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Chapter 1

Introduction

1.1 Overview

In recent years, the road safety research has made significant evolutionary leaps, es-

pecially in the last decade. The ultimate aim of the scientific research in the automo-

tive is based on a fundamental idea: the autonomous driving. Ensure a high safety

level to the passenger and to the surrounding environment beyond the human reflexes

via advanced perception and control technologies represents the main goal of this

research. In the this decade successfully experiments of autonomous driving on in-

telligent ground vehicles are presented and performed by different international car

makers and research groups [1–4], as shown in Figure 1.1. Nowadays there are states

in America (Nevada, Florida and California) that allow and legally regulate the au-

tonomous vehicles in public roads.

The most important feature for an intelligent ground vehicle is represented by the

perception system. A full and reliable reconstruction and modelling of the environ-

ment is required by any low and high intelligent trajectory planning systems.

Since 1985 the early perception experiments on mobile robots and vehicles have

been performed using different sensor classes (e.g. LiDAR, radar and camera). The

combination of different sensors in order to sense the environment surrounding the

ego-vehicle is known as sensor fusion. For the most of famous car makers, the re-
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search in this field has brought to reconsider their industrial design, optimizing the

integration of perception technologies, such as camera, radar and LiDAR, in terms of

efficiency and cost. Nowadays the research in stereoscopic vision system has made

giant leaps and represents a really all-round solution for automotive and other fields

also (e.g. mining, industrial safety, surveillance). The main aim of this system is to

provide a full tridimensional reconstruction of the environment. Let us to assume to

generate a reliable set of information of the world, the next challenge is how to model

the collected data in order to provide an efficient representation of the environment.

For each kind of intelligent ground vehicle, the lowest knowledge level for planning

systems is represented by the set of traversable paths and the detection of moving and

standing obstacles around the ego-vehicle.

(a) BRAiVE- VisLab, University of Parma
(b) Bertha - Daimler.

(c) KITTI - Karlsruhe Institute of Technology

(KIT).

(d) Google Car - Stanford Artificial Intelli-

gence Laboratory (SAIL).

Figure 1.1: Examples of fully autonomous ground vehicle.
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1.2 Motivation

Many works have been presented in literature on perception and modelling for intelli-

gent ground vehicle. Part of these techniques are successfully implemented and tested

for ad hoc scenario. In this thesis will be analyzed and tested these techniques in or-

der to provide a perception and modelling system of the surrounding environment for

intelligent ground vehicles that it is independent of the application scenario.

1.3 Outlines of the thesis

In this manuscript will be analyzed the most important modelling techniques in terms

of obstacle and terrain for intelligent ground vehicle based on input derived by a

stereo image processing. The thesis is detailed by the following sections:

Chapter 2 - Perception for Intelligent Ground Vehicles using Stereo Vision: in the

first part of this section a brief overview of the stereoscopic model will be de-

tailed. Afterwards, the techniques to reconstruct the depth information by im-

ages will be described.

Chapter 3 - Vision-based Environment Modelling: in this chapter the developed

approaches for the terrain and obstacle estimation will be described.

Chapter 4 - Tests and results: in this chapter will be detailed each test performed

for each developed approaches. Next the obtained results will be analyzed and

discussed in terms of performance and processing times.

Chapter 5 - Conclusions and Future Works: in this final chapter the conclusions

and the derived contributions will be highlighted and future works as well.





Chapter 2

Perception for Intelligent Ground

Vehicles using Stereo Vision

People experience a great delight in colour, generally.

The eye requires it as much as it requires light.

– Johann Wolfgang von Goethe

2.1 Stereo Vision

The goal of stereo vision is to recover the three-dimensional (3D) coordinates of real-

world points seen through a binocular camera system. A binocular camera system

consists of two cameras mounted on a baseline, see Figure 2.1. There are different

techniques in literature to compute the depth information [5–8]. In this thesis a pas-

sive stereo approach is applied in order to obtain a 3D reconstruction that is based

on finding corresponding point pairs. This process consist of two image points be-

longing to one real world point, one in the left camera and one in the right camera.

Figure 2.1 the reconstruction process of the PW point assuming to know the image

position of the corresponding points of a world point in both images and the stereo
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camera parameters.

The process of passive stereo will be described in more detail in the next subsections.

The problem of finding corresponding point pairs for every point visible in both cam-

eras, known as disparity estimation, is discussed in 2.1.5.

Figure 2.1: Stereo camera model

2.1.1 Passive Stereo

The Computer Vision field that deals with understanding and modelling of the ge-

ometry of multiple cameras is called multi-view geometry. In the last decades the

presented methods in literature have reached a mature level. The theory behind these

approaches are detailed in deep by Hartley and Zisserman in [9]. In the following

sections a brief overview of theory and methods that apply to passive stereo will be

described.

The process of passive stereo can be subdivided in 4 step procedure.

1. Calibration: estimation of the intrinsic and extrinsic parameters of the stereo
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camera system.

2. Rectification: procedure based on the transformation and alignment of the im-

ages by a fix of the extrinsic parameters as shown in Figure 2.1.

3. Matching: as shown in Figure 2.1 the goal is to find the points pl and pr that

correspond to the same physical point Pw for every point visible in both images.

4. Depth estimation: by horizontal image coordinates of the points pl and pr it is

possible to the disparity d between them. The 3D coordinates of Pw relative to

the origin Ov of the vehicle coordinate system are computed using the corre-

sponding disparity value d and the rectified stereo camera parameters.

2.1.2 Camera model

The camera model is represented by the intrinsic and extrinsic parameters. The intrin-

sic parameters describe how a point is projected on the image plane I. The extrinsic

parameters describe the position and the orientation of the camera’s focal point Oc

according to a world reference frame. Let us assume the orientation as rotation matrix

R which describes the rotation between the world coordinate system and the camera

coordinate system and the vector T as translation vector that describes the translation

between the world coordinate system and the camera coordinate system. The relation

between the world coordinates and the camera coordinates is detailed in Equation 2.1:

Pc = R ·Pw +T (2.1)

where Pw represents a vector of coordinates (Pwx
,Pwy

,Pwz
)T in the world coordi-

nate system and Pc is the resulting vector of coordinates (Pcx
,Pcy

,Pcz
)T in the camera

coordinate system after the conversion from image coordinate system (2D) into the

3D coordinate system of camera. In order to process the Pc it is necessary to intro-

duce the projection model to convert a three-dimensional point to a two dimensional

(2D) image. The pinhole model, shown in Figure 2.2, is a linear, thus distortion free,

model that captures the process of light falling through a lens onto an image plane.

The lens is modelled as one single point Oc, known as pinhole. The perpendicular
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line from Oc to the image plane I is known as optical axis. The segment from Oc to

I represents the focal length f . The image coordinates pix and piy is computed from

the camera coordinates of point Pc using the formula shown in Equation 2.2.

pi =

(

pix

pix

)

=

(

f
Pcx

Pcz

f
Pcx

Pcz

)T

(2.2)

where the x and y coordinates of Pc relative to Oc can be computed from the image

coordinates when Pcz
is known using the Equation 2.3.

Pc =







Pcx

Pcy

Pcz






=

(

Pcx
pix

f

Pcy
piy

f
Pcz

)T

(2.3)

The most of commercial cameras are equipped with a glass lens system in order to

replicate the pinhole model that could add several types of distortions to the images.

In [10, 11] the authors show different methods to remove the distortion caused by

the lens. An easy estimation approach of the camera parameters is presented in by

Heikkila et al. in [12].
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Figure 2.2: Pinhole camera model.

Camera calibration is usually performed using several markers printed on a board

(e.g. chessboard, blobs) in a flat area. The size of the board and relative position of

these markers is known beforehand. After taking several images of this calibration

plane under various orientations and extracting the image coordinates of the markers,

it is possible to estimate the intrinsic camera parameters. The next step is the defini-

tion of the transformation from the complex model to the pinhole model that can be

applied to the images in order to represent the captured data by the sensor as a pinhole

(linear distortion free) camera. This process is usually known as undistortion. In all

other sections it will assume that the used cameras behave according to the pinhole

model. Let us to analyze the complex model in order to represent the images using

the pinhole model.

The applied camera model is based on a 3 step procedure:



10 Chapter 2. Perception for Intelligent Ground Vehicles using Stereo Vision

1. estimation of normalized image coordinates pn using the Equation 2.4;

pn =

(

pnx

pny

)

=

(

f
PCx

PCz

f
PCy

PCz

)

, f = 1 (2.4)

2. definition of the radial distortion model in image corodinates pd by the k1 and

k2 parameters as shown in Equation 2.5 where r is the radius from the image

centre point Oi; the most common radial distortion models are represented in

Figure 2.3;
r2 = x2 + y2

pd =

(

pdx

pdy

)

= (1+ k1r2 + k2r4)pn

(2.5)

3. the estimation of un-normalized image coordinates pd are computed using the

Equation 2.6 where ccx and ccy represent the coordinates of the principal point

Oi that it is the projection of the optical centre OC onto the imaging plane I.

The focal length is modelled by fx and fy.

pd =

(

fx pdx
+ ccx

fy pdy
+ ccy

)

(2.6)

(a) (b) (c)

Figure 2.3: Examples of radial distortion: undistorted (a), barrel distortion (b), pin-

cushion distortion (c)
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2.1.3 Epipolar geometry

Epipolar geometry refers to the geometry between two cameras that it directly de-

pends on the camera pinhole model (see Section 2.1.2) and adds information about

the relative position and orientation between the two cameras. Figure 2.4 show a gen-

eral setup of a stereoscopic camera system where the optical axis of both camera’s are

not parallel to each other. The rectification process cited in Section 2.1.1 lets to obtain

a parallel alignment between the optical axis. Also the baseline connecting the two

optical points will run parallel to the image lines in both imaging planes. This step

is required in order to search easily the corresponding points between the captured

images. Figure 2.5 shows the rectification process result.

Figure 2.4: Unrectified stereo camera geometry based on pinhole model.
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Figure 2.5: Rectified stereo camera geometry based on pinhole model.

This procedure let to estimate the intrinsic and extrinsic parameters of the stereo

camera system. Using these parameters it is possible to construct a transformation

from the real cameras alignment to a parallel cameras system. In this section it

will explain in detail the epipolar rectification process. As shown in Figure 2.5 the

epipoles bl and br represent the points of intersection of the baseline b , the line join-

ing the optical centres Ol , and Or, with the image planes Il and Ir. An epipole point is

a simply projection of a image point in one carmera in regarding to the optical centre

of the other. Let us to assume an epipolar plane as an imaginary plane defined by the

real point in the world PW and the optical centres Ol and Or. As shown in Figure 2.5

the epipolar lines epl and epr represent the straight lines of intersection of the epipo-

lar plane with the image planes Il and Ir. All epipolar lines intersect at the epipole but

for parallel stereo cameras the epipoles will be at infinity.

Using this calibration process for the stereo camera, it is possible to obtain the
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intrinsic and extrinsic parameters of both cameras by a similar method cited in Sec-

tion 2.1.2. The intrinsic parameters describe how points are projected onto the imag-

ing planes of both cameras. It includes parameters such as the cameras focal length,

principal point and the lens distortion. The extrinsic parameters describe the trans-

formation from the left camera coordinate system to that of the right one. These

parameters are represented by a rotation matrix and translation vector. With these in-

formation the epipoles can be estimate in both images by computing the intersection

of the baseline with both imaging planes. Thus it is possible to compute an efficient

search of corresponding points from a 2D search to a 1D search along the epipolar

lines indeed By epipolar rectification of the images the epipolar lines will become

parallel to the image lines and the search of corresponding point of pl can be per-

formed along the same horizontal scan-line in Ir, as shown in Figure 2.5.

Epipolar rectification first transforms the projection matrices of both cameras to a

generic pinhole model (un-distortion) where the focal length will be the same for both

cameras. The next step is to fix the orientation between the imaging planes of both

cameras in order to obtain coplanar planes. Then the offset between the vertical po-

sitions of the focal points is removed. All that remains is a horizontal offset between

the optical centres known as baseline. Finally, the transformations applied for epipo-

lar rectification can be used to warp the images and compute the stereo reconstruction

of a observed point in the world coordinate system.

