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Abstract of thesis entitled: 
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The purpose of this thesis is to implement a Main Profile H.264/AVC 

Decoder, which supports Full HD (1920x1088p) resolution, by reusing a Baseline 

Profile Decoder, with a lower QCIF (176x144) resolution. The resolution 

performance has therefore been scaled up from a frame size of 176x144 to 

1920x1088. 

Since H.264/AVC has a higher coding efficiency, this technology is 

adopted in a wide range of applications, ranging from video streaming and storage 

to digital TV broadcast. Nowadays, display hardware commonly support high 

resolution like Full HD. High capacity storage makes storing video in Full HD 

format a common practice. Improved network speed has greatly boosted up user 

demand for higher quality video. In fact, H.264/AVC high coding efficiency gains 

from more complex computation compared to older codec, like H.263. Dedicate 

H.264/AVC decoding accelerators are usually added to systems to improve overall 

efficiency. Therefore, this thesis aims to design a Main Profile H.264/AVC 

Decoder that supports Full HD resolution. 

For faster turnaround time and maintaining power efficiency, a Baseline 

Profile Decoder implementation was reused. The reused design features low 

power consumption, but it can only support a lower resolution. 

ii 



This thesis proposes to design a CABAC decoder integrated on a Baseline 

Profile to form a standalone H.264/AVC decoder, so that it can support 

CAVLC/CABAC entropy coding while the resolution has been sized up to 

1920x1088. 

As the frame width has increased from 176 to 1920, line buffers storing 

upper line pel data and top neighbouring info are 10.9 times of the original size. In 

H.246/AVC, either one entropy coding mode, CAVLC or CABAC, would be used 

to decode a slice data, that is, CAVLC/CABAC would not be used at the same 

time. Also both modes of operations require line buffer resources. Line buffer for 

CAVLC and CABAC sharing scheme has therefore been proposed. This scheme 

saves 600 Byte memories, which is equivalent to 2.5% of the total local memory. 

The reused design contains a macroblock-based processing architecture. 

The average cycle required for one macroblock in the new design is around the 

same as in the reused design. To satisfy the 82-times throughput requirement in 

Full HD resolution, the working frequency has to be increased to 82 times of its 

original. As a result, the timing path for one cycle must be short enough to meet 

the setup time constraint. Since the reused design working frequency is as low as 

I.5MHz, those critical paths that do not exist in the reused design now appear in 

the new design. The main contribution of this thesis is to fix those setup time 

violations. 

The proposed CABAC decoder adopts a three-stage pipeline architecture. 

For low hardware cost and power efficiency, a context model buffering scheme 

with two 28-bit buffers is proposed to allow read advance write actions into the 

context model memory. One buffer is waiting to write back to memory while 

another buffer is used to store new context model groups from the memory. This 
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thesis also proposes stall cycle reduction methods to further reduce 8.5% to 55.2% 

stall cycles due to context model switching. 

The critical path of the proposed three-state pipeline architecture starts 

from the context model buffer, goes through the bin decoding and bin matching, 

and ends at the next context model selection. LUT method bin matching has a 

disadvantage of long timing path. An FSM method bin matching schemes is 

proposed to resolve the critical path issue and to satisfy the setup time requirement. 

The proposed design aims for 90iini technology. At a working frequency 

of 143MHz, the proposed standalone CABAC can decode 72Mbin/s on average. 

The integrated H.264/AVC decoder can decode 1920 xl088 progressive frames at 

36.2 frames per second. 
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歷 

本論文的目的是通過重用一個支持較低解像度（QCIF 176X144)的 

Baseline Profile H .264 /AVC解碼器，以實現一個支持全高清（Fu l lHD 

1920xl088p)解像度 Main Profile H.264/AVC 解碼器。 

由於H.264/AVC具有更高的編碼效率，這項技術已廣泛被採用，例 

如視頻串流、存儲、數字電視廣播等。現今，顯示器通常支持高分解像度， 

再加上高容量存儲硬件及網絡速度大大提高，高質量的視頻的需求不斷提升。 

事實上，H.264/AVC編碼效率高，源於更複雜的運算。爲了以提高系統的整 

體效率，其中一方案是增添獨立的H.264/AVC解碼加速器。因此，本論文 

因此設計一個支持全高清解像度的Main Profile H.264/AVC解碼器。 

爲了加快的開發周期及保證能源效率，本文重用了一個Basel ine 

Profile解碼器。那設計具有已驗證之低功耗的特性，但是只支持較低的解像 

度。 

本論文提出設計一個CABAC解碼器然後再集成到重用的Baseline 

Profile解碼器，這樣就能形成一個獨立的H.264/AVC解碼器。它將可以支 

持CAVLC/CABAC熵編碼，且支持到解像度最大爲1920x1088� 

H.246/AVC只會選一個熵編碼模式’ C A V L C或C A B A C �也就是說’ 

CAVLC/CABAC不會被用於在同一時間。本文提出CAVLC和CABAC共 

享緩衝區，如此就能節省600Bytes的記憶，這相當於2.5%的總本地內存。 

本文提出用於CABAC內的模型緩衝方法。當一個緩衝區等待剛使用 

的模型寫回內存時，另一個緩衝區就會用來接收從內存讀出的模型。本論文 

還提出減少停頓週期的方法，以進一步減少8.5%至55.2%的停頓週期。 
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爲求縮短一些關鍵路徑’本文另提出CABAC裡使内爲FSM式作配 

本文保存重用設計的基礎架構，如此，一個macroblock平均需要的 

時間大致和原來設計一樣。本來重用的工作頻率低至1.5MHz，在全高清解 

像度下，吞吐量爲了原來的82倍，工作頻率快因此增加至82倍。結果，一 

個的週期時間大大縮短了。一些之前沒有違反setup time限制的路徑，現在 

違反setup time限制了。在本論文其中的貢獻是解決這些違反setup time限制 

路徑。 

擬議的設計目的是爲90nm標準CMOS工藝下實現。設計工作頻率 

爲143MHz，本文提出的CABAC解碼獨立運行時可達72Mbin / s�集成的 

H.264/AVC解碼器最高支持解像度爲1920 xl088並每秒平均輸出36.2幀。 
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CHAPTER 1 ： INTRODUCTION 

1.1. Motivation 

H.264/AVC was released in 2003[1]. In recent years, this codec is widely 

adopted, such as for video conferencing, broadcast, storage, streaming because of its 

high coding efficiency. Meanwhile, display hardware that support high resolution 

like Full HD are more common. High capacity storage makes storing video in Full 

HD format a general practice. Improved internet speed has greatly boosted up user 

demand for videos of higher quality and resolution. 

In fact, H.264/AVC high coding efficiency gains from more complex 

computation compared to older codec, like H.263. Dedicated H.264/AVC decoding 

accelerators are usually added to high performance systems to improve efficiency. 

With these in mind, this thesis aims to design a Main Profile H.264/AVC Decoder 

supporting Full HD (1920x1088) resolution. 

Power efficiency is important to every design in recent decades. There is 

always a trade-off between power and performance. Full HD codec capability 

requires working at higher clock frequency, and needs more gate count in design. 

Thus it consumes more power. Power efficient schemes in all aspects, including 

front-end and back-end designs, will be needed. 

For faster tum-around in the scaling up development, this project re-uses an 

existing silicon-proven power efficient design from Xu [2], which was targeted for 

low resolution (QCIF 176x144) baseline profile, as a starting point. In the scaling 

up development, in general, data range and buffer size are increased. In this project, 
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the data range and buffer size are reviewed, and necessary changes are made to 

support Full HD resolution. 

