low mobility. For instance, the IoT devices used for patient monitor-
ing in a smart hospital or smart home have a mobility pattern of natural movement of patients
[LCM10].

Depending on the location of IoT devices and gateways, each IoT device may reach some
gateways (at least one). Each IoT device should connect to one and only one gateway in order
to transmit the data/results to the Internet through it. For those IoT devices that reach multiple
gateways, the binding needs to be decided. Let matrix A[·]N×G show which IoT devices reach
which gateways:

A[dg] =

 1 if device d reachs gateway g

0 otherwise

Problem Statement

The system is summarized in Figure 4.28. The problem that is targeted in this article can
be solved by 1) deciding the binding of IoT devices to the gateways and 2) choosing the SQ
level i and the offloading level j for each IoT device d at runtime, such that the bandwidth,

73

4 Efficient Resource Management Techniques for IoT Edge Computing

computation, and lifetime constraints are fulfilled (Eq. (4.27) to (4.29)) and the overall benefit
(Eq. (4.30)) is maximized.

Bandwidth constraint: ∑rdi j ≤ Rg ∀d connected to g (4.27)

Computation constraint: ∑ p(rdi j)≤ Pg ∀d connected to g (4.28)

Lifetime constraint: ∀ d : bdi j ≥ Bd (4.29)

Optimization goal: maximize∑∀d Ud(xdi) (4.30)

4.4.2 Proposed Solution

Decomposing the Problem

The targeted problem has two sets of constraints: one for IoT devices and one for gateways.
The selected configurations for devices d (i.e. xdi and rdi j) should meet the lifetime constraint
(Eq. (4.29)). Given the selected configuration for IoT devices, the gateway’s constraints to meet
are the bandwidth and computation (Eq. (4.27) and (4.28)).

The device’s constraint depends solely on device parameters. To reduce the search space, the
optimization problem can be decomposed into 1) device’s problem and 2) network (gateways)
problem. In the device’s problem, each IoT device excludes those configurations that violate its
lifetime constraint to reduce the search space. Then, the network (gateways) problem is solved
by considering the reduced search space.

Device Problem: Addressing Battery Lifetime Constraint

Considering its lifetime constraint, each device has a set a valid configurations. It finds the
efficient feasible configurations (EFC) each of which corresponds to a SQ level with the mini-
mum data transmission rate. Each EFC is a pair containing 1) the utility and 2) the transmission
data rate rdi of this configuration. The gateway extends each EFC set by including the process-
ing requirement of the associated transmitted data (i.e. p(rd)). The resulting EFC′d set is shown
in Eq. (4.31). Note that the latency constraint is important in some IoT applications. Each indi-
vidual IoT device takes care of its latency constraint by providing the EFC set which fulfills this
constraint. If one configuration does not satisfy the real-time constraint, the device excludes
it from its EFC set, and naturally, this configuration will not be selected for this device. The
evaluation of the constraints (latency, battery lifetime) is online and dynamic: the device can
monitor and adjust the parameters to include/exclude the configurations at runtime. The details
on finding the EFC set can be found in [STX+16b].

74

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

EFC′d =
{ (

Ud f , rd f , pd f
)

1≤ f≤
∣∣EFCd

∣∣ }
Ud f =Ud(xd f) // Utility of device Id for the f -th EFC entry

rd f = rd f // Corresponding transmission rate

pd f = p(rd f) // Corresp. gateway processing requirement

(4.31)

Each IoT device periodically checks its remaining energy ed and updates the EFC set. In case
the EFC set changes, the device sends the new set to its gateway, where it is used to solve/update
the Network problem. Note that the EFC set only contains feasible solutions, i.e. the number of
entries in the EFC set of a particular device may change over time.

Network or Gateways Problem

Given the EFC sets of IoT devices, the Efficient Multi-Gateway Allocation and Binding (EM-
GAB) problem can be formulated as:

max ∑
d

∑
f
(Ud f ×wd f) (4.32)

subject to ∀d : ∑
f

wd f = 1 (4.33)

∀d : ∑
g

vdg = 1 (4.34)

∀d,g : vdg ≤ A[dg] (4.35)

∀g : ∑
d

∑
f

rd f ×wd f × vdg ≤ Rg (4.36)

∀g : ∑
d

∑
f

pd f ×wd f × vdg ≤ Pg (4.37)

where

wd f =

 1 if the f -th EFC element from the d-th device is chosen

0 otherwise
(4.38)

vdg =

 1 if the d-th device is connected to the g-th gateway

0 otherwise
(4.39)

Equation (4.33) ensures that one configuration for each device is selected. Equations (4.34)
and (4.35) ensure that each IoT device is connected to one gateway which is in its range. Finally,
Eq. (4.36) and (4.37) ensure that the binding of IoT devices to the gateways and their selected
configurations meet the constraints of each gateway.

75

4 Efficient Resource Management Techniques for IoT Edge Computing

Analysis of the Problem

As stated in Section 4.4.1, some IoT devices have multiple choices to connect to gateways while
some others reach only one gateway (i.e. no decision is needed for binding, but they still need
to choose the SQ level and offloading policy). Let Hd denote the set of gateways reachable by
device d (|Hd| ≥ 1). The total number of bindings to investigate is ΠN

d=1|Hd|. Then for a possible
binding setup, there are G optimization problems to find the optimal SQ level and offloading
policy for the IoT devices. The optimal solution for one instance (i.e. a single gateway) is
presented in [STX+16b].

Lemma 1. The EMGAB problem (presented in Equations (4.32) to (4.39)) is strongly NP-
complete.

Proof. The numerical parameters of EMGAB (i.e. N, Xd and Rd) are bounded by a polyno-
mial. The reason is the limitation of practical setup in IoT systems. Now it is shown that for
the bounded parameters, the EMGAB problem remains NP-complete: EMGAB is a general-
ization of the Multiple Choice Multidimensional Multiple-Knapsack Problem (M3PK). Each
gateway corresponds to a knapsack which has two constraints: bandwidth corresponds to the
‘volume’ and processing power corresponds to the ‘weight’. Each EFC’ set of a device corre-
sponds to a class of items among which, one item must be picked. This transformation between
EMGAB and M3PK is done in polynomial time. The M3PK problem is a generalization of Mul-
tiple Knapsack Problem (MKP), Multiple Choice Knapsack Problem (MCKP), Multiple Choice
Multidimensional Knapsack Problem (MMKP) which are proven to be NP-complete. Hence,
an NP-complete problem is reduced to the EMGAB in polynomial time. Due to the polyno-
mial bound on the inputs, the EMGAB problem belongs to the class of strongly NP-complete
problems.

The problem is computationally difficult to solve in a centralized fashion. Besides, the nature
of IoT systems, with multiple devices and multiple gateways, is distributed. Therefore, dis-
tributed or decentralized strategies are promising solutions that take autonomous decisions for
IoT devices and gateways based either on local information, or on an incomplete picture of the
global network status. Market oriented approaches are usually used for distributed resource
allocation problems and can be classified into three models: 1) price-based, 2) auction-based,
and 3) trade-based [Smo00]. Mechanisms that are based on price and auction usually require a
centralized entity with a full picture of network conditions (e.g. an auctioneer to run the auction
or a decision-maker to calculate the price) [Smo00, Kim15, MPW07]. Due to the nature of the
system and problem, a trade-based distributed solution seems more effective.

Distributed Solution and MGAB Protocol

This subsection presents a distributed solution to MGAB problem (i.e. multi-gateway allocation
and binding) and the detailed protocol to implement it. The solution is based on trading, in

76

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

Legend
Gateway

1

Gateway

2

1 2 3 6 7 84 5 Alternative conn.

Established conn.

Exclusive IoT device

Shared IoT device

Gateway

Figure 4.29: An example with two gateway sharing two IoT devices while each has three exclusive IoT devices

which gateways are modeled as intelligent agents that negotiate with each other to take, give or
exchange the connected IoT devices.

Definition 4.4.1: Common vs. Exclusive IoT devices: From the perspective of gateways, an
IoT device is either reachable by only one gateway which is called exclusive, or reachable by
more than one gateway which is then common between them. Figure 4.29 shows an example
with two gateways sharing two common IoT devices (i.e. devices 4 and 5) and three
additional exclusive IoT devices per gateway. In the current established connections, IoT nodes
4 and 5 are connected to the gateways 1 and 2, respectively. However, there are three other
alternative connections for them.

While the only action for exclusive nodes is to change the SQ and/or offloading level, there are
two extra actions for common nodes:

1. Migration: One common node leaves its current gateway and joins the other one. For
instance, if IoT device 4 disconnects from gateway 1 and connects to gateway 2, it is
called migration.

2. Exchange: The two gateways exchange two common IoT devices with each other. For
instance, IoT device 4 connects to gateway 2 in return of 5 being connected to
gateway 1.

Given a binding/allocation setup, there are two situations that make it inefficient and an ex-
change or migration could address them.

Definition 4.4.2: Fragmentation: It a phenomenon in which gateways have unused resources
that might not be enough for increasing the SQ level of the current connected IoT devices, but
it might be enough for increasing the SQ level of a common IoT device which is currently
connected to the other gateway.

Definition 4.4.3: Heterogeneity of resource usage: The IoT devices might be different in terms
of resource usage, some might tend to use more bandwidth while some might tend to use more
processing power. This can result in a situation where one gateway has much unused bandwidth
and the other has much unused processing power. This phenomenon is called heterogeneity in
resource usage.

77

4 Efficient Resource Management Techniques for IoT Edge Computing

Properties of Applications and Problem

This subsection derives and introduces some properties of the applications and the considered
system that can be exploited to reduce the complexity of the problem.

Property 4.4.1: Considering device d and two elements of its EFC′d set, (Udi,rdi, pdi) and
(Ud j,rd j, pd j): If Udi >Ud j then at least one of these conditions hold: 1) rdi > rd j, 2) pdi > pd j.
The rationale behind it is that otherwise the i-th element dominates the j-th element and is
always preferable to it.

Property 4.4.2: Considering device d and two elements of its EFC′d set, (Udi,rdi, pdi) and
(Ud j,rd j, pd j): The device d can operate in a way to provide any average utility (SQ) U ′d ,
Udi ≤U ′d ≤Ud j, from gateway’s and application’s perspective. This property is an extension to
the proposed technique in [STX+16a].

Proof. Consider a constant time interval of T . If the device operates at the j-th point for t1 time
and then changes the SQ level and operates at the i-th point for (T − t1) time, then the average
utility, transmission rate, and processing power usages are:

U ′d =
t1×Ud j+(T−t1)×Udi

T

r′d =
t1×rd j+(T−t1)×rdi

T

p′d =
t1×pd j+(T−t1)×pdi

T

(4.40)

When a device is supposed to deliver an intermediate SQ level (e.g. U ′d in Eq. (4.40)), it uses
the following scheme: It starts operating at the j-th configuration (which has higher utility and
consumes more resources on the gateway compared to the i-th configuration). It keeps working
at this configuration for t1 time. However, it transmits its data to the gateway at the rate of r′d
(r′d≤ rd j). It buffers the rest of produced data (i.e. rd j− r′d) on the memory. Then after t1, it
switches to the i-th configuration that produces data at the rate of rdi (rdi≤r′d). It still transmits
the data to the gateway at the rate of r′d , which consists of previously buffered data and newly
generated data. It keeps operating at the i-th configuration for (T − t1) time and then repeats
this procedure as long as the requested utility remains U ′d . Therefore, while the device is only
operating at the i-th and j-th configurations and switching between them, the gateway sees the
device operating at an intermediate configuration mode with (U ′d,r

′
d, p′d).

In summary, this new operating point (i.e. configuration) is the application level function of
the device. The device still operates only in discrete configurations, but it is transparent to the
gateway and the average effect from the perspective of application and gateway is continuous.

78

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

utility
ud1 ud2 ud3 ud4

pd1
pd2

pd3

pd4

rd1
rd2

rd3

rd4

P
ro

ce
ss

in
g

p
o

w
e

r

b
an

d
w

id
th

(a) Processing power & bandwidth
associated with utility values

utility utility

ud1

ud2

ud3
ud4

pd1 pd2 pd3 pd4 rd1 rd2 rd3 rd4

Processing
power

bandwidth

(b) Piecewise-linear utility functions with respect to bandwidth and pro-
cessing power

Figure 4.30: The extended utility function of device d derived from discrete EFC′d set. The function is piecewise
liner and weakly concave with respect to both variables (i.e. r and p).

– Forming Piecewise-linear Utility Function: Using Property 4.4.2, the discrete utilities of
each device can be extended to a piecewise-linear function. However, since each discrete utility
value (e.g. Udi) corresponds to two variables (e.g. rdi and pdi), there will be two uni-variable
utility functions. These two variables are dependent. Figure 4.30 shows an example of these
two utility functions for device d.

Property 4.4.3: Concavity of Utilities is a general property of typical applications [MPW07,
BSLR10]. It is a natural restriction based on the “law of diminishing returns” from economic
concepts [CG06, GN14].

According to Properties 4.4.2 and 4.4.3, the piecewise-linear utility functions are weakly con-
cave. In the example of Figure 4.30b, the concavity of utility functions is illustrated.

Claim 1. On each gateway that exploits Property 4.4.2, when the highest overall utility is
reached, either at least one of the resources are fully utilized, or the IoT devices are operating
at their highest SQ level.

Proof. Suppose for the purpose of contradiction that gateway g reaches the highest overall
utility but it still has R̂ > 0 and P̂ > 0 resources left, and there is one connected IoT device, d,
which is not working at its highest SQ level (i.e. UdM). Let assume that this device is operating
at i-th SQ level, (i < Md), which is the i-th element in its EFC′ set (i.e. (Udi,rdi, pdi)). Its next
SQ level is associate with (i+1)-th element of its EFC′ set described by (Udi+1,rdi+1, pdi+1). If
rdi+1 ≤ R̂ and pdi+1 ≤ P̂ then the SQ can be increased by one level to (i+1)-th level, which is a
contradiction. Therefore, at least one of these conditions hold: 1) rdi+1 > R̂, 2) pdi+1 > P̂. Let’s
assume that the first condition holds, then

∃ 0< t1<1 : t1 =
rdi+1− R̂
rdi+1− rdi

. (4.41)

If for each unit of time, the device operates t1 portion at the i-th SQ level and (1− t1) portion
at the (i+ 1)-th SQ level, it can provide U ′ = t1×Udi +(1− t1)×Udi+1 utility which clearly is
higher than Udi . This, too, contradicts the assumption. The same argument can be presented for
the second condition (i.e. pdi+1 > P̂). If both conditions hold, the minimum t1 value is selected.

79

4 Efficient Resource Management Techniques for IoT Edge Computing

To summarize, by using Property 4.4.2 it is possible to increase the overall utility which is a
contradiction.

Proposition 1. According to Claim 1, the fragmentation problem can be addressed using Prop-
erty 4.4.2.

The fragmentation problem stems from discrete and coarse-grained configurations (i.e. EFC el-
ements), which can be addressed by continuous utility functions derived using Property 4.4.2.

Details of Agent-based Approach

After addressing the fragmentation problem, it is needed to deal with the heterogeneity problem.
In the following, the details of the proposed distributed solution is presented which is an agent-
based negotiation mechanism between gateways, for migration and exchange of IoT devices. It
starts with an initial setup and then converges step-by-step to the efficient solution by increasing
the overall utility of IoT devices. Each gateway is modeled as an autonomous intelligent agent,
where the interests (or goals) of each agent is consistent with the goals of the whole MGAB
problem. The terms agent and gateway are used interchangeably from here on.

– Initial Phase

 Initial Phase

Exclusive nodeCommon node ConnectionAdvertising Gateway Response

Step 2Step 1

EFC5

EFC6

EFC3

EFC1

Step 3

R,P

R,P

R,P
R1,P1

R2,P2

R2,P2

R3,P3

Figure 4.31: Different steps during the initial phase, followed by trade phase

During the initial phase, gateways try to establish connections with IoT devices to reach the first
setup. Figure 4.31 shows an example for the initial phase with 6 IoT nodes and 3 gateways. It
consists of three steps:

1. Advertisement and Discovery: First, the IoT devices broadcast advertising packets to find
the gateways. Each gateway sends requests to establish the connection, one for each IoT
device in its range (in response to the advertisement packets). All exclusive IoT devices
receive only one request (as they reach only one gateway); others receive more than one
request.