2.1.4 Depth estimation

The geometry behind the stereo reconstruction of image points is explained in this

section and is shown in Figure 2.6. Let us to assume the pinhole model and the images

from the cameras are un-distorted and rectified as a parallel stereo camera system as

cited in Section 2.1.3. In order to reconstruct the 3D coordinates of image points, a

depth estimation of these points from the camera is required. This distance can be

computed using Equation 2.3.
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Figure 2.6: Stereo geometry

As shown in Figure 2.6 the distances PLz and PRz are equal and the difference

between PLx and PRx corresponds to the baseline b, which leads to Equation 2.7.

PLz

PLx−PRx

=
f

plx− prx

→
PLz

b
=

f

d
(2.7)

The depth of PW relative to OL can be computed with Equation 2.8.

PLz =
f b

d
(2.8)

The final step is to transform the 3D coordinates from the left camera coordinate

system to the vehicle coordinate system applying Equation 2.9 where Rv and Tv

describe respectively the orientation and the translation between the left camera and

the vehicle.

Pv = RvPLc +Tv (2.9)
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2.1.5 Disparity estimation

In order to obtain a tridimensional reconstruction of the observed environment using

a stereo camera system, as discussed in Section 2.1.1 finding correspondence points

and the disparity between them is required. In this section it will be analyzed the

field of stereo algorithms that is the techniques that enable disparity estimation from

stereo image pairs taken by a stereo camera system, seen in Figure 2.5. A stereo

image pair consists of one image from the left camera together with one image from

the right camera assuming that both images are taken at the same time and are also

un-distorted and rectified (see Section 2.1.3).

The aim of stereo algorithms is based upon the construction of a disparity im-

age d(x,y) that is to find for each pixel at image coordinates (x,y) of a camera, one

corresponding point in the image from the other camera. After computed the cor-

responding points by the matching process from a rectified stereo image pair, the

disparity value d(x,y) can be obtained. Let us assume that Il(h,w) and Ir(k,w) are

correspondence points in a rectified stereo image pair, the disparity value d(h,w) can

be computed using Equation 2.10.

d(h,w) = h− k (2.10)

The search for correspondence points is one of the key research topics in Com-

puter Vision and is known as the correspondence problem or for more complex prob-

lems feature matching. For the most of common stereo camera, where the images are

un-distorted and rectified, the search complexity is O(H,W 2) because the epipolar

lines are co-parallel. In order to optimize this process, the search of the correspond-

ing points is restricted to a maximum bound maxd on the disparity: O(H,Wmaxd).

The search space complexity is not the only issue in disparity estimation problem.

Many hardware and environmental aspects can interfere with the matching process

and therefore with the disparity estimation. Points on image patches with bad signal to

noise ratio are usually prone to errors that it can be caused by the absence of texture.

Repetitive textures on the other hand, pose difficulties due to the great similarity

between sub-regions in the texture. This problem is also known as sub-pixel accuracy.
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Also the difference in camera gain and bias, perspective distortion and occlusions

make the search challenging. In [13, 14] the authors present a general overview of

recent research into disparity estimation. In order to provide a reliable reconstruction

and modelling of the terrain and the obstacles around the vehicle, several works in

literature about the disparity estimation for intelligent vehicle have been analyzed [5,

7, 8, 15].

A method that provides a full reconstruction in terms of disparity by a stereo

camera, is known as dense stereo. A different approach exists in literature where the

number of locations is limited to certain image features for instance edges: sparse

stereo. This technique was popular during the early experiments of Computer Vision

when the computation power was limited. Nowadays a dense stereo approach has

become feasible at real-time frame rates proving a perfect solution in several applica-

tion fields (e.g. automotive, mining, agricultural, industrial safety). In the remainder

of this thesis, dense stereo will be applied in Chapter 3 in order to reconstruct and

model the terrain and the obstacles. For this thesis the perception model will refer to

produce a dense disparity map d(x,y) also known as Disparity Space Image (DSI).

Figure 2.7: Disparity Space Image
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A DSI (x,y,d), as shown in Figure 2.7, is referred for every position to a certain

similarity measure. This value let to describe the confidence that the points Il(x,y)

and Ir(xd,y) relate to the same physical observed point in a world coordinate system.

The disparity estimation process based on DSI basically can be describe in a 3-step

procedure:

1. fill the DSI with the output of a single pixel similarity function S for every

possible value of x, y and d using Equation 2.11

DSI(x,y,d) = S(x,y,d), x ∈ [1 . . .H] y ∈ [1 . . .W ] d ∈ [1 . . .maxd ] (2.11)

2. aggregate the output of similarity function as in Equation 2.12 where K(x,y,d)

gives a set of coordinates inside the DSI that can influence the similarity value

of DSI(x,y,d).

DSI(x,y,d)= ∑
k∈K(x,y,d)

DSI(kx,ky,kd), x∈ [1 . . .H] y∈ [1 . . .W ] d ∈ [1 . . .maxd ]

(2.12)

An example of similarity function can be represented by the following formula:

K(x,y,d) = [(x,y,d),(x−1,y,d),(x+1,y,d),(x,y−1,d),(x,y+1,d)]

where the effect is that neighbouring pixels influence each others similarity

value and eventual will influence each others disparity estimate.

3. as optimization step, estimate for every point Il(x,y) the best value for d so that

the overall disparity map matches the true disparity most likely.

A distinction between optimizations methods based on the portion of the DSI is

required. Local methods optimize the disparity for a pixel solely based on its DSI

column. Otherwise scan-line methods optimize the disparity for a pixel based on its

DSI slice. Indeed global optimization methods optimize the disparity for a pixel based

on the entire DSI cube.
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The 3D points engine used for this thesis, as shown in Figure 2.8, is based on

the processing of a dense Disparity Space Image (DSI). To perform the stereo recon-

struction in terms of computational costs for the matching and similarity algorithms,

a modified Semi Global Matching (SGM) algorithm [5] with a multi-resolution anal-

ysis scheme [16] has been implemented. In order to reduce computational weight,

a multi-threaded SIMD processing scheme has been devised, exploiting the parallel

processing capabilities of the hardware platform.

The engine has been extensively tested during VIAC, the VisLab Intercontinental

Autonomous Challenge [1, 16], in a variety of scenarios and in different conditions.

(a) Right input image. (b) DSI.

(c) 3D virtual camera perspectives: front, top, lateral.

Figure 2.8: DSI and Dense Stereo 3D point cloud in several viewpoints.



Chapter 3

Vision-based Environment

Modelling

Few people have the imagination for reality.

– Johann Wolfgang von Goethe

In this chapter a real-time tridimensional modelling approach for intelligent ground

vehicles of 3D data, computed by stereo reconstruction (see Chapter 2), will be in-

troduced.

In order to provide a medium level of knowledge of the surrounding environment,

the proposed strategy has been divided in 2 sub-systems as follows.

1. Terrain estimator: the 3D input points are filtered in order to estimate a shape

of the ground using a 2.5D map, as detailed in Section 3.1.

2. Obstacle detector: the discarded 3D points at the previous step are marked as

obstacle candidates and processed in order to represent them by a full 3D clus-

tering approach, detailed in Section 3.2. Also a linear Kalman filter is applied

to discriminate moving and static obstacles.

The algorithm block diagram of the proposed strategy, shown in Figure 3.1, is
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pipeline oriented, where each block can be implemented independently, as far as the

data flow is respected. The block diagram of this traversability mapping algorithm:

first a 3D point cloud is generated; then, a fully derivable surface model of the terrain

is build, able to segment points into terrain inliers and outliers; finally, slope and

occupancy information are fused together to build a traversability cost map.

Figure 3.1: Pipeline of terrain estimation and obstacle detection system.

3.1 Terrain estimation

Reliable perception of terrain slope and terrain traversability is a key-feature for any

ground vehicle designed for extreme and urban environments. This is often achieved

processing 3D points clouds coming from high-quality dense depth maps, as seen in

Section 2.1.5.

3.1.1 Relative works

The majority of the approaches project depth information into digital elevation maps [17]

or into various types of Cartesian grid maps, containing cells of uniform size. Cells

typically store information about the corresponding world portions, depending on the

algorithm approach and type of sensor used. The so called 2D grid maps just con-
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tains occupancy information (traversable, not traversable); these are useful for basic

obstacle avoidance on flat terrains, based on simple range sensors. When cells store

also height information, the subject refers to the 2.5D grid maps [18]. More complex

grid maps embed full 3D information using adjacent stack of cells [19], or octrees

connected cubes [20], and are able to represent objects at multiple heights located at

the same range and azimuth. Elevation maps, as well as cubes grids, do not provide

an immediate classification of their cells as belonging or not the terrain. Some au-

thors [21] enrich cells’ geometric characteristics with visual information, like color

and texture, to understand if a given cell is part of the terrain, applying machine

learning techniques on the basis of a priori knowledge. When it is possible to use

assumptions on road model and on vehicle pose, successful solutions of geometry-

based obstacle/terrain segmentation have been proposed, in some cases working in

image coordinates by using v-disparity space [22]; in other cases applying RANSAC

fitting to segment the 3D points in road inliers and outliers [23].

In [24] Broggi et al. presented a geometry based technique able to segment 3D

data points into terrain inliers and outliers, without any constrains on vehicle pose

and surface roughness. The segmentation is made on the basis of traversable terrain

concept: any surface where the vehicle can drive on. In other words, any surface not

too rough and steep for the vehicle capabilities. Ants Colony Optimizations (ACO)

was used by the authors to fit points into a certain number of longitudinal and lateral

2D models, then fused together to obtain a 3D Cartesian model of the terrain. ACO

works very satisfactorily, but it is computationally demanding (as well as RANSAC

based techniques), since it requires many iterations for each model to reach optimal

results. Moreover, subdividing the world in several 2D models, not constrained with

each other but just merged at the final stage, leads to a noisy and, occasionally, un-

stable results.

3.1.2 Overview

In this work the candidate proposes a new technique to build a real-time map of the

traversable terrain, fitting 3D points into a rational B-Spline surfaces [25] [26]. Op-

positely to the ACO based approach, made of a mesh of several 2D models, B-Splines
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provide a full 3D elevation map model, where each sample represents a constrain for

the others, improving robustness; at the same time, B-Splines are locally controllable

by control points, allowing the same ACO’s sensitivity to localized terrain slopes.

Finally, the proposed iterative re-weighted fitting method performs terrain’s inliers

and outliers segmentation with very few iteration, compared to ACO and RANSAC,

ensuring computational efficiency in a wider range of scenarios.

Example of the final result is shown in Figure 3.2 where the terrain slopes with

a synthetic grid and obstacles are represented with their original color and enriched

with 3D info, while a picture of the scene is also shown to compare the results.

Figure 3.2: Example of terrain estimation result.

The approach can be described as a 6 steps procedure:

1. 3D points sampling. A data set of 3D world points (xi,yi,zi) is generated. The

data set must provide enough points to support the desired resolution over the



3.1. Terrain estimation 23

area of interest. Implementation details in Section 2.1.5. Each 3D point is pro-

jected onto its corresponding cell, that will contain every point that belongs

to its volume, regardless they represent terrain, an object, or spurious noise.

The number of cells and their size are defined by the region of interest and

the required resolution. Resulting map has m0×m1 Cartesian cells, each one

characterized by (x,y) coordinates and z height, hereinafter called p(xi,yi,Zi).

Details on sampling method are described in Section 3.1.3.

2. B-Spline surface fitting and ground estimation. The goal is to extract the main

terrain surface from the sampled points grid p(xi,yi,Zi): a 3D surface repre-

senting the terrain where it is possible to drive safely and where objects stand

on. Section 3.1.4 shows how repeated least square fitting and equalization of

sampled points, with different patterns of B-Spline control points, order, and

weights, leads to the desired segmentation in an efficient way.

3. Slope estimation. Once the terrain surface is available in B-Spline form, terrain

slope can be easily computed for any (x,y) location contained into the interest

area just by derivation.

4. Obstacles detection. Discarded points (xi,yi,zi) at previoius step that not be-

longing to the terrain are represented as obstacles candidates.

5. Traversability cost. Traversability cost T c for each (x,y) location is a function

of corresponding slope and occupancy information: the steeper the slope, the

higher the cost; similarly, the more occupied the terrain portion, the higher

the cost of its traversability. The traversability cost is detailed in Equation 3.1

where wocc is the occupacy cost, wslope is the steepness cost, isOcc(x,y) is a

normalized likelihood of the cell occupancy (the max value is returned if there

is an obstacle on the cell), and S
′
(x,y) is the B-Spline first derivative.

