35 research outputs found

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    Architectures for Adaptive Low-Power Embedded Multimedia Systems

    Get PDF
    This Ph.D. thesis describes novel hardware/software architectures for adaptive low-power embedded multimedia systems. Novel techniques for run-time adaptive energy management are proposed, such that both HW & SW adapt together to react to the unpredictable scenarios. A complete power-aware H.264 video encoder was developed. Comparison with state-of-the-art demonstrates significant energy savings while meeting the performance constraint and keeping the video quality degradation unnoticeable

    Optimization of scientific algorithms in heterogeneous systems and accelerators for high performance computing

    Get PDF
    Actualmente, la computación de propósito general en GPU es uno de los pilares básicos de la computación de alto rendimiento. Aunque existen cientos de aplicaciones aceleradas en GPU, aún hay algoritmos científicos poco estudiados. Por ello, la motivación de esta tesis ha sido investigar la posibilidad de acelerar significativamente en GPU un conjunto de algoritmos pertenecientes a este grupo. En primer lugar, se ha obtenido una implementación optimizada del algoritmo de compresión de vídeo e imagen CAVLC (Context-Adaptive Variable Length Encoding), que es el método entrópico más usado en el estándar de codificación de vídeo H.264. La aceleración respecto a la mejor implementación anterior está entre 2.5x y 5.4x. Esta solución puede aprovecharse como el componente entrópico de codificadores H.264 software, y utilizarse en sistemas de compresión de vídeo e imagen en formatos distintos a H.264, como imágenes médicas. En segundo lugar, se ha desarrollado GUD-Canny, un detector de bordes de Canny no supervisado y distribuido. El sistema resuelve las principales limitaciones de las implementaciones del algoritmo de Canny, que son el cuello de botella causado por el proceso de histéresis y el uso de umbrales de histéresis fijos. Dada una imagen, esta se divide en un conjunto de sub-imágenes, y, para cada una de ellas, se calcula de forma no supervisada un par de umbrales de histéresis utilizando el método de MedinaCarnicer. El detector satisface el requisito de tiempo real, al ser 0.35 ms el tiempo promedio en detectar los bordes de una imagen 512x512. En tercer lugar, se ha realizado una implementación optimizada del método de compresión de datos VLE (Variable-Length Encoding), que es 2.6x más rápida en promedio que la mejor implementación anterior. Además, esta solución incluye un nuevo método scan inter-bloque, que se puede usar para acelerar la propia operación scan y otros algoritmos, como el de compactación. En el caso de la operación scan, se logra una aceleración de 1.62x si se usa el método propuesto en lugar del utilizado en la mejor implementación anterior de VLE. Esta tesis doctoral concluye con un capítulo sobre futuros trabajos de investigación que se pueden plantear a partir de sus contribuciones

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Stochastic Performance Throttling for Multicore Architectures under Spatial and Temporal Dependencies