80

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

2. Exclusive Connections: Then, each exclusive IoT device accepts the request of its gate-
way and connects to it. It sends its EFC set to the gateway. After establishing the con-
nection and receiving the EFC set of devices, the gateway checks the lowest SQ level
of connected devices, and calculates the remaining resources to make sure that it still has
enough resources to provide service to new devices. If not, it should stop sending requests
to other IoT devices and accepting new devices.

3. Other Connections: Finally, common IoT devices send new advertisement packets. In
return, the gateways in range send updated requests along with the information on their
remaining resources. Each common IoT device accepts the first request for connection
which has enough resources to support its lowest SQ level.

The advertisement and discovery mechanism is based on the BLE protocol where slave nodes
(IoT devices) initiate the advertising and master node (gateway) sends the request in response to
the advertisement [TCD+14]. However, other protocols or wireless technologies (e.g. ZigBee)
can adopt a similar mechanism.

Once the initial phase ends, each gateway finds the optimal setup (SQ level and offloading pol-
icy) for its currently connected IoT devices based on the received information from its devices
(as presented in [STX+16b, STX+16a]).

– Trade & Negotiation Phase After the initial phase, each IoT node is bound to one gateway.
This setup is referred as ‘initial binding’. Each gateway finds the optimal SQ level for its
connected IoT devices. Since the number of connected devices to a gateway is practically
small and limited, the gateway can find the optimal solution by executing a brute-force search
or alternatively using faster algorithms similar to the solution proposed in [STX+16b]. The
resulting configuration is only optimal for the current binding (i.e. single gateway level), but
still not optimal for the whole network. This is called the initial allocation and is optimal for
the initial binding.

The initial phase is followed by a trade and negotiation phase, where agents talk to each other
to adapt the binding and move it towards the optimal binding. This is done by a market-based
approach, where agents make offers for exchanging or migrating the connected IoT devices.

In the negotiation phase, two agents are involved in a trade: an agent initiates a trade by sending
a request either to migrate one of its shared devices to the other agent or to exchange a shared
device with another one. The other agent, after doing some evaluations, may 1) accept the offer,
2) reject the offer, or 3) make another offer in response to the request. This decision is in the
direction of increasing the overall SQ of the system. In other words, each trade should be a
Kaldor-Hicks improvement [Col79], where those IoT devices that are made better off gain more
than what other IoT devices that are made worse off lose.

A. Migration:

81

4 Efficient Resource Management Techniques for IoT Edge Computing

Legend

Alternative conn.

Established conn.

Exclusive node

Common node Gateway

Processing
power

Bandwidth

1 2 3 6 74 5

gateway2gateway1

Common

Figure 4.32: Heterogeneity in resource usage of IoT devices and gateways.

The migration is firstly and mainly meant to address the uneven binding (i.e. overloaded gate-
ways). However, it can address the heterogeneity issue too. First, each gateway g, obtains 2
parameters: R̂g and P̂g which denote the amount of bandwidth and processing power left, re-
spectively. Note that these values are non-zero for the gateways whose connected nodes are at
their highest SQ level (see Claim 1). The migration is feasible only if one gateway (i.e. source)
has no resources left (i.e. R̂g× P̂g = 0), but the other gateway (i.e. destination) still has available
resources.

Using the example shown in Figure 4.32, the negotiation of two agents is explained. In this
example, nodes 4 and 5 are common between gateway1 and gateway2. In the initial binding,
both nodes are connected to gateway1. The trade and negotiation details of a migration are as
follows:

1. Picking the candidate to migrate: Gateway1 selects one of its common (i.e. non-
exclusive) IoT devices for migration. It gives the highest priority to the node which con-
sumes the scarcer resource more (i.e. makes the heterogeneity issue worse). For instance
in Figure 4.32, node 5 consumes more processing power which is the scarcer resource on
gateway1. Therefore it is prioritized over node 4.

2. Checking the usefulness of migration: Gateway1 calculates the 3-tuple of (
+
u,

+
r ,

+
p).

This triple describes the best possible improvement among IoT devices if the candidate
common device is migrated to another gateway. Therefore,

+
u is the gained utility, while

+
r and

+
p show the remaining bandwidth and processing power of gateway1 after this im-

provement, respectively. For instance, if node 5 migrates from gateway1 to gateway2,
then other nodes might be able to increase their SQ level at the cost of getting more band-
width and processing power from gateway1. If the candidate device migrates to another
gateway, it releases its resources on the first gateway, freeing up r∗ and p∗ bandwidth and
processing power, respectively.

3. Make an offer: Gateway1 sends an offer of migration to gateway2, which includes the
information about 1) its benefit from improvement (i.e.

+
u), 2) the EFC set of the candidate

node, and 3) the current operating configuration of the candidate node (i.e. (u∗5,r
∗
5, p∗5) in

the above example).

Upon receiving this offer (i.e. migration request), the destination gateway (i.e. gateway2) eval-
uates the offer and replies to it. The offer is evaluated to check if this move can improve the

82

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

overall SQ of the system. The outcome of this evaluation determines whether to accept or reject
the offer. The offer evaluation has two cases:

1. First, it compares its remaining unused resources (i.e. R̂2 and P̂2) with the requirements
of the offered candidate. If it has enough unused resources to host the migrated device,
i.e. R̂2 ≥ r∗ and P̂2 ≥ p∗, it accepts the offer.

2. Otherwise, it checks if it can reduce the SQ of other devices to be able to host the migrated
note, while still improving the overall SQ. Gateway2 calculates the optimal allocation
considering if the candidate node would have connected to it. Then it calculates ū which
shows the utility loss if node 4 had connected to gateway2. The offer is acceptable if the
decrease in the overall utility of gateway2 is less than the gained utility of gateway1, i.e.
+
u > ū.

If the offer is accepted, the initiator (i.e. gateway1) is informed. Then it notifies the migration
candidate (e.g. device 5). The migration candidate receives a request for connection from the
new gateway (i.e. gateway2), and it joins the new network. In this case, the current trade is
terminated. The gateways update the SQ levels of their connected nodes according to the new
situation.

A. 1. Outcome of Migration After the migration trade between two gateways, these three
situations are possible:

1. For both gateways, the connected devices reach their highest SQ level. It means that these
two gateways have reached their local optimal configuration, and therefore no more trade
is needed between them.

2. For both gateways, the SQ level of connected devices can be improved but there is no
resources left (i.e. R̂1×P̂1=0 and R̂2×P̂2=0). In this case, no more migration can help,
and the gateways can only exchange to improve the overall utility.

3. On one gateway the devices are operating at their highest SQ level, while on the other
gateway there are not enough resources left to increase the SQ level of devices (e.g.
R̂2×P̂2=0). In this case, the gateways keep migrating the devices until either the situation
changes to (1) or (2), or there is no more candidate to migrate.

It is worth to emphasize that in migration, the gateways will not encounter a ping-pong effect
in trading (migrating nodes between two gateways back and forth). The intuitive reason is that
the node is migrated only if the gained utility on source gateway is strictly greater than the
utility loss on the destination gateway. Hence, the reverse move is certainly disadvantageous
and harmful.

B. Exchange:

83

4 Efficient Resource Management Techniques for IoT Edge Computing

Legend

Alternative conn.

Established conn.

Exclusive node

Common node Gateway

Processing
power

Bandwidth

1 2 3 6 74 5

gateway2gateway1

Common

Figure 4.33: An example for exchange trade

Before proceeding to the details of the exchange move, some metrics are introduced that will
be used to make decisions in the trade.

Definition 4.4.4: Marginal value is the increase (or decrease) in utility obtained for a fixed
increase (or decrease) in the resources allocated to a device [BV04]. Loosely speaking, it is the
derivative of the utility function (i.e. slope of lines in Figure 4.30).

The key policy of the proposed trade scheme is: Having a unit of resource available on the
gateway, allocate it to the device with the highest marginal value. In other words, one shall
allocate more resources to the IoT device that benefits from it the most. According to the
concavity property (i.e. Property 4.4.3), the marginal value decreases (or remains the same,
finitely) as the allocated resource to the node increases.

B. 1. Which Gateway & Which IoT Device? If a gateway has allocated the resources to its
connected nodes such that they are all operating at their highest SQ level, this gateway has no
incentive to initiate an exchange. Therefore, an exchange is initiated by a gateway that does not
have enough resources left to increase the SQ of its nodes (i.e. R̂g×P̂g=0).

In the following, the details of the exchange trade are presented using the example shown in
Figure 4.33.

• Picking the candidate node: If the initiator gateway (e.g. gateway1) has more than one
candidate to consider for the exchange, it prioritizes the common node which uses the
scarce resource the most. For instance, in the example shown in Figure 4.33, the scarce
resource of gateway1 is the processing power. Hence, the common node which consumes
the most processing power on gateway1 is the candidate to be exchanged. The intuition
is that exchanging this node might resolve the heterogeneity issue, and free up more
resources for other nodes to increase their SQ level (and consequently the overall utility).

• Offer an exchange: Once the candidate node is selected (node 5 in the example), the
gateway sends an exchange offer to the other gateway (i.e. gateway2) which includes this
information:

• The EFC5,

• the current configuration of device 5, i.e. (u∗5,r
∗
5, p∗5),

• its remaining unused resources, R̂1 and P̂1, (at least one of them is zero).

84

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

The recipient of the offer, gateway2, needs to first select one candidate node and then evaluate
the offer to check whether accepting this offer is in direction of increasing the overall utility of
the system (i.e. is an Kaldor-Hicks improvement).

• Picking the candidate node: If it has more than one candidate to exchange, gateway2
prioritizes its common node which has an opposite resource usage profile compared to
the offered node. It means that if node 5 is processing intensive, gateway2 looks for a
node which is bandwidth intensive, and vice versa. In the considered example shown in
Figure 4.33, the candidate node that gateway2 selects for the exchange is node 4.

• Evaluate the offer: Since the recipient of the offer (i.e. gateway2) has the overall infor-
mation of the trade, it can make the decision to accept or reject the offer. Let Vd(r, p)
denote the maximum utility that device d can reach if the allocated bandwidth and pro-
cessing power for it are r and p, respectively. This value can be found easily from the
piecewise-linear utility function of the device (see Figure 4.30).

Then, gateway2 needs to calculate and compare the possible change in utility of the ex-
changed devices:

– First, it calculates V5(R̂2+r∗4, P̂2+p∗4), which describes the utility of node 5 in case
it connects to gateway2, replacing node 4. It basically considers the amount of
resources that it would have after exchange, R̂2 and P̂2 in addition to the resources
that node 4 would release (i.e. r∗4 and p∗4).

– Then, it similarly calculates V4(R̂1+r∗5, P̂1+p∗5).

Finally, to evaluate the received offer, gateway2 checks the expected change in the overall
utility and decides about the offer:{

accept V5(R̂2+r∗4, P̂2+p∗4)+V4(R̂1+r∗5, P̂1+p∗5)> u∗5 +u∗4
reject otherwise

(4.42)

Once the gateways agree upon a trade (exchange or migration), the IoT device will be discon-
nected from one gateway and connect to the other one. This process is usually very fast and
takes only a few milliseconds (6 ms for Bluetooth Low Energy). During this time, the IoT de-
vice can buffer its data (if any) and transmit it after connecting to the new gateway. The state of
process (i.e. execution context) on the gateway is very small for the IoT applications (negligible
for the ECG processing case-study presented in Section 4.4.3). The reason is that most of IoT
applications perform repeatedly an operation on the stream of input data. This operation is per-
formed on a short ‘window’ of buffered data. Processing of one ‘window’ of data is independent
of previous windows. Therefore the main communication overhead for exchange/migration is
the negotiation of gateways for trading.

85

4 Efficient Resource Management Techniques for IoT Edge Computing

4.4.3 Evaluation & Experimental Results

In order to evaluate the effectiveness of the proposed mechanism, experiments and case-studies
are conducted, which include real world measurements on an actual IoT device and trace driven
network simulation to investigate the behavior of the system.

IoT Application Case Study

A healthcare monitoring application is considered in which the IoT devices capture the ECG
signals from patients for abnormality detection and diagnosis (see Chapter 5). For the ECG
analysis flow, actual patient ECG data records are used from MIT-BIH Arrhythmia Database
[MM01]. It provides signals annotated by medical experts, which are used for feature extraction
and classification. Original signals were sampled at 360 Hz. Down- and up-sampling has been
used to generate ECG signals of differing sampling rates. These different sampling rates can be
considered in two application scenarios:

1. In a medical scenario, the specialist requires the ECG trace to have a minimum sampling
rate and SQ. This is the constraint given by the medical specialist (e.g. 360 Hz). Then only
the SQ levels higher than this constraint would be considered (e.g. 360 Hz, 720 Hz, etc.).
Higher sampling rate provides more accurate information which increases the probability
of correct diagnosis.

2. In the normal usages (e.g. fitness and well-being), the user may accept a lower quality
in collected data while still maintaining some crucial functionality, in return for longer
battery lifetime.

Five SQ levels or input data rates are considered. The ECG analysis flow is pipelined in four
stages: (I) Filtering, (II) Segmentation & heart beat detection, (III) Feature extraction, and (IV)
Classification & Diagnosis. More details on the ECG analysis flow can be found in [STX+16b].
Table 4.2 summarizes the parameter values for combinations of SQ Levels and offloading levels
stages for the ECG analysis application.

Table 4.2: Input data rates and transmission data rates for different SQ levels and offloading levels
Transmission rate rd [B/s] for offload-
ing after a certain pipeline stage

SQ
level

Sampling
freq. [Hz]

Input data
rate xd [B/s] Stage 1 Stage 2 Stage 3 Stage 4

1 180 720 720 360 104 1

2 360 1440 1440 720 192 1

3 720 2880 2880 1440 372 1

4 1440 5760 5760 2880 564 1

5 2000 8000 8000 4000 1024 1

A key component of the system model is determining the utility functions of each device. The
SQ value of each combination of SQ level and ECG processing stage was set proportional to

86

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

the ratio of the sampling frequency of ECG signal divided by the maximum available ECG
sampling frequency (2 kHz), and multiplied by a diminishing factor of (0.9)i−1, where i is the
SQ level. It is possible to enable the creation of more complex profiles of IoT devices, i.e. by
allowing the user to specify a factor of how important high SQ levels are for this device.

Experimental Setup

To conduct the experiments, a combination of experimentally derived data enhanced with nom-
inal data from data-sheets of commercial devices is used for the values of the model parameters.
Regarding the available energy of the IoT device (ed), a battery consumption model of each IoT
node is composed based on the instrumented CPU utilization. To complete the battery model
of the IoT nodes, a rechargeable Lithium-Ion coin cell battery is chosen with nominal capacity
of up to 420 mAh [DMHL12]. A realistic discharge model for the battery is used [ZLSX13] for
various values of discharge currents to evaluate the available energy for Eq. (4.26).

An ARM Cortex-M3 device is considered as the gateway [MPV11]. The energy consumption
values were acquired by hardware measurements and profiling the execution of the ECG anal-
ysis flow for all combinations of SQ levels and processing stages to measure the values of the
parameters, e.g. Cd(·), p(rdi j), etc. The energy consumption of ECG acquisition was calculated
based on [Han13].

Bluetooth Low Energy (BLE) is used for communication between IoT devices and gateway.
Power consumption value of data transmission is 0.153 µW based on [Smi11] and transmission
latency is 4 µs/bit [SHNN12]. Since BLE exploits adaptive frequency hopping mechanisms,
the probability of interference is very low and even if it happens, it would be for a very short
period of time. Moreover, the gateways communicate with each other using either a different
medium (wired) or a dedicated frequency band such as Sub-1 GHz (different from the band that
IoT devices are transmitting their data). Therefore the interference among gateways is avoided
and would not affect the IoT devices and their battery.

Simulation framework

The following experimental analysis has been conducted using a simulator, created as a part of
this work, which implements all the models of the different devices of the system. The inherent
distributed nature of the system under analysis, led us to create a simulator where each one of
the previously described agents (Gateways and IoT nodes) corresponds to a different processing
entity. In this way, message exchange and execution of the proposed resource allocation scheme
can take place in parallel, thus creating a realistic interplay of the involved agents.