T c(x,y) = wocc · isOcc(x,y)+wslope ·S
′
(x,y) (3.1)
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3.1.3 3D points engine

The main focus of the sampling processing, applied among the 3D world points ob-

tained by the disparity map, is simplifying the traversable terrain reconstruction, high-

lighting, in the 3D cloud, all points belonging to the terrain slope and, at the same

time, attenuating the spurious noise contribution. Moreover, the grid quantization

allows to reduce the problem of computational complexity, transforming the dense

stereo depth map into a sparse grid representation.

Each world point (x j,y j,z j) is projected, according to its position, on a m0×m1

2.5D grid, whose cells are used to locally accumulate the points.

Figure 3.3: 3D world points quantization processing.

As shown in Figure 3.3, for each cell ci all 3D points, belonging to its volume,

are condensate in a single point p(xi,yi,Zi), with xi and yi equal to the cell centre

coordinates (px, py), and Zi calculated as:

Zi = max(min(z j),mean(z j)−σ) (3.2)
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where:

• min(z j) is the height of the lower world point in ci;

• mean(z j) and σ are, respectively, the average and the standard deviation of the

3D points heights belonging to the volume of each cell ci.

When none of 3D points belongs to a given cell, its corresponding Zi is computed

averaging valid neighbours’ heights. If no valid neighbours are available, cells are

marked as INVALID, and Zi := 0. Section 3.1.4 explains how B-Spline fitting handles

invalid cells.

This mapping, through the local evaluation of the 3D points distribution, allows

to maximize the contribution of the 3D points characterized by low height values, that

are likely to represent the terrain slope. The determination of the mapped Zi is more

influenced by low z j values, regardless of whether the corresponding world points

heights vary in a small or in a large range. The standard deviation evaluation is used

to attenuate the outliers contribution. Moreover all mapped heights are maintained in

the range defined, locally, by the highest and lowest world point.

3.1.4 B-Spline surface fitting

A rational B-spline tensor product surface of order d0 and d1 is a R2 → R function

defined in Equation 3.3 as follows:

SR,Q(x,y) =
n0

∑
i0=0

n1

∑
i1=0

Ri0,i1Ni0,d0(x)Ni1,d1(y)Qi0,i1

Ri0,i1Ni0,d0(x)Ni1,d1(y)
(3.3)

where: Q is a 2-dimensional array of (n0+1)× (n1+1) control points; d0 and d1

are Spline’s degrees along the two axes, with 1 ≤ d0 ≤ n0 and 1 ≤ d1 ≤ n1; R is the

corresponding control points’ weights matrix.

The set of Ni,d(t) are the Spline’s basis functions and are detailed in Equation 3.4

where t is a non-decreasing sequence of scalars ti for 0 ≤ i ≤ n0,1 + d0,1 + 1 known

as knot vector [25]. In this section, the vectors (x,y) are world coordinates, while

SR,Q(x,y) are the corresponding terrain’s height z.

Ni, j(t) =
t− ti

ti+ j− ti
Ni, j−1(t)+

ti+ j+1− t

ti+ j+1− ti+1
Ni+1, j−1(t) (3.4)
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with

Ni,0(t) =

{

1 ti ≤ t < ti+1

0 otherwise.
(3.5)

Figure 3.4 shows an example of surface fitting using B-Spline basis along x and

y directions.

Figure 3.4: Example of surface fitting with basis in x and y

Control points Qi0,i1 are typically obtained by Least Squares Fitting, from a set

of m0×m1 sample points P with known z. In particular, the proposed fitting module

starts with Weighted Least Squares Curve Fitting [25] along the X world coordinate,

where to each sample is assigned a proper amount of influence W(zi) over the pa-

rameter estimates. Then the resulting control points are fitted across the Y direction,

to compute the final Qi0,i1 control points matrix. As mentioned, here the weights refer

to sample points, instead of control points, and are used to increase or decrease the

influence of a given sample on the final square error.
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3.1.5 Ground points extraction

Basically the algorithm consists of a repeated least-squares B-Spline fitting, using

surfaces with a number of control points increasing iteration after iteration, and where

control points’ weights and samples’ weights, at a given iteration, are adapted on the

basis of the previous surface.

The idea is to fit sample points with a very simple B-Spline, not weighed and

not rational, with very few control points, in order to understand the principal ter-

rain slope and shape; then, the closer a sample point is to this surface, the higher its

weights will be at the next iteration. Moreover, to speedup the procedure, samples

are also equalized: they are moved towards the surface, the higher the distance, the

higher the equalization. This procedure ends when the maximum number of control

points nmax (always ≤ min(m0,m1)) is reached or when no point has been equalized

in the last step. Algorithm 3.1.5.1 summarizes the process in pseudo-code.

Algorithm 3.1.5.1 Iterative least-squares fitting of S

W← identity_matrix(m0×m1)

R← constant_matrix(1,(n0+1)× (n1+1))

procedure Terrain(P)

do

Pprev← P

Q← spline_fitting(P,W,d0,d1,δn0,δn1)

e← linear_mean(‖P−SR,Q‖)

W← compute_weights(P,SR,Q,e)

R← remap_weights(W,δn0,δn1)

P← equalization_filter(P,SR,Q,e)

δni← δni +1

while (δni < nmax_i, i = 0,1)∧ (‖Pprev−P‖< ε)

Q← spline_fitting(P,W,d,n0,n1)

end

As mentioned P is a (m0×m1) samples matrix containing the Zi values of each

sample, while R and W are control points and sample points weights matrices respec-
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tively. The R are computed downsampling and interpolating the larger W matrix.

Function compute_weights in Algorithm 3.1.5.1 assigns to each sample point a

fitting weight according to the following formula:

W(Zi) = 1+

(

|∆z|

th(e)

)−α

(3.6)

where th> 0 is the weighting threshold, proportional to the current average fitting

error, while α ≥ 1 is the weighting speed, proportional to the current iteration number.

Note how W(Zi) is always greater than 1.

The equalization_filter in Algorithm 3.1.5.1 moves sample points towards

the last computed surface, according to this logic:

Zi = Zi−∆z · (1+
1

W(Zi)
) (3.7)

Actually not all sample points are equalized: valid points (see Section 3.1.3) with

∆z < 0 are not modified. The goal is to find a good terrain surface estimation, that

must always be made of the lowest visible 3D points. Under this point of view, it

is counterproductive to rise points to the current approximated surface. Note how

adjustments are always smaller than ∆z, hence points never overshoot the current

surface.

In Figure 3.5 it is shown the comparison between a simple B-Spline surface and

the proposed iterative method, applied on the same samples: a simple B-Spline fitting

(a) compared with the proposed iterative least-squares fitting (b) and the resulting

obstacle segmentation (c). Note how the terrain is not affected by the equalization,

while obstacles are noticeably lowered, allowing effective obstacle detection.
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(a)

(b)

(c)

Figure 3.5: Examples of B-Spline processing.
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3.2 Obstacle Detection

In Section 3.1 a terrain estimation system is presented from whom part of 3D input

points, generated by the stereo reconstruction (see Section 2.1.5), are discarded. This

section contains a general overview about the obstacle detection systems that are suc-

cessfully performed on intelligent ground vehicles where a selected set of these ones

have been also tested for this work achieving a solution based on the result obtained

in Section 3.1: without assumptions on the observed environment. On basis of this

theory, it is possible to deduce the concept of obstacle for an autonomous/intelligent

vehicle: a not traversable object that it stands or floats on the ground.

In Section 3.2.1 a macro taxonomy of the obstacle detection systems, based on

stereo vision for autonomous/intelligent vehicles, is presented in order to understand

the motivation about the final solution. After this analysis, in order to provide a full

and reliable 3D obstacle detection, the candidate proposes three solutions, detailed in

Section 3.2.2, 3.2.3 and 3.2.4 as follows:

1. probabilistic occupancy map approaches

2. voxel approach

3. stixel-based occupancy map approach

3.2.1 Relative works

Obstacle detection (OD) is one of the main control system components for intelligent

ground vehicles [27] since a reliable perception of the real world is a key-feature for

any obstacle detection system for dynamic environments.

In last years, most of the historical approaches in literature have been readjusted

in the framework of stereo vision and other 3D perception technologies (e.g. LIDAR)

and important results have been provided by several experiments on autonomous

ground vehicles [1, 3, 4]. In order to achieve a good performance, most of the OD

algorithms needs some assumptions about the ground [28] or about the approximated

free space on it [23, 24, 29].
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The obstacle detection field is a very broad one and a lot of obstacle detection

systems have been developed in the last years in this domain [30]. An algorithm can

be considered reliable and accurate if it provides: a real-time output, a stable and

reliable tessellation of the environment, a robust state estimation of the obstacle de-

tected and working regardless of lighting and weather conditions. Stereo vision errors

and general performance have been widely discussed in literature [7,31]; Matthies et

al. [21] show a practical approach to evaluate the performance of an obstacle detec-

tion algorithm.

In this section a brief description on obstacle detection algorithms based on stereo

vision and other 2D/3D sensors is proposed. Each obstacle detection system is fo-

cused on a specif tessellation or clustering strategy, hence they have been categorized

into 4 main models:

1. probabilistic occupancy map

2. digital elevation map

3. scene flow segmentation

4. geometry-based cluster

3.2.1.1 Probabilistic Occupancy Map

The main model of the probabilistic occupancy map (POM) is proposed by Elfes [32]:

occupancy grid mapping. It is one of the most famous approaches in literature.

The world is represented as a rigid grid of cells containing a random variable

whose outcome can be free, occupied, or undefined (not mapped). For a proper for-

malization of the problem, let us consider a regular lattice D of Xi Random Variables

with outcomes in a finite set of labels. The Elfes model requires 3 possible states:

free, occupied, unknown. Let us call Ω the Phase Space and Zt the measurements

performed at t time.

For a proper formalization of the problem, let’s consider a regular lattice D where

each lattice node is uniquely addressed by an index i ∈ |D | and bijectively associated
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to each grid cell. Then a Random Variable Xi is associated to each of the above-

mentioned nodes, with outcomes in L a discrete finite set of labels. The Elfes model

requires L = {l f , lo, lu} with l f free cell, lo occupied cell and lu undefined cell.

Thus it is possible to define

• Ω Phase Space for the grid, representing the set of all of the possible configu-

rations

• σ ∈Ω one of the possible configurations

• X = {Xi}i∈|D | Random Variable composed of all of the local Random Variables

• Zt Measurement performed by sensors at time t

The goal consists in computing P(X ,{Zτ}τ=1,...,t) the associated joint distribution

depending on a set of measurements carried out on a certain discrete set of time mo-

ments. Usually some assumptions are made in order to simplify the problem, namely

spatial conditional independence and temporal stochastic independence.

The first kind of assumption usually made concerns spatial conditional indepen-

dence among all of the variables hence leading to a factoring PDF over all of the

nodes such as

P(X |{Zτ}τ=1,..,t) =
|D |

∏
i=1

P(Xi|{Zτ}τ=1,...,t) (3.8)

Another assumption regards the temporal stochastic independence hence leading

to

P(X |{Zτ}τ=1,...,t) = P(X |Zt) (3.9)

In order to simplify the notation let us consider m as the random variable as-

sociated to a generic cell. The occupancy value of a cell m is determined using a

probability density function given measurements zt :

p(m|z1, . . . ,zt) (3.10)

Equation 3.10 represents the state of the cell m given the measurements z1, . . . ,zt .

Maps can defined over high-dimensional spaces. Assuming a 2D occupancy grid
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space and static world, namely the conditional independence among sensor read-

ing given the knowledge of the map, the posterior density function in Equation 3.10

is reformulated in terms of log-odds as defined by Thrun [33]

p(mx,y|zt) = 1− [el
(t)
x,y ]−1 (3.11)

with

l
(t)
x,y = l

(t−1)
x,y + log

p(mx,y|zt)

1− p(mx,y|zt)
− log

p(mx,y)

1− p(mx,y)

and

l0
x,y = log

p(mx,y)

1− p(mx,y)

The log-odds regarding p(mx,y|zt) in Equation 3.11 are recursively estimated

through the Bayes rule, updating the cell value in different moments. More details

are described in Thrun [33].

