6,219 research outputs found

    Instrumentation for propulsion systems development

    Get PDF
    Apparatus and techniques developed or used by NASA-Lewis to make steady state or dynamic measurements of gas temperature, pressure, and velocity and of the temperature, tip clearance, and vibration of the blades of high-speed fans or turbines are described. The advantages and limitations of each instrument and technique are discussed and the possibility of modifying them for use in developing various propulsion systems is suggested

    A rocket-borne pulse-height analyzer for energetic particle measurements

    Get PDF
    The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased

    Progress of analog-hybrid computation

    Get PDF
    Review of fast analog/hybrid computer systems, integrated operational amplifiers, electronic mode-control switches, digital attenuators, and packaging technique

    Design of sensor electronics for electrical capacitance tomography

    Get PDF
    The design of the sensor electronics for a tomographic imaging system based on electrical capacitance sensors is described. The performance of the sensor electronics is crucial to the performance of the imaging system. The problems associated with such a measurement process are discussed and solutions to these are described. Test results show that the present design has a resolution of 0.3 femtofarad. (For a 12-electrode system imaging an oil/gas flow, this represents a 2% gas void fraction change at the centre of the pipe) with a low noise level of 0.08 fF (RMS value), a large dynamic range of 76 dB and a data acquisition speed of 6600 measurements per second. This enables sensors with up to 12 electrodes to be used in a system with a maximum imaging rate of 100 frames per second, and thus provides an improved image resolution over the earlier 8-electrode system and an adequate electrode area to give sufficient measurement sensitivit

    Transducer applications, a compilation

    Get PDF
    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods

    Integrated interface circuits for switched capacitor sensors

    Get PDF

    Development of a Focused Broadband Ultrasonic Transducer for High Resolution Fundamental and Harmonic Intravascular Imaging

    Get PDF
    Intravascular ultrasound (IVUS) is increasingly employed for detection and evaluation of coronary artery diseases. Tissue Harmonic Imaging provides different tissue information that could additionally be used to improve diagnostic accuracy. However, current IVUS systems, with their unfocussed transducers, may not be capable of operating in harmonic imaging mode. Thus, there is a need to develop suitable transducers and appropriate techniques to allow imaging in multi modes for complementary diagnostic information. Focused PVDF TrFE transducers were developed using MEMS (Micro-Electro-Mechanical-Systems) compatible protocols. The transducers were characterized using pulse-echo techniques and exhibited broad bandwidth (110 at -6dB) with axial resolutions of Such promising results suggest that focused, broadband PVDF TrFE transducers have opened up the potential to incorporate harmonic imaging modality in IVUS and also improve the image quality. In addition, the transducer\u27s multimodality imaging capability, not possible with the current systems, could enhance the functionality and thereby the clinical use of IVU

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    Development of a Focused Broadband Ultrasonic Transducer for High Resolution Fundamental and Harmonic Intravascular Imaging

    Get PDF
    Intravascular ultrasound (IVUS) is increasingly employed for detection and evaluation of coronary artery diseases. Tissue Harmonic Imaging provides different tissue information that could additionally be used to improve diagnostic accuracy. However, current IVUS systems, with their unfocussed transducers, may not be capable of operating in harmonic imaging mode. Thus, there is a need to develop suitable transducers and appropriate techniques to allow imaging in multi modes for complementary diagnostic information. Focused PVDF TrFE transducers were developed using MEMS (Micro-Electro-Mechanical-Systems) compatible protocols. The transducers were characterized using pulse-echo techniques and exhibited broad bandwidth (110 at -6dB) with axial resolutions of Such promising results suggest that focused, broadband PVDF TrFE transducers have opened up the potential to incorporate harmonic imaging modality in IVUS and also improve the image quality. In addition, the transducer\u27s multimodality imaging capability, not possible with the current systems, could enhance the functionality and thereby the clinical use of IVU
    • …
    corecore