12 research outputs found

    A Deeply Pipelined CABAC Decoder for HEVC Supporting Level 6.2 High-tier Applications

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard that specifies video resolutions up to 8K Ultra-HD (UHD) at 120 fps to support the next decade of video applications. This results in high-throughput requirements for the context adaptive binary arithmetic coding (CABAC) entropy decoder, which was already a well-known bottleneck in H.264/AVC. To address the throughput challenges, several modifications were made to CABAC during the standardization of HEVC. This work leverages these improvements in the design of a high-throughput HEVC CABAC decoder. It also supports the high-level parallel processing tools introduced by HEVC, including tile and wavefront parallel processing. The proposed design uses a deeply pipelined architecture to achieve a high clock rate. Additional techniques such as the state prefetch logic, latched-based context memory, and separate finite state machines are applied to minimize stall cycles, while multibypass- bin decoding is used to further increase the throughput. The design is implemented in an IBM 45nm SOI process. After place-and-route, its operating frequency reaches 1.6 GHz. The corresponding throughputs achieve up to 1696 and 2314 Mbin/s under common and theoretical worst-case test conditions, respectively. The results show that the design is sufficient to decode in real-time high-tier video bitstreams at level 6.2 (8K UHD at 120 fps), or main-tier bitstreams at level 5.1 (4K UHD at 60 fps) for applications requiring sub-frame latency, such as video conferencing

    Video decoder for H.264/AVC main profile power efficient hardware design.

    Get PDF
    Yim, Ka Yee.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 43).Abstracts in English and Chinese.Acknowledgements --- p.viiTABLE OF CONTENTS --- p.viiiLIST OF TABLES --- p.xLIST OF FIGURES --- p.xiChapter CHAPTER 1 : --- INTRODUCTION --- p.1Chapter 1.1. --- Motivation --- p.1Chapter 1.2. --- Overview --- p.2Chapter 1.3. --- H.264 Overview --- p.2Chapter CHAPTER 2 : --- CABAC --- p.7Chapter 2.1. --- Introduction --- p.7Chapter 2.2. --- CABAC Decoder Implementation Review --- p.7Chapter 2.3. --- CABAC Algorithm Review --- p.9Chapter 2.4. --- Proposed CABAC Decoder Implementation --- p.13Chapter 2.5. --- FSM Method Bin Matching --- p.20Chapter 2.6. --- CABAC Experimental Results --- p.22Chapter 2.7. --- Summary --- p.26Chapter CHAPTER 3 : --- INTEGRATION --- p.27Chapter 3.1. --- Introduction --- p.27Chapter 3.2. --- Reused Baseline Decoder Review --- p.27Chapter 3.3. --- Integration --- p.30Chapter 3.4. --- Proposed Solution for Motion Vector Decoding --- p.33Chapter 3.5. --- Synthesis Result and Performance Analysis --- p.37Chapter CHAPTER 4 : --- CONCLUSION --- p.39Chapter 4.1. --- Main Contribution --- p.39Chapter 4.2. --- Reflection on the Development --- p.39Chapter 4.3. --- Future Work --- p.41BIBLIOGRAPHY --- p.4

    Parallel algorithms and architectures for low power video decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 197-204).Parallelism coupled with voltage scaling is an effective approach to achieve high processing performance with low power consumption. This thesis presents parallel architectures and algorithms designed to deliver the power and performance required for current and next generation video coding. Coding efficiency, area cost and scalability are also addressed. First, a low power video decoder is presented for the current state-of-the-art video coding standard H.264/AVC. Parallel architectures are used along with voltage scaling to deliver high definition (HD) decoding at low power levels. Additional architectural optimizations such as reducing memory accesses and multiple frequency/voltage domains are also described. An H.264/AVC Baseline decoder test chip was fabricated in 65-nm CMOS. It can operate at 0.7 V for HD (720p, 30 fps) video decoding and with a measured power of 1.8 mW. The highly scalable decoder can tradeoff power and performance across >100x range. Second, this thesis demonstrates how serial algorithms, such as Context-based Adaptive Binary Arithmetic Coding (CABAC), can be redesigned for parallel architectures to enable high throughput with low coding efficiency cost. A parallel algorithm called the Massively Parallel CABAC (MP-CABAC) is presented that uses syntax element partitions and interleaved entropy slices to achieve better throughput-coding efficiency and throughput-area tradeoffs than H.264/AVC. The parallel algorithm also improves scalability by providing a third dimension to tradeoff coding efficiency for power and performance. Finally, joint algorithm-architecture optimizations are used to increase performance and reduce area with almost no coding penalty. The MP-CABAC is mapped to a highly parallel architecture with 80 parallel engines, which together delivers >10x higher throughput than existing H.264/AVC CABAC implementations. A MP-CABAC test chip was fabricated in 65-nm CMOS to demonstrate the power-performance-coding efficiency tradeoff.by Vivienne. Sze.Ph.D