Figure 3.6 shows the representation of a depth sensor measure in a 2D occupancy

grid. Grey cells have unknown occupancy values, white cells are free and black cells

are occupied. The main advantages of this method are the following ones: it is easy

to construct and it can be as accurate as necessary.

Figure 3.6: Example of the generation of occupancy grid map
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A new set of stochastic occupancy grid models are detailed in Badino et al. [29].

Figure 3.7 shows a representation of these probabilistic maps along with the cor-

responding projections in world coordinates. The figures on the top show how the

world points are discretized into a top-view representation while on the bottom show

the corresponding occupancy grids. The cells have been marked with the same label

of the corresponding world projections. In this work the authors illustrate an innova-

tive way to map the measurements computed by stereo vision.

Figure 3.7: Badino et al. occupancy grids for Disparity Space Image (DSI).

The disparity map represents the measurement processed by the algorithm to es-

timate an occupancy grid map. An estimation in world coordinates from the disparity

map is implemented according to Equation 3.12 that is using a projection camera

model based on the intrinsic and extrinsic parameters of the cameras.

pk = P−1(mk) =
baseline

d
·







(u−u0)

(v− v0) ·
f u
f v

f u






(3.12)
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where mk = (u,v,d)T is a combination of (u,v) image coordinates and d the cor-

responding disparity computed by stereo, and pk = (x,y,z)T the world point location

of the mk.

In the Badino’s paper every cell of each grid maintains an occupancy likelihood

D(i, j) regarding the represented world area.

D(i, j) =
M

∑
k=1

Li j(mk) (3.13)

with M the number of measurements.

Equation 3.13 shows a definition of the function D(i, j) where Li j represents the

occupancy likelihood for cell (i, j) given measurement mk.

According to the Elfes model (see Equation 3.10) each occupancy likelihood

function has been designed as a Gaussian probability density function Gmk
. A dif-

ferent function Li, j has been defined for each occupancy grid model.

In [29], the authors present 3 occupancy grid maps to tessellate the measurements

by stereo:

1. Cartesian grid. The world is represented by a cartesian grid and mapped lin-

early to a grid of fixed dimensions (see Figure 3.7). Let us assume that cell

(i, j) of the cartesian grid is centered at world coordinate (xi j,zi j). The likeli-

hood function for cell (i, j) is represented in Equation 3.14.

Li j(mk) = Gmk
(P(pi j)−mk), pi j = (xi j,y,zi j)

T (3.14)

For each point pi, j, the y is the triangulated measurements height obtained with

Equation 3.12.

The Gauss factor of the probability density function Gmk
is dependent on the

difference between measurement and the reprojected cell position. Thus, the

maximum likelihood factor is given to the cell which contains the triangulated

measurement (see Figure 3.8a).

In a normal implementation the authors declare that updating every cell of

the grid could be time consuming hence not suitable for a real-time applica-
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tion. They suggest to update only the cells significantly affected by the current

measurement setting a proper distance threshold (e.g. Mahalanobis distance)

between its projections.

2. Column/Disparity grid. The cells of the column/disparity grid correspond to

discretized values of the u and d image coordinates. The occupancy grid cri-

teria is based on mapping the measurements into (u,d) space assuming that

a cell (i, j) corresponds to a coordinate (ui, j,di, j) as shown in Figure 3.7. In

Equation 3.15 the likelihood function for the cell (i, j) is represented.

Li j(mk) = Gmk
((ui j−u,0,di j−d)T ) (3.15)

Figure 3.8b shows an example of the Li j function.

The disappearance of the v component in the measurement mk regarding Equa-

tion 3.15 is due to the projection criteria onto the grid.

3. Polar grid. The mapping criteria of the polar occupancy grid is represented

by the discretization of the values (u,z) where u corresponds to the column

value in image space and z is the depth in the world coordinate system. The

likelihood function for a generic cell (i, j) is detailed in Equation 3.16.

Li j(mk) = Gmk
((ui j−u,0,

fu ·baseline

zi j

−d)T ) (3.16)

Figure 3.8c shows an example of the Li j function.

As suggested by the authors, this solution overcomes the problem of the colum-

n/disparity approach: the decreasing resolution to distant points. The result can

be easily evaluated comparing Figure 3.7b and 3.7c.
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Figure 3.8: Examples of the likelihood function Li, j related to the same measurement

for each occupancy grid map.

When it is possible to make proper assumptions about the road model and the

vehicle pose, successful solutions regarding the obstacle segmentation problem have

been proposed, in some cases working in image coordinates by using v-disparity

space [22].

Most of the recent obstacle detection algorithms have been developed in the oc-
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cupancy grid maps framework. Recently one of the major contribution has been given

by Badino et al. [34] with the stixel representation.

Stixel tessellation. The basic concept of this approach is the world representation

into a set of rigid clusters called stixels by the authors, each obstacle is hence de-

scribed as a union of these elements.

Figure 3.9: Stixel output in real scenarios.

A stixel based obstacle detector requires the following tasks to be performed:

1. a polar occupancy grid mapping of the measurements computed by stereo;

2. background and foreground of disparities using the previous polar grids;

3. height segmentation to estimate the heights of each stixels.



3.2. Obstacle Detection 39

The last task is performed computing an upper boundary on the disparities cost

image by means of dynamic programming. This part is detailed in Badino [34]. Real-

time results are shown by the authors. They present a reliable obstacle detection al-

gorithm that runs on an Intel Quad Core 3.00 GHz processor in 25ms. An evaluation

of the stixel approach in different real world road scenarios is shown in Figure 3.9

where the color encodes the lateral distance to the driving corridor.

3.2.1.2 Digital Elevation Map

A Digital Elevation Map (DEM) is a height-based representation of the measure-

ments into a map like a cartesian occupancy grid (see Section 3.2.1.1). This approach

is widely applied mainly for terrain mapping [35]. A DEM can be computed with any

2D or 3D sensor (e.g. stereo vision, LiDAR and radar). Following the DEM-based ap-

proach, one of the major contributions for obstacle detection has been proposed by

Oniga et al. [23]. The authors present a complete system for road surface estimation

and obstacle detection in urban scenario.

In this work a DEM and two density maps are computed from the set of 3D points

to obtain a compact representation with explicit connectivity between adjacent 3D lo-

cations. The road surface is fitted using a RANSAC approach to a small patch in front

of the ego vehicle. To exploit this representation, the authors also propose an obstacle

detection algorithm based on the density of 3D points per DEM cell (as a measure

of the local slope). The density-based algorithm for obstacle detection is based on

the density of 3D points: each DEM cell is classified as obstacle or road using a

slope-based threshold criteria. Qualitative results are illustrated in Figure 3.10.

The authors claim that, due to use of software-specific C optimizations and the

DEM representation, an average processing time of 22ms has been achieved for the

whole algorithm (on Pentium 4 at 2.6 GHz). Furthermore, with the image acquisi-

tion and the dense hardware reconstruction, a sustained processing frame rate of 23

frames/s has been obtained. From the performance point of view, a set of false posi-

tive and negative results is also presented.
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Figure 3.10: An example of Oniga’s DEM-based approach: road (blue), traffic isles

(yellow) and obstacles (red).

An important contribution has been brought by Danescu et al. [36], consists in

applying the particle filter strategy to perform DEM tracking. The authors define this

approach Dynamic DEM.

3.2.1.3 Scene Flow Segmentation

This technique, at first known as optical flow, is based on the temporal correlation

to estimate the motion between two frames captured by camera at different times.

In literature there are so many papers that show the implementation of an optical

flow algorithm for obstacle detection but not many techniques guarantee a real-time

processing [37], [38], [39]. Because of recent improvements in 3D reconstruction

techniques by stereo, in the last years this approach has evolved into a new one:

scene flow estimation.
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Figure 3.11: Scene flow estimation of 6D vision

A notable 3D approach is the so called 6D vision [6], where each 3D point (com-

puted by an FPGA stereo system) is tracked by means of an efficient GPU Optical

Flow implementation. An important study has been presented by Lenz et al. [40]

where the scene flow estimation is computed by means of a temporal correlation re-

garding two couples of frames acquired by stereo, this is essentially a visual odometry

based approach following Geiger [8]. Qualitative results for the Franke and Lenz ap-

proach are shown in corresponding Figure 3.11 and 3.12. Figure3.12 show the Lenz’s

approach: (a) slowly moving and small objects such as the pedestrian in the first two

frames are detected in a range up to 30 m. However, the track of such a small object

is interrupted and it is not continuously tracked. Similarly moving groups of pedes-

trians are detected as one object since the scene flow difference is not unique and

the number of detected interest points is to low. (b) Moving objects in this sequence

are detected, but especially for the far range static objects are detected as well. (c)

Turning cars and partly occluded objects, which where fully visible and observed in

a previous frame, are detected.
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Figure 3.12: Output of Lenz’s approach in urban scenarios.

In [40] the authors present an algorithm that runs in Matlab processing at least

one frame per second on one core of an Intel Core2 Duo with 2.4 GHz and 4 GB

RAM computing grayscale images with a resolution of 1392×512 pixels and at least

2000 interest points have been detected for each image. An hybrid approach regarding

moving obstacles has been presented by Rabe et al. [41]. This work is also developed

in the framework of 6D vision project. The core strategy in this application relies on

the principle of fusing optical flow and stereo information given in [6]. The basic idea

is hence to track points with depth information determined by stereo vision over two

or more consecutive frames and to fuse the spatial and temporal information using

Kalman Filters exploiting also an egomotion information. The algorithm is tested on

a 3.2 GHz Pentium 4 computing 2000 image points with a cycle time of 40-80ms.

Figure 3.13 show an example of the approach described.
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Figure 3.13: Rabe’s moving obstacle detector: velocity estimation results for an on-

coming car

3.2.1.4 Geometry-based Cluster

In this generic category it has been decided to present only the solutions in litera-

ture that provided real-time results. The strategy that can best describe this category

is Manduchi et al. [27]. In this work, the authors have postulated the first obstacle

detection approach for any dimensional model (3D also). Indeed they designed an

algorithm based on a search method that clusters the sensors measurements using a

double cone model (see Figure 3.14). The proposed 3-D obstacle search method us-

ing double cone that locates ground pixels (brown) and obstacle pixels (blue). The

whole set of 3D points is projected on the frontal plane with respect to the camera

(in order to simplify computations) then a scanning through the projected points set

is performed. For each point, the double cone mask (projected it becomes a double

triangle mask) is applied and if any other point is found in the region of interest they

and the initial point are classified as an obstacle otherwise the initial point is classified

as ground.
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Figure 3.14: Manduchi double cone

The performance of this approach are widely evaluated in [16]. The authors

described their stereo obstacle detection algorithm based on [27] showing the perfor-

mance elaborated during an intercontinental experiment on their autonomous ground

vehicle [1]. A similar approach was also used in PROUD test [4]. In order to achieve

real-time processing, the authors have postulated a smart segmentation method along

the disparities. The processing times are detailed in Table 3.1.

Table 3.1: VIAC processing times.
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Figure 3.15 shows the qualitative results of the Broggi et at. [16] in different

scenarios during the VIAC using a DSI computed at 128 disparities: in Figure 3.15(a)

- (c) a busy motorway in Kiev, (d) - (f) country roads with woods and uphill sections,

(g) a deserted mountain motorway in Kazakhstan, (h) a raindrop on the right camera

and (h) an upcoming tractor.

Figure 3.15: Obstacle detection results in VIAC.

3.2.2 Probabilistic occupancy map approach

On the basis of the theories cited in Section 3.2.1, in order to compute a fast and re-

liable information about the obstacles for an intelligent vehicle, a set of probabilistic

occupancy map approaches is implemented following the Badino et al. theory [29].

The 3D input data are based on the discarded points generated by the terrain

estimator as detailed in Section 3.1 and processed as described in Chapter 2. Fig-

ure 3.16 shows the output generated by each approach: (a) cartesian occupancy map,
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(b) column/disparity and (c) polar grid map. The clustering strategy applied for each

obstacle is based on a common convex hull algorithm: gift wrapping. The color clus-

ter is used to suggest how far is an obstacle from the vehicle (e.g. red means close).

(a) (b) (c)

Figure 3.16: Output of probabilistic occupancy map approaches.