A very important goal was to be able to capture the topological characteristics of an examined
IoT based system. In this respect, the simulation evolves in a virtual grid of devices, where in
each position of the grid there can be either an IoT node or a Gateway. Using this feature, the
framework simulates real-life conditions where communication of different nodes is affected

87

4 Efficient Resource Management Techniques for IoT Edge Computing

Gateway

IoT Node

Unoccupied point

Legend

0

1

2

3

A

B

High bandwidth

gateway

High processing

power gateway

Figure 4.34: An example of an examined IoT based system

by their distance and interference with the rest of working devices in proximity. Every node
is unique and can have different different initial values in its characteristics, such as battery
capacity for an IoT node or available bandwidth and processing capabilities in a gateway.

An example of an instance of the topologies than can be mapped to the simulation framework
is illustrated in Figure 4.34. In this case, there is a 4x4 grid with 2 gateways and 4 IoT nodes.
The rest of the grid points are unoccupied, but are available for use in other scenarios. Each
one of the devices, has its own characteristics, e.g. IoT node 3 has increased battery capacity
compared to IoT node 2 whose battery is low. The same applies for gateways, where A is rich
in bandwidth while B in processing power.

From the point of view of the implementation, the simulator has been created as a C program
running on Linux OS. Each different entity is mapped to a different process of the OS, in order
to provide encapsulation and enable parallel execution. Inter-process i.e. inter-node commu-
nication is achieved by writing data packets in the shared memory of each entity. These data
packets correspond to either signals or data which are transmitted from one node to the other.
Semaphores have also been incorporated in the communication scheme, in order to help its
orchestration and protect against the violation of the memory space of a process by another
one.

Results

An IoT system is considered to be located inside a big hospital room or a clinic ward. The sys-
tems consists of a number of patients whose vital signals and mainly ECG signals are monitored
by wearable IoT edge devices. The room is simulated by a 8x8 grid where a different number
of gateways and IoT edge devices are present per scenario.

Three distinct scenarios are identified where the number of patients inside the room is (i) low, (ii)
medium and (iii) high. This affects the requirements of the connection to the available gateways,
leading to increased demand as the number of patients rises. Furthermore, for each scenario a
different number of available gateways is examined. The gateways are located diagonally in the
room as shown in Figure 4.34.

88

4.4 Distributed Trade-based Edge Device Management in Multi-gateway IoT

0

50

100

150

200

250

300

350

2 3 4

A
ve

ra
ge

 b
at

te
ry

 li
fe

[m

in
]

of gateways

Unsupervised Discrete Configs Proposed battery
constraint

(a) Average battery lifetime

0

0.2

0.4

0.6

0.8

1

2 3 4N
o

rm
al

iz
ed

 A
ve

ra
ge

 S
Q

of gateways

Unsupervised Discrete Configs Proposed

(b) Normalized average SQ level

Figure 4.35: The scenario of low number of IoT devices

0

50

100

150

200

250

300

350

2 3 4

A
ve

ra
ge

 b
at

te
ry

 li
fe

[m

in
]

of gateways

Unsupervised Discrete Configs Proposed battery
constraint

(a) Average battery lifetime

0

0.2

0.4

0.6

0.8

1

2 3 4N
o

rm
al

iz
ed

 A
ve

ra
ge

 S
Q

of gateways

Unsupervised Discrete Configs Proposed

(b) Normalized average SQ level

Figure 4.36: The scenario of medium number of IoT nodes

The characteristics of each IoT node also differ since they are mapped to different patients.
Each device has its own initial battery capacity and expected battery lifetime, accompanied by
a coefficient indicating the importance of increased SQ level to the specific user.

The last critical design alternative examined in each scenario, is the algorithm employed by
the gateways in order to accomplish the binding and allocation for the operation points of each
IoT node. The available options are to execute the resource allocation algorithm either with
discrete configuration points [STX+16b], or with the proposed scheme. In both cases, the
ability for gateways to migrate or exchange nodes is activated. Another comparison is with the
scheme where devices operate in the absence of any resource management scheme, where IoT
node operates in a medium SQ level and only communicate their processing outcome to the
gateway.

The results of the three examined scenarios are presented with two metrics: 1) Average battery
lifetime of the IoT nodes and 2) normalized average achieved SQ level. The first examined
scenario was the one with a low number of patients (i.e. IoT edge devices). Figure 4.35a il-
lustrates the average achieved battery lifetime of the devices. This metric is chosen since there
is no global expected lifetime value for all devices but each one operates under a unique con-
straint. To visualize the expected battery lifetime, the red line on the figure denotes the average
expected battery lifetime, taking into account all devices involved in the scenario. In both tech-
niques for SQ management, all devices meet their battery lifetime constraint. On the contrary,
the unsupervised system behaves very poorly and misses the majority of the constraints.

89

4 Efficient Resource Management Techniques for IoT Edge Computing

0

50

100

150

200

250

300

350

2 3 4

A
ve

ra
ge

 b
at

te
ry

 li
fe

[m

in
]

of gateways

Unsupervised Discrete Configs Proposed battery
constraint

(a) Average battery lifetime

0

0.2

0.4

0.6

0.8

1

2 3 4N
o

rm
al

iz
ed

 A
ve

ra
ge

 S
Q

of gateways

Unsupervised Discrete Configs Proposed

(b) Normalized average SQ level

Figure 4.37: The scenario of high number of IoT node

In Figure 4.35b, the average achieved SQ level is presented, normalized in respect to the high-
est achieved value in this scenario. The proposed resource allocation scheme operating on a
continuous utility function, achieves better SQ levels compared to the scheme with discrete
utility function in all cases. Since the number of devices is low, the gain remains low as in both
schemes there are enough available resources. The gain in SQ level of the proposed scheme
comes at the price of decreased average battery lifetime of IoT nodes compared to the discrete
version. However, this is acceptable since the battery lifetime constraints are still met.

This presented system behavior remains the same throughout the examined scenarios with
medium and high number of devices as illustrated in Figure 4.36 and Figure 4.37. As ex-
pected in these cases, as the number of IoT devices increases, the available resources on the
gateways become more and more scarce. Consequently, the ability of the proposed solution to
fully utilize available bandwidth and processing resources of the gateway, results in improve-
ment in achieved SQ levels. The same overall SQ level cannot be achieved by the discrete
counterpart of the resource allocation scheme, since it suffers from the fragmented utilization
of its resources. These gains reach up to 22% and 24.6% in the cases of medium and high num-
ber of edge devices, respectively. In overall the gains compared to the unsupervised version of
the system start from 56% and can reach up to more than 100%.

0

4

8

12

16

20

2 3 4

C
o

m
m

u
n

ic
at

io
n

O

ve
rh

e
ad

 (
%

)

of gateways

Number of exchanged messages - Low scenario Communication volume - Low scenario
Number of exchanged messages - Medium scenario Communication volume - Medium scenario
Number of exchanged messages - High scenario Communication volume - High scenario

Figure 4.38: Communication overhead

Figure 4.38, presents the overhead of the resource management negotiations on the rest of the
system communication, which corresponds to the data traffic generated by the applications run-
ning on the IoT nodes. Assuming that Tot_Mngmt_Msgs is the total number of messages ex-

90

4.5 Summary of Resource Management Techniques

changed for resource negotiations and Tot_App_Msgs is the total number of application related
messages sent by the IoT nodes to gateways, then the overhead in message count is defined as

Tot_Mngmt_Msgs

Tot_App_Msgs
×100% (4.43)

while the overhead in transmitted data volume equals to

Sizeo f (Tot_Mngmt_Msgs)

Sizeo f (Tot_App_Msgs)
×100%. (4.44)

Experiments showed that the overhead in the number of exchanged messages ranges from 10%
to 18% and is higher for increased number of IoT nodes (patients) and gateways, since more de-
vices need to communicate in order to designate the operating points of the system. Conversely,
the overhead on communication volume is almost constant and lower than 3% in all cases. To
interpret this result, the differences in the structure of resource management and application
related messages should be taken into account. Resource negotiation messages are small and
contain only a few values as described in Section 4.4.2, while application messages transmitted
to the gateway can contain many values according to the SQ and off-loading level of each de-
vice, e.g. a complete heartbeat window sent for processing. As a result, the resource negotiation
related messages constitute a very small fraction of the total communication volume.

4.4.4 Summary of Trade-based Management in Multi-gateway IoT

This section studied the joint problem of binding and resource allocation for multi-gateway
IoT systems, where the IoT devices can provide different service quality levels and can offload
a share of their workload. The SQ management has to fulfill constraints for the battery life-
time of IoT devices, communication bandwidth to the gateway, and processing capability of the
gateway (for offloading). This section presented an Integer Programming formulation for this
problem and decompose it into separated device and gateway problems, and then showed that
the gateway problem is NP-hard and practically impossible to be solved in a central fashion.
It proposed a distributed agent-based mechanism to find the sub-optimal solutions. It demon-
strated the effectiveness of the proposed approach using a case study of ECG processing in a
personal healthcare monitoring application. The experiments showed that the proposed solu-
tion achieves up to 56 % accumulated SQ compared to an unsupervised system and up to 24.6%
compared to a resource allocation scheme with discrete utility configurations while they both
meet the constraints of edge devices.

4.5 Summary of Resource Management Techniques

This chapter has studied the problem of resource management and operation mode selection for
the IoT devices at the edge of IoT network. It has presented a model for IoT applications in
health monitoring domain, and then introduced multiple operation modes of IoT devices. Then,

91

4 Efficient Resource Management Techniques for IoT Edge Computing

it has proposed techniques to determine the operation mode of IoT devices at runtime while
considering the constraints of IoT devices and the limited sharable resources of the gateway
as well as the application requirements. Efficient and fast techniques have been presented to
reduce the overhead for managing the shared resources through mode selection. It has also
presented a distributed trade-based mechanism to manage the IoT devices in a multi-gateway
system. The problem of resource management in a multi-gateway is more complicated since
some IoT devices may have more than one option as their gateway to connect to. Therefore,
the binding and allocation problems must be considered conjointly. The proposed mechanism
starts from an initial setup and step-by-step improves the overall service quality of system by
migrating and exchanging IoT devices between gateways.

92

5 Application-Specific Optimizations for Healthcare

The aim of this chapter is to study a class of IoT applications to derive a general model to
describe their data processing pipeline and present application-specific optimizations for them.
This chapter considers three different applications which involve signal processing and classi-
fication, and model their data processing steps. The applications belong to the remote health
monitoring domain. These applications are:

1. EEG processing to predict epileptic seizures (discussed in Section 5.1),

2. ECG processing to detect heart abnormality (discussed in Section 5.2),

3. and physical activity monitoring (discussed in Section 5.3).

These applications are designed, implemented and analyzed to obtain a general model for the
applications in the same domain. Section 5.4 presents a novel approximate compression tech-
nique for the IoT applications that process bio-signal data. Eventually, Section 5.5 concludes
the chapter by summarizing the contributions of the chapter.

– Background: One of the main and trending application domains for IoT is the healthcare
and well-being domain. Wearable healthcare monitoring devices are used to monitor elderly
people or patients’ health status while they are out of the hospital doing their daily activities.
Wearable devices are also very popular and useful for sports, fitness and wellness to measure
daily activity, sleep patterns, and other parameters related to well-being [SBH15]. They sense
and process the vital signals of a person (e.g. ECG, EEG, EMG, skin temperature) anywhere
and anytime for as long as it is needed, and transmit the (processed) data to the gateway. In the
following, three applications are implemented and studied to show their similarities.

The presented model in Section 4.1 was based on the implemented applications that are de-
scribed in this chapter. The model help the designer to characterize the software application, and
then leverage the properties to optimize the application (both at hardware and software level)
and achieve higher efficiency in terms of energy, power and resource usage. The resources in
an IoT system include:

• Device’s resources such as energy (battery or harvested), internal memory, processing
power, etc.

• Network’s resources such as communication bandwidth, processing power of the gateway,
storage memory of the gateway, internal memory of the gateway, etc.

93

5 Application-Specific Optimizations for Healthcare

IoT devices capture input data using sensors from the physical world. The collected data –
usually in forms of samples– needs to be processed to retrieve the information. The IoT ap-
plications can be categorized into two classes with respect to the relation of data samples and
extracted information:

1. An individual sample does not provide meaningful information, but a sequence of sam-
ples are required. For instance in a heart rate monitoring application, one sample of ECG
data cannot be used to determine the location of a beat, but a window of samples (e.g. 3
seconds long) is usually used to locate the beat or other crucial complexes [BAAR12]. In
such applications the desired information, which is conveyed by input signal, is spread
over time. The collected data from accelerometers, gyroscopes, sound and biomedical
signals fall into this category. These applications are usually involved with signal pro-
cessing.

2. In some applications, however, the individual samples can be interpreted solely and pro-
vide meaningful information. For instance, individual samples from temperature or hu-
midity sensor can be sufficient in some applications like smart cooling systems. Force
sensitive resistors (FSRs), gas sensors for air quality applications, pressure sensors, lumi-
nance sensors are among sensors used in such applications.

The applications that are implemented in the scope of this thesis and presented in the following
sections belong to the first category. Their input data is biosignal that needs to be segmented
first and they have to classify each segment.

5.1 EEG processing to predict epileptic seizure

EEG recording captures the electrical activity of the brain. EEG signal conveys essential infor-
mation about the mental status, brain disorders, attention and meditation level, etc. [MFL+16].
Several applications use EEG signal to monitor or improve the health and wellness of users. De-
tection of sleep (transition from wakefulness to sleep) and monitoring the deepness of sleep are
among the applications. The stress monitoring during the daily activity is another application
which uses EEG signal.

One important application for EEG is the detection or prediction of epileptic seizures. Epilepsy
is a chronic neurological disorder that, according to the Epilepsy Foundation, affects more than
65 million people worldwide [Sha]. It is associated with recurrent and sudden seizures which are
due to temporary electrical disturbance and excessive neuronal discharge in the brain [Ias03].
Epileptic seizures result in altered consciousness or a whole body convulsion with uncontrolled
movements. Due to the random nature of seizure occurrences, they are life-threatening and
may increase the risk of serious injuries, especially if they occur while the patient is driving,
exercising, etc. [LE02].

Figure 5.1 shows the high-level overview and stages for developing the seizure prediction
method using machine learning classification based on the general method in [ANRS17]. The

94

5.1 EEG processing to predict epileptic seizure

EEG signal can be acquired from implantable devices or on-skin electrodes. The segmenta-
tion includes buffering the data for a specific window size (e.g. 60 seconds of EEG signal
in [BWA+16]). The subsequent operations are performed on this chunk of data. Band-pass
filters are used either to remove higher frequencies and noise or to obtain the frequency sub-
bands. Many features including time-domain and frequency-domain information as well as the
correlation between channels can be extracted from EEG channels, but not all have the same
importance. The next step is to select those features with maximum relevance and minimum
redundancy. Afterwards, the classifiers (e.g. support vector machine, artificial neural network,
logistic regression, etc.) are trained. The output of the classifiers are smoothed using post-
processing techniques [ANRS17]. If the performance of the model is not satisfactory, then the
parameters are changed and a new model will be trained.

Signal Acquisition

Preprocessing

Scalp EEG

Classification

SVM

Gradient boosting

Logistic Regression

Feature Extraction

Univariate
Linear/ Non-linear

Mulitvariate
Linear/ Non-linear

Feature Selection

Min redundancy
Max relevance

Genetic Algorithm
Greedy backward/forward

User Interface

Segmentation
& Filtering

Postprocessing

Majority Voting

Kalman Filter

Firing power

Figure 5.1: General overview of the stages for seizure prediction using EEG signals adopted from [ANRS17].

Once an accurate trained model is obtained, the setting of classifier can be ported to the IoT low-
power device. Then, at runtime the captured EEG signal by the IoT device can be processed (i.e.
applying filter, extracting the feature, etc.) and classified using the classifier. Figure 5.2 shows
the overview of the epileptic seizure prediction algorithm proposed for constrained IoT devices
in the scope of this thesis. New and simple features are introduced that allow elimination of
other complex features and reduce the number of required EEG channels while still achieving
accurate prediction. The proposed model respects the scarce internal memory and constrained
computation resources on the low-power IoT devices and still fulfills the classification perfor-
mance. The detailed presentation of the proposed system is published in [SPBH18].

