556 research outputs found

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome ParkfunktionalitĂ€t in einem realen VersuchstrĂ€ger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken ĂŒber eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren DatensĂ€tze dieser Annotationsebene und Radarspezifikation öffentlich verfĂŒgbar. Das ĂŒberwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstĂŒtzt. FĂŒr die kohĂ€rente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrĂŒckt. Ein speziell fĂŒr Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM fĂŒr beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen ParkfunktionalitĂ€t evaluiert. Im Durchschnitt ĂŒber 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher ManöverlĂ€nge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% ĂŒbertrifft. Die Kartengenauigkeit von verĂ€nderlichen, neukartierten Orten ĂŒber eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. FĂŒr das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet

    Learning and Searching Methods for Robust, Real-Time Visual Odometry.

    Full text link
    Accurate position estimation provides a critical foundation for mobile robot perception and control. While well-studied, it remains difficult to provide timely, precise, and robust position estimates for applications that operate in uncontrolled environments, such as robotic exploration and autonomous driving. Continuous, high-rate egomotion estimation is possible using cameras and Visual Odometry (VO), which tracks the movement of sparse scene content known as image keypoints or features. However, high update rates, often 30~Hz or greater, leave little computation time per frame, while variability in scene content stresses robustness. Due to these challenges, implementing an accurate and robust visual odometry system remains difficult. This thesis investigates fundamental improvements throughout all stages of a visual odometry system, and has three primary contributions: The first contribution is a machine learning method for feature detector design. This method considers end-to-end motion estimation accuracy during learning. Consequently, accuracy and robustness are improved across multiple challenging datasets in comparison to state of the art alternatives. The second contribution is a proposed feature descriptor, TailoredBRIEF, that builds upon recent advances in the field in fast, low-memory descriptor extraction and matching. TailoredBRIEF is an in-situ descriptor learning method that improves feature matching accuracy by efficiently customizing descriptor structures on a per-feature basis. Further, a common asymmetry in vision system design between reference and query images is described and exploited, enabling approaches that would otherwise exceed runtime constraints. The final contribution is a new algorithm for visual motion estimation: Perspective Alignment Search~(PAS). Many vision systems depend on the unique appearance of features during matching, despite a large quantity of non-unique features in otherwise barren environments. A search-based method, PAS, is proposed to employ features that lack unique appearance through descriptorless matching. This method simplifies visual odometry pipelines, defining one method that subsumes feature matching, outlier rejection, and motion estimation. Throughout this work, evaluations of the proposed methods and systems are carried out on ground-truth datasets, often generated with custom experimental platforms in challenging environments. Particular focus is placed on preserving runtimes compatible with real-time operation, as is necessary for deployment in the field.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113365/1/chardson_1.pd