Tests and results will be detailed in Chapter 4.

3.2.3 Voxel approach

The approaches described in Section 3.2.2, do not exploit completely the 3D infor-

mation provided by modern stereo matching algorithms. The complex cluster map

shows full 3D information using adjacent stack of cells [19], or octrees connected

cubes [20], and are able to represent objects at multiple heights located at the same

range and azimuth. Full 3D clusters show the great advantage of adequately repre-

senting obstacles with non conventional shapes, like concave ones.

In this section the candidate introduces an obstacle detector based on a full 3D

scene reconstruction to estimate both stationary and moving objects with minimum

assumptions of the road model. A modelling of the 3D point cloud, derived from a

disparity image, into an accurate voxel reconstruction is necessary to build complex

clusters. The 3D input source is based on the same processing of the Disparity Space

Image (DSI) cited in Chapter 2 and applied in Section 3.1. These 3D data contain the

geometric and texture information and are perfectly suitable to make a segmentation

based on a flood fill approach.
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A vehicle pose estimation is needed to determinate the velocity and position of

obstacles detected; for this reason it has been developed an egomotion estimator based

on the visual odometry approach introduced in [8]. The developed approach for obsta-

cle detection receives as input the point cloud from the 3D points engine and returns

a list of obstacles, estimated in terms of position, volume and speed. This algorithm

can be divided into three main steps. First, the positional 3D information of each

point (xi,yi,zi) is used to partition the cloud into voxels. Then, a color-based cluster-

ing algorithm is used to obtain the list of obstacles from the set of voxels. Finally,

each obstacle is tracked, in order to strengthen the output and estimate the obstacle

speed.

Through a temporal interpolation of previous 3D voxel reconstructions, the ob-

jects above the ground can be easily detected and their velocity and position can be

estimated using a Kalman filter; more complex and similar approaches exist in liter-

ature [6].

The approach can be described as a 4 step procedure:

1. Egomotion estimation. A pose estimation of ego-vehicle is needed to distin-

guish between stationary and moving objects; this is achieved by a visual

odometry approach, described in Section 3.2.3.1.

2. Voxel-based partitioning. The 3D point cloud is partitioned into voxels at a

certain resolution. This structure will contain the points that belong to a voxel,

regardless of whether they represent terrain, an object, or spurious noise. The

Section 3.2.3.2 describes how this voxel structure quantizes at each frame the

3D point cloud using the egomotion information.

3. Clustering. In Section 3.2.3.3 a colour-space segmentation approach has been

used to group together voxels with similar features, considering only those

voxels that are above the ground plane; a subsequent refinement and cluster

aggregation phase is performed to increase robustness and remove false posi-

tives. To each cluster is assigned a unique label C corresponding to their center

of mass (Cxi
,Cyi

,Czi
).
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4. Moving obstacles. Finally in Section 3.2.3.4, a Kalman filter is applied to prune

false positives estimating the predicted speed and pose of candidates. The eval-

uation of these data determines which of clusters are moving obstacles.

3.2.3.1 Visual Odometry

Visual Odometry (VO) is the process of incrementally determining the position and

orientation of a vehicle by examining the changes that motion induces on sequential

camera images taken by its onboard cameras [42]. VO implementation used for this

work is based on a variation of Geiger’s approach [8] that exploit a different feature

descriptor.

Figure 3.17: Feature matching using stereo images

Figure 3.17 shows the feature matching between two stereo images captured in

different times. The top row shows two images of the last observed scene for the

left and right camera; same way, the bottom row shows a frame of stereo images

captured at the previous time. The similiarity metric algorithm tries to detect the
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features comparing circularly the frame pair in the following order:

• (last left frame↔ last right frame);

• (last right frame↔ previous right frame);

• (previous right frame↔ previous left frame);

• (previous left frame↔ last left frame);

Finally the algorithm computes the rototranslation matrix that minimizes the repro-

jection error between the supplied correspondences via Levenberg-Marquardt non-

linear optimization.

3.2.3.2 Voxel-based space partitioning

The perception of the environment is based on the concept of voxel. A voxel is defined

as an element of a partition of the 3D space in cube-shaped blocks, where each block

is aligned along the directions of the axes of the Cartesian 3D coordinate system.

Each voxel in a grid is identified by its position and dimension (usually expressed

with the center and the edge length, respectively). The set of 3D points spatially be-

longing to each voxel, as well as some additional information stored for convenience

(the centroid of the points, the number of points, the color mean values and compo-

nent variances, both in the RGB and HSL color spaces), is assigned to the same voxel.

These data are stored using an efficient approach [20] saving only the needed vox-

els: thanks to egomotion information, new voxels are created only when a previously

empty volume of the space is now occupied by a new 3D point; similarly, voxels

are removed if no 3D points fall into it. Inserting and retrieval costs correspond to

an un-ordered associative container; the implementation guarantees an O(N) com-

plexity for the worst case, O(1) for the mean case. Moreover, this implementation

allows the movement in the set at a constant cost (plus, eventually, the retrieving of

the data), both in a Cartesian and a hierarchical (octree-based) way. This model could

be extended to any n-dimensional space.
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3.2.3.3 Color-based clustering

The obstacles have been assumed to be above the road plane. So, only the voxels with

positive z have to be considered. The set of these voxels is used as the input of a clus-

tering algorithm that segments the same set into clusters, each of them corresponding

to an obstacle candidate. To each cluster is assigned the corresponding set and num-

ber of contained voxels, the color mean and variance (both in RGB and HSL color

spaces), the overall bounding box and its density (where density of a cluster is de-

fined in terms of the ratio between the number of contained voxels and the bounding

box volume).

f (v,c) = ‖~IRGB(v)−~IRGB(c)‖2 +‖~IHSL(v)−~IHSL(c)‖1 (3.17)

Algorithm 3.2.3.1 Flood fill color-based clustering

foreach not-yet-considered voxel v do

c <- new cluster containing v

insert v in queue

while not queue is empty do

v′ <- extract first element from the queue

foreach v′′ ∈ N(v′)\{vc|vc ∈ c} do

if f (v′′,c)< ε then

insert v′′ in c

insert v′′ in queue

end if

end foreach

end while

end foreach

A flood fill color-based clustering algorithm is used for this purpose (Algorithm 3.2.3.1),

using as a similarity check the Equation 3.17.

The neighbourhood N of a voxel v is defined as the voxel-centered closed unit

ball in the voxel set, measured with the Chebyshev distance.
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The similarity between a cluster and a voxel is based on color. The color of the

voxel is compared to the color of the cluster resulting from the colors associated to

each already-inserted voxel in the cluster. Various types of color matching have been

experimented: the chosen color match is based over the normalized means of the RGB

and HSL components, as stated in Equation 3.17. Empirically, it has been found that

the algorithm could produce small clusters, due to the noise over the disparity data,

depending on the objects in the scene and on the lightning conditions. So a refinement

has been added. First of all, for each small cluster a big neighbour cluster is searched.

If any is found, the small one is aggregated to one of them (Algorithm 3.2.3.2). Every

small, or with low density, remaining cluster is treated as noise and it is not considered

in further computations (Algorithm 3.2.3.3).

Algorithm 3.2.3.2 Cluster aggregation

foreach cluster c do

if number of voxels of c small

and there is at least one voxel near c

then

c′ <- cluster with biggest number of voxels near c

aggregate c in c′

end if

end foreach

Algorithm 3.2.3.3 Cluster noise removal

foreach cluster c do

if number of voxels of c small

or low density of c

then

remove c from list of clusters

end if

end foreach
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3.2.3.4 Moving obstacles

The reliability of the output is enhanced using a tracking algorithm. The clusters

found in the current frame are associated with tracked clusters, according to a greedy

policy based on a distance function (Algorithm 3.2.3.4).

Algorithm 3.2.3.4 Tracking associations generation

C <- set of current frame clusters

T <- set of tracked clusters

while C or T contain not-yet-considered elements do

(t̂∗, ĉ∗) <- (t,c)∈T×Cd(t,c)

if d(t̂∗, ĉ∗) less than threshold then

consider t̂∗ and ĉ∗ as associated

remove t̂∗ from T and ĉ∗ from C

end if

end while

foreach t ∈ T do

consider t as non associated (ghost)

end foreach

foreach c ∈C do

consider c as non associated (new cluster)

end foreach

The information of cluster color, dimensions, density and predicted position have

been used to create distance functions between clusters. Several linear combinations

of these distances have been tested as a distance function for the algorithm.

Each tracked cluster is put in one of these three queues:

• a newly seen cluster is put in the acceptance queue, where it remains until it is

seen for enough consecutive frames. If this does not happen, it is discarded.

• a cluster seen for enough consecutive frames is put in the tracked queue, where

it remains as long as it is visible.

• a cluster that disappears from the view is put in the ghost queue. If it becomes
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visible again, it is put in the tracked queue. A cluster that remains too long in

the ghost queue is discarded.

Moreover, each tracked cluster has a 6-dimensional state associated to it, identi-

fied by the position and the speed of the centroid of the cluster. This state is used to

predict and correct the spatial information of the cluster by a linear Kalman filter.

Tests and results will be detailed in Chapter 4.

3.2.4 Stixel-based occupancy map approach

Through a brief comparison between the previous implemented approaches, it is pos-

sible to deduce that the occupancy grid maps [29, 34], implemented in Section 3.2.2,

are notably efficient but they are not able to represent concave or floating obstacles if

another one is located at the same azimuth and position with different height. On the

contrary, the geometry-based approaches, as seen in Section 3.2.3, and scene flow

segmentation [6, 40] provide a full 3D perception of the obstacles detected but are

time-consuming.

On the basis of these deductions, a new approach is developed in order to guar-

antee:

• the performance of probabilistic occupancy map;

• the capability to represent concave and floating obstacles.

This strategy has been included in the first approach based on occupancy map,

described in Section 3.2.2, removing the convex hull representation with one based on

augmented stixels. By this technique an obstacle can be defined as a cluster of stixels.

The key features of an augumented stixel are represented by a modified version of the

original structure proposed by Badino et al. [34]:

• fixed size for both longitudinal and latitudinal directions,

• textured 3D point cloud,

• estimation of the minimum and maximum height value from the ground.
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Figure 3.18: Example of output of the stixel-based occupancy map. approach

Indeed the last property allows to model concave and floating obstacles on the

contrary of the original approach that it estimates only the maximum height of the

stixels. Figure 3.18 shows a brief qualitative result of the implemented approach

based on polar grid map. Tests and results will be detailed in Chapter 4.



Chapter 4

Tests and results

The highest goal that man can achieve is amazement.

– Johann Wolfgang von Goethe

4.1 Overview

In this chapter the tests and obtained results about the developed approaches for the

terrain estimation system and obstacle detectors will be detailed as follows.

• Perception hardware. A brief description about the hardware setup of the cam-

era and the calibration process.

• Terrain estimation. Evaluation in terms of reliability and robustness of the ter-

rain points extraction algorithm will be describe. Also a set of qualitative re-

sults in several scenarios will be shown.

• Obstacle detection. In this section several tests will be analyzed in order to

study and select the ideal algorithm to connect at the terrain estimation system

for a real-time processing. Each obstacle detector includes a tracking system
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based on a linear Kalman filter in order to estimate the motion of detected

objects.

4.2 Perception hardware

This section introduces a description of the camera hardware applied for the whole

tests. In order to minimize the disparity estimation error, avoiding the rectification

issues detailed in Section. 2.1.3, a rigid parallel stereo camera has been mounted on

the vehicle. Figure 4.1 shows three cameras at different heights and orientations; this

configuration has been chosen in order to perform an exhaustive test session for the

terrain estimator and obstacles detectors.

Figure 4.1: Cameras setting on a VisLab vehicle (Porter) used during the VIAC.
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The cameras used to perform the tests are listed as follows:

• PointGrey BBX3-13S2C-38 color sensor with 3.8mm as focal length.

• PointGrey BBX3-13S2M-60 monochromatic sensor with 6mm as focal length.

Technical details and specifications about the used cameras are described in Ap-

pendix A.