Feature Extraction

FFT

Sub-bands
selection

Freq.-domain features

iFFT

Sub-band
time-domain features

Time-domain features

Prediction:

Postprocessing

Majority Voting

Signal acquisition
EEG

Scalp EEG

Classification

XGBoost

Classification
Logistic

Regression

* Preictal
(seizure)

* Interictal
(non-seizure)

Se
le

ct
ed

 F
ea

tu
re

s

Preprocessing

Segmentation

Filtering (FIR)

23 features
(float values)
per channel

Figure 5.2: General overview of the stages for the proposed seizure prediction method

95

5 Application-Specific Optimizations for Healthcare

5.2 ECG processing to detect heart abnormality

ECG monitoring has recently received considerable industrial and academic interest [BGC13].
Analyzing the ECG signal, including heart rate or heart rate variability monitoring, provides
essential information about the mental and physical condition of user which helps in early de-
tection or diseases.

Figure 5.3 shows the structure of an ECG signal that consists of various peaks, waves and
complexes. The fiducial points of an ECG signal are P, Q, R, S, and T as labeled in the figure.
The duration and height of these peaks as well as the time intervals between them convey
essential information about the heart [Con03]. These features can be calculated after locating
the crucial points. R peak detection has received more attention mainly due to two reasons: for
some applications, only the features that are related to the QRS complex (e.g. heart rate, hear
rate variability [SRVMAA15], bundle branch blocks [WPW30], etc.) are required. Moreover,
the R peak is the starting point for detecting other waves in most algorithms.

R

Q

S

T

QRS
Q-T

interval

P-R
interval

P-R
segment

S-T
segment

P
T-P

segment

R-R interval

Figure 5.3: An ECG complex and its crucial points: P, Q, R, S, and T. Other features are calculated based on
these crucial points [EEDA14].

Figure 5.4 illustrates the steps to process the ECG signal and delineate the crucial points and
classify the heartbeats. After buffering one segment of ECG data (e.g. 3 seconds long), the data
is filtered to remove the high-frequency noise. Then, the discrete wavelet transform is applied
to the signal. The detail coefficients (from the high-pass filter) and approximation coefficients
(from low-pas filter) of the wavelet transform can help removing the baseline wander from sig-
nal which has been introduced due to the motion artifact or muscle movements. The ‘square and
integrate’ highlights the difference between peaks. Then, by exploiting an adaptive thresholding
technique the R peaks can be detected. Once the R peak is detected and located, a forward and
backward search is used to locate other peaks and waves.

5.3 Physical activity monitoring

Detecting the physical activity of user has several applications in the healthcare, wellness and
fitness. For instance, sedentary behavior is proven to be hazardous to the health. It contributes to
a number of health concerns including cardiovascular or heart disease, type 2 diabetes, obesity
and some cancers [CCGT14].

96

5.3 Physical activity monitoring

Band-pass
filter

Wavelet
transform

Baseline wander
correction

Square &
Integration

R-peak
detection

Peaks & waves
localization

Diagnosis:
Normal /
Abnormal

ECG signal

Result

Figure 5.4: ECG processing application to detect the heart abnormalities

The accelerometer and gyroscope sensors can provide information about the movement, ve-
locity and acceleration in different directions. Many wearable devices are equipped with such
sensors. The input data include 3-axis (X, Y and Z) angular position from gyroscope and 3-
axis acceleration. These input streams can be processed to classify the status of the body into
‘running’, ‘sitting’, ‘walking’, ‘standing’, ‘cycling’, etc.

Table 5.1 shows all the 35 features from three axes that were examined for the classification:
mean, root mean square (RMS), zero crossing rate (ZCR), diff, variance, standard deviation and
mean crossing rate (MCR). Among these features f15, f16, f17 are excluded and removed for
the final classification as the Z-axis has shown an unpredictable noise. The other values related
to the Z-axis can be used as they only measure comparative values.

Table 5.1: The set of features initially were examined

mean rms zcr diff var std mcr

x-Axis f1 f2 f3 f4 f5 f6 f7

y-Axis f8 f9 f10 f11 f12 f13 f14

z-Axis f15 f16 f17 f18 f19 f20 f21

pitch f22 f23 f24 f25 f26 f27 f28√
x2 + y2 f29 f30 f31 f32 f33 f34 f35

Figure 5.5 illustrates the stages to process the accelerometer and gyroscope data in order to
detect and monitor the physical activity of user. After acquiring the input data (3-axes ac-
celerometer), it is buffered and segmented. The optimized segment size is a parameter that
needs exploration to be found. Then the buffered data is filtered using a median filter. Next
stage extracted the features from X, Y and Z axes of accelerometer data. Different classifier
types were investigated to find the optimized classifier (with low memory overhead, high accu-
racy and low execution time). The post-processing includes majority voting to smooth out the
output.

Three difference types of classifiers are implemented and evaluated: Decision Tree (DT), Sup-
port Vector Machines (SVM) and Artificial Neural Networks (ANN). The physical activity mon-

97

5 Application-Specific Optimizations for Healthcare

Signal Acquisition

Preprocessing

3-axis
Accelerometer

gyroscope

Classification

SVM

Neural Networks

Decision Tree

Storage/
Statistics/

User Interface

Segmentation
+ Median Filter

Postprocessing

Majority Voting

Kalman Filter

Feature Extraction

Mean, Max, Min, Root mean
square, Zero-Crossing-Rate,
Min-max-diff , Standard
Deviation, Variance, Mean-
Crossing-Rate

Figure 5.5: Stages to detect and classify the physical activity using accelerometer and gyroscope data

itoring application is implemented on the IoT prototype that has been developed in the scope
of this thesis (see Section A.2). The accuracy of classifier, size of memory to store the setting
of classifiers, and execution time for classification are measured on the designed prototype that
features an ATmega328 microcontroller. Table 5.2 compares these three classifiers and shows
the optimized size of buffered window (also known as segment). The settings of the SVM
classifier require more memory than what is available on the designed prototype, therefore the
execution time cannot be measured.

Table 5.2: Comparison of Classifiers

Classifier Accuracy Window (s) Memory for Settings Exec. Time (ms)

DT 91,4 5,0 328 Byte 1,90

ANN 86,0 3,0 592 Byte 13,55

SVM 91,3 4,5 100212 Byte —

5.4 Approximate Compression for Health Monitoring Applications

As discussed in Section 3.5, many IoT applications inherently tolerate errors in their data pro-
cessing and therefore deal with approximation. Since they are interacting with the physical
world, their input data is usually noise [S+14]. Also their ADC converter introduces a quantiza-
tion error before the data processing starts. Another stage that potentially deals with the approx-
imation is the classification stage where the small errors might masked (i.e. slightly different in-
puts to the classifier can produce the same result [BMB+14, BBM+15, LDXW13, WJSX15]).

This section takes advantage of error tolerance in such applications and presents an approximate
compression technique for biosignals in wearable IoT devices. The approximate compressor is
based on Huffman coding but with a much smaller dictionary size and higher compression ratio.
It finds the shortest code to compress the data while keeping the error in an (application-specific)
acceptable range. This section uses ECG biosignal to explain and present the approximate
compressor, but other biosignals such as EEG, EMG, etc. are also applicable. The proposed
technique has been initially published in [SBH15].

98

5.4 Approximate Compression for Health Monitoring Applications

5.4.1 Motivation

Figure 5.6a shows three seconds of an ECG signal (left) and the histogram of ECG values
recorded for 2 hours, 10 minutes and 12 seconds (right). The ECG signal values have a Gaussian
distribution, which indicates that some values (near zero) occur noticeably more often than
the others. Gaussian distributions are popular candidates for being compressed by Huffman
coding, which assigns short codes to high frequently occurring values and long codes to those
that occur infrequently [YVH11, CHY04, PBM13]. Moreover, in a wide range of applications
and systems, instead of transferring an entity (file, frame, value, etc.) in its entirety, only the
difference with a reference (e.g. its previous value, a fix entity, or its previously transferred
entity) is sent. Delta coding is also advantageous for ECG signals and can be exploited for
storing and transmitting them [KYM+10, FG08]. Instead of sending absolute ECG sample
values, the difference with the previous sample value is calculated, i.e. di=si−si−1. By having
the initial value (i.e. s0) and the sequence of delta values, the original ECG signal can be decoded
and reconstructed. Figure 5.6b shows the delta coded ECG signal on the left side and the
histogram of delta values on the right side (both correspond to the ECG signal in Figure 5.6a).
The distribution of delta values implies that Huffman coding offers higher compression ratio
for delta values than raw ECG values [FG08, KYM+10].

−200 −100 0 100 200
0

2

4

6

x 10
4

ECG signal value

of

 o
cc

ur
re

nc
e

0 100 200 300 400
−400

−200

0

200

400

Sample

E
C

G
 s

ig
na

l

(a) A short sample of an ECG signal (left) and the data distribution as histogram for more than 2 hours of record-
ing (right)

−200 −100 0 100 200
0

2

4

6

x 10
4

Delta values

of

 o
cc

ur
re

nc
e

0 100 200 300 400
−400

−200

0

200

400

Sample

de
lta

 c
od

e
of

 E
C

G

(b) Delta coding of the same ECG signal as absolute values (left) and histogram (right)

Figure 5.6: ECG signal (left) and its histogram (right) as absolute values (top) and delta values (bottom)

– Key Observation: Table 5.3 shows the code word length for some delta values compressed
by Huffman coding. For example, the code word length for delta values 77 is 11 bits, while the
code length of 78 is 14 bits. Assuming that the actual data can accept a slight variation of ±1
(which is the case for ECG), delta values 78 and 81 can be replaced by 77 and 80 and thus be
encoded by only 11 and 12 bits, which can save 3 and 2 bits, respectively.

99

5 Application-Specific Optimizations for Healthcare

Table 5.3: Code word length for some delta values

Delta Value · · · 77 78 79 80 81 · · ·

Code Length [bit] · · · 11 14 13 12 14 · · ·

This example demonstrates a significant potential for compression, and consequently, energy
saving (for storing or transmission). Accordingly, this motivates the key idea of approximate
compression: a novel data compression scheme for inherently error resilient signals such as
biomedical signals (e.g. ECG) that can tolerate errors as long as the error amplitude is small
enough and subsequent data processing (e.g. ECG delineation) is still possible. As it will be
shown, approximating successive delta values may result in an aggregated error in the recon-
structed signal, which can lead to an unacceptable error range. Therefore, this section proposes
a method to keep the error in an acceptable range.

5.4.2 Details of Approximated Compressor

Assuming that the analog-to-digital converter (ADC) has W bits resolution, the ECG values
can be represented by integer values in the range [−2W−1,2W−1−1]. Let si ∈ Z denote the
ith ECG sample, −2W−1 ≤ si ≤ 2W−1−1, and let us assume that for the target application an
approximated value s′i = si+εi is accurate enough as long as eL ≤ εi ≤ eH , where eL,eH ∈Z are
the lower and upper bound of tolerable error, respectively (e.g. eL =−2,eH =2 for a tolerable
error of±2). This tolerable error is defined and given by the application and system designer for
which the requirements of system for detection accuracy, robustness, etc. is taken into account.
Given the basic definitions of delta codes (i) and approximated values (ii) on the left side of
Equation (5.1), the right side shows that the delta value can tolerate the same error εi = s′i− si

(eL ≤ εi ≤ eH) that was specified for the ECG samples. Thus instead of the exact delta value di,
an approximate delta value d′i = di + εi can be used.

(i) si = si−1 +di

(ii) s′i = si + εi

= si−1 +di + εi

= si−1 +d′i

(i),(ii)⇒ s′i− si = d′i−di (5.1)

This offers the opportunity to exploit the error tolerance of delta values by intentionally adding
a permitted error to a delta value such that the resulting approximated delta value has a shorter
Huffman code. This is shown in Equation (5.2), where cl(d) represents the Huffman code
length of a delta value d.

d′i = di + εi : cl(d′i) = min
eL≤ j≤eH

(
cl(di + j)

)
(5.2)

However, the calculation s′i = si−1 +d′i in Equation (5.1) assumes that the exact previous abso-
lute value si−1 is still available when decoding the approximated value s′i. In practice, to be able

100

5.4 Approximate Compression for Health Monitoring Applications

to actually benefit from the shorter Huffman codes, only the approximated value s′i−1 will be
transmitted and thus available when decoding the delta value.

The entire flow is shown in Figure 5.7. The approximate compressor first calculates the delta
value di, applies an intentional error εi to obtain the approximated delta value d′i and then either
directly transmits its Huffman code ci or temporarily stores it in a non-volatile memory (e.g.
in case the wireless connection could not be established). The receiver decodes the Huffman
codes into the approximated delta values d′i and then calculates s′i = s′i−1 + d′i to retrieve the
approximated ECG values s′i.

D
E

C
O

D
E

R

or

Transmission

& Storage

…, ci+1, ci, ci-1, ...
…, s´i+1, s´i, s´i-1, ...

…, si+2 si+1 , si , si-1, ...
-

didi+1

-

+εi+εi+1

d´id´i+1

... ...

... ...

......

S
h

o
rt

e
s
t
C

o
d

e

H
u

ff
m

a
n

-b
a

s
e

d
 T

a
b

le

L
e

g
e

n
d ECG signal value

Delta value

Huffman code

di

ci

si

Smartphone or CloudWearable Healthcare Monitoring device

Tx

Approximate compressor
Non-Volatile

Memory

Figure 5.7: The scheme of the compression and coding method

The problem with this procedure is that it will lead to accumulated errors. For instance, if a
particular sequence of approximated delta values always uses the largest tolerated error (i.e.
∀i : εi = eH) then this will lead to an error runaway of the absolute reconstructed value. Let
us consider a sequence (d′i ,d

′
i−1, . . .) of approximated delta values d′i = di + εi. Equation (5.3)

calculates the error E(s′i) when comparing the approximated sample s′i = s′i−1+d′i with the exact
sample si = si−1 +di. The obtained recursion shows how errors are accumulated.

E(s′i) = s′i− si = (s′i−1+d′i)− (si−1+di)

= (d′i−di)+(s′i−1−si−1)

= εi +E(s′i−1)

(5.3)

In the following, an effective scheme is presented to guarantee that the reconstructed ECG sam-
ple s′i is always in the given tolerance range [eL,eH] despite the error accumulation. Let us
assume that E(s′i−1) is within the tolerated error range (by using the proposed scheme), i.e.
E(s′i−1) ∈ [eL,eH]. Then the question is which error is tolerable for the next sample. Equa-
tion (5.4) shows how the bounds for the error εi of the next sample need to be modified, de-
pending on the particular error E(s′i−1) that was accumulated so far.

eL ≤ εi +E(s′i−1)≤ eH

⇒ (eL−E(s′i−1))≤ εi ≤ (eH−E(s′i−1))
(5.4)

101

5 Application-Specific Optimizations for Healthcare

c
di-2

c
di-1

c
di

c
di+1

c
di+2

c
di+3

c
di-3

... ...

dieL=-2 eH=+2

d'i

ε=-1
eL ç -3
eH ç 1

Figure 5.8: Approximating delta value with an error in acceptable range, and updated error range

D
e

lt
a

 C
o

d
in

g

ECG Update

Error range

Find

Shortest Code

Error range

di Store/

Transmit

Default Error range

T[di+eL]

T[di+eH]
..
.

Huffman Table

{

Figure 5.9: The proposed approximate compressor

Figure 5.8 shows an example where the tolerable error range is eL =−2 and eH =+2. The ac-
ceptable error that leads to the shortest Huffman code for this delta value is ε =−1. Therefore,
the error range should be updated to eL =−2−(−1) =−1 and eH = 2−(−1) = 3.

5.4.3 Reducing Computational Overhead

Figure 5.9 shows the flow of approximate compression. For each delta value, depending on the
error range, the adjacent Huffman codes are taken into account to find the shortest code. In
the following, a technique is proposed to reduce the overhead introduced to find the shortest
code.

As shown in Equation (5.2), finding the the best approximate delta value involves (eH−eL+1)
memory reads accessing the Huffman table, as well as a total of (eH−eL) comparisons to find
the minimum code length. This must be done for every ECG sample, which would not only
decrease performance and throughput, but would also cost energy. Therefore, a scheme is pro-
posed to reduce this overhead, resulting in a more efficient approximate compressor architecture
in which only one memory access is required for compressing one delta code.