Within H.264 codec, there are two entropy coding mode options, either 

CAVLC or CABAC. CAVLC is less complex than CABAC but has lower coding 

efficiency. So CAVLC is usually used in low resolution video while CABAC is 

used in high resolution video. Since the reused design only support CAVLC mode, 

this project has to design a CABAC decoder and integrate it to the reused decoder to 

match the reality of high resolution application. 

In summary, by reusing the existing design, this project aims to design a 

CABAC and integrate it to the baseline decoder. It targets a resolution of Full HD at 

a rate 30 frames per second. 

1.2. Overview 

The thesis will highlight the background information of H.264 in later 

sections in this chapter. Information closely related to this project will be 

emphasized. Chapter 2 provides the design of a CABAC and a CABAC standalone 

performance analysis. The reused design is reviewed in Chapter 3. It also gives the 

integration details and performance analysis. Chapter 4 is the conclusion. 

1.3. H.264 Overview 

H.264/AVC were published in 2003 [3]. It is a macroblock-based codec 

algorithm. Any frame size will be divided into macroblocks for processing. One 

macroblock will be decoded after going through the process described in section 
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1.31. For higher interoperability of video streams, profile and level are defined by 

the standard. The values of profile and level imply the decoder requirement on 

supporting features, for example, throughput performance. The details of profile and 

level are reviewed in section 1.3.2. 

1.3.1. Macroblock-based Decoding Data Flow 

^ Entropy . 丨；-̂丨丁 . Deblocking . 
^ Decoding ^ 丨⑶丨 ^ Filter ^ 

Z . Intra V 
prediction | | 

^ ^ — Memory 

Inter ^ | 
prediction 

i k 

Figure 1-1: Decoder block diagram 

A video sequence is a composite of frames. Each frame consists of luma (Y) 

and chrominance (UV) components to form a coloured frame. Since human 

eyes are less sensitive to UV components. UV components are sub-sampled in 

old codec standard to reduce the bandwidth of the chrominance. For example, in 

YUV420, the Y:U:V ratio is 4:1:1; in the same physical space, 4 Y samples will 

be captured while only one U and one V samples are captured. For a frame size 

of 1920x1088, the Y component becomes an array of 1920x1088, but U or V 

component is only an array of 960 x544. 

The H.264 decoding is a macroblock-based process. Depending on the YUV 

sampling ratio, the macroblock size of Y and UV can be different. For YUV420, 

a macroblock of Y is 16x16; a UV macroblock size is 8x8. YUV components 
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are further divided into 24 4x4 blocks: 16 blocks of Y, 4 of U and 4 of V. The 

decoding sequence is to decode 16 Y blocks first, then the 4 U blocks, and lastly 

the 4 V blocks. All YUV 4x4 blocks share a common decoding logic. The 

variants are specified by corresponding syntax elements. 

Figure 1-1 shows a decoder block of H.264. Entropy decoding includes 

universal variable length coding (UVLC), context-adaptive variable length 

coding (CAVLC), and context adaptive binary arithmetic coding (CABAC). 

The UVLC is used for decoding sequence, picture information，and intra- and 

inter-prediction syntax elements. The CAVLC is only used to transfomi 

coefficient syntax elements. The CABAC is used for intra-prediction, inter-

prediction and to transfomi coefficients syntax elements. Either CAVLC or 

CABAC coding method will be used. The mode of selection is signalled from 

the sequence information. In the CAVLC mode, UVLC is used for intra- and 

inter-prediction of information. 

After entropy decoding, all essential information will be ready for decoding 

of one macroblock. Intra- or Inter-prediction information is used for macroblock 

prediction. In intra-prediction, intra-prediction mode provides information that 

neighbouring pel data will be used. In inter-prediction, reference frame id and 

location of data are provided. Decoder will load the data from the frame buffer 

for prediction. 

The prediction errors are recovered from transform coefficients. Sum of 

inverse transform and prediction will be the macroblock result. 

In-loop deblocking-filter is used to remove block artifacts. The usage of 

deblocking-filter is signalled in the syntax element and edge detection on the 
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macroblock results. Final modified macroblock results will be stored in the 

frame buffer. The stored data would be used in intra-prediction by other 

macroblocks in the same frames or inter-prediction in other frames. 

1.3.2. Differences of Main Profile and Baseline Profile 

Features in only Common Tools Features only in 
Baseline Profile in Baseline and Main Profile 

. . • MainFrofik :— 
FMO — CAVLC CABAC 

Red. Pictures I & P slices Weighted inter 
Prediction 

ASO — Different Block Size Field Coding 一 
1/4 Pel MC MB-AFF 

Multiple Ref Frames 
In-Loop Deblocking 

fite 
Intra Prediction 

Table 1-1: H.264/AVC profiles and coding tools 

H.264 has been developed for a wide range of applications, bit rates, 

resolution, qualities and services. Different applications have different 

functional requirements. To maximize the interoperability while limiting the 

complexity, profile and level together specify the decoder requirement. Profile 

defines the coding tools supported. Level defines the syntax values ranges or 

implicitly the bit-rate. 

Table 1-1 shows the subset coding tools for the Baseline Profile and the 

Main Profile. The reused design supports CAVLC, I& P slices, different block 

size, 1/4 pel MC, single reference frame, in-loop deblocking filter and intra 

prediction. All these features are basic capabilities of a H.246 baseline decoder. 

The proposed design supports CABAC in addition to the original features. 
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Other features like FMO, Red, Pictures, ASO, Weighted Prediction, Field 

Coding and MB-AFF are not implemented in this thesis. The first three are 

targeted for noise reduction in network applications. The B slice and weighted 

inter prediction are generalized versions of P slice and non-weighted inter 

prediction. Field coding and MB-AFF are similar to frame coding. The 

difference is in the macroblock data representation. An estimation of the 

performance impact by these features can be based on the baseline profile, and 

it is easier than by the CABAC. 

In this thesis, only CABAC is added to the baseline profile decoder to get 

the performance outlook. Detail of the CABAC proposed design is described in 

Chapter 2. The proposed integration design is described in Chapter 3. 

1.3.3. CAVLC and CABAC 

Both entropy coding, CAVLC and CABAC, are context adaptive. Syntax 

element values of neighbouring macroblocks，sub-macroblocks or transform 

blocks will affect decision making in the decoding process. Neighbouring info 

has to be stored up for later use in both modes. Specified by H.264 standard, 

either CAVLC or CABAC mode will be used to decode a slice. 

The thesis proposes to share neighbouring info memory for CABAC and 

CAVLC. The hardware sharing detail will be described in Chapter 3. 
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CHAPTER 2 ： CABAC 

2.1. Introduction 

This chapter describes the CABAC implementation design in detail. 

CABAC-related designs are reviewed in section 2.2. The CABAC algorithm is 

reviewed in section 2.3. The thesis proposal CABAC designed is described in 

section 2.4. The proposed design performance analysis is reported in section 2.5. 