As described in Section. 2.1.4 and 2.1.3, if the cameras are already align in order

to represent a parallel stereo cameras system, the depth map values (u,v,d) in DSI

coordinates can be easily translated into sensor coordinates (x,y,z) (see Figure 4.2)

using the formula in Equation 4.1 where u0 and v0 are respectively the horizontal and

vertical optical centre and ku is the horizontal pixel focal length.



















x = baseline·(u−u0)
d

y = baseline·(v−v0)
d

z = baseline·ku

d

(4.1)

Figure 4.2: Sensor reference system.

The 3D point cloud, provided as input source for the terrain and obstacle detection

algorithms, is transformed in world coordinates using the reference system visible in

Figure 4.3. The rotation matrix R is expressed in Equation 4.2.

R = Rz ·Ry ·Rx (4.2)
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Figure 4.3: World reference system.

Figure 4.4 shows the scenario used for the calibration of the extrinsic parameters

of the stereo camera.

Figure 4.4: Calibration scenario.
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4.3 Terrain estimation

In order to evaluate the terrain estimation algorithm, two different kind of tests are

performed. The first, detailed in Section. 4.3.1, is based on the study of the robust-

ness and goodness of the algorithm in presence of virtual obstacles. The latter in

Section 4.3.2 regards the analysis of the terrain estimation results in several scenarios

and conditions.

4.3.1 Ground points extraction

The input 3D point cloud includes everything is visible in the images: terrain, ob-

stacles standing on the terrain, sky, etc. The goal of this algorithm, as detailed in

Section 3.1, is to fit the terrain surface, removing all the remaining points (outliers).

An easy scenario is when all the 3D points belong to the terrain (e.g. a flat road free

of obstacles): in this case it is enough to fit the whole 3D point cloud into a simple

spline. Now let us to assume the same scene, but with a pedestrian on the ground:

a well-performing terrain estimation algorithm should detect the very same terrain

surface as before, without being affected by the presence of the object.

On the basis of this concept, the assessment procedure is the following:

1. select a scene where the terrain is perfectly estimated by the algorithm; e.g. a

flat road;

2. add an artificial obstacle, of given width and height and estimate again the

terrain surface;

3. compare the two surfaces, calculating the maximum deviation from the original

surface.

Figure 4.5 shows, for each artificial obstacles’ width and against obstacles’ height,

the maximum surface deviation in percentage of obstacles’ height The interest area is

22m×22m, control points are (a) 5×5 and (b) 25×25, splines degree is 3, sampling

ratio 50cm. The obstacle is placed in (x,y) = (11.0,0.0), with height from 0.5m to

3m and width from 0.8m to 12m.
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Figure 4.5: Terrain deviation with artificial obstacle.
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From this test it is possible to notice that:

• deviations are more dependent on obstacles’ size rather than height; in partic-

ular they are dependent on size compared to the area of interest’s size: a tall

and thin obstacles (e.g a pole or a pedestrian), will be easily cut off, leading to

small differences between the two surfaces; a wide and short obstacle will be

less effectively separated from the terrain below;

• under a terrain estimation point of view, the above concept can be rephrased:

those parts of the terrain characterized by low height/width ratio turn out in

high deviations with respect to a flat plane; i.e. obstacle are more likely to be

included into terrain;

• with few control points the surface tents to be rigid, i.e. less affected by the

presence of an obstacle, regardless of its height; at the same time, a rigid sur-

face results to be less accurate in estimating rough terrains, since deviations

never get close to obstacle height;

• with many control points there is a trade off between terrain fitting and obsta-

cles segmentation: the surface is still able to cut off obstacles, but only when

characterized by a minimum steepness; conversely, it is possible to fit terrains

with a wider range of slopes.

Hence, as mentioned in Section 3.1 and 3.2, it is very important to clearly define

what an obstacles is in terms of size and steepness. Under a pure geometry based point

of view, if the area of interest is limited to 22m×22m, should an obstacle 15m wide

still be considered an obstacle? Or would it be better to include it into the terrain?

Probably the obstacle width is not enough to answer this question, and it is necessary

also consider its height: in many extreme scenarios, a 15m wide, 1m tall area, is not

considered an obstacle; but a 15m wide, 8m tall area deserves more attention, even

for a big mining machines.
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4.3.2 Results

On the basis of the tests performed in the previous section, the definition of the ap-

plication scenario in terms of maximum allowed terrain steepness and size limits of

typical obstacles compared with the area of interest is a key aspect. The right spline

parameters pattern can be derived with the help of deviation plots like those shown

in Figure 4.5.

The system has been tested in different configurations and scenarios (urban, off-

road, mining), providing reliable terrain traversability maps. With 34m× 22m area

of interest along longitudinal and horizontal directions respectively, 25×25 control

points, spline degree 3, and 640× 480 pixel images for the DSI, the algorithm runs

at 14.70Hz (Preprocessing and DSI=45ms, Terrain Estimation=15ms, Traversability

Cost=8ms) on an Intel® Core™i7-3840QM 2.8 GHz with 4GB RAM. For this part, all

tests are performed using a PointGrey BBX3-13S2C-38 camera (see Appendix A.1).

Figure 4.6, 4.7, 4.8 and 4.9, show various results in different scenarios, with dif-

ferent lighting conditions and cameras setup in terms of orientation and position.

(a) (b)

Figure 4.6: Examples of terrain estimation with pedestrian in a country road.

Figure 4.6 shows in a country scenarios. In particular, Figure 4.6a and Figure 4.6b

show two paradigmatic processing results where a pedestrian walking up and down a
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hill. First of all, the terrain estimation is not affected by the presence of a pedestrian,

regardless of its position. Remember that this is a geometry based approach, so no

analysis of the visual information (color, edge, features, histograms, etc.) is made to

classify obstacles. Second, the pedestrian is always detected as an obstacle (outlier),

wherever it is placed in the scene. Finally, each portion of the terrain surface is labeled

with different traversability cost. The area of interest for these experiments is 22m×

22m for all images.

Figure 4.7: Example of terrain estimation in a country road.

Figure 4.7 shows a gravel road with ditch, cars, trees and bushes with an area of

interest of 34m×22m.

Figure 4.8 shows the results of the terrain estimation algorithm in little urban

roads. The area of interest for these tests is 34m× 22m for all images. Observing

Figure 4.8a and Figure 4.8b, it is possible to deduce how little walls with trees and

buildings, recognized as outliers, don’t interfere with the ground estimation. In Fig-

ure 4.8a part of buildings is represented as terrain but is marked as not traversable by

the color of the cells below (red). Figure 4.8c shows an experiment in a little park-
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ing where all vehicles and obstacles are perfectly marked as outliers using the same

stereo camera located at a height of 5m from the ground.

(a) (b)

(c)

Figure 4.8: Output of terrain estimator in a simple urban scenario.

Tests in mining environment are also performed. Mounds of gravel, ditches, berms

and gravel “canyons” are marked as part of terrain as respectively shown in Fig-

ure 4.9a-c while a car and a pedestrian close to a berm, an excavator close to a berm,

a truck close to a high berm are recognized as outliers of terrain as represented in

Figure 4.9d-f. The area of interest is 34m×22m for all images.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Examples of terrain estimation in mining environment.



66 Chapter 4. Tests and results

Although this system was applied on off-road and country environments, it was

also successfully tested in several urban scenarios during the Public ROad Urban

Driverless-Car Test (PROUD-Car Test) on 12th July 2013 in Parma - Italy [4] (see

Appendix C).

(a) (b)

(c) (d)

Figure 4.10: Examples of terrain estimation performed on the PROUD-Car Test data.

This test was performed with the same configuration as the previous ones using

an area of interest is 32m× 14m for all images. Figure 4.10 and Figure 4.11 show

several examples of terrain estimation processing in various urban scenarios, where

having a good terrain estimation significantly helps the obstacle detection phase, es-
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pecially in case of non-flat terrain. Figure 4.10a-b show how the proposed algorithm

allows for lane reconstruction in presence of strong slopes; traffic lights, walls on side

and bushes are still marked as outliers and consequently as obstacle candidates. Fig-

ure 4.10c-d show another similar scenario in a roundabout; indeed Figure 4.10c high-

lights the advantage of this tridimensional algorithm for the terrain estimation against

techniques based on ground assumptions or 2-dimensional reconstruction [23, 26]

where the roll angle of the stereo camera is not parallel to the ground surface.

(a) (b)

(c) (d)

Figure 4.11: Examples of terrain estimation performed on the PROUD-Car Test data

in a dense urban scenario.
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The algorithm is also fully parameterizable in terms of obstacles height, terrain

slope, terrain resolution, etc., allowing to reliably detect even short obstacles, like

bushes and short poles, as show Figure 4.11a-b. In Figure 4.10c-d show respectively

example of terrain estimation and outlier extraction in a dense urban scenario: a

pedestrian couple while walking on an elevated crosswalk and a noisy estimation of

outliers (standing objects) at an intersection. At last in Figure 4.12 a correct detection

of a car and guard-rail in a highway is shown.

Figure 4.12: Output of the terrain estimation with a car and guard-rail in a highway.

These kinds of scenario are critical for sensors that cannot provide a dense 3D

point cloud in a single frame (e.g. 2D LIDAR) that, consequently, typically rely on

flat terrain assumption for obstacle detection processing.
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4.4 Obstacle detection

Provide a complete system that allows to reconstruct and model the ground shape and

the obstacles around the vehicle represents the main goal of this thesis. On the basis of

this idea, several obstacle detectors are implemented, as described in Section 3.2, in

order to analyze and find the best one. Each proposed strategy depends on the terrain

estimation result. Indeed the 3D input data are the discarded 3D points computed

by the terrain estimator. The sections below describe the performed tests and the

obtained results for each developed algorithm.

4.4.1 Probabilistic occupancy map approaches

As cited in Section 3.2.1.1 and Section 3.2.2, these techniques are strongly depended

on the clustering function [29] and the cell size of each cluster. The tests are per-

formed with 34m×22m area of interest along longitudinal and horizontal directions

in corresponding of the vehicle pose as described in Section 4.2.

Figure 4.13: Processing times of the occupancy map-based approaches.
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Figure 4.13 shows the processing time required by each obstacle detectors for

different cell sizes. All tests are also performed with square cells for each applied

technique on an Intel® Core™i7-3840QM 2.8 GHz with 4GB RAM.

(a) Cartesian. (b) Column/Disparity. (c) Polar.

Figure 4.14: Examples of obstacle detection based on probabilistic occupancy maps

in a parking.

Figure 4.14 and Figure 4.15 show the output of these obstacle detectors based

on Badino’s clustering approach [29] where 3 probabilistic occupancy maps using a

fixed cell size of 0.25m are computed: cartesian, column/disparity and polar. For each

figures, the images, represented in the row at the bottom side, show how the accumu-

lation function for each occupancy map works, as seen in Figure 3.7. As previously

described, the input data for each strategy is represented by the 3D points in world
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coordinates marked as obstacle candidates (outliers) by the terrain estimation system.

A first qualitative test is represented in Figure 4.14. In this urban scenario the 3D

input point cloud, outlier for the terrain estimator, is composed by stationary vehicles

in a parking.

Another test, performed in a country scenario, is shown in Figure 4.15 where

three far obstacles must be marked as as they are in order to respect the ground truth:

a pedestrian and two little poles.

(a) Cartesian. (b) Column/Disparity. (c) Polar.

Figure 4.15: Examples of obstacle detection based on probabilistic occupancy maps

in a country scenario.

From a brief analysis of both figures on the top row, it is possible to note that

the column/disparity approach is not able to detect the whole obstacles due by the

reprojection model based on the accumulation function, as detailed in Equation 3.15.

Indeed studying the images on the bottom side, the deductions made using the images

on the top side are proved. As advantage this approach provides a compact clustering

for each obstacle in order to avoid the splitting problem where parts of the same object



72 Chapter 4. Tests and results

are separately marked as new one. The cartesian occupancy map criteria contains

this kind of the problem. Figure 4.14c and Figure 4.15c show how the approach

based on polar occupancy solve the problem of the split obstacles, as represented in

Figure 4.14a and Figure 4.15a and also the missing detection due by the reprojection

strategy of the column/disparity approach (see Figure 4.14b and Figure 4.15b).

Table 4.1 shows the detection rates of each developed occupancy maps on several

environments. It is possible to note that the polar approach guarantees a really reliable

detection of the obstacles. Therefore some parts of the obstacles are not completely

reconstructed in mining scenario; this problem can be solved using a different cell

size dimensions in order to boost up the detection performance.