While the original approximation scheme needs to search and find the shortest code in the
tolerated error range for every delta value, a modified Huffman table can be used which contains
the pre-computed shortest codes for the tolerated error. Let us first assume that the error range
for each individual sample would be constant, i.e. ε ∈ [eL,eH]. The new table has two entries
for each delta value di:

• shortest code in the tolerated error range sci:
sci = argmin {cl(di + j)}eL≤ j≤eH

• bias bi: the difference between di and the delta value whose Huffman code has been
chosen as sci.

102

5.4 Approximate Compression for Health Monitoring Applications

Huffman code bias

Delta value

-2

-1

0

-3

-4

Shortest code
eL=-2, eH=2

1
2

3

4

⋮

1

2

1

0

0

⋮

[100]

[101]

[111] 0

[111] -1

[111] -2

[0111] -1

[101]

[101]

[0101]

⋮⋮

[0000]

[101]

[100]

[0101]

[00010]

⋮

[111]

[0011]

[0111]

[00101]

⋮

⋮

⋮

Figure 5.10: An SC table corresponding to the Huffman table and delta values

Bias values keep track of the amount of tolerable error used by a particular delta value. This
is required to ensure that subsequent delta values remain within the tolerable error, as will be
explained in the following subsections.

Figure 5.10 provides an example of how the modified Huffman table is created. It shows some
delta values and their corresponding Huffman codes on the left side (i.e. the original Huffman
table). Then for each delta value the shortest Huffman code in the error range [−2,+2] is
chosen. For delta values −1, 0 and 1, the shortest code is the original Huffman code, which
means that these delta values are used with no approximation and hence, their corresponding
bias values are 0. On the contrary, for delta value 3 the Huffman code that corresponds to delta
value 1 is used. Thus, the delta value for 3 is approximated with a bias of −2.

Online and offline table construction

If the original Huffman table is known in advance, the shortest code (SC) table can be precom-
puted offline and stored in the memory. Alternatively, it could be built at runtime by doing the
computation once and only once for each delta value. When a delta value appears for the first
time, then its shortest code sc and bias value b would be computed by taking its adjacent delta
values in the permitted range into account. The computed sc and b values would then be stored
in the table for the next references to this delta value.

How to Use the Approximate Huffman Table

As explained in Section 5.4.2, the tolerable error range [eL,eH] changes for successive approx-
imate delta values. However, to construct the SC table in Figure 5.10 a constant error range is
assumed, and all entries are calculated considering the default tolerable error, i.e. [eL,eH]. To
deal with this issue, an indexed addressing is presented to obtain the actual table entry. As intro-
duced in Section 5.4.2, E(s′i−1) corresponds to the accumulated error of all approximated delta
values including di−1. To calculate the tolerable error range for di, Equation (5.4) implies that

103

5 Application-Specific Optimizations for Healthcare

... ...

5-(-1)

eL=-2 eH=2

... ...

5

eL=-1 eH=3

c3 c4 c5 c6 c7 c8 c9

c3 c4 c5 c6 c7 c8 c9

Figure 5.11: Index addressing to keep the default SC table usable for successive approximation. Accumulated
error is -2, and the error range is ±2.

Algorithm 3: Compressing operation using shortest code table
1 Sp ← getSample(); // get the first signal’s sample
2 bias ← 0; // initial bias value is zero
3 while (True) do

4 Sn ← getSample(); // new sample
5 d ← Sn - Sp; // delta value
6 Sp ← Sn ; // previous sample
7 sc ← sc_table.get_code(d-bias); // get shortest code
8 bias ← sc_table.get_bias(d-bias); // update bias
9 packet.payload ← sc;

10 send(packet); // send the data
end

εi ∈ [eL−E(s′i−1),eH −E(s′i−1)], which basically means that for approximating di it is needed
to examine the range [di + eL−E(s′i−1),di + eH−E(s′i−1)].

[(
di−E(s′i−1)

)
+ eL,

(
di−E(s′i−1)

)
+ eH

]
(5.5)

According to Equation (5.5), looking up the Huffman code for (di−E(s′i−1)) instead of di serves
the purpose. Actually when looking up (di−biasi−1), this corresponds to the accumulated error.
Therefore the SC table that is constructed for a default error range of [eL,eH] can be still used,
by exploiting this indexed addressing approach.

As an example, consider the SC table shown in Figure 5.10. If the first delta value is 2 then
the bias would be −1. The updated error range must be eL = −1 and eH = 3. If the next delta
value is 5, it is needed to investigate the delta value range 5−1 to 5+3. When looking for the
entry of 5− (−1) = 6 in the SC table, as a matter of fact, it covers the delta value range of 6−2
to 6+ 2 (see Figure 5.11). Algorithm 3 describes how to use the SC table at runtime for the
proposed approximate compression.

5.4.4 Table Size Reduction

The collected ECG signals of the same person can change from day to day, because of changes
in person’s activity, conductivity of electrodes, muscle contraction, etc. Figure 5.12 shows the
histogram of delta values corresponding to the ECG signal of one person for two different days

104

5.4 Approximate Compression for Health Monitoring Applications

−200 0 200 400−200 0 200 400
0

5%

10%

15%

fr
eq

. o
f a

pp
ea

ra
nc

e

−1 is most
frequent

−2 is most
frequent

Day 1 Day 2

−20 −10 0 10 20
0

5%

10%

15%

Delta values

fr
eq

. o
f a

pp
ea

ra
nc

e

Day 1
Day 2

4.7%

Figure 5.12: The appearance frequency of delta values of the ECG recordings of the same person for two differ-
ent days

0 100 200 300 400

0

R
th

2W−1

−R
th

−2W−1

Rare
range

Usual
range

Figure 5.13: The whole range of delta values can be divided into two groups: rare range and usual range

measured on the ECG monitoring prototype that was developed in the scope of this thesis (see
Section A.2). As shown in the figure, not only the occurrence frequency of delta value ‘-2’ is
reduced by 4.7%, but this delta value is not the most frequent value anymore. Changing occur-
rence frequencies of delta values can lead to a reduction in compression ratio, which demands
updating the SC table (or generally the Huffman table). The SC table can be constructed (up-
dated) either on the wearable device or on the Smartphone (server) and then transmitted to the
wearable device. Due to the high resolution in recorded data, the range of ECG values, and
consequently delta values, is large. It results in a large SC table (on average 1.47 MBits in the
experiments). A simple but effective approach is used to reduce the size of the SC table (or
generally Huffman table) while still retaining the same compression ratio.

Although the delta values can theoretically vary from −2W−1 to +2W−1−1, in practice the
appearance of large negative and large positive values is extremely rare, according to compre-
hensive observations. As shown in Figure 5.13, the delta values can be divided into two groups:
1) the rare range which includes large negative and large positive values that appear rarely, and
2) the usual range which includes the values that appear frequently. The delta values greater
than a pre-defined threshold Rth or less than −Rth are considered as rare values.

It is worth noting that Huffman codes are proved [Bur93] to have an upper bound that is shown
in Equation (5.6), where p1 and p2 are the probabilities of the least and second least frequent
values, respectively, and n is the number of different values to be compressed (i.e. alphabets).
According to the probability distribution of delta values, p1 and p2 are too small and tend to
zero. Hence, the upper limit approaches min{blogΦ(1/p),n−1}, p = p2 ≈ p1. As p→ 0, the
upper limit of Huffman code approaches (n−1).

105

5 Application-Specific Optimizations for Healthcare

D. . .
1

2

0
Huffman codes

Rare delta values

DDelimiter

Legend

4

D

3
. . .

. . .

D. . .W bits W bitsW bits

D. . .W bits W bitsW bits

1

2

3

4

0

sample

D
el

ta
 v

al
u

es
D

el
ta

 v
al

u
es Rth

-Rth

Rth

-Rth

Figure 5.14: Rare delta values are not coded by Huffman, instead, a delimiter is used to distinguish the Huffman
codes and W-bit-codes

min
{⌊

logΦ

(
Φ+1

Φ× p1 + p2

)⌋
, n−1

}
, Φ =

1+
√

5
2

(5.6)

In order to reduce the size of the SC table (or Huffman table), only the usual range of delta
values is considered. For the rare range of values, the Huffman coding is not used, but the raw
W bits are stored. A specific code word of the Huffman table must be used as the delimiter to
distinguish these two different ranges and codings. Figure 5.14 shows an example where some
rare delta values appear. As these delta values do not have Huffman codes, they are presented
in the original W-bit width codes. A delimiter is used to separate Huffman codes and raw data,
such that the data can be decoded.

In this hybrid approach, the delta values in the rare range are represented by only W bits instead
of a long Huffman code, however, they need a delimiter to separate them from Huffman codes.
It should be noted that this hybrid coding approach will not necessarily increase or decrease the
compression ratio. This is due to the fact that delta values in the rare range appear extremely
infrequent, and therefore they do not contribute to the compression ratio significantly. The main
benefit of this approach is a significant reduction in table size as evaluated in Section 5.4.5.

5.4.5 Evaluation and Results

Experimental Setup

To evaluate the proposed technique, the data from the MIT-BIH Long-Term ECG Database
(ltdb) and MIT-BIH Arrhythmia Database (mitdb) [GAG+00] are used. The Long-Term ECG
Database provides 7 sets of two-channel ECG signals sampled at 128 Hz with 12-bit resolution
for almost one day. The Arrhythmia database provides 48 sets of two-channel ECG signals
sampled at 360 Hz with 11-bit resolution for half an hour. The first 40,000 samples of each

106

5.4 Approximate Compression for Health Monitoring Applications

ECG recording are used for training to construct the Huffman tables, while the rest are used for
evaluating the compression rate of proposed technique and state-of-the-art.

Comparison with state-of-the-art

The proposed approximate compression approach for the Huffman technique can also be ap-
plied to other existing compression techniques, like [CHY04, SHLL14, MD06, PBM13], to
further improve their compression ratio. In other words, these techniques and the proposed
approximate compression are complementary solutions.

To show the effectiveness of the proposed technique, it is compared with two state-of-the-art
compression method, i.e. QLV [KYM+10] and [PBM13]. Despite many other existing com-
pression techniques, QLV [KYM+10] and the proposed approximate compression are mutually
exclusive. The reason is that QLV uses Huffman codes as separators to distinguish different
levels, and therefore, it can not exploit approximation. Thus, the proposed approach is com-
pared against QLV. Instead, [PBM13] and approximate compression technique are orthogonal
and can be used at the same time. Therefore, the approximate compression is applied on top of
the technique proposed in [PBM13] to show the further compression ratio that can be achieved
by the proposed approximation technique.

To quantify the compression performance, the compression ratio (CR) metric is employed
which is defined as:

CR =
Sorig−Scomp

Sorig
×100 (5.7)

where Sorig and Scomp represent the size of original and compressed data, respectively. An
acceptable error range of up to ±4 is considered, which has a quite negligible impact on the
quality of the reconstructed signal.

Figure 5.15 shows the compression ratio achieved using an exact Huffman technique and the
proposed approximate compression with different tolerable error ranges. As expected, the com-
pression ratio is improved as the tolerable error range extends. Some ECG recordings, like ‘1’,
‘2’ and ‘4’, show a large potential for approximate compression. For some other recordings,
like ‘3’, the compression ratio does not show large sensitivity to the tolerable error range (while
still is beneficial). The reason behind this behavior is that the ECG recording ‘3’ belongs to a
person whose heart beats are perfectly normal and regular. On the contrary, the ECG recording
‘1’ has some anomalies inducing irregularities in the data as a result of arrhythmia or unfiltered
motion artifact [KKVH+14].

The achieved compression ratio of the proposed technique and QLV [KYM+10] are shown in
Figure 5.16. For all the ECG recordings, the approximate compressor outperforms the state-of-
the-art approach [KYM+10]. For ECG recording ‘10’ the compression ratio of the proposed
technique is about 75%, while QLV [KYM+10] achieves only 33%. The approximate com-
pressor achieves up to 60% data reduction (corresponding to ECG recording ‘10’) compared to

107

5 Application-Specific Optimizations for Healthcare

1 2 3 4 5 6 7 8 9 10
20%

30%

40%

50%

60%

70%

80%

ECG Recordings

C
om

pr
es

si
on

 R
at

io

Exact ±1 ±2 ±3 ±4

16%

17%

Figure 5.15: Compression ratio of the approximate compressor (for different acceptable error ranges) and exact
Huffman compared to the uncompressed baseline

QLV, i.e. the data volume to be transmitted is 60% smaller when using the proposed approxi-
mate compression rather than using QLV.

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

ECG recordings

C
om

pr
es

si
on

 R
at

io [KYM+10] Approx. Comp.

Figure 5.16: Compression ratio of the proposed approximate compressor and state-of-the-art [KYM+10] com-
pared to the uncompressed baseline

Figure 5.17 illustrates the compression ratio improvement achieved by applying the approxi-
mate compression on top of the frame-based compression presented in [PBM13]. The effec-
tiveness of [PBM13] highly depends on the accuracy of the R-peak detection, which makes it
more vulnerable to motion artifacts and noise.

Table Size Analysis

A threshold of Rth = 512 is used to identify the delta values in the usual range (see Sec-
tion 5.4.4). For the considered ECG recordings, more than 99.7% of delta values fall in the
usual range. Using the proposed hybrid coding approach, it succeeds to reduce the table size
significantly. Considering the full range of delta values for creating the SC table leads to a table
size of up to 1.74 Mbits (1.47 Mbits on average). By exploiting the proposed hybrid approach,
the size of the SC table decreases to at most 500 KBits (359 KBits on average).

5.4.6 Summary of Approximate Compression Technique

This section presented an approximate compression technique for biomedical signals (e.g. ECG)
to reduce the energy consumption of data transmission in IoT health monitoring systems. This
approximate compressor takes advantage of error tolerance in biomedical signals and finds the
shortest Huffman code for each delta value in the user-specified acceptable error range. Then,

108

5.5 Summary of Application-Specific Optimizations

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

ECG Reconrdings

C
om

pr
es

si
on

 R
at

io

±1 ±2 ±3 ±4

Figure 5.17: Compression ratio improvement of the proposed approximate compressor applied on top of
[PBM13] compared to [PBM13] as baseline

it proposed a method to reduce the computational cost for finding the approximate result that is
based on a pre-computed table and a mechanism to keep the accumulated error in the acceptable
error range. Experimental results showed that the proposed technique achieved more than 60%
reduction in wireless communication (i.e. data size that is to be transmitted) compared to the
state-of-the-art approach [KYM+10], and more than 40% improvement when applied on top of
the state-of-the-art approach [PBM13].

5.5 Summary of Application-Specific Optimizations

This chapter has presented application-specific optimizations for health monitoring domain.
It first investigated some IoT applications in the healthcare domain which process bio-signal
data. These applications include EEG processing for seizure detection, ECG processing for
anomaly detection, and physical activity monitoring. It has studied the software structure of
those implemented applications and shown that they have a similar pipeline structure. The
general application model that was presented in Section 4.1 is based on these implemented
applications. Then, a novel technique has been proposed to compress the bio-signal input data
on wearable IoT devices. The proposed technique is for IoT applications that can tolerate a
small amount of error in their input data (i.e. most of applications that process bio-signal).
The proposed approximate compressor reduces the amount of data that is transmitted from IoT
devices. These application-specific optimizations can be applied to the individual IoT devices
to reduce their resource usage (i.e. local resources like storage and energy consumption) as well
as the shared resources on the gateway (e.g. communication bandwidth).

109

6 Conclusion and Future Work

6.1 Conclusion

This thesis studied the efficient resource management for IoT devices to process the IoT-gener-
ated data at the edge of the network. First, it provided an overview of IoT technologies required
from an embedded design perspective and specific properties associated with IoT in embedded
systems’ landscape. It investigated essential technologies for the development of IoT systems,
existing trends, and its distinguishing properties. By discussing the key characteristics, main
application domains, and major research issues in IoT, this thesis provided a comprehensive
IoT perspective for embedded system design.

The thesis considered the operation modes of the IoT devices as a control parameter for manag-
ing the constrained resources on the edge of the network. These include the individual resources
on the IoT devices such as battery or energy source and the shareable resources on the gateway
such as communication bandwidth, processing power, and memory. The thesis presented some
fast and efficient techniques for selecting the operation modes of IoT devices at runtime to
achieve the system optimization goals while meeting the device and application requirements
and respecting the shared resources.