    Vehicle Tracking and Motion Estimation Based on Stereo Vision Sequences

    Get PDF
    In this dissertation, a novel approach for estimating trajectories of road vehicles such as cars, vans, or motorbikes, based on stereo image sequences is presented. Moving objects are detected and reliably tracked in real-time from within a moving car. The resulting information on the pose and motion state of other moving objects with respect to the own vehicle is an essential basis for future driver assistance and safety systems, e.g., for collision prediction. The focus of this contribution is on oncoming traffic, while most existing work in the literature addresses tracking the lead vehicle. The overall approach is generic and scalable to a variety of traffic scenes including inner city, country road, and highway scenarios. A considerable part of this thesis addresses oncoming traffic at urban intersections. The parameters to be estimated include the 3D position and orientation of an object relative to the ego-vehicle, as well as the object's shape, dimension, velocity, acceleration and the rotational velocity (yaw rate). The key idea is to derive these parameters from a set of tracked 3D points on the object's surface, which are registered to a time-consistent object coordinate system, by means of an extended Kalman filter. Combining the rigid 3D point cloud model with the dynamic model of a vehicle is one main contribution of this thesis. Vehicle tracking at intersections requires covering a wide range of different object dynamics, since vehicles can turn quickly. Three different approaches for tracking objects during highly dynamic turn maneuvers up to extreme maneuvers such as skidding are presented and compared. These approaches allow for an online adaptation of the filter parameter values, overcoming manual parameter tuning depending on the dynamics of the tracked object in the scene. This is the second main contribution. Further issues include the introduction of two initialization methods, a robust outlier handling, a probabilistic approach for assigning new points to a tracked object, as well as mid-level fusion of the vision-based approach with a radar sensor. The overall system is systematically evaluated both on simulated and real-world data. The experimental results show the proposed system is able to accurately estimate the object pose and motion parameters in a variety of challenging situations, including night scenes, quick turn maneuvers, and partial occlusions. The limits of the system are also carefully investigated.In dieser Dissertation wird ein Ansatz zur TrajektorienschĂ€tzung von Straßenfahrzeugen (PKW, Lieferwagen, MotorrĂ€der,...) anhand von Stereo-Bildfolgen vorgestellt. Bewegte Objekte werden in Echtzeit aus einem fahrenden Auto heraus automatisch detektiert, vermessen und deren Bewegungszustand relativ zum eigenen Fahrzeug zuverlĂ€ssig bestimmt. Die gewonnenen Informationen liefern einen entscheidenden Grundstein fĂŒr zukĂŒnftige Fahrerassistenz- und Sicherheitssysteme im Automobilbereich, beispielsweise zur KollisionsprĂ€diktion. WĂ€hrend der Großteil der existierenden Literatur das Detektieren und Verfolgen vorausfahrender Fahrzeuge in Autobahnszenarien adressiert, setzt diese Arbeit einen Schwerpunkt auf den Gegenverkehr, speziell an stĂ€dtischen Kreuzungen. Der Ansatz ist jedoch grundsĂ€tzlich generisch und skalierbar fĂŒr eine Vielzahl an Verkehrssituationen (Innenstadt, Landstraße, Autobahn). Die zu schĂ€tzenden Parameter beinhalten die rĂ€umliche Lage des anderen Fahrzeugs relativ zum eigenen Fahrzeug, die Objekt-Geschwindigkeit und -LĂ€ngsbeschleunigung, sowie die Rotationsgeschwindigkeit (Gierrate) des beobachteten Objektes. ZusĂ€tzlich werden die Objektabmaße sowie die Objektform rekonstruiert. Die Grundidee ist es, diese Parameter anhand der Transformation von beobachteten 3D Punkten, welche eine ortsfeste Position auf der ObjektoberflĂ€che besitzen, mittels eines rekursiven SchĂ€tzers (Kalman Filter) zu bestimmen. Ein wesentlicher Beitrag dieser Arbeit liegt in der Kombination des Starrkörpermodells der Punktewolke mit einem Fahrzeugbewegungsmodell. An Kreuzungen können sehr unterschiedliche Dynamiken auftreten, von einer Geradeausfahrt mit konstanter Geschwindigkeit bis hin zum raschen Abbiegen. Um eine manuelle Parameteradaption abhĂ€ngig von der jeweiligen Szene zu vermeiden, werden drei verschiedene AnsĂ€tze zur automatisierten Anpassung der Filterparameter an die vorliegende Situation vorgestellt und verglichen. Dies stellt den zweiten Hauptbeitrag der Arbeit dar. Weitere wichtige BeitrĂ€ge sind zwei alternative Initialisierungsmethoden, eine robuste Ausreißerbehandlung, ein probabilistischer Ansatz zur Zuordnung neuer Objektpunkte, sowie die Fusion des bildbasierten Verfahrens mit einem Radar-Sensor. Das Gesamtsystem wird im Rahmen dieser Arbeit systematisch anhand von simulierten und realen Straßenverkehrsszenen evaluiert. Die Ergebnisse zeigen, dass das vorgestellte Verfahren in der Lage ist, die unbekannten Objektparameter auch unter schwierigen Umgebungsbedingungen, beispielsweise bei Nacht, schnellen Abbiegemanövern oder unter Teilverdeckungen, sehr prĂ€zise zu schĂ€tzen. Die Grenzen des Systems werden ebenfalls sorgfĂ€ltig untersucht