    Parallel architectures for entropy coding in a dual-standard ultra-HD video encoder

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Includes bibliographical references (p. 97-98).The mismatch between the rapid increase in resolution requirements and the slower increase in energy capacity demand more aggressive low-power circuit design techniques to maintain battery life of hand-held multimedia devices. As the operating voltage is lowered to reduce power consumption, the maximum operating frequency of the system must also decrease while the performance requirements remain constant. To meet these performance constraints imposed by the high resolution and complex functionality of video processing systems, novel techniques for increasing throughput are explored. In particular, the entropy coding functional block faces the most stringent requirements to deliver the necessary throughput due to its highly serial nature, especially to sustain real-time encoding. This thesis proposes parallel architectures for high-performance entropy coding for high-resolution, dual-standard video encoding. To demonstrate the most aggressive techniques for achieving standard reconfigurability, two markedly different video compression standards (H.264/AVC and VC-1) are supported. Specifically, the entropy coder must process data generated from a quad full-HD (4096x2160 pixels per frame, the equivalent of four full-HD frames) video at a frame rate of 30 frames per second and perform lossless compression to generate an output bitstream. This block will be integrated into a dual-standard video encoder chip targeted for operation at 0.6V, which will be fabricated following the completion of this thesis. Parallelism, as well as other techniques applied at the syntax element or bit level, are used to achieve the overall throughput requirements. Three frames of video data are processed in parallel at the system level, and varying degrees of parallelism are employed within the entropy coding block for each standard. The VC-1 entropy encoder block encodes 735M symbols per second with a gate count of 136.6K and power consumption of 304.5 pW, and the H.264 block encodes 4.97G binary symbols per second through three-frame parallelism and a 6-bin cascaded pipelining architecture with a critical path delay of 20.05 ns.by Bonnie K. Y. Lam.S.M

    Improvement of Decision on Coding Unit Split Mode and Intra-Picture Prediction by Machine Learning

    Get PDF
    High efficiency Video Coding (HEVC) has been deemed as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The reference software (i.e., HM) have included the implementations of the guidelines in appliance with the new standard. The software includes both encoder and decoder functionality. Machine learning (ML) works with data and processes it to discover patterns that can be later used to analyze new trends. ML can play a key role in a wide range of critical applications, such as data mining, natural language processing, image recognition, and expert systems. In this research project, in compliance with H.265 standard, we are focused on improvement of the performance of encode/decode by optimizing the partition of prediction block in coding unit with the help of supervised machine learning. We used Keras library as the main tool to implement the experiments. Key parameters were tuned for the model in our convolution neuron network. The coding tree unit mode decision time produced in the model was compared with that produced in HM software, and it was proved to have improved significantly. The intra-picture prediction mode decision was also investigated with modified model and yielded satisfactory results

    Parallelism and the software-hardware interface in embedded systems

    Get PDF
    This thesis by publications addresses issues in the architecture and microarchitecture of next generation, high performance streaming Systems-on-Chip through quantifying the most important forms of parallelism in current and emerging embedded system workloads. The work consists of three major research tracks, relating to data level parallelism, thread level parallelism and the software-hardware interface which together reflect the research interests of the author as they have been formed in the last nine years. Published works confirm that parallelism at the data level is widely accepted as the most important performance leverage for the efficient execution of embedded media and telecom applications and has been exploited via a number of approaches the most efficient being vectorlSIMD architectures. A further, complementary and substantial form of parallelism exists at the thread level but this has not been researched to the same extent in the context of embedded workloads. For the efficient execution of such applications, exploitation of both forms of parallelism is of paramount importance. This calls for a new architectural approach in the software-hardware interface as its rigidity, manifested in all desktop-based and the majority of embedded CPU's, directly affects the performance ofvectorized, threaded codes. The author advocates a holistic, mature approach where parallelism is extracted via automatic means while at the same time, the traditionally rigid hardware-software interface is optimized to match the temporal and spatial behaviour of the embedded workload. This ultimate goal calls for the precise study of these forms of parallelism for a number of applications executing on theoretical models such as instruction set simulators and parallel RAM machines as well as the development of highly parametric microarchitectural frameworks to encapSUlate that functionality.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    Optimisation énergétique de processus de traitement du signal et ses applications au décodage vidéo