In the multi-gateway IoT systems, the complexity of the binding and allocation problems does
not allow an efficient optimal solution. This thesis addressed the problem by providing a trade-
based management scheme that reaches sub-optimal solutions by improving the state of the
system step-by-step.

To present application-specific optimizations, several IoT applications from healthcare domain
have been studied. The selected applications represent the main applications in IoT domain
whose input data is in form of signal. Based on the pipeline structure of such applications, a
model has been presented that describes the processing stages that the input data passes through
in order to retrieve the output result. Moreover, a novel approximate compression technique has
been proposed for bio-signal data to reduce the amount of transmitted data. The approximate
compressor can be used for wearable IoT devices in health monitoring application without
requiring any hardware extension. The application-specific optimizations have been proposed
for the individual IoT devices but they reduce the usage of resources both on the device and on
the shared gateway.

The evaluation of the applications was done by using real-world input signals and implemen-
tation on the IoT platforms. The execution time, power consumption and resource usage of
applications have been profiled. The data transmission under interference was also studied to

111

6 Conclusion and Future Work

obtain the properties of communication bandwidth including the throughput. The overhead of
operation mode selection techniques has been measured on the hardware platforms including
Intel Quark SoC and Cortex-M4 microcontrollers. The measured parameters have been then
used in a simulation environment to capture the system-wide behavior and interaction of de-
vices with the gateway.

6.2 Future Work

The focus of this thesis was on modeling the IoT applications in the healthcare domain, defin-
ing operation modes to provide flexibility to manage the constrained resources on the devices
as well as shareable resources on the gateway. Several promising research directions can be
pursued as the follow-up work in the future. These directions include two major areas: (i)
improving the efficiency of IoT devices, both in hardware design and application software de-
sign using the characteristics of applications, and (ii) enhancing the management schemes by
exploiting learning techniques at the edge of the network.

– Hardware Optimization The IoT platforms can be improved in terms of energy efficiency
by leveraging the properties of their applications. The opportunities are two-fold:

• Approximation: Most of the IoT devices operate in a noisy environment with noisy input
data. Even the data processing of such application, inherently, involves a trade-off be-
tween the accuracy and computational effort. For instance, the classification stage may
tolerate a level of inaccuracy and still deliver the same results. Exploiting the approxi-
mate computing concept in IoT applications, especially when dealing with input signals
and classification tasks, can open opportunities to further increase the efficiency of IoT
devices in terms of power and energy.

• Accelerators for classifiers: Many of IoT applications use machine learning techniques
for classification of their input data. These classifiers often can benefit from parallelism,
especially when using Boosting Trees where several independent trees must be traversed
to obtain one score from each. To traverse each tree, several comparisons must be done
which can be accelerated by parallel hardware implementation.

– Learning-based management of IoT devices Another research direction for management
of IoT devices and mode selection is using machine learning techniques, and particularly, rein-
forcement learning. To make the IoT devices more self-dependent, their ability to make deci-
sions should increase by making them smarter. Pushing the intelligence to the IoT end-nodes
requires exploiting the light and efficient learning techniques on the edge devices.

112

A Appendix

In order to support the experiments of this thesis, several practical setups were devised. Sec-
tion A.1 describes the practical setup to study the properties of Bluetooth Low Energy including
the data throughput and effect of WiFi interference on it. Section A.2 describes and presents IoT
prototypes that were designed and developed to study some IoT applications in the healthcare
monitoring domain.

A.1 Wireless Transmission

The massive number of IoT devices will bring several issues. One of these issues is dense de-
ployment of IoT devices which communicate by means of wireless radios. Transmission of data
over the same frequency channel may lead to collision and wireless interference. Consequently,
the transmitted packets will be corrupted and dropped. In this case, either the packet is lost
(i.e. loss of data) or it will be re-transmitted which costs power and energy for the IoT device.
Avoiding wireless interference is critical for IoT wireless technologies [SBH16]. Bluetooth
Low Energy exploits a frequency hopping scheme to minimize the interference and collision
with other surrounding BLE devices. Each two connected BLE devices use a random sub-
channel for each interval. Even though the likelihood of interference between BLE devices is
very low, the effect of WiFi devices needs to be studied as WiFi is using the same frequency
band (i.e. 2.5 GHz).

To study the effect of wireless interference between WiFi and BLE, some experiments are con-
ducted using Microchip RN4677 BLE modules. One module was configured as the master and
the other one as the slave. Different parameters including connection interval, slave latency,
and supervision timeout are explored. The maximum achievable throughput using these mod-
ules is 36 Kbps which is reached when the slave latency is 0, the supervision timeout is set to
160 ms and the connection interval is set to 12.5 ms. The WiFi access point was configured to
operate in channel 11 (range of 2.452-2.472 GHz) which overlaps the BLE range for 20 MHz.
The access-point was set to transmit data continuously while the BLE modules were sending
and receiving the data at the configuration with the highest throughput. The experiment shows
that with heavy WiFi interference, the throughput degraded slightly from 36 Kbps to 34 Kbps
which is less than 6% degradation.

113

A Appendix

A.2 IoT prototypes

In order to study the IoT applications in the healthcare domain, several in-house IoT prototypes
were design and developed. The main goals of these prototypes were to (i) investigate the
research problems and challenges in development of wearable and portable IoT devices, (ii)
create realistic scenarios and obtain real-world input data for the experiments and (iii) test and
evaluate the applications on hardware platforms.

A printed circuit board (PCB) has been design and manufactured in the scope of this thesis for
an IoT prototype that can support a few different applications. The features the main and nec-
essary components of an IoT devices for wireless communication, controlling and processing,
interfacing with physical world to capture the data.

Figure A.1 shows the manufactured board and annotates the main components:

1. Microcontroller: a low-power ATMega328P chip

2. Wireless Radio: an HM-10 Bluetooth Low Energy module

3. The voltage regulator

4. Coin cell battery: a 3.6 V Lithium-Ion battery with the capacity of 120 mAh

5. Battery placeholder

6. Programming interface: Serial Peripheral Interface (SPI)

7. Analog Front End: the interface to connect the sensors (and actuators)

8. On-board accelerometer and gyroscope chip: MPU-6000 integrated 6-axis motion track-
ing device

Figure A.2 shows the layout of two layers of the PCB and Figure A.3 shows the schematic of
the board. Note that on the schematic in Figure A.3 the Bluetooth module is HC-5 which is a
classic Bluetooth module. But in the later version, an HM-10 BLE module was used with no
need to change the PCB because both modules had the same layout, size and and interface.

114

A.2 IoT prototypes

2

1

3

(a) Front

4

5

86

7

(b) Back

Figure A.1: Picture of design board with peripherals, interfaces and main components

02/02/2016 11:18:15 p.m. f=0.99 E:\Dropbox\ECG and ACC board\ECG and ACC Board.brd

Y

X

Z

02/02/2016 11:19:05 p.m. f=0.99 E:\Dropbox\ECG and ACC board\ECG and ACC Board.brd

Y

X

Z

Figure A.2: Layout of the two layers for the designed PCB

The designed PCB is able to support different sensors. It featured an on-board accelerometer
and gyroscope, but the analog front end can be connected to other sensors. It was used for
different IoT applications including ECG monitoring, physical activity monitoring and smart
shoe. Figure A.4a shows the ECG monitoring device which features a Sparkfun AD8232 (a
single lead heart rate monitor board) to measure the electrical activity of the heart. It receives
the input from electrodes and performs signal conditioning (amplification, filter noise, etc.). It is
attached to the PCB board from analog front end interface. Figure A.4b shows the designed PCB
being used for physical activity monitoring application by means of Force-Sensitive Resistor
(FSR). The FSR is a flexible sensor that can measure the force. It can be placed under the
heel while the PCB is worn on the ankle using a strap. The force on the heel is measured and

115

A Appendix

02
/0

2/
20

16
 1

1:
17

:0
3

p.
m

.
f=

0.
99

 E
:\D

ro
pb

ox
\E

C
G

 a
nd

 A
C

C
 b

oa
rd

\E
C

G
 a

nd
 A

C
C

 B
oa

rd
.s

ch
 (S

he
et

: 1
/1

)

G
N

D

G
N

D G
N

D

G
N

D

EC
G

H
C

_0
5

AY
Z0

20
2

1u
F

1u
F

.1
uF

TP
S

73
73

3

52.3k 30.1k

10
k

AV
R

_S
PI

_P
R

G
_6

N
S

SWITCH-MOMENTARY-2TACTILE-SWITCH-SMD-RIGHT-ANGLE

G
N

D

AT
M

EG
A3

28
P_

TQ
FP

20
50

_B
AT

ER
R

Y_
H

O
LD

ER
LI

R
24

50
_H

O
LD

ER

.1
uF

2.
2n

F

10
nF

10K

10K

AF
E 1 2 3 4 5 6

BL
U

ET
O

O
TH

TX
1

R
X

2

C
TS

3

R
TS

4

P
C

M
_C

LK
5

P
C

M
_O

U
T

6

P
C

M
_I

N
7

P
C

N
_S

YN
C

8

A
IO

0
9

A
IO

1
10

R
S

T
11

3V
3

12

G
N

D
13

NC 14

VBUSD- 15

CSB 16

MOSI 17

MISO 18

CLK 19

VBUSD+ 20

GND1 21

G
N

D
2

22
P

IO
0

23
P

IO
1

24
P

IO
2

25
P

IO
3

26
P

IO
4

27
P

IO
5

28
P

IO
6

29
P

IO
7

30
P

IO
8

31
P

IO
9

32
P

IO
10

33
P

IO
11

34

O
N

/O
FF

C
1

C
2

C
3

IN
1

O
U

T
2

G
N

D
3

G
N

D
6

E
N

5

N
R

/F
B

4

R
E

G

R1 R2

R
3

IC
SP

1
2

3
4

5
6

RST

U
1

P
B

5(
S

C
K

)
17

P
B

7(
XT

A
L2

/T
O

S
C

2)
8

P
B

6(
XT

A
L1

/T
O

S
C

1)
7

G
N

D
3

G
N

D
5

V
C

C
4

V
C

C
6

A
G

N
D

21

A
R

E
F

20

AV
C

C
18

P
B

4(
M

IS
O

)
16

P
B

3(
M

O
S

I/O
C

2)
15

P
B

2(
S

S
/O

C
1B

)
14

P
B

1(
O

C
1A

)
13

P
B

0(
IC

P
)

12

P
D

7(
A

IN
1)

11
P

D
6(

A
IN

0)
10

P
D

5(
T1

)
9

P
D

4(
XC

K
/T

0)
2

P
D

3(
IN

T1
)

1
P

D
2(

IN
T0

)
32

P
D

1(
TX

D
)

31
P

D
0(

R
XD

)
30

A
D

C
7

22
A

D
C

6
19

P
C

5(
A

D
C

5/
S

C
L)

28
P

C
4(

A
D

C
4/

S
D

A
)

27
P

C
3(

A
D

C
3)

26
P

C
2(

A
D

C
2)

25
P

C
1(

A
D

C
1)

24
P

C
0(

A
D

C
0)

23
P

C
6(

/R
E

S
E

T)
29

S1

V
D

D
13

IN
T

12

FS
YN

C
11

C
LK

IN
1

R
E

G
O

U
T

10

C
P

O
U

T
20

G
N

D
18

A
U

XD
A

6
A

U
XC

L
7

C
S

8

S
C

L/
S

C
LK

23

C
LK

O
U

T
22

A
D

0/
S

D
O

9

U
2

M
PU

-6
00

0Q
FN

-2
4

S
D

A
/S

D
I

24

C
4

C
5

C
6

R4

R5

G
N

D

G
N

D

G
N

D
G

N
D

G
N

D

G
N

D
G

N
D

G
N

D

G
N

D

VC
C

VC
C

VC
C

VC
C

VC
C

VC
C

VC
C

IC
_V

C
C

IC
_V

C
C

5V

5V

R
ST

R
ST

M
O

SI

M
O

SI

M
IS

O

M
IS

O

SC
K

SC
K

AD
C

0
AD

C
0

R
X

R
X

TX

TX

EN

EN

IN
T

IN
T

SC
L

SC
L

SC
L

SD
A

SD
A

SD
A

A B C D E

1
2

3
4

5
6

7
8

A B C D E

1
2

3
4

5
6

7
8

M
O

S
I

R
E

S
E

T
S

C
K

M
IS

O
+5 G

N
D

Figure A.3: Schematic of the two layers for the designed PCB

116

A.2 IoT prototypes

collected continuously to classify the the person’s status: walking, running, standing, siting,
etc. The data from FSR can be fuse with the accelerometer and gyroscope data to increase the
accuracy.

(a)

Force-Sensitive Resistor (FSR)

Strap to wear
on ankle

Designed PCB

(b)

Figure A.4: Picture of prototypes using designed PCB: (a) ECG monitoring device using Sparkfun analog front
end attached to the analog interface of PCB, (b) physical activity monitoring using the force-sensitive
resistor to detect the pressure on the heel.

117

Bibliography

[AB15] Lisa Avila and Mike Bailey. The wearable revolution. IEEE Computer Graphics and
Applications, 35(2):104–104, 2015.

[ABC+15] Mobyen Uddin Ahmed, Mats Björkman, Aida Cauševic, Hossein Fotouhi, and Maria
Lindén. An overview on the internet of things for health monitoring systems. In IoT
Technologies for HealthCare, 2015.

[AFGM+15] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. Internet of Things: A survey on enabling technologies, protocols, and
applications. IEEE Communications Surveys & Tutorials, 17(4):2347–2376, 2015.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[AMJ15] Shahab Ardalan, Siavash Moghadami, and Samira Jaafari. Motion noise cancelation
in heartbeat sensing using accelerometer and adaptive filter. IEEE Embedded Systems
Letters, 7(4):101–104, 2015.

[ANRS17] Elie Bou Assi, Dang K Nguyen, Sandy Rihana, and Mohamad Sawan. Towards ac-
curate prediction of epileptic seizures: A review. Biomedical Signal Processing and
Control, 34:144–157, 2017.

[AP13] Jong Hoon Ahnn and Miodrag Potkonjak. mhealthmon: Toward energy-efficient and
distributed mobile health monitoring using parallel offloading. Journal of medical
systems, 37(5):1–11, 2013.

[BAAR12] Rubén Braojos, Giovanni Ansaloni, David Atienza, and Francisco J Rincón. Embed-
ded real-time ECG delineation methods: A comparative evaluation. In International
Conference on Bioinformatics & Bioengineering (BIBE), pages 99–104, 2012.

[BBC+14] Rubén Braojos, Ivan Beretta, Jeremy Constantin, Andreas Burg, and David Atienza. A
wireless body sensor network for activity monitoring with low transmission overhead.
In IEEE International Conference on Embedded and Ubiquitous Computing (EUC),
pages 265–272, 2014.

[BBM+15] Daniele Bortolotti, Andrea Bartolini, Mauro Mangia, Riccardo Rovatti, Gianluca Setti,
and Luca Benini. Energy-aware bio-signal compressed sensing reconstruction: Fo-
cuss on the wbsn-gateway. In IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), pages 120–126, 2015.

119

Bibliography

[BCM+15] S Benatti, F Casamassima, B Milosevic, E Farella, P Schonle, S Fateh, T Burger,
Q Huang, and L Benini. A versatile embedded platform for EMG acquisition and
gesture recognition. IEEE trans. on biomedical circuits and systems, 2015.

[BGC13] Mirza Mansoor Baig, Hamid Gholamhosseini, and Martin J Connolly. A compre-
hensive survey of wearable and wireless ECG monitoring systems for older adults.
Medical & biological engineering & computing, 51(5):485–495, 2013.

[BI] Here’s how the internet of things will explode by 2020. Online: http:

//www.businessinsider.de/iot-ecosystem-internet-of-things-

forecasts-and-business-opportunities-2016-2. Visited on March 5,
2017.

[BMB+14] Daniele Bortolotti, Hossein Mamaghanian, Andrea Bartolini, Maryam Ashouei, Jan
Stuijt, David Atienza, Pierre Vandergheynst, and Luca Benini. Approximate com-
pressed sensing: ultra-low power biosignal processing via aggressive voltage scaling
on a hybrid memory multi-core processor. In ISLPED, pages 45–50, 2014.

[BMB+15] Daniele Bortolotti, Mauro Mangia, Andrea Bartolini, Riccardo Rovatti, Gianluca Setti,
and Luca Benini. An ultra-low power dual-mode ECG monitor for healthcare and
wellness. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1611–1616, 2015.