    Binokulare EigenbewegungsschĂ€tzung fĂŒr Fahrerassistenzanwendungen

    Get PDF
    Driving can be dangerous. Humans become inattentive when performing a monotonous task like driving. Also the risk implied while multi-tasking, like using the cellular phone while driving, can break the concentration of the driver and increase the risk of accidents. Others factors like exhaustion, nervousness and excitement affect the performance of the driver and the response time. Consequently, car manufacturers have developed systems in the last decades which assist the driver under various circumstances. These systems are called driver assistance systems. Driver assistance systems are meant to support the task of driving, and the field of action varies from alerting the driver, with acoustical or optical warnings, to taking control of the car, such as keeping the vehicle in the traffic lane until the driver resumes control. For such a purpose, the vehicle is equipped with on-board sensors which allow the perception of the environment and/or the state of the vehicle. Cameras are sensors which extract useful information about the visual appearance of the environment. Additionally, a binocular system allows the extraction of 3D information. One of the main requirements for most camera-based driver assistance systems is the accurate knowledge of the motion of the vehicle. Some sources of information, like velocimeters and GPS, are of common use in vehicles today. Nevertheless, the resolution and accuracy usually achieved with these systems are not enough for many real-time applications. The computation of ego-motion from sequences of stereo images for the implementation of driving intelligent systems, like autonomous navigation or collision avoidance, constitutes the core of this thesis. This dissertation proposes a framework for the simultaneous computation of the 6 degrees of freedom of ego-motion (rotation and translation in 3D Euclidean space), the estimation of the scene structure and the detection and estimation of independently moving objects. The input is exclusively provided by a binocular system and the framework does not call for any data acquisition strategy, i.e. the stereo images are just processed as they are provided. Stereo allows one to establish correspondences between left and right images, estimating 3D points of the environment via triangulation. Likewise, feature tracking establishes correspondences between the images acquired at different time instances. When both are used together for a large number of points, the result is a set of clouds of 3D points with point-to-point correspondences between clouds. The apparent motion of the 3D points between consecutive frames is caused by a variety of reasons. The most dominant motion for most of the points in the clouds is caused by the ego-motion of the vehicle; as the vehicle moves and images are acquired, the relative position of the world points with respect to the vehicle changes. Motion is also caused by objects moving in the environment. They move independently of the vehicle motion, so the observed motion for these points is the sum of the ego-vehicle motion and the independent motion of the object. A third reason, and of paramount importance in vision applications, is caused by correspondence problems, i.e. the incorrect spatial or temporal assignment of the point-to-point correspondence. Furthermore, all the points in the clouds are actually noisy measurements of the real unknown 3D points of the environment. Solving ego-motion and scene structure from the clouds of points requires some previous analysis of the noise involved in the imaging process, and how it propagates as the data is processed. Therefore, this dissertation analyzes the noise properties of the 3D points obtained through stereo triangulation. This leads to the detection of a bias in the estimation of 3D position, which is corrected with a reformulation of the projection