    Get PDF
    Consumer electronics offer today more and more features (video, audio, GPS, Internet) and connectivity means (multi-radio systems with WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). The power demand of these devices is growing for the digital part especially for the processing chip. To support this ever increasing computing demand, processor architectures have evolved with multicore processors, graphics processors (GPU) and ether dedicated hardware accelerators. However, the evolution of battery technology is itself slower. Therefore, the autonomy of embedded systems is now under a great pressure. Among the new functionalities supported by mobile devices, video services take a prominent place. lndeed, recent analyzes show that they will represent 70% of mobile Internet traffic by 2016. Accompanying this growth, new technologies are emerging for new services and applications. Among them HEVC (High Efficiency Video Coding) can double the data compression while maintaining a subjective quality equivalent to its predecessor, the H.264 standard. ln a digital circuit, the total power consumption is made of static power and dynamic power. Most of modern hardware architectures implement means to control the power consumption of the system. Dynamic Voltage and Frequency Scaling (DVFS) mainly reduces the dynamic power of the circuit. This technique aims to adapt the power of the processor (and therefore its consumption) to the actual load needed by the application. To control the static power, Dynamic Power Management (DPM or sleep modes) aims to stop the voltage supplies associated with specific areas of the chip. ln this thesis, we first present a model of the energy consumed by the circuit integrating DPM and DVFS modes. This model is generalized to multi-core integrated circuits and to a rapid prototyping tool. Thus, the optimal operating point of a circuit, i.e. the operating frequency and the number of active cores, is identified. Secondly, the HEVC application is integrated to a multicore architecture coupled with a sophisticated DVFS mechanism. We show that this application can be implemented efficiently on general purpose processors (GPP) while minimizing the power consumption. Finally, and to get further energy gain, we propose a modified HEVC decoder that is capable to tune its energy gains together with a decoding quality trade-off.Aujourd'hui, les appareils électroniques offrent de plus en plus de fonctionnalités (vidéo, audio, GPS, internet) et des connectivités variées (multi-systèmes de radio avec WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). La demande en puissance de ces appareils est donc grandissante pour la partie numérique et notamment le processeur de calcul. Pour répondre à ce besoin sans cesse croissant de nouvelles fonctionnalités et donc de puissance de calcul, les architectures des processeurs ont beaucoup évolué : processeurs multi-coeurs, processeurs graphiques (GPU) et autres accélérateurs matériels dédiés. Cependant, alors que de nouvelles architectures matérielles peinent à répondre aux exigences de performance, l'évolution de la technologie des batteries est quant à elle encore plus lente. En conséquence, l'autonomie des systèmes embarqués est aujourd'hui sous pression. Parmi les nouveaux services supportés par les terminaux mobiles, la vidéo prend une place prépondérante. En effet, des analyses récentes de tendance montrent qu'elle représentera 70 % du trafic internet mobile dès 2016. Accompagnant cette croissance, de nouvelles technologies émergent permettant de nouveaux services et applications. Parmi elles, HEVC (High Efficiency Video Coding) permet de doubler la compression de données tout en garantissant une qualité subjective équivalente à son prédécesseur, la norme H.264. Dans un circuit numérique, la consommation provient de deux éléments: la puissance statique et la puissance dynamique. La plupart des architectures matérielles récentes mettent en oeuvre des procédés permettant de contrôler la puissance du système. Le changement dynamique du couple tension/fréquence appelé Dynamic Voltage and Frequency Scaling (DVFS) agit principalement sur la puissance dynamique du circuit. Cette technique permet d'adapter la puissance du processeur (et donc sa consommation) à la charge réelle nécessaire pour une application. Pour contrôler la puissance statique, le Dynamic Power Management (DPM, ou modes de veille) consistant à arrêter les alimentations associées à des zones spécifiques de la puce. Dans cette thèse, nous présentons d'abord une modélisation de l'énergie consommée par le circuit intégrant les modes DVFS et DPM. Cette modélisation est généralisée au circuit multi-coeurs et intégrée à un outil de prototypage rapide. Ainsi le point de fonctionnement optimal d'un circuit, la fréquence de fonctionnement et le nombre de coeurs actifs, est identifié. Dans un second temps, l'application HEVC est intégrée à une architecture multi-coeurs avec une adaptation dynamique de la fréquence de développement. Nous montrons que cette application peut être implémentée efficacement sur des processeurs généralistes (GPP) tout en minimisant la puissance consommée. Enfin, et pour aller plus loin dans les gains en énergie, nous proposons une modification du décodeur HEVC qui permet à un décodeur de baisser encore plus sa consommation en fonction du budget énergétique disponible localement

    Learned-based Intra Coding Tools for Video Compression.

    Get PDF
    PhD Theses.The increase in demand for video rendering in 4K and beyond displays, as well as immersive video formats, requires the use of e cient compression techniques. In this thesis novel methods for enhancing the e ciency of current and next generation video codecs are investigated. Several aspects that in uence the way conventional video coding methods work are considered. The methods proposed in this thesis utilise Neural Networks (NNs) trained for regression tasks in order to predict data. In particular, Convolutional Neural Networks (CNNs) are used to predict Rate-Distortion (RD) data for intra-coded frames. Moreover, a novel intra-prediction methods are proposed with the aim of providing new ways to exploit redundancies overlooked by traditional intraprediction tools. Additionally, it is shown how such methods can be simpli ed in order to derive less resource-demanding tools

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints
    corecore