[BMB+16] Daniele Bortolotti, Mauro Mangia, Andrea Bartolini, Riccardo Rovatti, Gianluca Setti,
and Luca Benini. Energy-aware bio-signal compressed sensing reconstruction on the
WBSN-gateway. IEEE Transactions on Emerging Topics in Computing, 2016.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the Internet of Things. In workshop on Mobile cloud computing (MCC),
pages 13–16, 2012.

[BSKH07] Lars Bauer, Muhammad Shafique, Simon Kramer, and Jörg Henkel. Rispp: Rotat-
ing instruction set processing platform. In Proceedings of the 44th annual Design
Automation Conference (DAC), pages 791–796. ACM, 2007.

[BSLR10] Sangeeta Bhattacharya, Abusayeed Saifullah, Chenyang Lu, and Gruia-Catalin Ro-
man. Multi-application deployment in shared sensor networks based on quality of
monitoring. In 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 259–268, 2010.

[Bur93] Michael Buro. On the maximum length of Huffman codes. Information processing
letters, 45(5):219–223, 1993.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[BWA+16] Benjamin H. Brinkmann, Joost Wagenaar, Drew Abbot, Phillip Adkins, Simone C.
Bosshard, Min Chen, Quang M. Tieng, Jialune He, F. J. Muñoz-Almaraz, Paloma
Botella-Rocamora, Juan Pardo, Francisco Zamora-Martinez, Michael Hills, Wei Wu,
Iryna Korshunova, Will Cukierski, Charles Vite, Edward E. Patterson, Brian Litt, and

120

http://www.businessinsider.de/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities-2016-2
http://www.businessinsider.de/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities-2016-2
http://www.businessinsider.de/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities-2016-2

Bibliography

Gregory A. Worrell. Crowdsourcing reproducible seizure forecasting in human and
canine epilepsy. Brain, 139, 2016.

[CCGT14] Jean-Philippe Chaput, Valerie Carson, Casey E Gray, and Mark S Tremblay. Impor-
tance of all movement behaviors in a 24 hour period for overall health. International
journal of environmental research and public health, 11(12):12575–12581, 2014.

[CCRR13] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan. Anal-
ysis and characterization of inherent application resilience for approximate computing.
In DAC, 2013.

[CCT+15] Shao-Yi Chien, Wei-Kai Chan, Yu-Hsiang Tseng, Chia-Han Lee, V. Srinivasa So-
mayazulu, and Yen-Kuang Chen. Distributed computing in IoT: System-on-a-chip for
smart cameras as an example. In ASP-DAC, pages 130–135, 2015.

[CDDM+12] Luca Catarinucci, Danilo De Donno, Luca Mainetti, Luca Palano, Luigi Patrono,
Maria Stefanizzi, and Luciano Tarricone. An iot-aware architecture for smart health-
care systems. IEEE Internet of Things Journal, 2012.

[CG06] Sung-woo Cho and Ashish Goel. Pricing for fairness: distributed resource allocation
for multiple objectives. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 197–204, 2006.

[CH05] Lei Chen and Wendi B Heinzelman. Qos-aware routing based on bandwidth estimation
for mobile ad hoc networks. IEEE Journal on selected areas in communications,
23(3):561–572, 2005.

[CH09] Nawal Cherfi and Mhand Hifi. Hybrid algorithms for the multiple-choice multi-
dimensional knapsack problem. International Journal of Operational Research,
5(1):89–109, 2009.

[Che15] Xu Chen. Decentralized computation offloading game for mobile cloud computing.
IEEE Transactions on Parallel and Distributed Systems, 26(4):974–983, 2015.

[CHY04] Wen-Shiung Chen, Lili Hsieh, and Shang-Yuan Yuan. High performance data com-
pression method with pattern matching for biomedical ECG and arterial pulse wave-
forms. Computer methods and programs in Biomedicine, 74(1):11–27, 2004.

[cit] CityPulse: Real-time IoT stream processing and large-scale data analytics for smart
city applications. Online www.ict-citypulse.eu.

[CLM+10] Shirley Coyle, King-Tong Lau, Niall Moyna, Donal O Gorman, Dermot Diamond,
Fabio Di Francesco, Daniele Costanzo, Pietro Salvo, Maria Giovanna Trivella,
Danilo Emilio De Rossi, et al. BIOTEX-Biosensing textiles for personalised health-
care management. IEEE Trans. on Info. Tech. in Biomedicine, 14(2):364–370, 2010.

[Col79] Jules L Coleman. Efficiency, utility, and wealth maximization. Hofstra L. Rev., 8:509,
1979.

[Con03] Mary Boudreau Conover. Understanding electrocardiography. Elsevier Health Sci-
ences, 2003.

121

www.ict-citypulse.eu

Bibliography

[COO13] Vedat Coskun, Busra Ozdenizci, and Kerem Ok. A survey on near field communication
(NFC) technology. Wireless personal communications, 71(3):2259–2294, 2013.

[CRMS09] Delphine Christin, Andreas Reinhardt, Parag Mogre, and Ralf Steinmetz. Wireless
Sensor Networks and the Internet of Things: Selected Challenges, 2009.

[DBN14] Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. An IoT gateway centric
architecture to provide novel m2m services. In World Forum on Internet of Things
(WF-IoT), pages 514–519, 2014.

[DMHL12] Thomas Dittrich, Chen Menachem, Y Herzel, and A Lou. Lithium batteries for wire-
less sensor networks. Technical report, Tadiran Batteries, 2012.

[DMSS15] Alessandro Dionisi, Daniele Marioli, Emilio Sardini, and Mauro Serpelloni. Low
power wearable system for vital signs measurement in all day long applications. In In-
ternational Symposium on Medical Measurements and Applications (MeMeA), pages
537–542, 2015.

[Dom12] Mari Carmen Domingo. An overview of the internet of things for people with disabil-
ities. Journal of Network and Computer Applications, 35(2):584–596, 2012.

[DXHL14] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey. IEEE
Transactions on Industrial Informatics, 10(4):2233–2243, 2014.

[EEDA14] Mohamed Elgendi, Björn Eskofier, Socrates Dokos, and Derek Abbott. Revisiting
QRS detection methodologies for portable, wearable, battery-operated, and wireless
ECG systems. PloS one, 9(1):e84018, 2014.

[FG08] Catalina Monica Fira and Liviu Goras. An ECG signals compression method and its
validation using NNs. IEEE Transactions on Biomedical Engineering, 55(4):1319–
1326, 2008.

[Fol15a] Joe Folkens. Building a gateway to the Internet of Things. Technical report, Texas
Instruments, 2015.

[Fol15b] Joe Folkens. IoT gateways: Behind the scenes of smart cities. On-
line: http://e2e.ti.com/blogs_/b/connecting_wirelessly/archive/2015/

04/22/iot-gateways-behind-the-scenes-of-smart-cities, 2015. Published
on April 22, 2015, visited on December 14, 2016.

[GAG+00] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. Physiobank, physiotoolkit, and physionet components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220,
2000.

[gar] Gartner says 8.4 billion connected "things" will be in use in 2017. Online: http:

//www.gartner.com/newsroom/id/3165317. Published: February 7, 2017, visited
on August 1, 2017.

122

http://e2e.ti.com/blogs_/b/connecting_wirelessly/archive/2015/04/22/iot-gateways-behind-the-scenes-of-smart-cities
http://e2e.ti.com/blogs_/b/connecting_wirelessly/archive/2015/04/22/iot-gateways-behind-the-scenes-of-smart-cities
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317

Bibliography

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.
Internet of Things (IoT): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7):1645–1660, 2013.

[GH15] Mohamed T Ghoneim and Muhammad M Hussain. Review on physically flexible
nonvolatile memory for internet of everything electronics. Electronics, 4(3):424–479,
2015.

[GKN+11] Alexander Gluhak, Srdjan Krco, Michele Nati, Dennis Pfisterer, Nathalie Mitton, and
Tahiry Razafindralambo. A survey on facilities for experimental internet of things
research. IEEE Communications Magazine, 49(11):58–67, 2011.

[GN14] Ashish Goel and Hamid Nazerzadeh. Price-based protocols for fair resource alloca-
tion: Convergence time analysis and extension to leontief utilities. ACM Transactions
on Algorithms (TALG), 10(2), 2014.

[GRW+15] Tuan Nguyen Gia, Mingzhe Jiang1 Amir-Mohammad Rahmani, Tomi Westerlund,
Pasi Liljeberg, and Hannu Tenhunen. Fog computing in healthcare Internet-of-Things:
A case study on ECG feature extraction. In Int’l Conf. on Computer and Information
Technology (CIT), pages 356–363, 2015.

[GZY+13] Bin Guo, Daqing Zhang, Zhiwen Yu, Yunji Liang, Zhu Wang, and Xingshe Zhou.
From the internet of things to embedded intelligence. World Wide Web, 16(4):399–
420, 2013.

[Han13] Matthew W. Hann. Ultra low power, 18 bit precision ecg data acquisition system, June
2013.

[HBB+11] Jörg Henkel, Lars Bauer, Joachim Becker, Oliver Bringmann, Uwe Brinkschulte,
Samarjit Chakraborty, Michael Engel, Rolf Ernst, Hermann Härtig, Lars Hedrich, et al.
Design and architectures for dependable embedded systems. In International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pages
69–78. IEEE, 2011.

[HHB+12] Jörg Henkel, Andreas Herkersdorf, Lars Bauer, Thomas Wild, Michael Hübner,
Ravi Kumar Pujari, Artjom Grudnitsky, Jan Heisswolf, Aurang Zaib, Benjamin Vogel,
et al. Invasive manycore architectures. In Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 193–200. IEEE, 2012.

[HMCP04] Wendi B Heinzelman, Amy L Murphy, Hervaldo S Carvalho, and Mark A Perillo.
Middleware to support sensor network applications. IEEE Network, 18(1):6–14, 2004.

[HO13] Jie Han and Michael Orshansky. Approximate computing: An emerging paradigm for
energy-efficient design. In European Test Symposium (ETS), pages 1–6, 2013.

[HPA+17] Jörg Henkel, Santiago Pagani, Hussam Amrouch, Lars Bauer, and Farzad Samie.
Ultra-low power and dependability for iot devices (invited paper for iot technologies).
In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
954–959, 2017.

123

Bibliography

[HPS+15] Moeen Hassanalieragh, Alex Page, Tolga Soyata, Gaurav Sharma, Mehmet Aktas,
Gonzalo Mateos, Burak Kantarci, and Silvana Andreescu. Health monitoring and
management using Internet-of-Things (IoT) sensing with cloud-based processing: Op-
portunities and challenges. In IEEE International Conference on Services Computing
(SCC), pages 285–292, 2015.

[HWN12] Dong Huang, Ping Wang, and Dusit Niyato. A dynamic offloading algorithm for mo-
bile computing. IEEE Transactions on Wireless Communications, 11(6):1991–1995,
2012.

[Ias03] Leon D Iasemidis. Epileptic seizure prediction and control. IEEE Transactions on
Biomedical Engineering, 50(5):549–558, 2003.

[int] Intel IoT Gateway. Online: http://www.intel.de/content/dam/www/public/us
/en/documents/product-briefs/gateway-solutions-iot-brief.pdf. Vis-
ited on April 3, 2016.

[KC11] Joyce Kwong and Anantha P Chandrakasan. An energy-efficient biomedical signal
processing platform. IEEE Journal of Solid-State Circuits, 46(7):1742–1753, 2011.

[Kel14] Dave Kelf. IoT: A Return to Our Favorite EDA Requirements. Online: www.eetime
s.com/author.asp?doc_id=1322009, 2014. Published: April 18, 2014, visited on
December 14, 2015.

[Kha15] Minhaj Ahmad Khan. A survey of computation offloading strategies for performance
improvement of applications running on mobile devices. Journal of Network and
Computer Applications, 56:28–40, 2015.

[Kim05] Sukun Kim. Wireless sensor networks for structural health monitoring. Msc, Univer-
sity of California at Berkeley, 2005.

[Kim15] Sungwook Kim. Nested game-based computation offloading scheme for mobile cloud
IoT systems. Journal on Wireless Communications and Networking, 2015(1):1–11,
2015.

[KK15] Andreas Kliem and Odej Kao. The internet of things resource management challenge.
In IEEE International Conference on Data Science and Data Intensive Systems, pages
483–490, 2015.

[KKVH+14] Hyejung Kim, Sunyoung Kim, Nick Van Helleputte, Antonio Artes, Mario Konijnen-
burg, Jos Huisken, Chris Van Hoof, and Refet Firat Yazicioglu. A configurable and
low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans-
actions on Biomedical Circuits and Systems, 8(2):257–267, 2014.

[KS15] Navroop Kaur and Sandeep K Sood. An energy-efficient architecture for the Internet
of Things (IoT). IEEE Systems Journal, 2015.

[KYM+10] Hyejung Kim, Refet Firat Yazicioglu, Patrick Merken, Chris Van Hoof, and Hoi-Jun
Yoo. ECG signal compression and classification algorithm with quad level vector for
ECG holter system. IEEE Transactions on Information Technology in Biomedicine,
14(1):93–100, 2010.

124

http://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/gateway-solutions-iot-brief.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/gateway-solutions-iot-brief.pdf
www.eetimes.com/author.asp?doc_id=1322009
www.eetimes.com/author.asp?doc_id=1322009

Bibliography

[LCM10] Gregorio López, Víctor Custodio, and José Ignacio Moreno. Lobin: E-textile and
wireless-sensor-network-based platform for healthcare monitoring in future hospi-
tal environments. IEEE Transactions on Information Technology in Biomedicine,
14(6):1446–1458, 2010.

[LDXW13] Shancang Li, Li Da Xu, and Xinheng Wang. Compressed sensing signal and data
acquisition in wireless sensor networks and internet of things. IEEE Transactions on
Industrial Informatics, 9(4):2177–2186, 2013.

[LE02] Brian Litt and Javier Echauz. Prediction of epileptic seizures. The Lancet Neurology,
1(1):22–30, 2002.

[LEMC12] Ilias Leontiadis, Christos Efstratiou, Cecilia Mascolo, and Jon Crowcroft. Senshare:
transforming sensor networks into multi-application sensing infrastructures. In Wire-
less Sensor Networks, 2012.

[LL15] In Lee and Kyoochun Lee. The Internet of Things (IoT): Applications, investments,
and challenges for enterprises. Business Horizons, 2015.

[LL16] . Link Labs. A comprehensive look at low power, wide area networks. Online: http:
//info.link-labs.com/lpwan, 2016.

[LWX01] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation offloading to save energy on
handheld devices: a partition scheme. In Proceedings of the international confer-
ence on Compilers, architecture, and synthesis for embedded systems, pages 238–246,
2001.

[LYZ+17] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey
on internet of things: architecture, enabling technologies, security and privacy, and
applications. IEEE Internet of Things Journal, 2017.

[LZP+12] Xin Liu, Yuanjin Zheng, Myint Wai Phyu, FN Endru, V Navaneethan, and Bin Zhao.
An ultra-low power ECG acquisition and monitoring ASIC system for WBAN ap-
plications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
2(1):60–70, 2012.

[MAM13] Roshan Joy Martis, U Rajendra Acharya, and Lim Choo Min. ECG beat classification
using PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing
and Control, 8(5):437–448, 2013.

[MBF17] Bojan Milosevic, Simone Benatti, and Elisabetta Farella. Design challenges for wear-
able emg applications. In 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1432–1437. IEEE, 2017.

[MD06] M Sabarimalai Manikandan and S Dandapat. Wavelet threshold based ECG compres-
sion using USZZQ and Huffman coding of DSM. Biomedical Signal Processing and
Control, 1(4):261–270, 2006.

[MFL+16] Patricia Milz, Pascal L Faber, Dietrich Lehmann, Thomas Koenig, Kieko Kochi, and
Roberto D Pascual-Marqui. The functional significance of eeg microstates associations
with modalities of thinking. Neuroimage, 125:643–656, 2016.

125

http://info.link-labs.com/lpwan
http://info.link-labs.com/lpwan

Bibliography

[MH03] Amy Murphy and Wendi Heinzelman. Milan: Middleware linking applications and
networks. Technical report, University of Rochester, Tech. Rep. TR-795, Jan. 2003.