2.2. CABAC Decoder Implementation Review 

In CABAC algorithm, the decision making process depends on prior 

decoded results. Since it is impossible to detect the syntax element boundary from 

the bitstream, it is difficult to increase parallelism in implementation. To improve its 

throughput, previous designs [4] [5] [6] [7] tend to optimize arithmetic decoding 

engines (AE) to decode multi-bins per cycle for specified syntax elements. Peng [5] 

proposed to decode 16 bins per cycle for one coefficient level. Yu [6] proposed to 

cascade two regular decoding engines and cascade four bypass decoding engines to 

get a multi-bin decoding engine. Jian-Wen [7] proposed to decode the second bin by 

a method of symbol prediction, that is by decoding MPS and LPS in parallel. These 

designs reported the utilization rate of first AE and second AE up to 90% and 43% 

respectively. As second or later bin arithmetic decoding engines are difficult to 

achieve more than 50% utilization rate, in order to save power, this thesis proposes 

to use a single bin arithmetic decoding engine. Although the throughput of the 

proposed design is not the highest among the related designs, it is good enough to 

decode a resolution of 1920x1088 at a rate of 30 frames per second in real time. 
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Previous designs attempted to solve the long delay caused by switching 

context models. Yu and He [4] loaded all context models of one syntax element to a 

context model register from memory. It [4] required 44x7 bit registers for context 

model registration as it has a large group size of 44 models, and 7 bits per model. Yi 

and Park [8] tried using models of smaller group sizes. It required 8x7 bit registers 

for context model registration. This design has solved the delay caused by model 

switching within a group but not between two groups. Yu [6] used two sets of 

registers. When one set serves for the decoding bin, it writes back the last group and 

pre-fetches the next group model with the highest probability to another set of 

register. He [6] did not mention the context model registration size. 

AE needs to stall whenever the inputs are not ready. To increase the 

throughput, one way is to reduce the idle cycles of the AE, in which, a pipelined 

architecture can help. A previous design [8] has proposed a two-stage architecture. 

When the syntax element switches, two idle cycles are caused to load new context 

model groups from memory. Shi [9] proposed a four-stage architecture. Along with 

one memory for the entire context model and one memory for part of the context 

models, all next possible context models will be loaded before the arithmetic 

decoding stage. It removes all idle cycles introduced by the syntax element during 

switching in the pipelined architecture. However it needs to maintain two context 

model memories. 

This thesis proposes a three-stage pipelined architecture with two identical 

4x7 bits context model registers and one context model memory. With this scheme, 

there will only be one idle cycle when switching context model groups. As the 

switching will degrade the performance, the thesis proposes an idle cycle reduction 
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scheme. One is by context model grouping enhancement. The other one is by 

preloading the next context model. Furthermore, it is to skip loading from memory 

if the group is found in the register. With these proposed schemes, it can reduce stall 

cycles due to context model switching by 8.5% to 55.2%. 

2.3. CABAC Algorithm Review 

CABAC decoding is an iterative process. The process decodes bin by bin 

until the decoded bin string matches the pre-defined pattern. This section will 

review the CABAC algorithm. In reverse approach, the arithmetic decoding 

engine will first be described, followed by LPS range calculation and context 

model selection. 

2.3.1. Arithmetic Decoding Engine 

There are two modes of arithmetic decoding engines (AE): decision bin and 

bypass bin decoding. For decision bin decoding, the inputs to the AE are its 

current RANGE, current OFFSET, LPS_RANGE and MPS value. The current 

OFFSET is limited by the value from 0 to its current RANGE. (RANGE — 

LPS RANGE) is the decision boundary of Most Probable Symbols (MPS) and 

Least Probable Symbols (LPS). If the current OFFSET is less than (RANGE -

LPS RANGE), the current decoding bin will be equal to the MPS value; 

otherwise, the decoding bin will be equal to the LPS value. Maximum value of 

RANGE and OFFSET is OxlFF, 9-bit binary number. 
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I MPS I LPS I 

0 (RANGE - LPSRANGE) (RANGE) 

Figure 2-1: Decision bin decoding 

If the current bin is MPS, the next RANGE value is set equal to the decision 

boundary value. The next RANGE value is set equal to the current RANGE. 

If the decision boundary is less than 0x100, which is half of the maximum 

RANGE value, renoiTnalization occurs. Renonnalization is a process to prevent 

RANGE values from becoming a very small value after a number of decoding 

iterations. Both OFFSET and RANGE will be shifted to the left by one. 

Moreover, one bit from the bitstream data is shifted into OFFSET. Left shift is 

iterated until the next RANGE value is equal or larger than 0x100. 

If the current bin is LPS, the next range value is set equal to the LPS range. 

The next offset value is set equal to (current offset — the decision boundary). 

Since the LPS range must be less than 0x100, renomialization must occur. 

Figure 2-2 illustrates the decision bin decoding process for MPS bin and 

LPS bin. 
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R A N G E 

R A N G E 
RANGE —— • • 

OFFSET OFFSET ^ 

0x100 O F F S E T 

• - • 

\ \ 

0x0 \ \ \ \ 

b in=MPS b in=LPS b in=MPS 

Figure 2-2: MPS bin and LPS bin 

For bypass bin decoding, only the current OFFSET and the current RANGE 

are needed. The decision boundary is equal to half of the RANGE. 

Similarly, if the current OFFSET is less than (1/2 RANGE), the current 

decoding bin is equal to 1; otherwise it is equal to 0. 

I 0 I 1 I 

0 (1/2 RANGE) (RANGE) 

Figure 2-3: Bypass decoding 

If the decoding bin is 0, the next OFFSET will be set equal to the current 

OFFSET; otherwise, the next OFFSET will be set equal to (OFFSET- 1/2 

RANGE). The next RANGE is always set equal to 1/2 the current RANGE and 

renomialization must occur for both bin results. 

2.3.2. LPS Range Generation 
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The LPS_RANGE is not a fixed value in CABAC algorithm. It is derived 

from the context model and the current RANGE. It changes when the context 

model changes or when the context model is updated. The LPS RANGE is 

obtained by LUT method. Inputs to the LUT are its current RANGE [8:7]^ and 

PSTATE which is a context model variable representing probability when MPS 

occurs. PSTATE ranges from 0 to 63. The output is an approximate value of 

RANGE multiplied by the probability of LPS. Based on the decoding results, 

the decoded bin is the MPS. The next PSTATE is determined by 

TRAN_MPS_LUT; otherwise, by TRAN_LPS_LUT. If the current PSTATE is 

0 and the decoded bin is LPS, the next MPS value will be set equal to the LPS 

value. The next PSTATE and MPS values will be used to update the context 

model. When the next same context model is used, the latest PSTATE and MPS 

will be used. 

2.3.3. Context Model Selection 

In CABAC, each syntax element has a set of context models to store the 

statistics of bin occurrence. Each model has two variables, PSTATE and MPS. 

PSTATE represents the probability of the MPS symbol to occur. MPS is the 

value of the MPS symbol. These two variables are the inputs to decision bin 

decoding. The context model selection process depends on the syntax element 

type, prior to the decoded syntax element values, to the decoded bins and to the 

current decoding bin index. 

‘RANGE[8:7] = (RANGE»6) & 0x3 
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Before decoding the first bin, Context Models, OFFSET and RANGE have 

to be initialized. The RANGE is simply set to OxlFE. OFFSET is shifted 9 bit 

data to the left from the bit stream. Context models require a LUT method to get 

init variables (m,n). PSTATE and MPS values are derived from (m,n) and 

SliceQPl 

2.4. Proposed CABAC Decoder Implementation 

Without loading all models for the decoding syntax element, this scheme 

loads only 4 models. So the context model registers can be reduced to two 4x7-

bit register sets. When one register set is being used by the AE, the other 

register set data will be written back to memory or preloaded to the next context 

model group. It reduces the idle cycles caused by switching context model 

groups. To reduce the critical path, that connects through the context model 

registers, arithmetic decoding engines, bin matching stages, and the next context 

model group results, FSM bin matching method is used. 