As cited in Section 3.2.2, these approaches guarantee acceptable detection rates

but are not suitable for the detection of the hanging and concave objects.

Scenario Cartesian % Column/Disparity % Polar % #Frames

Urban 90.0 93.2 99.9 4956

Country 89.2 92.5 99.8 3200

Mining 80.0 91.6 99.5 3500

Table 4.1: POM detection rates in several scenarios.
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4.4.2 Voxel approach

In Section 3.2.3 the candidate proposes an obstacles detector able to generate a full

3D reconstruction of both stationary and moving objects with minimum assumptions

about the road, modelling the 3D point cloud, derived from a disparity image, to an

accurate voxel reconstruction hence building complex clusters. These data structures

contain the geometric and texture information to perform a segmentation following

a flood fill approach. A vehicle pose estimation is carried out to determine the ob-

stacles speed and position by means of an egomotion estimation, based on the visual

odometry approach introduced in [8]. Through a temporal interpolation of previous

3D voxel reconstructions, the objects above the ground can be easily detected and

their velocity and position can be estimated using a Kalman Filter.

The input 3D point cloud includes everything that is visible in the images: terrain,

obstacles standing on the terrain, sky, etc. The goal of our algorithm is to detect mov-

ing obstacles, removing all the remaining points (considered as outliers). The core of

algorithm is based on the reconstruction of a voxel map. To figure out the reliability

of the developed approach, an evaluation that provides the optimal rendering reso-

lution of voxel partitioning is required. An easy scenario is when all 3D points are

processed with no ego-movements (e.g. a flat road in a known position): in this case

it is enough to rebuild the whole 3D point cloud into a voxel map at different reso-

lutions. Figure 4.16 shows these experiments. A low resolution indicates a high level

detail of the voxel map and vice versa. A high level detail of 3D reconstruction re-

quires a high computational cost in terms of performance; moreover, when the voxel

size reduces to the limit where each voxel contains exactly one 3D point, the resulting

resolution tends to correspond to the Disparity Map, jeopardizing the advantages of

a voxel representation. Hence, it is important to define the right resolution to apply

to the clustering algorithm, to achieve the best trade-off between obstacle detection

robustness and accuracy in position and speed estimation.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.16: Examples of voxel partitioning at resolutions 0.50m(a), 0.25m(b),

0.20m(c), 0.15m(d), 0.10m(e) and 0.05m(f) applied to a static scenario(g).

According to this concept, and the experiments shown in Figure 4.16, when us-

ing a volume of interest of 28.7m× 16.4m× 3.5m, it is possible finally to found a

satisfactory voxel resolution at 0.25m, able to provide good processing performance

and real-time computation. Alternative configurations provided less accurate results
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in terms of detail or several clusters that required a higher computational power to

estimate the object’s observed shape; in this case many objects are represented in two

or more clusters resulting as truncated due to the little variations in clustering cri-

teria values (e.g. unique color-texture, single point in voxel). Figure 4.17 shows the

computational costs required to build a complete voxel map.
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Figure 4.17: Processing times of a voxel map at different resolutions.

This algorithm has been tested for 640×480 pixel images on a Intel® Core™i7-

3840QM 2.8 GHz with 4GB RAM at 10Hz (DSI=45ms, Voxel clustering and track-

ing=55ms). Some qualitative results are illustrated in Figure 4.18.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.18: Examples of obstacle detection based on voxel map.
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Figure 4.18 shows various results in urban scenarios with different cameras, light-

ing conditions and system configurations: (a)(b)(c)(d)(e)(f) moving cars without de-

tection of stationary obstacles, (g) moving motorcycle without detection of stationary

obstacles, (h)(i)(j)(k) moving cars and stationary obstacles, (l) stationary pedestrian

and others obstacles in a construction site. Figure 4.18a to Figure 4.18g show only

moving obstacles detection results in different urban scenarios; the pose prediction

of each obstacle is shown using colored vectors representing the estimated obstacles’

velocity in terms of speed and direction. The next figures show some examples where

also stationary obstacles are highlighted. Figure 4.18l shows a complex scenario with

various obstacles in a construction site, such as trucks and pedestrians, as station-

ary objects. In this work everything that stands up from a flat ground is detected as

an obstacle and no classification or knowledge assumption is applied to estimate the

detected object typology.

Preliminary performances about the moving obstacle detection are shown in Ta-

ble 4.2. Moving pedestrians and cars have been classified as dynamic. In these tests

we have used two annotated image sequences as ground truth with different lighting,

cameras and system configurations evaluating the correct (TP) and false (FP, FN)

detection rates.

#Sequence T P FP FN #Frames

Sequence 1 82% 16% 2% 4500

Sequence 2 75% 22% 3% 6200

Table 4.2: Voxel approach results on annoted image sequences
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4.4.3 Stixel-based occupancy map approach

As discussed in Section 3.2.4, the occupancy grid maps, implemented in Section 3.2.2,

are notably efficient but they are not able to represent concave or floating obsta-

cles if another one is located at the same azimuth and position with different height,

as proved in Section 4.4.1. On the contrary, the last approach based on voxel map

(see Section 4.4.2) provides a full 3D reconstruction of the obstacles detected but

it is really time-consuming. This last strategy, based on a modified version of tradi-

tional stixel [34], let to fuse the advantages of polar occupancy map (processing time

and reliability) with the full 3D clustering property provided by geometry-based ap-

proaches. Indeed, as cited in Section 3.2.4, the key features of this augmented stixel

are represented by a modified version of traditional structure proposed by Badino et

al. [34], as follows:

• fixed size for both longitudinal and latitudinal directions;

• textured 3D point cloud;

• estimation of the minimum and maximum height value from the ground.

By this approach it is possible to divide and reconstruct an obstacle, previously

clustered with a convex-hull method (see Section 3.2.2), into a set of augmented

stixels as in the voxel map strategy proposed in Section 3.2.3.

Figure 4.19 shows some examples of this approach in two different scenario:

urban and country. In Figure 4.19a and Figure 4.19b it is possible to deduce how

each obstacle shape has been modelled by this new augmented stixel structure. In

both of the images some branches of the trees are represented as well; indeed this

proves the capability to reconstruct floating and concave obstacles.
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(a)

(b)

Figure 4.19: Examples of the final approach based on augmented stixels.

In order to test the reconstruction capability floating and concave obstacles, some

supervised tests are performed. Figure 4.20 shows the obtained results. The image on

the left side represents the whole 3D point cloud and the obstacles clustered as stixels.

On the right side, the complete output of the terrain estimation system combined with

this last technique is shown as final solution to the obstacle detection problem for this
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work.

In Figure 4.20a an hanging obstacle is perfectly represented by the augmented

stixel structure. In Figure 4.20b an original output is shown where a floating ball, a

board for construction works and a pedestrian have been reconstructed.

(a)

(b)

Figure 4.20: Examples of concave and floating obstacle reconstruction.

This last obstacle detector, combined with terrain estimator, has been tested on

an Intel® Core™i7-3840QM 2.8 GHz with 4GB RAM at 12.05Hz (Preprocessing

and DSI=45ms, Terrain Estimation=15ms, Obstacle Detection=15ms, Traversability

Cost=8ms). All tests are performed using both cameras detailed in Appendix A.
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Conclusions and Future Works

The little that is completed, vanishes from the sight of one

who looks forward to what is still to do.

– Johann Wolfgang von Goethe

5.1 Conclusions

For this thesis a real-time approach for 3D terrain estimation and obstacle detection

using on stereo vision has been successfully developed and tested. The terrain has

been computed using rational B-Splines surfaces performed by re-weighted iterative

least square fitting and equalization. A cloud of 3D points is sampled into a 2.5D

grid map; then grid points are iteratively fitted into rational B-Splines surfaces with

different patterns of control points and degrees, depending on traversability consid-

eration. The obtained surface also represents a segmentation of the initial 3D points

into terrain inliers and outliers.

This strategy presents some advantages, compared with previous techniques:

1. obstacle/terrain segmentation is geometry based only, performed online during

the surface fitting process. This allows further analysis of visual data such as
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color and texture to reinforce estimates.

2. Terrain estimation (and segmentation) takes into account vehicle capabilities

to traverse rough terrain.

3. B-Splines minimize the terrain fitting error over the whole area of interest,

providing robustness and computational efficiency; they are also locally con-

trollable through control points, ensuring accuracy in identification of localized

terrain independent by the application context.

As contribution to the obstacle detection (OD) problem, a brief survey about the

real-time approaches for obstacle detection, mainly based on stereo vision has been

presented. A taxonomy of these methods has been postulated in order to highlight

the approaches successfully presented in literature in the last years. This research has

been focused on the discrimination and selection of the OD techniques that gave a real

contribution in terms of reliability, real-time processing capability and robustness.

The analyzed approaches have proved effective but also showed some issues. DEM

approach [23] and occupancy grid maps [34] are notably efficient but they are not able

to represent concave or floating obstacles if another one is located at the same azimuth

and position with different height. On the contrary, approaches based on geometry-

based clusters, as described in Section 3.2.3, and scene flow segmentation [6], [40]

provide a full 3D perception of the obstacles detected but are time-consuming. In

order to find a reliable solution to the obstacle detection problem, 3 approaches has

been developed, as detailed in Section 3.2:

1. probabilistic occupancy map approaches

2. voxel approach

3. stixel-based occupancy map approach

By these results obtained in Section 4.4, it has been possible to deduce that the

last proposed strategy, based on polar occupancy map with augmented stixels, allows

to reconstruct obstacles in most of the challenging scenarios. In terms of the obstacle
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motion estimation each analyzed and developed algorithm provides a reliable assess-

ment through a generic linear Kalman Filter.

The whole algorithm is fully parameterizable in terms of obstacles height, terrain

slope, terrain resolution, etc., allowing to reliably detect even short obstacles, like

bushes and short poles. Another important advantage of this strategy that it allows to

detect floating and concave obstacles as well.

As final contribution, in this work the candidate proposes an innovative real-time

stereo vision system for intelligent/autonomous ground vehicles able to provide a full

and reliable 3D reconstruction of the terrain and the obstacles.

The system is tested on different platforms providing the following performances:

• Intel® Core™i7-3840QM 2.8 GHz with 4GB RAM at 12.05Hz.

• Intel® Core™i7-820QM 1.73 GHz with 8GB RAM at 10Hz.

Table 5.1 show the processing times of the whole system on the platforms previ-

ously described.

Platform DSI Terrain Obstacle Traversability

Estimation (ms) Detection (ms) Cost (ms)

i7-3840QM 45 15 15 8

i7-820QM 55 15 20 10

Table 5.1: Processing times of the terrain and obstacle detection system.

This approach has been also integrated in a commercial stereoscopic system (see

Figure 5.1) developed by the VisLab srl: 3DV1. It is composed by a 24cm baseline

stereo camera and a ruggedized PC, able to process in real time the whole terrain and

obstacle estimation system described in this work.

13DV website: http://www.vislab.it/3dv

http://www.vislab.it/3dv
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Figure 5.1: VisLab stereoscopic system for 3D reconstruction (3DV)

5.2 Future Works

The proposed algorithm is fully frame based, so it does not perform any temporal

interpolation. Knowing the vehicle odometry and pose (see Section 3.2.3), it would

be possible to integrate in time the surfaces obtained, increasing the robustness. In

addition, more constrains on points’ heights and derivatives could be added in the

spline fitting phase.

The vision based 3D engine implementation can be negatively affected by poor

visibility conditions, leading to low disparity map densities. More testing sessions

in challenging environments are needed to characterize the system performance with

respect to 3D points resolution and density.