equation. Ego-motion is obtained by finding the rotation and translation between the two clouds of points. This problem is known as absolute orientation, and many solutions based on least squares have been proposed in the literature. This thesis reviews the available closed form solutions to the problem. The proposed framework is divided in three main blocks: 1) stereo and feature tracking computation, 2) ego-motion estimation and 3) estimation of 3D point position and 3D velocity. The first block solves the correspondence problem providing the clouds of points as output. No special implementation of this block is required in this thesis. The ego-motion block computes the motion of the cameras by finding the absolute orientation between the clouds of static points in the environment. Since the cloud of points might contain independently moving objects and outliers generated by false correspondences, the direct computation of the least squares might lead to an erroneous solution. The first contribution of this thesis is an effective rejection rule that detects outliers based on the distance between predicted and measured quantities, and reduces the effects of noisy measurement by assigning appropriate weights to the data. This method is called Smoothness Motion Constraint (SMC). The ego-motion of the camera between two frames is obtained finding the absolute orientation between consecutive clouds of weighted 3D points. The complete ego-motion since initialization is achieved concatenating the individual motion estimates. This leads to a super-linear propagation of the error, since noise is integrated. A second contribution of this dissertation is a predictor/corrector iterative method, which integrates the clouds of 3D points of multiple time instances for the computation of ego-motion. The presented method considerably reduces the accumulation of errors in the estimated ego-position of the camera. Another contribution of this dissertation is a method which recursively estimates the 3D world position of a point and its velocity; by fusing stereo, feature tracking and the estimated ego-motion in a Kalman Filter system. An improved estimation of point position is obtained this way, which is used in the subsequent system cycle resulting in an improved computation of ego-motion. The general contribution of this dissertation is a single framework for the real time computation of scene structure, independently moving objects and ego-motion for automotive applications.Autofahren kann gefĂ€hrlich sein. Die Fahrleistung wird durch die physischen und psychischen Grenzen des Fahrers und durch externe Faktoren wie das Wetter beeinflusst. Fahrerassistenzsysteme erhöhen den Fahrkomfort und unterstĂŒtzen den Fahrer, um die Anzahl an UnfĂ€llen zu verringern. Fahrerassistenzsysteme unterstĂŒtzen den Fahrer durch Warnungen mit optischen oder akustischen Signalen bis hin zur Übernahme der Kontrolle ĂŒber das Auto durch das System. Eine der Hauptvoraussetzungen fĂŒr die meisten Fahrerassistenzsysteme ist die akkurate Kenntnis der Bewegung des eigenen Fahrzeugs. Heutzutage verfĂŒgt man ĂŒber verschiedene Sensoren, um die Bewegung des Fahrzeugs zu messen, wie zum Beispiel GPS und Tachometer. Doch Auflösung und Genauigkeit dieser Systeme sind nicht ausreichend fĂŒr viele Echtzeitanwendungen. Die Berechnung der Eigenbewegung aus Stereobildsequenzen fĂŒr Fahrerassistenzsysteme, z.B. zur autonomen Navigation oder Kollisionsvermeidung, bildet den Kern dieser Arbeit. Diese Dissertation prĂ€sentiert ein System zur Echtzeitbewertung einer Szene, inklusive Detektion und Bewertung von unabhĂ€ngig bewegten Objekten sowie der akkuraten SchĂ€tzung der sechs Freiheitsgrade der Eigenbewegung. Diese grundlegenden Bestandteile sind erforderlich, um viele intelligente Automobilanwendungen zu entwickeln, die den Fahrer in unterschiedlichen Verkehrssituationen unterstĂŒtzen. Das System arbeitet ausschließlich mit einer Stereokameraplattform