2.4.1. Pipelined Architecture 

This thesis proposes a three-stage pipeline architecture. The first stage is a 

LOAD—MEM; the second is a CTXIDC; and the third is a DEC/MATCH. In 

this section, it will first describe each stage in detail followed by the example of 

context model group switching, 

a. LOAD—MEM 

2 SliceQP is a syntax element. 
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In this stage, one context model group is loaded from memory to a context 

model register set (CMRS). This stage is executed when a context model group 

switching is needed, 

b. CTXINC 

In this stage, it determines which context model in a group will be used. 

Model selection depends on syntax element types, bin indices (binldx), previous 

decoded bins, and neighbouring syntax element values. 

In the proposed design, all required neighbouring information for current 

macroblocks is stored in an nA-nB info buffer. The buffer has two partitions, 

one for nA and one for nB. The nA info will be updated once the syntax element 

is decoded. The nB info is loaded from the iiB info memory. This iiB info 

memory consists of 67 bits x 120 and 9 bits xl20 single-port on-chip SRAMs. 

At the end of the macroblocks, info will be used as neighbouring info written to 

the nB memory. 
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CABAC pipolino stato 

i PREFETCH 丨 CTXINC 丨 BAG/MATCH j 
！ — ——— ^― ！ — — — — — — — j — — — ！ —» 

Input b i t I ！ H codlOffeel I | 
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Figure 2-4 : Pipelined Architecture of proposed CABAC decoder 

nB 

nA seC 

Figure 2-5 : top neighbouring (nA) and left neighbouring (nB) 

of current syntax element (seC) 

c. DEC 

This stage performs arithmetic decoding. For decision bin decoding, model 

variable PSTATE is used to generate an LPS RANGE. The current bin is 

decoded by checking whether the OFFSET is less than (RANGE -
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LPS_RANGE). Based on the decoded result, RANGE, OFFSET, PSTATE, 

MPS are updated. 

d. MATCH 

In this stage, decoded bin is matched to the syntax values. The decoding 

complete condition of current syntax element is detected at this stage. 

2.4,2. Context Model Group Switching and Enhancements 

The proposed pipelined architecture need to stall one cycle to load context 

model groups from memory to a CMRS. High switching rate results in more 

stall cycles; thus a lower throughput. Three methods have been proposed to 

reduce the idle cycle caused by such switching. 

The first two methods aim to handle two known back and forth switching 

cases, prev_intra4x4_pred_mode - rem_intra4x4_pred_mode and 

significaiit_coeff_flag - last—significant_coeff—flag. For the former pair, this 

thesis proposes to group all models of these pairs into one single group so that 

no group switching will be needed. prev_intra4x4_pred_mode and 

rem_intra4x4_pred_mode have one context model each. Since one context 

model group can have four models in maximum, there is no problem to group 

them together. 

For the later pair, discovered from the decoding sequences, 

significant—coeff一flag must follow the last—significant—coeff—flag. This thesis 

proposes to preload the context model group for the last—significant—coeff_flag 

in its next cycle when the group for significant—coeff—flag is loaded. 

The first two methods are for special cases. The conditions are easy to detect. 
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For general cases, this thesis proposes a detection logic to check whether the 

context model group is previously loaded to the context model registers. If a 

context model group is found, the ready flag will be asserted and no stall cycles 

will occur in this case. This detection can reduce stall cycles due to back and 

forth switching between context model groups of any syntax elements. 

With the proposed detection, it would not overwrite contents in context 

model register sets until it has determined the content is not useful. 

Figure 2-6 shows the timing diagram of two syntax elements decoding. seO 

represents the first syntax element with context model group ctx_group_0. It has 

three bins, sel represents the second syntax element with context model group 

ctx group O. The figure also shows the content of two context model register 

sets (CMRS). 

At clkl, ctx_group_0 is loaded to CMRS_0. At clk2, context model is 

selected. At clk3, seO_binO is decoded. Two cycles are stalled at the beginning 

of each decoding. As seO_binO does not match with any possible syntax element 

value, the context model for seO_binl is selected in the same cycle as 

DEC/MATCH. seO binl goes through a similar process. 

At clk5, se0_bin2 is decoded, the decoded bins finally match. The next 

context model group ctx_group_l is loaded to CMRS_1. 

At clk6, ctx_group_0 is written back to memory. 

At clk8, sel decoded bins match. With the detection logic, next context 

model group ctx_grp_0 will not be loaded from memory as it has been loaded to 

CMRS O already. No stall cycles occur for this case. 
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stal l cycle due to inter se 
memory read 

clk1 clk2 clk3 clk4 clk5 clk6 clk7 clk8 clk9 

stall stall seO—binO seO_bin1 se0_bin2 stall s e l b i n O se1_bin1 se2—binO 

O seO_binO LOAD_MEM CTXIDX DEC/MATCH 
9- _ 

seO_bin1 CTXIDX DEC/MATCH 
^ — ^ 
0 

se0_bin2 CTXIDX DEC/MATCH WRITE_IVIEM 

01 se1_binO LOAD_MEM CTXIDX DEC/MATCH 
CD — 

-G se1_bin1 CTXIDX DEC/MATCH WRITE_MEM 

o se2—binO CTXIDX DEC/MATCH 
E" 
D) 
o 

CMRS 一 0 ctx_grp_0 

CMRS—1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ctx_grp_1 

Figure 2-6 : Timing diagram of the proposed pipelined architecture 

2.4.3. Context Model Grouping 

Except for syntax element coeff_abs_level_minus 1 that has five context 

models, all other elements only have a maximum of four context models for 

each decision bin decoding. Useful four context models should be loaded from 

context model memory. In H.264, context model is addressed by ctxidx which 

is equal to the sum of ctxIdxOffset and ctxidxinc. Each syntax element type has 

a unique ctxIdxOffset. The range of ctxidxinc is different for different syntax 

elements. For example, mb_type for I slice ctxidxinc can be from 0 to 7. 

prev_intra4x4_pred_mode and rem_intra4x4_pred_mode can only be 0. Except 

for prev_iiitra4x4_pred_mode, rem_intra4x4_pred_mode and mb_type_prefix 

and mb_type_suffix for P slice, the context model grouping is based on 

ctxidxinc. For valid ctxidxinc, four ctxidxinc ranges, 0 to 3, 4 to 7, 8 to 11，12 

to 15, form the four different groups. 
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prev_intra4x4_pred_mode and rem_intra4x4_pred_mode only have one 

context model each. As mentioned before, they frequently switch to each other. 

These two context models are grouped in the same group to reduce group 

switching. 

The same context model is addressed by mb typejprefix (ctxldxliic=3) and 

mb—type—suffix (ctxldxlnc=0) for P slice. This context model can be either 

grouped to mb_type_prefix or mb—type—suffix but not both. 

With the proposed grouping scheme, 399 context models are grouped into 

112 groups. The required context memory size is 28 bit x 112, with a total of 

3136 bits. 

2.4.4. Initialization of Context Models 

The organization of context model init ROM is the same as the context 

model grouping, which is four in a group. There are four init tables, each of 

which specifies the values of its init variables (m, n). 

Each ROM 16-bit entry stores a pair of context model variables (m, n) of 8 

bits each. The first group is written to a ROM address between 0x00 and 0x03. 

The second group is written from address 0x04 to 0x07 and so on. The required 

ROM size is 16bits x 4 x 112x4, ina total of 28,672 bits. 

When initialization starts, the context model ROM address counter resets. A 

pair of (m, n) is read out each time. The address counter is incremental by one. 