[MJS97] Martin Moser, Dusan P Jokanovic, and Norio Shiratori. An algorithm for the multidi-
mensional multiple-choice knapsack problem. IEICE transactions on fundamentals of
electronics, communications and computer sciences, 80(3):582–589, 1997.

[MM01] George B Moody and Roger G Mark. The impact of the MIT-BIH arrhythmia database.
IEEE Engineering in Medicine and Biology Magazine, 20(3):45–50, 2001.

[MM+16] Mahmoud Shuker Mahmoud, Auday AH Mohamad, et al. A study of efficient power
consumption wireless communication techniques/modules for internet of things (IoT)
applications. Advances in Internet of Things, 2016.

[MNMKSK+15] A. Mohsen Nia, M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N.K. Jha.
Energy-efficient long-term continuous personal health monitoring. IEEE Transactions
on Multi-Scale Computing Systems, 1(2):85–98, 2015.

[MPV11] Luca Mainetti, Luigi Patrono, and Antonio Vilei. Evolution of wireless sensor net-
works towards the internet of things: A survey. In International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM), pages 1–6, 2011.

[MPW07] Qicheng Ma, David C Parkes, and Matthew D Welsh. A utility-based approach to
bandwidth allocation and link scheduling in wireless networks. In International Work-
shop on Agent Technology for Sensor Networks (ATSN-07), 2007.

[MSDPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. In-
ternet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[Mula] Geoff Mulligan. Keynote speech at wf-iot 2016.

[Mulb] Multitech. Introduction to LoRa. Online: http://www.multitech.net/develope
r/software/lora/introduction-to-lora/. Visited on June 23, 2016.

[MZ16] Yuyi Mao and Jun Zhang. Dynamic computation offloading for mobile-edge comput-
ing with energy harvesting devices. IEEE Journal of Solid-State Circuits, 51(3):712–
723, 2016.

[MZL+15] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li, Yong-
pan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. Architecture explo-
ration for ambient energy harvesting nonvolatile processors. In HPCA, pages 526–537,
2015.

[OPP+15] Guido Oddi, Antonio Pietrabissa, Francesco Delli Priscoli, Francisco Facchinei, Laura
Palagi, and Andrea Lanna. A QoE-aware dynamic bandwidth allocation algorithm
based on game theory. In Mediterranean Conference on Control and Automation
(MED), pages 979–985, 2015.

126

http://www.multitech.net/developer/software/lora/introduction-to-lora/
http://www.multitech.net/developer/software/lora/introduction-to-lora/

Bibliography

[PBCA15] Filippo Palumbo, Paolo Barsocchi, Stefano Chessa, and Juan Carlos Augusto. A stig-
mergic approach to indoor localization using bluetooth low energy beacons. In Ad-
vanced Video and Signal Based Surveillance (AVSS), pages 1–6, 2015.

[PBM13] Amit Pande, Eilwoo Baik, and Prasant Mohapatra. Efficient health data compression
on mobile devices. In ACM MobiHoc workshop on Pervasive wireless healthcare,
pages 25–30, 2013.

[Pis95] David Pisinger. Algorithms for knapsack problems. PhD thesis, University of Copen-
hagen, 1995.

[PJZ+14] Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Dimitrios Georgakopou-
los, and Peter Christen. Mosden: An Internet of Things middleware for resource
constrained mobile devices. In HICSS, pages 1053–1062, 2014.

[PPB+12] Shyamal Patel, Hyung Park, Paolo Bonato, Leighton Chan, and Mary Rodgers. A
review of wearable sensors and systems with application in rehabilitation. Journal of
neuroengineering and rehabilitation, 9(1):21, 2012.

[PZCG14] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos.
Context aware computing for the Internet of Things: A survey. IEEE Communica-
tions Surveys & Tutorials, 16(1):414–454, 2014.

[Rap16] Chris Raphael. Why edge computing is crucial for the IoT. Online:
http://www.rtinsights.com/why-edge-computing-and-analytics-is-

crucial-for-the-iot/, 2016. Published on November 12, 2015, visited on July 6,
2016.

[RT09] Robert Rieger and John T Taylor. An adaptive sampling system for sensor nodes
in body area networks. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 17(2):183–189, 2009.

[S+14] John Stankovic et al. Research directions for the Internet of Things. IEEE Internet of
Things Journal, 1(1):3–9, 2014.

[SBH15] Farzad Samie, Lars Bauer, and Jörg Henkel. An approximate compressor for wearable
biomedical healthcare monitoring systems. In CODES+ISSS, pages 133–142, 2015.

[SBH16] Farzad Samie, Lars Bauer, and Jörg Henkel. IoT Technologies for Embedded Com-
puting: A Survey. In International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). IEEE Press, 2016.

[SBHH15] Farzad Samie, Lars Bauer, Chih-Ming Hsieh, and Jörg Henkel. Online binding of
applications to multiple clock domains in shared fpga-based systems. In DATE, pages
25–30, 2015.

[Sch17] Patrick Schaumont. Security in the internet of things: A challenge of scale. In Design,
Automation & Test in Europe Conference (DATE), pages 674–679, 2017.

127

http://www.rtinsights.com/why-edge-computing-and-analytics-is-crucial-for-the-iot/
http://www.rtinsights.com/why-edge-computing-and-analytics-is-crucial-for-the-iot/

Bibliography

[SCL+05] Victor Shnayder, Bor-rong Chen, Konrad Lorincz, Thaddeus RF Fulford Jones, and
Matt Welsh. Sensor networks for medical care. In SenSys, volume 5, pages 314–314,
2005.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 2016.

[SEKC15] Ola Salman, Imad Elhajj, Ayman Kayssi, and Ali Chehab. Edge computing enabling
the Internet of Things. In IEEE World Forum on Internet of Things (WF-IoT), pages
603–608, 2015.

[Sha] Patricia O. Shafer. About epilepsy: The basics. Online: http://www.epilepsy.com
/learn/about-epilepsy-basics. Published on January 2014, visited on April 14,
2017.

[SHLL14] Shun-Ren Siao, Chih-Cheng Hsu, Mark Po-Hung Lin, and Shuenn-Yuh Lee. A novel
approach for ECG data compression in healthcare monitoring system. In International
Symposium on Bioelectronics and Bioinformatics (ISBB), pages 1–4, 2014.

[SHNN12] Matti Siekkinen, Markus Hiienkari, Jukka K Nurminen, and Johanna Nieminen.
How low energy is bluetooth low energy? comparative measurements with Zig-
Bee/802.15.4. In IEEE Wireless Communications and Networking Conference Work-
shops (WCNCW), pages 232–237, 2012.

[sma] Smartcitizen. Online: https://smartcitizen.me.

[Smi11] Phil Smith. Comparing low-power wireless technologies. Tech Zone, Digikey Online
Magazine, Digi-Key Corporation, 2011.

[SML+15] Z. Sheng, C. Mahapatra, V. Leung, M. Chen, and P. Sahu. Energy efficient cooper-
ative computing in mobile wireless sensor networks. IEEE Transactions on Cloud
Computing, 2015.

[Smo00] Brent A Smolinski. Approximating the 0-1 Multiple Knapsack Problem with Agent
Decomposition and Market Negotiation. In Intelligent Problem Solving. Methodolo-
gies and Approaches, pages 296–306. Springer, 2000.

[SPBH18] Farzad Samie, Sebastian Paul, Lars Bauer, and Jörg Henkel. Highly Efficient and
Accurate Seizure Prediction on Constrained IoT Systems. In IEEE/ACM Design, Au-
tomation and Test in Europe Conference (DATE’18). IEEE Press, 2018.

[SRVMAA15] Grégoire Surrel, Francisco Javier Rincon Vallejos, Srinivasan Murali, and David
Atienza Alonso. Real-time probabilistic heart beat classification and correction for
embedded systems. In Computing in Cardiology, 2015.

[SSB15] Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa. Joint optimization of
radio and computational resources for multicell mobile-edge computing. IEEE Trans-
actions on Signal and Information Processing over Networks, 1(2):89–103, 2015.

[SSGS15] Giorgos Siantikos, Dimitris Sgouropoulos, Theodoros Giannakopoulos, and Evagge-
los Spyrou. Fusing multiple audio sensors for acoustic event detection. In ISPA, 2015.

128

http://www.epilepsy.com/learn/about-epilepsy-basics
http://www.epilepsy.com/learn/about-epilepsy-basics
https://smartcitizen.me

Bibliography

[STB+17a] Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris,
and Jörg Henkel. Distributed Trade-based Edge Device Management in Multi-gateway
IoT. ACM Transactions on Cyber-Physical Systems (TCPS), Special Issue on Internet
of Things (IoT) (accepted to appear), 2017.

[STB+17b] Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris,
and Jörg Henkel. Fast Operation Mode Selection for Highly Efficient IoT Edge De-
vices. ACM Transactions on Cyber-Physical Systems (TCPS), (under review), 2017.

[STX+16a] Farzad Samie, Vasileios Tsoutsouras, Sotirios Xydis, Lars Bauer, Dimitrios Soudris,
and Jörg Henkel. Computation Offloading and Resource Allocation for Low-power
IoT Edge Devices. In IEEE 3rd World Forum on Internet of Things (WF-IoT), 2016.

[STX+16b] Farzad Samie, Vasileios Tsoutsouras, Sotirios Xydis, Lars Bauer, Dimitrios Soudris,
and Jörg Henkel. Distributed QoS Management for Internet of Things under Resource
Constraints. In International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2016.

[TBA+14] Ralf Tönjes, P Barnaghi, MI Ali, A Mileo, M Hauswirth, F Ganz, S Ganea, B Kjær-
gaard, D Kuemper, Septimiu Nechifor, et al. Real time iot stream processing and
large-scale data analytics for smart city applications. In European Conference on Net-
works and Communications (EUCNC), 2014.

[TCD+14] Kevin Townsend, Carles Cufí, Robert Davidson, et al. Getting started with Bluetooth
low energy: Tools and techniques for low-power networking. " O’Reilly Media, Inc.",
2014.

[TSE+15] Andreas Tobola, Franz J Streit, Chris Espig, Oliver Korpok, Christian Sauter, Na-
dine Lang, Björn Schmitz, Christian Hofmann, Matthias Struck, Christian Weigand,
et al. Sampling rate impact on energy consumption of biomedical signal processing
systems. In International Conference on Wearable and Implantable Body Sensor Net-
works (BSN), pages 1–6, 2015.

[TZGX15] Liansheng Tan, Zhongxun Zhu, Fei Ge, and Naixue Xiong. Utility maximization
resource allocation in wireless networks: Methods and algorithms. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 45(7):1018–1034, 2015.

[UAY+15] M Ueki, KT Akeuchi, T Yamamoto, A Tanabe, N Ikarashi, M Saitoh, T Nagumo,
H Sunamura, M Narihiro, K Uejima, et al. Low-power embedded ReRAM technology
for IoT applications. In Symposium on VLSI Circuits, pages 108–109, 2015.

[vid13] Understanding bitrates in video files. Online: help.encoding.com/knowledge-

base/article/understanding-bitrates-in-video-files, 2013.

[VQA14] Shahin Vakilinia, Dongyu Qiu, and Mustafa Mehmet Ali. Optimal multi-dimensional
dynamic resource allocation in mobile cloud computing. Journal on Wireless Commu-
nications and Networking, 2014(1):201, 2014.

129

help.encoding.com/knowledge-base/article/understanding-bitrates-in-video-files
help.encoding.com/knowledge-base/article/understanding-bitrates-in-video-files

Bibliography

[WJSX15] Aosen Wang, Zhanpeng Jin, Chen Song, and Wenyao Xu. Adaptive compressed sens-
ing architecture in wireless brain-computer interface. In Proceedings of the 52nd An-
nual Design Automation Conference, page 173, 2015.

[WLS+15] Zhibo Wang, Yongpan Liu, Yinan Sun, Yang Li, Daming Zhang, and Huazhong Yang.
An energy-efficient heterogeneous dual-core processor for Internet of Things. In IS-
CAS, pages 2301–2304, 2015.

[WPW30] Louis Wolff, John Parkinson, and Paul D White. Bundle-branch block with short PR
interval in healthy young people prone to paroxysmal tachycardia. American Heart
Journal, 5(6):685–704, 1930.

[WSJ15] Roy Want, Bill N Schilit, and Scott Jenson. Enabling the internet of things. IEEE
Computer, 48(1):28–35, 2015.

[WTJ+11] Geng Wu, Shilpa Talwar, Kerstin Johnsson, Nageen Himayat, and Kevin D John-
son. M2M: From mobile to embedded internet. IEEE Communications Magazine,
49(4):36–43, 2011.

[XLL07] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. Adaptive computation offloading
for energy conservation on battery-powered systems. In International Conference on
Parallel and Distributed Systems, volume 2, pages 1–8, 2007.

[XZST07] Feng Xia, Wenhong Zhao, Youxian Sun, and Yu-Chu Tian. Fuzzy logic control based
qos management in wireless sensor/actuator networks. Sensors, 7(12):3179–3191,
2007.

[YCY+13] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin Chan. A framework
for partitioning and execution of data stream applications in mobile cloud computing.
ACM SIGMETRICS Performance Evaluation Review, 40(4):23–32, 2013.

[YVH11] Hoi-Jun Yoo and Chris Van Hoof. Introduction to Bio-Medical CMOS IC. In Bio-
Medical CMOS ICs, pages 1–9. Springer, 2011.

[ZKC+15] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal Jack-
son, and Prabal Dutta. The internet of things has a gateway problem. In Mobile
Computing Systems and Applications (HotMobile), pages 27–32, 2015.

[ZLSX13] Cong Zhu, Xinghu Li, Lingjun Song, and Liming Xiang. Development of a theoret-
ically based thermal model for lithium ion battery pack. Journal of Power Sources,
223:155–164, 2013.

[ZMK+15] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Nikhil Goyal, Ken Lutz, Eric
Allman, John Wawrzynek, Edward Lee, and John Kubiatowicz. The cloud is not
enough: saving IoT from the cloud. In USENIX Conf. on Hot Topics in Cloud Com-
puting, pages 21–21, 2015.

[ZWC+10] Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, and Weijun Qin. IoT gateway: Bridg-
ing wireless sensor networks into internet of things. In Embedded and Ubiquitous
Computing (EUC), pages 347–352, 2010.

130

	Introduction
	Motivation
	Limited Resources on the Edge of IoT system

	Thesis Contribution
	Thesis Outline

	Background and Related Work
	IoT Architecture
	Hardware & Software Architecture of IoT Embedded Device

	Edge Computing & Computation Offloading
	Mode Selection and Resource Allocation

	IoT Enabling Technologies from an Embedded Design Perspective
	Motivation
	Properties of Devices and Applications
	Application Areas
	Applications vs. Devices

	Connectivity
	Wireless Communication Technologies
	Timing of Communication
	Bandwidth & Data Rate of IoT Sensors
	Analysis & Insight

	Different Computing Layers
	Approximate vs. Exact Computing

	Efficient Resource Management Techniques for IoT Edge Computing
	Model for IoT Applications in Healthcare
	Computation Offloading
	Service Quality
	Operation Modes
	Summary of Application Model

	Distributed SQ Management for Internet of Things under Resource Constraints
	Problem Formulation
	Proposed Solution
	Use case: IoT in Healthcare Monitoring
	Evaluation and Results
	Summary of Distributed SQ Management Technique

	Novel Memorization for Fast and Efficient Operation Mode Selection
	Problem Formulation
	Fast and Low-overhead Operation Mode Selection Scheme
	Evaluation and Results
	Summary of Novel Memoization and Efficient Operation Mode Selection

	Distributed Trade-based Edge Device Management in Multi-gateway IoT
	Motivation
	Proposed Solution
	Evaluation & Experimental Results
	Summary of Trade-based Management in Multi-gateway IoT

	Summary of Resource Management Techniques

	Application-Specific Optimizations for Healthcare
	EEG processing to predict epileptic seizure
	ECG processing to detect heart abnormality
	Physical activity monitoring
	Approximate Compression for Health Monitoring Applications
	Motivation
	Details of Approximated Compressor
	Reducing Computational Overhead
	Table Size Reduction
	Evaluation and Results
	Summary of Approximate Compression Technique

	Summary of Application-Specific Optimizations

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Wireless Transmission
	IoT prototypes