als Sensor. Um die Eigenbewegung und die Szenenstruktur zu berechnen wird eine Analyse des Rauschens und der Fehlerfortpflanzung im Bildaufbereitungsprozess benötigt. Deshalb werden in dieser Dissertation die Rauscheigenschaften der durch Stereotriangulation erhaltenen 3D-Punkte analysiert. Dies fĂŒhrt zu der Entdeckung eines systematischen Fehlers in der SchĂ€tzung der 3D-Position, der sich mit einer Neuformulierung der Projektionsgleichung korrigieren lĂ€sst. Die Simulationsergebnisse zeigen, dass eine bedeutende Verringerung des Fehlers in der geschĂ€tzten 3D-Punktposition möglich ist. Die EigenbewegungsschĂ€tzung wird gewonnen, indem die Rotation und Translation zwischen Punktwolken geschĂ€tzt wird. Dieses Problem ist als „absolute Orientierung” bekannt und viele Lösungen auf Basis der Methode der kleinsten Quadrate sind in der Literatur vorgeschlagen worden. Diese Arbeit rezensiert die verfĂŒgbaren geschlossenen Lösungen zu dem Problem. Das vorgestellte System gliedert sich in drei wesentliche Bausteine: 1. Registrierung von Bildmerkmalen, 2. EigenbewegungsschĂ€tzung und 3. iterative SchĂ€tzung von 3D-Position und 3D-Geschwindigkeit von Weltpunkten. Der erster Block erhĂ€lt eine Folge rektifizierter Bilder als Eingabe und liefert daraus eine Liste von verfolgten Bildmerkmalen mit ihrer entsprechenden 3D-Position. Der Block „EigenbewegungsschĂ€tzung” besteht aus vier Hauptschritten in einer Schleife: 1. Bewegungsvorhersage, 2. Anwendung der Glattheitsbedingung fĂŒr die Bewegung (GBB), 3. absolute Orientierungsberechnung und 4. Bewegungsintegration. Die in dieser Dissertation vorgeschlagene GBB ist eine mĂ€chtige Bedingung fĂŒr die Ablehnung von Ausreißern und fĂŒr die Zuordnung von Gewichten zu den gemessenen 3D-Punkten. Simulationen werden mit gaußschem und slashschem Rauschen ausgefĂŒhrt. Die Ergebnisse zeigen die Überlegenheit der GBB-Version ĂŒber die Standardgewichtungsmethoden. Die StabilitĂ€t der Ergebnisse hinsichtlich Ausreißern wurde analysiert mit dem Resultat, dass der „break down point” grĂ¶ĂŸer als 50% ist. Wenn die vier Schritte iterativ ausgefĂŒhrt, werden wird ein PrĂ€diktor-Korrektor-Verfahren gewonnen.Wir nennen diese SchĂ€tzung Multi-frameschĂ€tzung im Gegensatz zur ZweiframeschĂ€tzung, die nur die aktuellen und vorherigen Bildpaare fĂŒr die Berechnung der Eigenbewegung betrachtet. Die erste Iteration wird zwischen der aktuellen und vorherigen Wolke von Punkten durchgefĂŒhrt. Jede weitere Iteration integriert eine zusĂ€tzliche Punktwolke eines vorherigen Zeitpunkts. Diese Methode reduziert die Fehlerakkumulation bei der Integration von mehreren SchĂ€tzungen in einer einzigen globalen SchĂ€tzung. Simulationsergebnisse zeigen, dass obwohl der Fehler noch superlinear im Laufe der Zeit zunimmt, die GrĂ¶ĂŸe des Fehlers um mehrere GrĂ¶ĂŸenordnungen reduziert wird. Der dritte Block besteht aus der iterativen SchĂ€tzung von 3D-Position und 3D-Geschwindigkeit von Weltpunkten. Hier wird eine Methode basierend auf einem Kalman Filter verwendet, das Stereo, Featuretracking und Eigenbewegungsdaten fusioniert. Messungen der Position eines Weltpunkts werden durch das Stereokamerasystem gewonnen. Die Differenzierung der Position des geschĂ€tzten Punkts erlaubt die zusĂ€tzliche SchĂ€tzung seiner Geschwindigkeit. Die Messungen werden durch das Messmodell gewonnen, das Stereo- und Bewegungsdaten fusioniert. Simulationsergebnisse validieren das Modell. Die Verringerung der Positionsunsicherheit im Laufe der Zeit wird mit einer Monte-Carlo Simulation erzielt. Experimentelle Ergebnisse werden mit langen Sequenzen von Bildern erzielt. ZusĂ€tzliche Tests, einschließlich einer 3D-Rekonstruktion einer Waldszene und der Berechnung der freien Kamerabewegung in einem Indoor-Szenario, wurden durchgefĂŒhrt. Die Methode zeigt gute Ergebnisse in allen FĂ€llen. Der Algorithmus liefert zudem akzeptable Ergebnisse bei der SchĂ€tzung der Lage kleiner Objekte, wie Köpfe und Beine von realen Crash-Test-Dummies