The initialization results of PSTATE and MPS will be stored in one of the 

context register sets first. After all context model groups, four context models, 

are initialized, the result will be written to the context model memory for later 
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use. At the same time, the next context model group initial result will be written 

to other unoccupied or free context model register sets. 

Addr=0 to 3 Addr=4 to 7 Addr=8 to 12 Addr= 13 to 16 

„ CMRS 0 ； r r r r r CMRS 0 ~ CMRS 0 .. r CMRS 0 . , , -I •, : write to , ,, - write to In Used In Used memory memory 

CMRS 1 C I V I ^ I CMRS 1 
, , , - write to I I , : 
In Used In Used 

memory 

Figure 2-7 : Initialization of context models Rom address from 0 to 16 

2.5. FSM Method Bin Matching 

Table 2-1 shows some examples of syntax element values and their 

corresponding bin strings. 

There are two categories: binary and non-binary. Syntax elements in Binary 

categories are 1-bit flags. The bin matching process is simple for this category. 

In non-binary categories, syntax elements have bin strings of more than one 

bin. 

Binarization is a process converting syntax values to bin strings. Matching 

process is an inverse process of binarization. There are four types of binarization: 

table mapping, unary, truncated unary, fixed length and concatenated unary/ k-th 

order Exp-golomb (UEGk). The completion of the matching process is simply 

signalled by binVal or bin count. For table mapping and UEGk, it depends on the 
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prior decoded bin. In our proposed design, separate FSMs are designed for table 

mapping and UEGk syntax values matching. 

Category Type of Syntax element (SE) Example of bin string 
binarization SE value Bin string 

(bnbib2...bn) 
Non-binary Table Mapping mb_type I slice, mb_ type =0 0 

sub—mb—type P slice, sub—mb_type 010 — — ^ — -

Unary ref idx 10, ref idx 11 0 0 
mb qp delta 2 110 “ 

Truncated Unary intra cliroma_pred_mode 1 1_0 
coded-blockjpattem—suffixed 2 11 

Fixed Length rem_intra4x4_pred_mode 3 H j 
coded_block_pattern_prefix 15 1111 

Concatenated mvdJO, m v d j l 10 9’{1}, 001 
unary/ k-th order coeff_absJevel_minusl 23 14,{1},1110001 
Exp-Golomb 

Binary mb_ skip_flag 1 1 
mb field decoding flag 1 1 
prev intra4x4 pred_niode_flag 1 1 
coded block flag 1 1 
significant coeff flag 0 0 
last_sigiiificaiit_coeff_flag 0 0 
coeff_sign—flag 0 0 
end of slice flag 0 0 

Table 2-1 : Example of Syntax element and type of binarization 

For tabling mapping syntax element, there are two ways to implement it. 

First it is by using LUT method; second it is by using FSM method. In LUT method, 

a prior decoded bin is stored in the bin string register. The current bin and bin string 

register form a search bin string, if the search bin string matches with the LUT. 

When the decoding process is done, the syntax value is decoded. Otherwise, the 

current bin will be shifted to the bin string register. And the matching process will 

need to be redone for the next bin. This method results in a longer combinational 

path. 

There is a critical timing path from CMRS O/CMRS l register to the next 

context model group which passes through a match complete signal. It is necessary 
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to keep all combinational paths as short as possible; thus leading to the FSM method. 

By FSM method, the combinational path is shorter. This can help to shorten the 

critical path. Fig 2-8 shows the FSM of mb type for I slice and P slice. 

I—slice z \ P_slice 
广 b i n V a l 

( g ^ \ X 

( T S i ^ ) V match \ ( P _ b i n l ) 

(fh^ 1 \ \ \ … Jon 
f 夕 B _ = � 乂 ）o/i ^ y 

Figure 2-8 : FSM of CABAC mb_type bin matching 

For example, there are 25 possible bit string patterns for mb_type (I Slice). 

With FSM method, the decode completion is the value of one bin data only， 

the current binVal or the one prior. If the state encoded with one -hot encoding, the 

match flag logic is an OR gate with 5 inputs, and 5 2-input AND gates. The timing 

path is much smaller than then LUT method. 

2.6. CABAC Experimental Results 

The proposed CABAC decoder is implemented using UMC 9nm 9-metal-

layer technology. The CABAC decoder is part of the standalone Main Profile 

decoder. The standalone decoder works at 143MHz, This CABAC decoder uses a 

two-port on-chip 112 x28 bit SRAM as Context Memory, and the total logic 

equivalent gate count for CABAC is 40,373. According to the simulation result, the 
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average throughput rate of the proposed CABAC decoder is 0.51 bit/cycle. At 

working frequency of 143MHz, the proposed decoder achieves 72.42Mbit/s. 

Test sequence Bitstream bit bit rate Stall cycle Bin MBin/s Average Cycle 
name rate @30 (I frame/ saved /Cycle Decoding /bin 

frame (Mbit/s) P frame) (I frame time for one 
(kbit /frame) / P frame) intra period 

(kbit /frame) (ms) 

Station L9 26.2%/ 0^5 6 3 . 8 8 4 3 . 7 9 2.24 ^ 

s u n f l o w e r I H 75jo7 28.0%/ ^ 6 3 . 8 8 4 3 . 7 9 2.24 
^ 16.3% 

m s h j i o u r J a 22.7%/ ^ 7 3 . 5 7 7 1 . 3 6 1.94 
16.8% 

blue_sky ^ 118.4/ 44.9%/ ^ 6 6 . 2 7 6 8 . 5 2 2.17 
l O 11.9% 

p e d e s t r i a n 6 1 ? ^ 26.8%/ ^ 7 3 . 2 7 8 7 ^ 2 1.95 
area 17.8% 

Tractor O 160.8/ 33.9% 7 5 . 2 4 1 4 2 . 6 5 1.90 
^ 19.1% 

Riverbed 148.5/ 33.1%/ ^ 8 1 . 6 4 3 6 9 . 8 1.75 
^ 2 5 ^ 

Parkjoy 25^ 247.9/ 55.2%/ 8 1 . 6 4 2 4 4 . 4 1.75 
^ 33.0% 

(Average) ^ 72.42 1.99 

Table 2-2 : Performance of standalone CABAC 
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Figure 2-9 : Decoding time vs. bitstream bit rate of different bitstreams 
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Table 2-3 shows the simulation results of the proposed CABAC decoder. 

The test sequences have a frame size of 1920x1080. They are encoded with setting 

QP二29, Main Profile, Level 4.0, Intra Period=30 ( I I frame and 29 P frame every 

second), sampling rate =30fps. 

I frame is a frame which only contains intra-prediction macroblocks. P 

frame is a frame which can contain intra- and inter-prediction macroblocks. 

Sampling rate represents the number of frame sampled during shooting. Intra Period 

represents the interval between two I frames during encoding. The number of I 

frame is larger if Intra Period is smaller. Since I frame bit rate is larger than that of 

P frame, smaller Intra Period will increase bitstream bit rate. The simulation 

bitstream bit rates ranges from 1.9 Mbit/s to 25.9 Mbit/s. 

Figure 2-9 shows the decoding time for one Intra Period against the 

bitstream bit rate of different bitstreams in simulation. It shows the decoding time is 

longer for bitstream of higher bit rate in general. However, the decoding time of the 

‘‘parkjoy，，case does not increase with the bit rate because the proposed stall 

reduction technique is working efficiently in this case. 