    Get PDF

    Rinnakkainen toteutus H.265 videokoodaus standardille

    Get PDF
    The objective of this study was to research the scalability of the parallel features in the new H.265 video compression standard, also know as High Efficiency Video Coding (HEVC). Compared to its predecessor, the H.264 standard, H.265 typically achieves around 50% bitrate reduction for the same subjective video quality. Especially videos with higher resolution (Full HD and beyond) achieve better compression ratios. Also a better utilization of parallel computing resources is provided. H.265 introduces two novel parallelization features: Tiles and Wavefront Parallel Processing (WPP). In Tiles, each video frame is divided into areas that can be decoded without referencing to other areas in the same frame. In WPP, the relations between code blocks in a frame are encoded so that the decoding process can progress through the frame as a front using multiple threads. In this study, the reference implementation for the H.265 decoder was augmented to support both of these parallelization features. The performance of the parallel implementations was measured using three different setups. From the measurement results it could be seen that the introduction of more CPU cores reduced the total decode time of the video frames to a certain point. When using the Tiles feature, it was observed that the encoding geometry, i.e. how each frame was divided into individually decodable areas, had a noticeable effect on the decode times with certain thread counts. When using WPP, it was observed that what was mostly synchronization overhead, sometimes had a negative effect on the decode times when using larger (4-12) amounts of threads.Tämän tutkimuksen aiheena oli tutkia uuden H.265 videonpakkausstandardin (tunnetaan myös nimellä HEVC (engl. High Efficiency Video Coding)) rinnakkaisuusominaisuuksien skaalautuvuutta. Verrattuna edeltäjäänsä, H.264 videonpakkaustandardiin, H.265 tyypillisesti saavuttaa samalla kuvanlaadulla noin 50% pienemmän pakkauskoon. Erityisesti suuren resoluution videoilla (Full HD ja suuremmat) pakkaustehokkuuden paremmuus korostuu. Huomiota on kiinnitetty myös moniydinprosessoreiden hyödyntämiseen videokoodauksessa. H.265 tarjoaa kaksi uutta rinnakkaisuusominaisuutta: niin kutsutut Tiles- ja WPP-menetelmät (engl. \emph{Wavefront Parallel Processing}). Tiles-menetelmässä jokainen videon kuva jaetaan alueisiin, jotka voidaan purkaa viittaamatta saman kuvan muihin alueisiin. WPP-menetelmässä suhteet kuvan lohkoihin pakataan siten että purkamisprosessi pystyy etenemään kuvan läpi rintamana hyödyntäen useampia säikeitä. Tässä tutkimuksessa H.265 videodekooderin referenssitoteutusta laajennettiin tukemaan molempia näistä rinnakkaisuusominaisuuksista. Suorituskykyä mitattiin käyttäen kolmea eri mittausasetelmaa. Mittaustuloksista ilmeni, että prosessoriydinten lukumäärän kasvattaminen nopeutti videoiden purkamista tiettyyn pisteeseen asti. Tiles-menetelmää mitatessa havaittiin, että alueiden geometrialla, eli kuinka kuva jaettiin riippumattomiin alueisiin, on huomattava vaikutus purkamisnopeuteen tietyillä säiemäärillä. WPP-menetelmää mitattaessa havaittiin että korkeampiin säiemääriin (4-12) siirryttäessä purkamisnopeus alkoi hidastua. Tämä johtui pääasiassa säikeiden keskinäiseen synkronointiin kuluvasta ajasta

    Algoritmo de estimação de movimento e sua arquitetura de hardware para HEVC

    Get PDF
    Doutoramento em Engenharia EletrotécnicaVideo coding has been used in applications like video surveillance, video conferencing, video streaming, video broadcasting and video storage. In a typical video coding standard, many algorithms are combined to compress a video. However, one of those algorithms, the motion estimation is the most complex task. Hence, it is necessary to implement this task in real time by using appropriate VLSI architectures. This thesis proposes a new fast motion estimation algorithm and its implementation in real time. The results show that the proposed algorithm and its motion estimation hardware architecture out performs the state of the art. The proposed architecture operates at a maximum operating frequency of 241.6 MHz and is able to process 1080p@60Hz with all possible variables block sizes specified in HEVC standard as well as with motion vector search range of up to ±64 pixels.A codificação de vídeo tem sido usada em aplicações tais como, vídeovigilância, vídeo-conferência, video streaming e armazenamento de vídeo. Numa norma de codificação de vídeo, diversos algoritmos são combinados para comprimir o vídeo. Contudo, um desses algoritmos, a estimação de movimento é a tarefa mais complexa. Por isso, é necessário implementar esta tarefa em tempo real usando arquiteturas de hardware apropriadas. Esta tese propõe um algoritmo de estimação de movimento rápido bem como a sua implementação em tempo real. Os resultados mostram que o algoritmo e a arquitetura de hardware propostos têm melhor desempenho que os existentes. A arquitetura proposta opera a uma frequência máxima de 241.6 MHz e é capaz de processar imagens de resolução 1080p@60Hz, com todos os tamanhos de blocos especificados na norma HEVC, bem como um domínio de pesquisa de vetores de movimento até ±64 pixels

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers
    corecore