A classification of the obstacles, in terms of pedestrians and vehicles, would be

considered to improve the obstacle detection and refine the result of the clustering

process.
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PointGrey BumbleBee XB3

A.1 BBX3-13S2C-38

Resolution 1280 x 960

Frame Rate 16 FPS

Megapixels 1.3 MP

Chroma Color

Sensor Name Sony ICX445

Sensor Type CCD

Readout Method Global shutter

Sensor Format 1/3"

Pixel Size 3.75 µm

Lens Mount 3 x M12 microlens

Focal Length 3.8 mm, 66-deg HFOV

Aperture f/2.0

ADC 12-bit

Exposure Range 0.03ms to 66.63ms

Trigger Modes Standard, bulb, skip frames, overlapped

Flash Memory 512 KB non-volatile memory

Non-isolated I/O Ports 4 bi-directional
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Serial Port 2 RS-232 (dedicated pins)

Auxiliary Output 3.3 V, 150 mA maximum

Interface FireWire 1394b

Power Requirements 12 V

Power Consumption (Maximum) 4W at 12V

Dimensions 277mm x 37mm x 41.8mm

Mass 505 grams

Temperature (Operating) 0 ◦C to 45 ◦C

Temperature (Storage) -30 ◦C to 60 ◦C

Humidity (Operating) 20 to 80% (no condensation)

Humidity (Storage) 20 to 95& (no condensation)

Table A.1: Technical specifications of BBX3-13S2C-38.

A.2 BBX3-13S2M-60

Resolution 1280 x 960

Frame Rate 16 FPS

Megapixels 1.3 MP

Chroma Mono

Sensor Name Sony ICX445

Sensor Type CCD

Readout Method Global shutter

Sensor Format 1/3"

Pixel Size 3.75 µm

Lens Mount 3 x M12 microlens

Focal Length 6mm, 43-deg HFOV

Aperture f/2.5

ADC 12-bit

Exposure Range 0.03ms to 66.63ms

Trigger Modes Standard, bulb, skip frames, overlapped
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Flash Memory 512 KB non-volatile memory

Non-isolated I/O Ports 4 bi-directional

Serial Port 2 RS-232 (dedicated pins)

Auxiliary Output 3.3 V, 150 mA maximum

Interface FireWire 1394b

Power Requirements 12 V

Power Consumption (Maximum) 4W at 12V

Dimensions 277mm x 37mm x 41.8mm

Mass 505 grams

Temperature (Operating) 0 ◦C to 45 ◦C

Temperature (Storage) -30 ◦C to 60 ◦C

Humidity (Operating) 20 to 80% (no condensation)

Humidity (Storage) 20 to 95& (no condensation)

Table A.2: Technical specifications of BBX3-13S2M-60.
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VisLab Intercontinental

Autonomous Challenge

B.1 Description

The VisLab Intercontinental Autonomous Challenge (VIAC) [1] is a test of autonomous

driving along an unknown route from Italy to China through, Slovenia, Croatia, Ser-

bia, Hungary, Ukraine, Russia, and Kazakhstan the trip began on July 20th, took over

three months and the total distance covered was more than 13,000 km. Vehicles trav-

elled from Italy to China through as shown in Table B.1.

The base vehicle is an Electric Porter Piaggio which has been transformed into an

Intelligent Vehicle for the challenge, most of the sensing technologies installed on the

base vehicle are directly derived from the perception suite of BRAiVE [2]; however,

BRAiVE was not designed to drive autonomously in off-road environments, hence

it misses all the cross country driving skills needed during an intercontinental trip

like VIAC. Vehicles were equipped keeping sensors, actuators, and processing units

accessible, in order to optimize development time, usability, and ease maintenance in

remote locations.

Throughout the journey the expedition travelled across a plurality of scenarios

completely different from each other. Crossing a large part of the Eurasian continent
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all sorts of situations, environments, roads, and weather conditions were met: moun-

tains, planes, unpaved, and dusty roads. In Europe and in the first part of the Russian

Federation the convoy travelled for many kilometers on highways and drove into the

heavy urban traffic of many great eastern Europe cities like Belgrade, Budapest, Kiev,

Moscow, then went across Siberia, the flat steppes of Kazakhstan, up the Tien Shan

Mountains and finally all the way across China towards its destination, Shanghai.

VIAC had his official conclusive event on October the 28th 2010 at the Belgium-EU

pavilion inside Shanghai’s 2010 World Expo.

The data collected refer to the effective 61 days of autonomous driving on an

overall 90 days journey: 191 runs for a total of 214 hours in autonomous mode were

completed. Usually the runs ended when no battery power was left, but sometimes

logistic needs mandated a stop, such as when crossing a state border. The maximum

distance traveled in autonomous mode per run was 96.7 km, with an average of 77.0

km. No autonomous run were performed in some tracks due to technical or logistic

problems. The sum of the tracks gives 8244 km in autonomous mode covered at an

average speed of 38.4 km/h and a maximum speed of 70.9 km/h. Maximum distance

covered in a single day was of 273 km and the maximum amount of time spent in a

day driving in autonomous mode was of 6 h, 26 min.

This project was carried out in the frame of the ERC Advanced Investigator Grant

(OFAV) received by Prof. Alberto Broggi. Several technical had been taken part to the

VIAC expedition : Piaggio, Topcon, Thales, IBM, Enfinity, and Overland Network,

including all other partners that worked for the success of this expedition.
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Day Date Place Distance [km]

1 19/07 Milano

2 20/07 Milano-Parma 153

3 21/07 Parma-Roma 470

4 22/07 Roma-Venezia 530

5 23/07 Venezia-Trieste 57

6 24/07 Trieste-Lubiana 98 SLOVENIA

7 25/07 Lubiana-Zagabria 153 CROAZIA

8 26/07 Zagabria-Nova Gradiska 200 SERBIA

9 27/07 Nova Gradiska-Belgrado 186

10 28/07 Belgrado

11 29/07 Belgrado-Novi Sad 96

12 30/07 Novi Sad-Subotica 110

13 31/07 Subotica-Budapest 192 UNGHERIA

14 01/08 Budapest-Zàhony 313

15 02/08 Zàhoni-L’viv 287 UCRAINA

16 03/08 L’viv-Novohrad Violyns’kyi 312

17 04/08 Novohrad Violyns’kyi-Kiev 224

18 05/08 Kiev

19 06/08 Kiev-Chorol 237

20 07/08 Chorol-Kharkov 246

21 08/08 Kharkov

22 09/08 Kharkov-Slovjansk 186

23 10/08 Slovjansk-Border 207

24 11/08 Border-Rostov 100 RUSSIA

25 12/08 Rostov

26 13/08 Rostov-Millerovo 214

27 14/08 Millerovo-Voronezh 360

28 15/08 Voronezh

29 16/08 Voronezh-Novomoskovk 327

30 17/08 Novomoskovk-Mosca 242

31 18/08 Mosca

32 19/08 Mosca

33 20/08 Mosca

34 21/08 Mosca-Vladimir 185

35 22/08 Vladimir-Niznij Novgorod 236

36 23/08 Niznij Novgorod
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37 24/08 Niznij Novgorod-Saransk 289

38 25/08 Saransk-Saratov 361

39 26/08 Saratov

40 27/08 Saratov-Sirzan’ 311

41 28/08 Sirzan’-Samara 166

42 29/08 Samara

43 30/08 Samara-Dimitrovgrad 145

44 31/08 Dimitrovgrad-Kazan 234

45 01/09 Kazan

46 02/09 Kazan-Naberesnje Celni 241

47 03/09 Naberesnje Celni-Ufa 287

48 04/09 Ufa-Yuryuzan’ 182

49 05/09 YuryuzanÃćÂĂÂŹ-Celiabinzk 250

50 06/09 Celiabinzk

51 07/09 Celiabinzk

52 08/09 Celiabinzk-Snezhinsk 110

53 09/09 Snezhinsk-Jekaterinburg 92

54 10/09 Jekaterinburg

55 11/09 Jekaterinburg-Kamysiov 149

56 12/09 Kamysiov-Tjumen 189

57 13/09 Tjumen

58 14/09 Tjumen-Vagay 146

59 15/09 Vagay-Ishim 163

60 16/09 Ishim-Omsk 319

61 17/09 Omsk

62 18/09 Omsk-Tatarsk 182

63 19/09 Tatarsk-Kujbysev 255

64 20/09 Kujbysev-Novosibirsk 330

65 21/09 Novosibirsk

66 22/09 Novosibirsk-Bolotnoe 136

67 23/09 Bolotnoe-Kemerovo 130

68 24/09 Kemerovo

69 25/09 Kemerovo-Novokuznetsk 207

70 26/09 Novokuznetsk-Barnaul 238

71 27/09 Barnaul-Rubcovsk 315

72 28/09 Rubcovsk-Semipalatinsk 150 KAZAKISTAN

73 29/09 Semipalatinsk-Georgiyevka 162

74 30/09 Georgiyevka-Ayagoz 192
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75 01/10 Ayagoz-Usharal 250

76 02/10 Usharal-Taldykorgan 270

77 03/10 Taldykorgan-Almaty 261

78 04/10 Almaty

79 05/10 Almaty-Sary Ozek 190

80 06/10 Sary Ozek-Zharkent 180

81 07/10 Zharkent-Khorgas 50

82 08/10 Khorgas: border CINA

83 09/10 Khorgas-Yining 90

84 10/10 Yining

85 11/10 Yining-Qingshuihe-Jinghe 290

86 12/10 Tuotuoxiang-Hutubi 340

87 13/10 Hutubi-Shanshan 350

88 14/10 Shanshan-Hami 340

89 15/10 Hami-Hongliuyuan 300

90 16/10 Hongliuyuan-Jiayuguan 320

91 17/10 Jayuguan-Shandan 300

92 18/10 Shandan-Yongdeng 335

93 19/10 Yongdeng-Huining 290

94 20/10 Huining-Binxian 335

95 21/10 Binxian-Xian 150

96 22/10 Xian-Sanmenxia 320

97 23/10 Sanmenxia-Luohe 320

98 24/10 Luohe-Xiangcheng 360

99 25/10 Xiangcheng-Mingguang 300

100 26/10 Mingguang-Changzhou 300

101 27/10 Changzhou-Kunshan 260

102 28/10 Kunshan-Shanghai 90

103 29/10 Shanghai

104 30/10 Shanghai

105 31/10 Shanghai

Table B.1: Trip schedule involved in VIAC project.





Appendix C

Public ROad Urban

Driverless-Car Test

C.1 Description

In this challenge, performed in Parma on 12th July 2013, a vehicle moved autonomously

on a mixed traffic route (rural, freeway, and urban) open to public traffic; in the final

part, nobody sat on the driver seat. Recently other similar systems have been realized

by other researchers and auto makers all over the world, but this has been the first

time that nobody was in the driver seat, to underline the programmers’ confidence.

In Public ROad Urban Driverless-Car Test (PROUD-Car Test) the most complex

part was the handling of real traffic, both in a highway setting (ring around Parma)

and in a urban setting (downtown Parma). Figure C.1 shows the vehicle driving au-

tonomously in downtown Parma. An element that greatly increased complexity is the

need to negotiate roundabouts (of different size and shape), underpasses, pedestrian

crossings, artificial bumps, traffic lights, since these articulated situations require a

deep environmental interpretation by the on-board system.

The possibility to conduct tests in an environment open to public traffic (as op-

posed to closed test tracks) is of paramount importance for the validation of the final

system. The safety of the test vehicle and other road participants was guaranteed by
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the possibility of a direct intervention by the passenger thanks to a brake pedal in case

of unexpected situations; furthermore people on the following vehicle were able to

shut down the autonomous vehicle and block it at any time thanks to a remote control

over a radio link.

Figure C.1: BRAiVE: Autonomous driving mode in downtown

The vehicle owns an area map also featuring a subset of ADAS information. Once

determined the route, shown in Figure C.2, the vehicle defines its future trajectory

considering information such as GPS map, lane markings, possible obstacles on the

path where, the planned route from the University Campus (A) to Piazza della Pace

(B), included two-way rural roads, two freeways with junctions, and plenty of urban

areas such as pedestrian crossings, tunnels, artificial bumps, tight roundabouts, and

traffic lights. At the same time it defines its speed profile based on road geometry,

obstacle presence, and obviously also respecting speed limits.
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Figure C.2: PROUD route map.

Many different sensors are installed on the vehicle, but not all have been used

in this test. The sensors used are: two frontal cameras locate obstacles (pedestrians,

bicycles, other vehicles) on the path, locate and interpret traffic lights, determine the

position of lane markings, and reconstruct the terrain profile lateral cameras together

with lateral laserscanners handle merging and roundabouts a frontal laserscanner to-

gether with two lateral laserscanners locate lateral objects (like nearby vehicles, bar-

riers, tunnel sides) two backward looking cameras locate vehicles in adjacent lanes.

The sensors installed on the prototype include two different technologies: cameras

and lasers, which complement each other in a very straightforward way.
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