From simulation results, 8.5 %to 55.2 % of stall cycles are saved. In the 

"pa rk joy" case, 55.2% and 33.0 % of stall cycles have been saved in I frame and P 

frame respectively. The result shows the proposed stall reduction technique has 

reduced the decoding time efficiently. 

In addition, from simulation results, the proposed CABAC average decoding 

time for one Intra Period is within a second. It shows the proposed CABAC can 

decode Full HD bitstream in real time. 
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Yu H.Yu C.Jian Yi B.Shi Proposed 
^ [4] [6] m 丨 丨 91 Design 

、， 2005 2009 2009 2007 2008 ^ 
Year 

^ . , ^ ^ O s ^ ^ ^ 
Technology 

Gate Counts ^ 4 7 , 0 8 1 43.6 K 81,162 28,956 40,373 

Memory 420 12.18K 1 0 . 8 1 K 3 9 2 (context) + ̂  
(Bytes) 1140 (iiB info) 

Maximum ^ ^ ^ 143 
Frequency 

(MHz) 
. 7 2 0 x 4 8 0 4 0 0 0 x 2 0 0 0 4 x l 0 8 0 H D 1 9 2 0 x 1 0 8 0 H D l O S O i 1 9 2 0 x 1088 

Resolution @30fips @30fps @25fps @30 fVames 

Data Rate L08 L ^ 0.254 L ^ 05 
(Bin/cycle) 
Date Rate N /A 0.925 ^ l 9 3 ^ 2 
(cycle/Bin) 

Throughput N/A 3U ^ ^ n 
(Mbin/s) 

Table 2-3 : Comparison of proposed CABAC and other design 

Table 2-4 shows the comparison of the proposed CABAC and other designs. 

The designs of Yi and B. Shi contain pipelined architectures. Two stall 

cycles due to switching context model group and single bin AE causes Yi to need 

3.93 cycles to decode one bin. B. Shi does not have stall cycles. It generates 

1 bin/cycle for decision bin and 2bin/cycle for bypass bin. The average data rate of 

the B. Shi design is 1.27 bin/cycles, which is more than one bin per cycle. The 

statistical result of the B. Shi design performance actually is limited by statistics of 

the decision bin to bypass bin ratio. If more bypass bin occurs，the performance is 

closer to 2bin/cycle; otherwise, it is more close to Ibin/cycle. The average data rate 

of the proposed design is 0.5bin /cycle or 2 cycle/bin. Compare to Yi's design, the 

proposed design has two cycles reduction. One cycle is due to two context model 

register sets. The other cycle is due to the proposed stall cycle reduction scheme. 
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The proposed design cannot achieve more than one bin per cycle because it only has 

one-bin AE and some cycles are idle for the control. 

Although the designs of H. Yu[6] and C. Jiaii [7] do not have pipelined 

architectures but they use two-bin AE. They achieve more than one bin per cycle in 

data rate. C. Jian's design has two-bin AE. It can perform one decision bin, one 

bypass bin, two decision bins, two bypass bins or one decision one bypass bins 

decoding. It is the most efficient AE among the designs. As H. Yu can work at high 

frequency, even though it does not have the highest data rate, it has the highest 

throughput at 360Mbin/s among other designs. 

2.7. Summary 

Long timing paths can be broken into several stages to meet the timing 

requirement. The throughput arithmetic decoding engine can be formulated as 

working frequency / no. of cycle per bin. With a fixed frequency, reducing the 

number of cycles per bin can increase the throughput. For a single bin arithmetic 

decoding engine, reducing the idle cycle in an arithmetic decoding engine is the 

only way to reduce the number of cycles per bin. The proposed design uses a 

pipelined architecture to reduce idle cycle. Two 4x7 bit context model register sets 

have been proposed to reduce 9 to 34 % stall cycles caused by context model 

memory access. The proposed CABAC design can decode Full HD video in real 

time. 
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CHAPTER 3 ： INTEGRATION 

3.1. Introduction 

This thesis aims to develop a Main Profile Decoder supporting Full HD 

resolution. To shorten the development time, this thesis proposes to reuse a Baseline 

Decoder design for low resolution. Since the reused design does not support 

CABAC, the proposed CABAC needs to be integrated. To support Full HD 

resolution, the neighbouring info memory size in the reused design has to be 

increased, so that it can support the data range of the syntax element. As the 

proposed decoder will work at a higher frequency, some combinational paths that 

did not violate timing constraints in the original design now violate the timing 

constraints imposed by the proposed integration design. 

This chapter will first review the reused design. Integration with CABAC 

and memory size change will be described. Later, new violation timing paths in the 

integrated design and proposed solutions will be described. Finally, it summarizes 

the proposed design performance. 

3.2. Reused Baseline Decoder Review 

The reused design, from Xu [2]，was published in 2007. It is silicon-proven 

and has a very low power consumption. The design consists of two functional 

blocks, bitstream parser and reconstruction. The function of the bitstream parser is 

to decode bitstream to syntax elements values. It consisted of syntax element FSM 
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and entropy decoders, UVLC and CAVLC. Syntax element FSM controls the 

syntax element decoding sequence. 

The function of reconstruction is to compute the video frame from syntax 

elements. It consists of an inverse transform block, an intra-prediction block, an 

inter-prediction block, a summation block and a deblocking filter block. A pipelined 

architecture in reconstruction allows data reuse, and reduces main memory access 

which results in improved power efficiency. Figure 3-1 is the architecture of the 

reused design. Two functional blocks are separated by syntax element registers. 

When bitstream parser decodes one syntax element, the result is stored in the 

syntax element registers. As we have reviewed in Chapter 1, a macroblock is 

divided into 4x4 blocks. The inter- or intra-prediction will start after bitstream 

parser decodes all macroblock layer syntax elements until its residual and one 4x4 

block prediction result is generated. IQIT will start after decoding residual syntax 

elements for 4x4 blocks. The output frame data is the summation of prediction and 

IQIT. The output is written to the output frame memory or written to the deblocking 

filter memory if a deblocking filtering is needed. This process iterates through all 

4x4 blocks in the same macroblock. After one macroblock is decoded and 

reconstructed, bitstream parser will decode syntax elements for another macroblock. 

The reconstruction process does the same thing in every macroblock. When all 

macroblocks are reconstructed, the whole frame is reconstructed. 
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Figure 3-1 : Architecture of the reused design 

Xu's design was designed for 0.1 Sum technology. The reconstruction path 

can run at a maximum frequency of 200MHz. The working frequency is 1.5MHz. 

Its throughput is QCIFx30fps. The power consumption is 293uW@ l.OV or 

973uW@1.8V. Table 3-1 is the summary of the reused design. 
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Technology UMC 0.1 Sum CMOS IP6M 

Supply Voltage 1.8V core, 3.3 I/O 

Size 3.8x3.8mm2 core 

169K 
D — C o s t Gates (inNAND2) 

、， 2.5k Byte 
Memory SRAM 

Operating Frequency 1.5MHz for QCIF @30fps 

~ ~ 293uW@1.0V 
Power Rating 973uW@1.8V 
Reconstruction Path Max 200MHz 
Freq 
M ? Throughput 48.53 Full HD @ Max f r e q ~ 
of Reconstruction Path 

Table 3-1 : Summary of reused design, Xu design 

3.3. Integration 

3.3.1. CABAC 

To support CABAC, the proposed CABAC is integrated into the reused 

design. 