    3D Vision-based Perception and Modelling techniques for Intelligent Ground Vehicles

    Get PDF
    In this work the candidate proposes an innovative real-time stereo vision system for intelligent/autonomous ground vehicles able to provide a full and reliable 3D reconstruction of the terrain and the obstacles. The terrain has been computed using rational B-Splines surfaces performed by re-weighted iterative least square fitting and equalization. The cloud of 3D points, generated by the processing of the Disparity Space Image (DSI), is sampled into a 2.5D grid map; then grid points are iteratively fitted into rational B-Splines surfaces with different patterns of control points and degrees, depending on traversability consideration. The obtained surface also represents a segmentation of the initial 3D points into terrain inliers and outliers. As final contribution, a new obstacle detection approach is presented, combined with terrain estimation system, in order to model stationary and moving objects in the most challenging scenarios

    Robust Fusion of LiDAR and Wide-Angle Camera Data for Autonomous Mobile Robots

    Get PDF
    Autonomous robots that assist humans in day to day living tasks are becoming increasingly popular. Autonomous mobile robots operate by sensing and perceiving their surrounding environment to make accurate driving decisions. A combination of several different sensors such as LiDAR, radar, ultrasound sensors and cameras are utilized to sense the surrounding environment of autonomous vehicles. These heterogeneous sensors simultaneously capture various physical attributes of the environment. Such multimodality and redundancy of sensing need to be positively utilized for reliable and consistent perception of the environment through sensor data fusion. However, these multimodal sensor data streams are different from each other in many ways, such as temporal and spatial resolution, data format, and geometric alignment. For the subsequent perception algorithms to utilize the diversity offered by multimodal sensing, the data streams need to be spatially, geometrically and temporally aligned with each other. In this paper, we address the problem of fusing the outputs of a Light Detection and Ranging (LiDAR) scanner and a wide-angle monocular image sensor for free space detection. The outputs of LiDAR scanner and the image sensor are of different spatial resolutions and need to be aligned with each other. A geometrical model is used to spatially align the two sensor outputs, followed by a Gaussian Process (GP) regression-based resolution matching algorithm to interpolate the missing data with quantifiable uncertainty. The results indicate that the proposed sensor data fusion framework significantly aids the subsequent perception steps, as illustrated by the performance improvement of a uncertainty aware free space detection algorith

    Road Surface Feature Extraction and Reconstruction of Laser Point Clouds for Urban Environment

    Get PDF
    Automakers are developing end-to-end three-dimensional (3D) mapping system for Advanced Driver Assistance Systems (ADAS) and autonomous vehicles (AVs). Using geomatics, artificial intelligence, and SLAM (Simultaneous Localization and Mapping) systems to handle all stages of map creation, sensor calibration and alignment. It is crucial to have a system highly accurate and efficient as it is an essential part of vehicle controls. Such mapping requires significant resources to acquire geographic information (GIS and GPS), optical laser and radar spectroscopy, Lidar, and 3D modeling applications in order to extract roadway features (e.g., lane markings, traffic signs, road-edges) detailed enough to construct a “base map”. To keep this map current, it is necessary to update changes due to occurring events such as construction changes, traffic patterns, or growth of vegetation. The information of the road play a very important factor in road traffic safety and it is essential for for guiding autonomous vehicles (AVs), and prediction of upcoming road situations within AVs. The data size of the map is extensive due to the level of information provided with different sensor modalities for that reason a data optimization and extraction from three-dimensional (3D) mobile laser scanning (MLS) point clouds is presented in this thesis. The research shows the proposed hybrid filter configuration together with the dynamic developed mechanism provides significant reduction of the point cloud data with reduced computational or size constraints. The results obtained in this work are proven by a real-world system

    Combining Appearance, Depth and Motion for Efficient Semantic Scene Understanding

    Get PDF
    Computer vision plays a central role in autonomous vehicle technology, because cameras are comparably cheap and capture rich information about the environment. In particular, object classes, i.e. whether a certain object is a pedestrian, cyclist or vehicle can be extracted very well based on image data. Environment perception in urban city centers is a highly challenging computer vision problem, as the environment is very complex and cluttered: road boundaries and markings, traffic signs and lights and many different kinds of objects that can mutually occlude each other need to be detected in real-time. Existing automotive vision systems do not easily scale to these requirements, because every problem or object class is treated independently. Scene labeling on the other hand, which assigns object class information to every pixel in the image, is the most promising approach to avoid this overhead by sharing extracted features across multiple classes. Compared to bounding box detectors, scene labeling additionally provides richer and denser information about the environment. However, most existing scene labeling methods require a large amount of computational resources, which makes them infeasible for real-time in-vehicle applications. In addition, in terms of bandwidth, a dense pixel-level representation is not ideal to transmit the perceived environment to other modules of an autonomous vehicle, such as localization or path planning. This dissertation addresses the scene labeling problem in an automotive context by constructing a scene labeling concept around the "Stixel World" model of Pfeiffer (2011), which compresses dense information about the environment into a set of small "sticks" that stand upright, perpendicular to the ground plane. This work provides the first extension of the existing Stixel formulation that takes into account learned dense pixel-level appearance features. In a second step, Stixels are used as primitive scene elements to build a highly efficient region-level labeling scheme. The last part of this dissertation finally proposes a model that combines both pixel-level and region-level scene labeling into a single model that yields state-of-the-art or better labeling accuracy and can be executed in real-time with typical camera refresh rates. This work further investigates how existing depth information, i.e. from a stereo camera, can help to improve labeling accuracy and reduce runtime
    • 

    corecore