CABAC becomes part of Bitstream parser. The Bitstream buffer inputs to 

the CABAC, and the CABAC outputs to the syntax element registers. States 

related to CABAC decoding are added to central FSM. If the current decoding 

syntax element is a CABAC syntax element, CABAC will be triggered. Since 

either CAVLC or CABAC works at one time, Luma/Cb/Cr coefficient Line 

Buffer is replaced by Common Info Line Buffer. Common Info Line Buffer is 

shared by CAVLC and CABAC. 

3.3.2. Memory Change In Size 
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The supporting resolution changes from QCIF (176x144) to Full HD 

(1920x1088). The new frame width becomes 10.9 times wider than the old one. 

All line buffers that store the upper pel data and upper neighbouring info have 

to be scaled up linearly. In addition, motion vectors, mvx and mvy, bit width 

increases from 8 bits to 14 bits. The motion vector memory is more than 18.9 

times of the reused design. 

RAM/RP Function Previous New Size No. of 
Size times 

Intra4x4_PredMode Intra4x4 pred 16bitxll 16bitxl20 10.9 
mode decoding 
CAVLC Luma 20bitxll 20bitxl20 

LumaLevel_mbAddrB coefficient level 
decoding 

Clii-omaLevel_Cb_mbAddrB CAVLC CB lObitxll 10bitxl20 
coefficient level 
decoding 

ChromaLevel_Cr—mbAddrBCAVLC CR lObitxll 10bitxl20 10.9 
coefficient level 
decoding 

mvx—mbAddrB Motion vector 32bitxll 56bitxl20 19.1 
decoding 

mvx_mbAddrC Motion vector Sbitxl 1 14bitxll9 18.9 
decoding 

mvy_mbAddrB Motion vector 32bitxl0 56bitxl20 19.1 
decoding 

mvy_mbAddrC Motion vector S b i t x l O 1 4 b i t x l l 9 18.9 
decoding 

DF mbAddrA Deblocking filter 32 x32bit unchanged 1 
"Intra mbAddrB RAM Intra prediction 32bit x88 32bitsx960 10.9 
" d F mbAddrB RAM Deblocking filter ~32bitx352 32bitsx384Q 10.9 

rec DF RAMO Deblocking filter 32bitx96 unchanged 1 
rec DF RAMI Deblocking filter 32bitx96 unchanged 1 

"Inb type mbAddrB SE decoding ~2 bitxl 1 2bitxl2Q 10.9 
bs coefficient mbAddrB Deblocking filter 4bitxl 1 4bitxl20 10.9 

~ ^ m o n info memory data CAVLC/CABAC N/A 67 bitxl20 N/A 
common info memory type CAVLC/CABAC N/A 9bitxl2Q N/A 

"Context memory | CABAC I N/A |28bi tx l l2 | N/A 
Table 3-2 : Memory in the integrated design 
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CABAC requires 67 bits x l20 memory for neighbouring info storage. It is 

not in used for non-CABAC mode. Therefore, this thesis proposes to share this 

memory with CAVLC Luma/Cb/Cr coefficient level decoding. 

LumaLevel_mb AddrB, ChromaLevel_Cb_mbAddrB, 

ChromaLevel_Cr_mbAddrB are packed to form 60 bit data and is written to 

common_info—memory—data. 

mb—type一mbAddrB and bs_coefficient_nibAddrB are originally 22 bits and 

44 bits registers respectively but now it becomes 240 bits and 480 bits in size. 

The thesis proposes mb_type_mbAddrB, bs_coefficient_mbAddrB and 3 bit 

CABAC info data to be written onto a memory common_info_memoiy_type. 

In summary, the total local memory is 23.5Kbyte. The sharing scheme can 

save 600 Bytes memory which is 2.5 % of the total memory. 

3.3.3. Data Range of Motion Vector 

Besides the change of buffer size, increase in supported resolution also 

affects the data range of motion vector. Motion vector is used during inter 

prediction. It has two components and they describe location displacement in x 

and y directions. Motion vector component is a signed number with a 2-bit 

fractional part and an N-bit integral part where N is derived from maximum 

value. For QCIF, the maximum integral part is 176 so N is equal to 8. For Full 

HD, the maximum integral part is 1920 so N is equal to 11. If CABAC mode is 

used, motion vector is decoded by CABAC; otherwise it is decoded by Exp-

Golomb decoder in UVLC. The proposed CABAC can support new motion 

vector data range but not Exp-Golomb decoder in the reused design. Since Exp-

Golomb decoder involved heading one vector, by simply increasing the data 
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width can solve the data range problem but timing violations will happen. This 

thesis proposes a line bitstream buffer to replace circular bitstream buffers, and 

changes one-cycle process to two-cycle process. Details of motion vector 

decoding and timing violation will be described in section 3.4. 

3.3.4. Address Generator 

Frame memory address generator is also modified to fix the time violations 

in synthesis. To shorten the timing path, intermediate values like yoffset, xoffset 

are calculated one cycle before use. 

Figure 3-2 is the proposed integrated design. Blocks in white are new design. 

Blocks in grey are unchanged design. Blocks with dots are modified units. 

3.4. Proposed Solution for Motion Vector Decoding 

3.4.1. Motion Vector Decoding in the Reused Design 

In non-CABAC mode, motion vector is decoded in UVLC. The codeword 

for motion vector is in signed Exp-Golomb format. The syntax element value is 

mapped to codeNum. The codeNum is the number represented by the codeword. 

The codeword has three parts. The first part is N leading zero. The second part 

is one ‘‘1”. The third part is N bit binary number, binaryN, where N is equal to 

the floor integer of log2 (codeNum+1). The total length is 2N+1 bits. Table 3-3 

is an example of codeNum, codeword, syntax element value. 
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I ‘ - t i t e r 3 IZr ^yeerl_ 
I ^ — — |:;:;:;DF:；:；:； 

i • r' ； lliiisiiuffet；：： 
：lAelilfdsS ； I 
：generator：： 

Memory controller 

Frame Frame 
buffeM bufferO 

Figure 3-2 : Architecture of the proposed integrated design 
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codeword codeNum Syntax element value 

i 0 0 

^ i i 

^ n 2 A 

00100 3 2 

00101 4 ^ 

00110 5 3 

00111 6 ^ 

{{N-leading "0"},l,{N-bit binary}} {l,{N-bit binary}} -1 

k ( - l ^ k + l c e i l ( k / 2 ) ^ 

Table 3-3 : codeword and codeNum of Exp-Golomb 

In Full HD resolution, the largest codeNum of motion vector has 14 

bits. The codeword has 13 leading zeros, one ‘T，and 13 bit binaries. There are 

27 bits in total. 

In the reused design, Exp-Golomb decoder decodes the codeword in one 

cycle but it only supports codeword up to 16 bits. The limitation factor is the 16 

bits output of the bitstream buffer. Increasing the width of the bitstream data 

output can remove the limitation but it requires increasing the number of MUX 

in the bitstream buffer. 

In the reused design, the bitstream buffer was a 128 bit circular buffer. There 

were 16 x 128-to-l MUX in the output. To support codeword of 27 bits, the 

number of 128-to-l MUX has to be at least 27. From the synthesis result, there 

are serious timing violations at the bitstream buffer data output. The violation 

paths passed through the bitstream buffer pointer and Exp-Golomb decoder. 
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To resolve the timing problem, this thesis has proposed a 48-bit line 

bitstream buffer to replace the circular bitstream buffer. There are two stages in 

the line buffer. The first stage has 16 bits shift registers. The second stage has 

32 bits registers. Figure 3-3 shows the proposed line bitstream buffer. Bitstream 

data is read from memory and fills up the 32-bit register. The second stage 

register will then be filled by the first stage register. The 16 bits upper part of 

the bitstream data output come from the 16-bit register. The 16 bits lower part is 

selected from the 32-bit register. When one bit is consumed，one bit from the 

32-bit register is shifted into the 16-bit register. When 32-bit register contains 

less than 16 valid bits, one entry from memory is read and shift into the 32-bit 

register. The proposed bitstream buffer has less registers and MUX. With the 

proposed bitstream buffer many timing violations related to bitstream buffer 

output and bitstream buffer pointer are resolved. 

memory 

V 

1®' stage 32-bit register , 

\ MUX / 

^̂  ^ : z f z _ 
\ \ MUX z , 2nd stage 16-bit register 

n _ — I — 
Bitstream data output [15:0] Bitstream data output [31:16] 

、r 
Bitstream data output [31:0] 

Figure 3-3 : The proposed line bitstream buffer 

36 



3.5. Synthesis Result and Performance Analysis 

The proposed integration design is implemented using UMC 9nm 9-metal-

layer technology. The post layout STA reports critical path being 6.571ns. The 

maximum frequency is 152M Hz. 

0 

The proposed integration occupies 1.33 x 1.33 mm silicon area with the 

hardware complexity of 183K equivalent gates and 20.5 KB of local memory. 

Figure 3-4 shows the layout of the proposed integration. 

The design is simulated with test video sequences in size of 1920x1088. At 

working frequency of 143MHz, the decoder average frame rates in CAVLC and 

CABAC modes are 38.2 fps and 36.2 fps respectively. It can achieve real-time 

H.264 video decoding on HD1080 video (1920xl088@30Hz). The average 

throughput in CAVLC and CABAC modes are respectively 464cycles/MB and 490 

cycles/MB. Table 3-5 is the comparison of the proposed design and other designs. 

The proposed design has a gate count of 1.14 times and memory of 4.4 times to 

Lin's design. The proposed design can work at higher frequencies. The estimated 

power consumption is 234mW. 
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Figure 3-4 ： The layout of the proposed integration 

一 CAVLC CABAC 
Sequence Bit rate Average Average Bit rate Average Average 

(Mb/s) Cycle Frame (Mb/s) Cycle Frame 
@30.00Hz /MB Rate @30.00Hz /MB Rate 

Blue sky 4.97 435 40.3 “ 4.45 441 “ 39.7 
Park joy 2 8 ^ 516 一 34.2 27.25 一 578 30.8 
Pedestrian area 421 — 41.9 4.62 ~ 425 41.3 

—Riverbed — 27.0^ 407 43,0 "12.46 464 37.8 
—Rush hour — 4.3厂 434 40.7 1 . 8 5 445 39.4 
“Statioii2 483 — 36.5 “ 2.29 499 “ 35.3 
“Sunflower S ^ T 496 — 35.6 “ 3.02 515 “ 34.1 
"tractor 1 0 ^ 523 — 33.5 "“ 9.26 559 “ 31.3 
"Average 464 38.2 490 36.2 

Table 3-4 ： The proposed integrated design simulation result 

Proposed Lin [10] Hu[ll] 
design 

Specification 1920x1088 1920x1088 2048x1024^ 
@30fps @30fps @3Qfps 

Profile Baseline/Main Baseline/Main Main 
Gate Count 1 8 3 K 1 6 0 K 300K 

(ill NAND2) (in NAND2) 
Memory 20.5KB 4.5KB 74KB — 
Working Freq. 1 4 3 ^ 
(MHz) 
Technology 90nm 18Qnm 13Qnm 
Power consumption 234mW 320mW -

(estimated in 
synthesis) 

Table 3-5 : Comparison of the proposed design with the other design 
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CHAPTER 4 ： CONCLUSION 

4.1. Main Contribution 

The objective of this research is to develop a Main Profile decoder 

supporting Full HD resolution by reusing a Baseline Profile decoder. The key 

contributions are summarized below: 

• Development of a full function CABAC decoder; 

• Development of a context model buffering and stall cycle reduction scheme; 

• Integration of the proposed CABAC to a Baseline Profile decoder; 

• Reuse and modification of the Baseline Decoder to support CABAC and Full 

HD resolution; 

• Development of a line bitstream buffer to resolve timing violations in the 

integrated design; 

• Fixing of timing violations caused by memory address generator in the 

integrated design; 

• Development of RTL to Layout design using common ASIC flow; 

• Passing of RTL-to-gate equivalency test. 

4.2. Reflection on the Development 

Reusing design has advantages of shorter development time, verified 

functionalities and predictable performance. The disadvantages are the limitation in 

performance of the original reused design. 
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In this research, many timing violations occur after integration. There is a lot 

of work in fixing the problem. The performance degrades a little after the timing is 

fixed. It is important that the reused design has timing close to the target frequency. 

To minimize problems at later stages, the reused design should be evaluated before 

the design stage, for example, the maximum frequency and maximum throughput 

which can limit the overall performance. The maximum throughput can be found 

from the design document. However, the maximum frequency is only known until 

the synthesis stage. Therefore, trial synthesis at the target frequency should be taken 

place before the actual design stage. From the trial synthesis, timing violations can 

be identified in the very beginning. The effort to fix the violation and consequences 

can therefore be estimated. 

Moreover, the importance of coding style is unexpectedly high. This is the 

first time the author goes through all procedures from RTL design to physical 

design. At the end of this research, the author agrees a good coding style can 

improve the development efficiency, especially in the debugging process in the 

post-RTL design stages. 

After the RTL design, the RTL codes are synthesized to become gate netlist. 

Timing violations are reported at this stage and they have to be fixed before moving 

on to the next stage. Fixing timing violation is an iterated process between RTL 

design modification and synthesis. 

Violation path is initially identified by synthesis tools. It has to be 

investigated whether it is a false path or not. If it is a false path, the violation can be 

ignored and the path is defined as the exceptional path. If it is a real violation, the 

source of the violation has to be located. Replacing intermediate signals with shorter 
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timing paths and adding flopping stages to break down the violation paths are some 

of the possible solutions. However, the process usually requires reviewing RTL 

design extensively. 

Good coding style, like consistent signal naming style, is good for 

identifying signal properties when reviewing RTL design. Say, all registers are 

named with suffix “Oq，，，all input signals are named with prefix “i—，,，all output 

signals are named with “o—” and all internal signals are named without suffix or 

prefix. Signals with “i_’，are generated in other blocks. They are the signals from 

upstream blocks and could be the problem sources. Signals with “o_’，are consumed 

by other blocks. Any change to the output signals will affect theirs consumer blocks. 

So if the output signals change, their consumer blocks have to be reviewed too. 

4.3. Future Work 

The first approved version of H.264 was released in 2003. Since it was first 

released, some additional features, Fidelity Range Extensions (FRExt), Scalable 

Video Coding (SVC) and Multiview Video coding (MVC) had been included in the 

standard. FRExt allows higher quality video coding and primarily for professional 

applications. SVC allows the construction of bitstream that contains siib-bitstream 

with different spatial or temporal resolution. MVC allows bitstream representing 

more than one view of a video. The well known application is stereoscopic 3D 

video coding. All the three features are built from the basic feature of H.246. The 

author thinks that, after small changes like increasing pel data width, modifying 

syntax element FSM and adding context models, the proposed design can support 
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FRExt feature. However, it is not that simple for SVC and MVC. The author thinks 

that multi decoding cores may be needed as SVC and MVC involving multi 

bitstream decoding. 

Future research can be conducted on SVC and MVC hardware 

implementation. 
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